Semantic Web Rules and Ontologies for Developing Personalized Mashups

Aikaterini K. Kalou*, Dimitrios A. Koutsomitropoulos and Tzanetos T. Pomonis

High Performance Information Systems Laboratory (HPCLab), Computer Engineering and Informatics Dpt., University of Patras, Patras-Rio, Greece

Abstract. The current trends for the future evolution of the Web are without doubt the Semantic Web and Web 2.0. A common perception for these two visions is that they are competing. Nevertheless, it becomes more and more obvious that these two concepts are complementary. Semantic Web technologies have been considered as a bridge for the technological evolution from Web 2.0 to Web 3.0, the Web about recommendation and personalization. Towards this perspective, in this work we introduce a framework based on a 3-tier architecture that illustrates the potential for combining Web 2.0 and Semantic Web technologies. Based on this framework, we present an application of searching books from Amazon and Half eBay with a focus on personalization. This implementation purely depends on ontology development, writing of rules (for the personalization), and on creation of a mashup with the aid of Web APIs. However, there are several open issues that must be addressed before such applications can become commonplace. The aim of this work is to be a step towards supporting the development of applications which combine the two trends so as to conduce towards the term Web 3.0, which is used to describe the next generation Web.

Keywords: Semantic Web, knowledge representation, ontology, rules, SWRL, personalization, Web 2.0, mashups, Web APIs, Web 3.0, 3-tier architecture

1. Introduction

The Semantic Web and Web 2.0 are two seemingly competing visions that dominate in Web research and development. It is our firm belief that the technologies and the core strengths of these visions are complementary, rather than in competition. In fact, both technologies need each other in order to scale beyond their own drawbacks, in a way that enables forthcoming web applications to combine Web 2.0 principles, especially those that set off notions such as usability, community and collaboration, with the powerful Semantic Web infrastructure, which facilitates the information sharing among web applications. Recently, the term Web 3.0 came to be added in the glossary of Web and seems to describe the long-term future of the Web. By adding the Semantic Web to Web 2.0, we move conceptually closer to Web 3.0. The underlying technologies of the Semantic Web, which enrich content and the intelligence of the social web, pull in user profiles and identities, and must be combined for Web 3.0 to work [11]. Consequently, the incorporation of Semantic Web and Web 2.0 principles will conduce to the development of Web 3.0, the Web about personalization and recommendation.

Towards this direction, in this work we attempt to build a web application based on a 3-tier architecture (proposed by [25]), which combines the basic principles of Semantic Web and Web 2.0, as mentioned above. We have named this application Books@HPCLab, and at the remainder of this paper, we refer to this application with this name. The users of this application have the possibility to search and find metadata for books, which fit their personal preferences, from different data sources such as Amazon and Half eBay. Each user constitutes an autonomous entity for the application and makes a profile with his own interests and preferences. As a result, the content of the application is adapted to the user profile each time.

The implementation of Books@HPCLab is focused mainly on the ontology development and on the
mashup creation, since ontologies and mashups are the pillars for the Semantic Web and Web 2.0, respectively. The application does not interact with a database, as it is usual, but presents content drawn from an ontolgy. This makes the application’s presented information more reusable and effectively more sharable. Application content constitutes a data collection from different and heterogeneous sources on the Web. The term mashup, one of the most popular Web 2.0 applications, is used to describe this heterogeneous combination of data and can be considered to have an active role in the evolution of Web 2.0. A main characteristic of Books@HPClab - and at the same time the primary benefit of Web 3.0 - is users’ personalization, which is implemented with the use of rules.

The following text is organized in seven sections. In section 2, we start by providing some broad definitions and discussing the concepts of Semantic Web, Web 2.0, Web 3.0 and putting a special focus on personalization based on semantic technologies. Furthermore, we discuss related work and the theoretical background of the research area. In section 4, we describe in detail our application, its components, its architecture, the developed ontology, the rules for personalization and the current technological limitations. In section 5, we explain step-by-step the entire process of collecting data from online bookstores. Next, section 6 outlines some indicative application scenarios in order to illustrate the features and the functionality of the application. Based on our implementation, in section 7, we discuss and advise about some key issues that are to be met in similar ventures and identify potential future directions. Finally, section 8 summarizes our conclusions.

2. Background

For years, the World Wide Web has constituted a unique technological phenomenon with regard to the number of users and the vast available amount of information. At the same time, the lack of common terminology, organization and semantics of data, which are shared on the Web, induces difficulty at data exchange and processing. The necessity for development of the Web became imperative as long as never. As mentioned above, two distinct answers have emerged for the question “What is the next stage in the development of the Web?” from two different research groups: one, unmistakeably Berners-Lee’s, advocates the Semantic Web, and the other, easily recognisable as O’Reilly’s, supports the so-called Web 2.0 [14].

Nowadays, the term Web 3.0 is used to describe the evolution of the Web for the next decade (2010-2020) [19]. Web 3.0 will surely incorporate Semantic Web notions and Web 2.0 principles, but it will also include some more sophisticated concepts like artificial intelligence, as researchers believe.

2.1. Semantic Web

The Semantic Web, proposed by Tim Berners-Lee (inspirator of the Web) and propagated by the World Wide Web Consortium (W3C), is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation. In this context, the Web content will be presented in a form that is more easily machine-understandable, which means that machines will become much better able to process, to "understand" and to integrate the information that they simply display at present [7].

Ontology is without doubt the "backbone" of the Semantic Web. The most simple and easily understandable definition of the term Ontology is proposed by W3C: "An ontology formally defines a common set of terms that are used to describe and represent the basic concepts in a domain and the relationships among them". Since the Semantic Web relies heavily on formal ontologies, many languages for ontology expression such as SHOE, XOL, RDF, DAML and OWL and many tools for ontology engineering development have appeared, from WebOnto to Protégé. At the core of the Semantic Web architecture stack, as proposed by Tim Berners-Lee et al. [7], appears reasoning, the key component for the derivation of facts unexpressed explicitly in an ontology. Semantic reasoners and frameworks such as Pellet, FaCT++, Jena and others are pieces of software which implement the aforesaid task.

Note also that many ontology languages have restrictions on their expressiveness for the sake of decidability. One way to address this problem is to extend these languages with some form of rule languages. Rules have practical implementation in many domains, such as Engineering, Commerce, Law, Medicine, Internet and so on. Especially for OWL, the extension of OWL DL with Horn-like rules gives an extended language, named SWRL (Semantic Web Rule Language), which is intended to be the rule language of the Semantic Web [15][3]. The unrestricted combination of formalisms leads to a very expressive formalism, which is, at the same time, unsurprisingly undecidable. To overcome this risk, a safety condition is imposed on SWRL rules. This safety condition is known as “DL-safety” and such rules are called...
“DL-safe SWRL rules” and are used in the context of our work.

All these Semantic Web technologies constitute an environment capable of enabling efficient and personalized applications, since the idea of personalization is embedded within the very nature of the Semantic Web and set the state of the art [2].

2.2. Web 2.0

On the other side, the supposedly competing vision for the future of the Web is the Web 2.0, which converts users from “content consumers” to “content producers”. Intuitively, Web 2.0 is neither a new version of the Web nor a protocol, but concerns the changes in the way of using existing technologies. Notions such as interaction, dynamic content, collaboration, contribution, community and social computing are promoted by the platform of Web 2.0. Blogs, wikis, mashups, RSS, tagging, social bookmarking and social networks are included in the set of the most significant applications of Web 2.0 [22].

Web 2.0 is expressed in our application by the notion of a mashup. A mashup is a hybrid web application, which combines heterogeneous data or functionality from two or more external sources in order to create a new, unified and enhanced service or site. Web APIs (Web Application Interface), Web Feeds (RSS/Atom) and Screen Scraping are the main methods that are used for mashups’ creation, although the most common method is the first, Web APIs, and this is what is used in our work. The development of mashups is full and anodic and many kinds of mashup appear continuously, as mentioned thoroughly in [22].

The proliferation of Web APIs and their possibilities enabled and continue to enable the wide spread of mashup applications. Web APIs define a generic set of methods and functionalities which enable applications to call remote procedures and to exchange data by passing well-defined messages from a web service in a transparent manner. The set of messages delivered to a web service is named request and the set of messages delivered to clients is named response. In order to achieve the interaction or communication with a web service, protocols such as SOAP (Simple Object Access Protocol) and REST (Representation State Transfer) are used. For the basic unit of communication, i.e. the messages (request and response), JSON and XML formats are used. For our application, we have chosen Amazon Web API and EBay API, since Amazon and Half.com are among the 20 top book sites, as mentioned in http://books.nettop20.com.

2.3. Web 3.0

According to the most recent researches, the Web evolution is expected to take us into the era of Web 3.0, which adds the properties of the Semantic Web, better enabling computers and people to work in corporation, to the bidirectional knowledge exchange structure of Web 2.0 [18], as depicted in Figure 1.

It is anticipated that Web 3.0, the “intelligent web” as it is usually named in the literature, will address the lack of structure and organization, as it has came up by Web 2.0 technologies, by linking information from disparate sources and systems. Thus it will make the web even easier to use, more efficient and more valuable to its users [5].

Generally, the main features emphasized by the concept of Web 3.0 are the following three:

- The capability of obtaining contextual information from a web search.
- The ability to obtain information drawn from a variety of previously incompatible applications or sources.
- The engagement of all types of devices and machines in the data creation, data use, and communication process that informs our daily lives, our work, our business.

The result of such evolution will be the creation of smarter, more efficient web programs that could drastically reduce the time it takes to compile and post information to the Internet and the time it takes users to search for it. The key for Web 3.0 is efficiency and personalization [5].

2.4. Personalization based on Semantic Technologies

Due to the increasing amount of available informational resources, the one-size-fits-all paradigm seemed to be inadequate to fit the users’ needs. The appropriate solution to this problem was to bring the user’s needs into the center of interaction processes and provide individually optimized access to Web data and information.

Adaptive Hypermedia (AH) and Web mining constitute the two major approaches to personalization, since the early days of World Wide Web [2]. Particularly AH is a research area that can utilize Semantic Web technologies in an attempt to address some of its drawbacks, which include limited degree of interoperability and reusability, difficulties in the
acquisition of model information and the lack of control and transparency of the system’s adaptive behaviour [29].

Generally, existing approaches to personalization are based on three different axes [29]:

- **Adaptivity dimensions**: The adaptive behavior is realized by either collaborative-filtering (identifies content found relevant by similar users) or content-based filtering (exploits similar content to identify relevant resources for a certain user) or combination of these two.

- **Representation formalism**: This is how the aspects of the adaptive system, such as the content, the users, the system itself, are represented within a specific formalism.

- **Exploitation techniques**: Techniques which are used to perform the underlying logic of adaptation.

Many studies have pointed out the advantage of the use of semantic technologies in the last two aforementioned axes of personalization approaches. The use of ontologies, in order to represent the different adaptivity dimensions, increases meaningfully the interoperability and the reusability of model information.

Especially for the user model, many efforts have been made to standardize the information about the user in terms of an ontology, such as FOAF, LOM etc. Therefore, ontologies can play many potential roles to support user modeling: i) providing a mechanism for reasoning about the users ii) supporting scrutability for aiding the user in getting a better understanding of the domain and iii) defining a set vocabulary to enable metadata annotation of the content [17].

In the axis of exploitation techniques, rules are employed to represent the adaptation logic. Similar to ontologies, which substitute vectors, matrices, Bayesian networks etc as formalisms for the representation of different aspects, the usage of rules, as the logic underlying the adaptation, replaces adopted techniques from statistics and machine learning, for the same purpose. Adaptation by using rules is accomplished in a more transparent manner to the users which can better inspect and understand the entire process.

Fig. 1. Web Evolution.
Besides the aforementioned contributions, semantic technologies also help to solve the challenging problem of developing open-corpus AH systems [2]. In a traditional closed-corpus AHS, all the documents and the relationships between them are known at the design time. However, this no longer holds when considering an open corpus of documents, and mashups can be considered to fall into this category. In this case, Semantic Web can offer a certain context-of-use by allowing programs to reason about content and its meaning [10].

3. Related Work

Our work focuses on two distinct axes: i) the integration of the supposed competing technologies of Semantic Web and Web 2.0 so as to develop a prototype Web 3.0 application and ii) the usage of ontologies and rules, pillars of semantic technologies, in order to achieve more efficient personalization.

The concept of combining Semantic Web technologies and Web 2.0 has been investigated from various different angles. For example, semantic blogging constitutes an effort to enhance blogs with semantic, machine-understandable metadata and has attracted quite a lot of interest. We report indicatively some scenarios of semantic blogging such as the semiBlog editor proposed in [20], the Semblog platform in [23], the prototype semantic blogging system OntoBlog [27] and so on.

Towards the integration of mashups with the notion of the Semantic Web [13], many attempts have also been made, such as: (i) semantic mashup for tourism proposed by [31], (ii) semantic map mashups, (iii) semantic mashups for several scenarios in life sciences [6], 26], and (iv) the use of mashup architecture in more sophisticated tasks, like business processes [1].

Blanco-Fernández et al. [9] presented a procedure to automatically compose interactive applications that provide personalized commercial functionalities to the users, gathering content from multiple sources and with a back-end of semantic web services. The procedure is driven by SWRL rules and similarity metrics based on semantic reasoning.

In addition, Wang et al. [30] proposed a tourism system based on an ontology. This system allows integration of heterogeneous online travel information and recommends tourist attractions to a user based on the Bayesian network.

The above efforts differ in two distinct dimensions, namely the representation formalism and the exploitation technique used, as discussed in Section 2. The tourist information and the content of advertised items in [30] and in [9] respectively, are both represented as basic ontology components. In [30] besides the travel ontology, a user ontology is also constructed. In contrast, the user profile features in [9] are captured in a data structure. Conversely, [30] employs a Bayesian network to perform recommendation, while in [9] Semantic Web rules decide the suitable sources for a given user.

In our work, an ontology is being used as the representation formalism both for the content sources and for user profiles. Furthermore, personalization tasks are carried out solely by the inference power of rules. Thus, all beneficial characteristics of Semantic Web personalization can be combined into a single unified approach. To our knowledge, there is no other intelligent mashup that performs user modeling and adaptation relying purely on the Semantic Web stack.

Finally, it should be mentioned that there is also another Book Mashup [8] which integrates book data from Web APIs into the Semantic Web. However, it appears to lack personalization features.

4. System Architecture and Design

In this section, we describe the 3-tier architecture, which constitutes the base of our application and may also underlie many sophisticated Web 3.0 applications, such as semantic wikis, semantic portals, semantic mashups etc. Then, we focus on the design of the ontology and the philosophy behind our personalization rules. Finally, some concrete implementation details are given.

4.1. Architecture overview

As illustrated in Figure 2, the layers of the architecture can be distributed both at the logical and physical level: (i) the front-end layer, (ii) the application logic layer and (iii) the knowledge management layer.

The knowledge base of our application resides on the lower part of the architecture, namely the knowledge management layer. This is represented by our core ontology, BookShop, which includes rules for personalization and the individuals (instances of classes).

Then, the middle layer of the 3-tier architecture, the application logic layer, is responsible for managing and uploading the ontological model of the lower
layer. The operation of this layer is implemented with the use of the OWL API [16] that serves also as a means of communication with the lower, knowledge management layer. The middle layer is also responsible for the ontological data loading, coming through the front end and based on the ontological schema of the back end. Ontological data include all the instances of the four main classes User, Book, Author and Offer and are stored in an OWL file.

Finally, the upper layer of the proposed architecture is in general the layer which enables users to fully interact with the knowledge base, by adding, eliciting and incrementing the ontological data model. This layer may also interact with web services, programs, scripts, and other interoperability interfaces. It performs the following tasks:

− Communication/Interaction of the application with the Amazon and Half EBay Web APIs.
− User Interface of the application with the ability of interaction with the knowledge base, presentation and navigation of semantic data.

4.2. BookShop Ontology

In this subsection, we describe how we collected the structural information and designed the core ontology of our application.

Although there are many formal methodologies for developing ontologies [12] (TOVE, KACTUS, METHONTOLOGY, On-To-Knowledge, etc), we preferred a more simplified and intuitive approach for this purpose [21]. In short, it is an iterative approach to ontology development, starting with a rough first pass at the ontology, then revising and refining the evolving ontology and filling in the details. This iterative designing process will likely continue through the entire lifecycle of the ontology.
To design our book ontology, we took into account the kind of metadata offered by Amazon and Half Ebay responses. Our design process has resulted in the core ontology BookShop and part of this is shown in Figure 3. BookShop contains four main classes: Book, Author, Offer and User.

The class Book is enriched with relations such as title, publisher, dimensions, ISBN, publication year, number of pages, format, rating, images in various sizes and a URL — corresponding to the Amazon online bookstore — so as to describe the instances of this class. All these relations are captured in the ontology as datatype properties.

For our purposes, keeping record of each author’s name and surname suffices. Therefore, we decided to define the class Author as a subclass of the class Person, which is included in the FOAF (Friend of a friend) ontology. FOAF is an ontology, which provides a unified way to describe persons, expressing their interests, their activities and their relations to other people and objects. The FOAF properties foaf:surname and foaf:firstName have been used to model author last and first name.

Items for sale on Amazon and Half Ebay can be sold by more than one seller for different prices and in different conditions (‘New’ or ‘Old’). Thus, any item – any book in this case – is associated with an offer. An offer is a combination of price, condition and vendor/seller. Therefore, to find a book’s price, we have to get the offers made by the vendors selling the book on online bookstores. The concept of an offer is represented by the class Offer. Datatype properties such as Condition, Price and Origin express the price, the condition of the offered book and the seller URL in these bookstores, respectively.

Besides the classes for book description, we also construct a class to express user profiles (class User). We capture the preferences of each user in this class, such as preferable condition, preferable rating, preferable publication year and preferable maximum price. Such an instance of this class is assumed to be registered in our application only when he possesses a password and a username. All this data about users are represented as datatype properties.

Fig. 3. BookShop Ontology.
Relationships between instances of the BookShop ontology are represented by object properties that express relations between instances of two classes. In this context, a Book must have at least one Author (hasAuthor and inversely isAuthorOf) and there is at least one Offer for a Book (isOfferOf and inversely hasOffer).

Object properties that link an instance of the class Book to an instance of the class User and inversely, are introduced to express the user’s preference for a book depending on which preference fields of the user’s profile are covered. For example, the object property prefersBookbyCondition would relate a user with books being in a condition the user prefers. There are also properties for the case when more than one preference criteria are met. For example, prefersBook_byRate2 would hold in case two criteria are satisfied together (no matter which).

4.3. Rule-based Personalization

In order to obtain efficient personalization for our application, a set of DL-safe rules was written, using SWRL. These rules "match" user’s preferences (user profile) with the features of books, which are returned as a result from the search in Amazon and Half EBay web services. These "personalization rules" essentially distinguish those books, which satisfy user’s preferences from the entire set of books after the searching process. Initially, four rules were written to check the satisfiability of each preference criterion separately. Take for example the case of a rule about preferred book condition. The SWRL description for this rule is depicted in Figure 4.

SWRL Rule #1

Book(?y) AND Offer(?z) AND User(?x) AND isOfferOf(?z, ?y) AND BookCondition(?z, ?condition) AND swrl:equal(?condition, ?preferred_condition) → prefersBookbyCondition(?x, ?y)

Fig. 4. Rule for book condition.

In addition, a SWRL rule was defined in order to associate a user with all books having his/hers preferred max price, as in Figure 5. The rule about a user, which prefers books with rating equal or greater than a certain degree, is described in Figure 6. Finally, user preference for a book published within a certain publication year can be illustrated with the rule in Figure 7.

SWRL Rule #2

Book(?y) AND Offer(?z) AND User(?x) AND isOfferOf(?z, ?y) AND OfferPrice(?z, ?price) AND prefersMaxPrice(?x, ?max_price) AND swrlb:lessThanOrEqual(?price, ?max_price) → prefersBookbyPrice(?x, ?y)

Fig. 5. Rule for book max-price.

SWRL Rule #3

Fig. 6. Rule for book rating.

SWRL Rule #4

Book(?y) AND User(?x) AND PublicationDate(?y, ?date) AND prefersPublicationDate(?x, ?preferred_date) AND swrlb:equal(?date, ?preferred_date) → prefersBookbyPublicationDate(?x, ?y)

Fig. 7. Rule for book publication year.

For the case where two or three or four preference criteria are satisfied together, we wrote more rules so as to check the number of satisfied criteria. An example of such a rule is in Figure 8. There are also more rules to check all possible combinations.

SWRL Rule #5

Book(?y) AND User(?x) AND prefersBookbyCondition(?x, ?y) AND prefersBookbyPrice(?x, ?y) AND prefersBookbyPublicationDate(?x, ?y) → prefersBook_byRate3(?x, ?y)

Fig. 8. Rule for three preference criteria.

As an example, Rule #3 can be translated in natural language as follows: "If the rating of a book is 4.0 and a user has defined at his profile that prefers books being rated equal or greater than 3.5, then this book is linked to this user via the object property prefersBookbyRating".

4.4. Implementation Issues

The interface and the functionality of the application are implemented, as it is usual for web applications, in PHP and in HTML. For the ontology development, we use OWL in order to ensure the maximal possible expressiveness and the efficient support of reasoning. The definition of rules is implemented in SWRL. Protégé 4 has been selected as the appropriate ontology environment for the ontology and rules development.
We make use of Pellet, an open-source Java based OWL reasoner, which guarantees sound-and-complete OWL reasoning. The special feature of Pellet is its support for reasoning with DL-safe rules which makes it particularly suitable for our needs.

OWL API and Pellet are Java applications. On the other hand, the functionality of Books@HPClab is implemented in PHP. The problem was how these three components of the whole application could "communicate" and "collaborate" with each other, since they are implemented in different programming languages. One way to overcome this problem is to use the PHP/Java Bridge, an implementation of a streaming, XML-based network protocol, which can be used to connect a native script engine, for example PHP, Scheme or Python, with a Java virtual machine.

Finally, since our application handles many XML documents (OWL ontology and XML responses from Amazon and eBay APIs), we make use of XSLT and XML DOM for this purpose.

5. Collecting Data from Bookstores

In this section, we review the process of searching data about books from the web data sources, in other words application’s interaction with Amazon and Half EBay Web APIs. Whenever the user sends a searching call, the searching process starts to query data from Amazon Web Services (AWS), and especially from the US E-Commerce Service (ECS). In order to extract the appropriate data for our application, we choose the ItemSearch operation, among the set of available ECS operations.

The ECS, like all AWS, is a REST-based API where requests are encoded into a simple URL string and responses are delivered as XML files. An example of an Amazon request follows in Figure 9.

![Fig. 9. Amazon request.](http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&AWSAccessKeyId=XXXXXXXXX&Operation=ItemSearch&SearchIndex=Books&keywords=Semantic%20Data&ResponseGroup=ItemAttributes,Offers,Images,Reviews,BrowseNodes&ItemPage=1&MerchantId=All&Condition=All&Version=2009-01-06&Timestamp=2009-01-01T12:00:00Z)

In order to increase the accuracy of the search results, we preset the values of some ItemSearch input parameters in the URL request. For example, the value for the SearchIndex parameter is always set to “Books”. The user query is then passed as the value of the keyword parameter. The value for ItemPage parameter starts from 1 up to the last page of results. Finally, for the ResponseGroup parameter, which controls the kind of information returned by the request, we set the following values: ItemAttributes, Images, Offers, Reviews and BrowseNodes.

A request may return many thousands of items in a response. Returning all these results at once may be inefficient and impractical. In order to alleviate this, we combine all these files in a single XML file using DOM XML in PHP. This file is further processed by an XSLT in order to rule out redundant data that are not useful in our implementation. For example, information, such as images height and width, number of used, new, collectible or refurbished books, has not added value for our application.

Once our application completes the search process at Amazon, it starts searching Half Ebay. We use the eBay Shopping Web Services and particularly, the FindHalfProducts operation. The interaction with the eBay Shopping API, like ECS of AWS, is based on the REST-protocol and the exchange of URL requests and XML files-responses.

The search at Half EBay would be similar to this at Amazon, based on keywords, but in this case, the Shopping API returns too few results or returns error messages asking for a definition of a more specific request. The chosen way to address this problem was to direct the search at Half EBay by the Amazon’s results. In short, we search at Half EBay based on the ISBN of each book returned as result by Amazon. So, we send as many requests to the Shopping API as the number of books returned by the ECS. The form of such “Half EBay requests” is shown in Figure 10.

When the searching process at the Half EBay is complete, results are included into the XML file. Then, the elements of this XML file are converted into an OWL file with individuals of the BookShop ontology by means of another XSLT in OWL form. An excerpt of the final XML file and the corresponding OWL file are shown in Figure 11 and 12 respectively.
6. Functionality and Usage

In this section, we demonstrate the functionality of the application. Moreover, we outline an indicative usage case in order to point out its capabilities and features.

6.1. Functionality

The first page of the application includes two choices for the visitor, “New User” and “Registered User”. New users are presented with a completion form, which includes fields such as Book Condition, Maximum Book Price, Publication Year and Maximum Book Rating, thus forming the user profile.

After successful authorization, the user is directed to the main page of the application, which includes a search form. This form consists only of a “Search” button and a text field, where the user types the keyword or the key-phrase to initiate the book searching process.

When searching ends, results are imported into the core BookShop ontology as individuals. Next, the ontology is classified by the reasoner and the rules, that would determine how user preferences are matched, are fired against the ontology. Search results are ranked based on the rules outcome, as shown in Figure 14. In particular, the more criteria a Book satisfies (the more preference rules it triggers), the higher it appears in the results.
Each table’s row includes information, such as an auto-incrementing number, the book’s title and a number of exclamation marks which express the number of satisfied criteria. Each book’s title is a link and clicking it, a pop-up window appears with all the available features of the specific book, like Title, Author, ISBN (Figure 15). The title and image of the book are links to its "official" page at Amazon. Finally, the Offers for this book are presented in a table. Following the Search link (see Figure 14) the user is taken back to the main page in order to initiate a new query.

Fig. 14. Presentation of preferred books for User_1.

Fig. 15. Pop-up Window.
6.2. An Example Usage Case

This subsection contains a brief example of Books@HPCLab personalization features, so as to demonstrate that different users can be treated differently, even though they are searching for the same key-phrase. We shall consider two users, Mary and George. According to Mary’s profile, she prefers books that were published in 2009, their price does not exceed 15.00 USD, their condition is ‘New’ and their rating is at least 4. On the other hand, George’s “best” books should be in ‘Old’ condition, their price should be lower than 45.50 USD, have been published in 2000 and their rating should be over 4.5.

Mary and George are searching for books with the topic Semantics, so they are typing in the text box of the search form the same keyword; “Semantics”. At this moment, the application gets a lookup call, so it decodes the keyword and starts to query the original data sources (Amazon and Half Ebay). When the collection data process is complete, a XML file with 100 book nodes is returned in both cases, with the same content, as it was expected.

In the case of George, the procedure goes on as follows:

- Our DL reasoner, Pellet, finds that, for the books returned by the query, George’s profile matches the conditions of those SWRL rules which apply when preference criteria are satisfied together (Subsection 4.3).
- Next, Pellet finds the applicable SWRL rules for George, which satisfy just one of the four preference criteria. None of the other SWRL rules is applicable for George.

The total number of books, which are shown to George is 74, therefore there are 26 books returned from the collection process, which satisfy none of George’s preference criteria. From the 74 books, there are only two which satisfy exactly two criteria and the rest of them satisfy just one criterion at a time (see Table 1).

<table>
<thead>
<tr>
<th>Application response for George</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of returned books</td>
</tr>
<tr>
<td>Set 1: Number of returned books which satisfies exactly two criteria</td>
</tr>
<tr>
<td>Set 2: Number of returned books which satisfies exactly one criteria</td>
</tr>
</tbody>
</table>

On the other hand, the procedure for Mary goes on as follows:

- The reasoner finds that Mary’s profile matches the conditions of those SWRL rules which check that three preference criteria are satisfied together (Subsection 4.3). So the instance Mary is being related to six instances of the class Book through properties prefersBook_byRate3.
- In addition, the rules, which check the simultaneous satisfiability of two preference criteria, are triggered.
- Next, Pellet finds the applicable SWRL rules for Mary, which satisfy just one of the four preference criteria. For Mary, there is no book that satisfies all four preference criteria at the same time.

<table>
<thead>
<tr>
<th>#</th>
<th>Title, Author, Publisher, ISBN</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Meaning in Language: An Introduction to Semantics and Pragmatics (Oxford Textbooks in Linguistics)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Spicing the Semantic Web: Bringing the World Wide Web to Its Full Potential</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Semantic Web Programming</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>The Semantic Conception of Theories and Scientific Realism</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>HTML, Master: Semantics, Standards, and Syntax</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Buddhist General Semantics: A New Approach To Buddhist Religion And Its Philosophy</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Logic, Semantics, Metamathematics: Papers from 1923 to 1938</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Semantic Mapping: Classroom Applications (Reading Aloud Series)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Semantics Engineering with PLT Redex</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Introducing Semantics (Cambridge Introductions to Language and Linguistics)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 16. Results page for George.
Table 2 summarizes the total number of returned books and the number of books with the respective amount of satisfied criteria in the case of Mary.

Table 2.
Application response for Mary

<table>
<thead>
<tr>
<th>#</th>
<th>Title/Author</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Specialize the Semantic Web: Realize the World Wide Web to Its Full Potential</td>
<td>99%</td>
</tr>
<tr>
<td>32</td>
<td>HTML Mastery: Semantics, Standards, and Styling</td>
<td>99%</td>
</tr>
<tr>
<td>33</td>
<td>Buddhist General Semantics: A New Approach To Buddhist Religion And Its Philosophy</td>
<td>99%</td>
</tr>
<tr>
<td>34</td>
<td>Logic, Semantics, Metamathematics: Papers from 1923 to 1948</td>
<td>99%</td>
</tr>
<tr>
<td>35</td>
<td>Semantic Mapping: Classroom Applications (Reader's Aid Series)</td>
<td>99%</td>
</tr>
<tr>
<td>36</td>
<td>Semantic Mapping with PUT Redex</td>
<td>99%</td>
</tr>
<tr>
<td>37</td>
<td>Propositional Logic: The Semantic Foundations of Logic</td>
<td>99%</td>
</tr>
<tr>
<td>38</td>
<td>An Introduction to English Semantics and Pragmatics (Edinburgh Textbooks on the English Language)</td>
<td>99%</td>
</tr>
<tr>
<td>39</td>
<td>An Introduction to English Semantics and Pragmatics (Edinburgh Textbooks on the English Language)</td>
<td>99%</td>
</tr>
<tr>
<td>40</td>
<td>Semantics: An Introduction to Meaning in Language (Cambridge Textbooks in Linguistics)</td>
<td>99%</td>
</tr>
</tbody>
</table>

Consequently, our application returns more books to Mary and more of Mary’s preference criteria are satisfied together, in contrast to George. Finally, there are books, which are returned both to Mary and George, but in different order. Take for example the book with title “HTML Mastery: Semantics, Standards and Styling”, which belongs to Set 2 (Table 2) in Mary’s case. In the case of George, this book appears in the set of books which satisfy only one preference criteria (Figure 16 and Figure 17).

7. Discussion and Future Directions

In this work, we have described a concrete scenario of how Semantic Web technologies could enhance Web 2.0 tools and especially mashups. The resulting semantic mashup has been enhanced with personalization features based on the use of rule filtering as a recommendation technique.

The integration of semantics and, mainly, ontologies within Web 2.0 applications has also been studied before (Section 3). Light-weight ontology languages like RDF are often easier to handle, both for machines and for humans, than more complex formalisms like OWL. The fact that even simple machine-readable data can bring benefits, may lead someone to believe that the Semantic Web doesn’t need more expressivity than RDF. However, depending on practical uses, further expressivity is necessary to express complex knowledge. Examples of this set of applications include semantic mashups in life sciences or in business areas.

Our engineering effort to enhance our book mashup application with web semantics is primarily based on the development of an OWL ontology. In contrast to [8], which uses RDF, we use much more complex formalisms, in order to extend our mashup ontology with rules so as to achieve personalization.

The usage of rules, as an adaptation logic technique, achieves a substantial level of personalization in a manner more understandable and transparent to users. The power of ontologies in such personalized mashups lies in the interoperability and in the reusability of information as well as in a sound and expressive logic framework to perform fine-grained adaptations upon.
During the ontology creation process, it is worth noting that one must check first if there is any existing ontology that would fit application’s needs. In case of creating the ontology from scratch, careful design is necessary so as to increase the quality of semantic annotations and ontology reusability.

As a lesson-learned, we consult that it is not desirable to define too many rules so as to check all the possible combinations of user preference criteria. Most of the time just a few rules are necessary and the rest of the task can be accomplished programmatically.

With the aid of Semantic technologies we can get from closed-corpus to open-corpus adaptive systems, where the set of documents is not known a priori and can be extended and expanded. In fact, the notion of open-corpus seems to be inherent in mashups, where the integration of disparate and evolving sources is involved.

In terms of performance, the manipulation and merging of large XML files using DOM can often be slow. A relational database or other persistent store for keeping XML responses can be used as an intermediary data source for populating ontology documents dynamically, as well as for caching purposes. Alternative exchange formats can also be investigated, such as JSON (JavaScript Object Notation) or the asynchronous processing of XML documents.

Finally, Books@HPCLab treats all rules with equal importance. It might be worth considering to put weights on rules in a fashion similar to [24], though not ranking rules in terms of certainty, but in regard to their individual value in a particular user’s profile.

8. Conclusions

In this work, we have shown that Semantic Web and Web 2.0 can be complementary visions for the future of Web, rather than in competition. This was achieved by the development of an application which unifies successfully the philosophy of Web 2.0 applications (mashup) and the powerful technical infrastructure of the Semantic Web (ontologies and rules). Such Web applications are considered to be part of the next generation Web, usually referred as Web 3.0.

In particular, we presented a prototype web application, which integrates information from Web APIs, such as Amazon Web API and Half EBay API, converting them to individuals of an ontology schema, concluding in a kind of semantic mashup for books. This semantic mashup is accompanied by a set of rules, leading the application to a highly personalized Web experience.

Our literature survey reveals that a strong interest exists in filtering content 'mashed up' from various sources using semantics; this is mainly due to a growing need for eliciting value and meaning out of the plethora of unauthoritative and community-oriented information on today’s Web 2.0. To this end, the Semantic Web appears to be worth investigating as an almost natural means to achieve these goals. We believe that our dealing with the various conceptual and technological challenges and the lessons-learned in this process may serve as a useful guidance towards developing tailored Semantic Web applications in the Web 3.0 framework.

References

