
Undefined 1 (1) 1 1
IOS Press

Similarity-based Browsing over
Linked Open Data
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Michael Hickson, Yannis Kargakis and Yannis Tzitzikas
Computer Science Department, University of Crete, GREECE, and
Institute of Computer Science, FORTH-ICS, GREECE
E-mail: {hickson,kargakis,tzitzik}@csd.uoc.gr

Abstract. An increasing amount of data is published on the Web according to the Linked Open Data (LOD) principles. End
users would like to browse these data in a flexible manner. In this paper we focus on similarity-based browsing and we introduce
a novel method for computing the similarity between two entities of a given RDF/S graph. The distinctive characteristics of
the proposed metric is that it is generic (it can be used to compare nodes of any kind), it takes into account the neighborhoods
of the nodes, and it is configurable (with respect to the accuracy vs computational complexity tradeoff). We demonstrate the
behavior of the metric using examples from an application over LOD. Finally, we generalize and elaborate on implementation
approaches harmonized with the distributed nature of LOD which can be used for computing the most similar entities using
neighborhood-based similarity metrics.

Keywords: RDF/S, Semantic web, Similarity Function, Measure, Entities

1. Introduction

The last years a vast amount of structured data has
been published as Linked Open Data (LOD). How-
ever, in their current form, they cannot be directly ex-
ploited by end users, since better linking, browsing,
presentation is required (interaction and interfaces is
one of the main research challenges of LOD according
to [4]). Our objective is to investigate generic meth-
ods for browsing and exploring such data sets. Con-
text and motivation for our work was the design and
development of an online movie exploration system
based on Semantic Web technologies, whose data are
fetched dynamically from the LOD cloud, and offers
similarity-based browsing for bypassing the need for
query formulation by end users.

In this paper, we motivate the need for similarity-
based browsing, we identify related requirements, and
we introduce a new similarity function for tackling
them. In brief the proposed similarity between two
RDF nodes is actually the Jaccard similarity coeffi-
cient evaluated over the nodes of the extended (radius
bounded) neighborhoods (containing both instance
and schema nodes) of the compared nodes. A distinc-
tive characteristic of this metric is that each node that
participates to an intersection or union operation of the
Jaccard similarity coefficient, is weighted by a value
based on its path distance from the compared nodes,
for promoting close matches over distant ones. In a
nutshell, the distinctive characteristics of the proposed
similarity metric is that: (a) it is type independent (it
can compute similarity between any pair of resources),
(b) it can be applied within a single KB (thus different
from the methods which have been proposed for ontol-
ogy matching), and (c) it offers to the designer (or end

0000-0000/0-1899/$00.00 c⃝ 1 – IOS Press and the authors. All rights reserved

2

user) the flexibility to choose the appropriate depth de-
pending on his needs (on accuracy or computational
complexity). Subsequently, we describe implementa-
tion approaches for computing the most similar enti-
ties and we analyze implementation approaches which
are harmonized with the distributed nature of LOD. In
particular we show how a similarity function can be
reversed for enabling the computation of similar pages
over the LOD without having to access the entire cor-
pus. Such methods can be used not only for the intro-
duced similarity metric, but for neighborhood-based
similarity metrics in general.

The rest of this paper is organized as follows. Sec-
tion 2 describes the motivation and application context
of our work. Section 3 discusses related works. Section
4 introduces the least number of symbols and nota-
tions required for defining the similarity function. Sec-
tion 5 introduces the similarity function and Section 6
demonstrates its merits over the running example. Sec-
tion 7 discusses implementation approaches and shows
how a similarity function can be reversed. Finally, Sec-
tion 8 concludes the paper and identifies issues for fur-
ther research.

2. Application Context

The context of our work is an application over the
Linked Open Data (LOD) cloud. Our objective was to
design and develop a system which allows the flexi-
ble exploration of movie information, based on infor-
mation fetched from the LOD cloud. The distinctive
characteristics of this system, called MovieSim, are:

– All information is fetched from the LOD cloud.
This not only automates information updating,
but enables the application to provide always up-
to-date information.

– It links the available in the LOD structured infor-
mation, and enriches it with links to external in-
formation (plain Web pages).

Specifically from LinkedMDB1 the data are fetched
in RDF format, from its available SPARQL Endpoint,
while from Freebase2 data cloud the data is fetched in
JSON format through its provided API. Regarding the
linking of the data extracted from each source we did
not face any difficulty, since LinkedMDB provides for

1http://www.linkedmdb.org/
2http://www.freebase.com/

each of its entities a Unique Identifier, through Free-
Base’s link, that represents it in Freebase’s data cloud.

Since most end users do not have the technical
knowledge (or the willingness) to formulate explicit
SPARQL queries, MovieSim provides a more user
friendly interaction, namely (a) keyword-based re-
trieval and (b) similarity-based browsing.

To support keyword-based retrieval MovieSim peri-
odically fetches information from LinkedMdb and in-
dexes it with the help of LARQ (Lucene+ARQ)3. The
availability of an index makes the evaluation of key-
word queries very fast. We will not describe this func-
tionality in detail since keyword searching over struc-
tured data is not the focus of this paper.

Similarity-based browsing aims at allowing users
to explore the available information without having
to formulate structured queries. Note that similarity-
based browsing is mainly offered for browsing image
and video databases (e.g. [5]), but (to the best of our
knowledge) has not been applied over RDF data.

Regarding the presentation of information, MovieSim
supports various kinds of Web pages, each one having
a different role. Keyword search is supported through
a search box, while the results of the query are viewed
by a different kind of page. The essential category
of pages contains page types for showing information
about:

– actors,
– directors,
– editors,
– movies, and
– writers.

Each page type presents information which is dy-
namically fetched and linked. In addition, the system
provides a general purpose page type to show infor-
mation about entity types that do not fall in one of the
previous categories. Below we present the information
that we fetch for each supported type, from each indi-
vidual source.

3http://jena.sourceforge.net/ARQ/lucene-arq.html

3

Movie
attribute source

Title LinkedMDB
Runtime LinkedMDB
Initial Release Date LinkedMDB
Movie Actors LinkedMDB
Movie Writers LinkedMDB
Movie Directors LinkedMDB
Movie Editors LinkedMDB
Image Freebase
Abstract Freebase
Rating Freebase
Tagline Freebase
Genres Freebase

Actor
attribute source

Actor Name LinkedMDB
Films Acted LinkedMDB
Image Freebase
Abstract Freebase
Birth Date Freebase
Birth Place Freebase
Nationality Freebase

Director
Director Name LinkedMDB
Films Directed LinkedMDB
Image Freebase
Abstract Freebase
Birth Date Freebase
Birth Place Freebase
Nationality Freebase

Writer
Writer Name LinkedMDB
Films Writen LinkedMDB
Image Freebase
Abstract Freebase
Birth Date Freebase
Birth Place Freebase
Nationality Freebase

Editor
Editor Name LinkedMDB
Films Edited LinkedMDB
Image Freebase
Abstract Freebase
Birth Date Freebase
Birth Place Freebase
Nationality Freebase

General
Title LinkedMDB
Inbound Links LinkedMDB
Outbound Links LinkedMDB
Image Freebase
Abstract Freebase

While the user views the page of one entity he can
continue browsing and exploring similar entities. The
similar entities are computed using the similarity func-

tion that we will describe later on. Since the similar
entities can be numerous and of different types, only
the entities with the highest similarity should be sug-
gested. Figure 1 shows a screenshot of the Web page
produced for the movie Da Vinci Code.

Fig. 1. Movie Page

Note that similarity-based browsing is actually an
alternative (essentially complementary) approach to
the facet-based browsing [26], which is supported
by systems like: BrowseRdf [24], Humboldt, Visi-
Nav [12], Longwell [25], Ontogator [20], /facet [14],
Camelis2 [11]. Facet-based browsing also bypasses the
query formulation effort. However, similarity-based
browsing does not require from the user to select the
relationship through which two entities are related. In-
stead, the similarity value actually quantifies several
relationships (direct or path based) and offers an ag-
gregated form of relevance.

Similarity-based browsing can actually be offered in
the context of a facet-based browsing system. Specifi-
cally, a new facet can be defined which shows the most
similar entities.

Figure 2 sketches the architecture of MovieSim. Its
architecture is based on the MVC (Model View Con-
troller) pattern, meaning that all business logic is im-
plemented in Servlets and all communication and data
transfer issues are dealt with the use of Java Beans (one
for each entity type mentioned earlier). The presenta-
tion of data (page types) is specified using JSP pages in
order to separate the presentation design from the ap-

4

plication logic, making easier the extension and modi-
fication of the system.

(VIEW)
JSP pages

(VIEW)
JSP pages

(CONTROLLER)
Servlets

(Model)
Java Beans

LOD

Freebase

LinkedMDB

HTTP

(VIEW)
JSP pages (Model)

Java Beans(Model)
Java Beans

LUCENE+ARQ

MovieSim

Fig. 2. The Architecture of MovieSim

3. Related Work on Similarity over RDF/S

Since we focus on similarity-based browsing, in this
section we briefly review the related work that has
been done. In general, with the rapid development of
the Semantic Web, there has been an increased inter-
est in developing methods for finding similarities be-
tween nodes in RDF/S graphs. There are several re-
lated works mainly for the problem of ontology match-
ing. Below we list and comment in brief the more re-
lated works.

[29] presents a method for computing the similarity
between two entities coming from two different OWL
DL ontologies. The computation of similarity is based
on the extraction of information encoded in each en-
tity’s description. The extracted components are then
compared, taking into account the predefined mean-
ings of OWL DL and RDF(S) primitives, to produce
partial component similarity values, which are then
combined using predefined weights under a variable
weighting scheme.

[7] also proposes a similarity function for entity
matching between different OWL ontologies .

There are also algorithms (again for the problem
of ontology matching) which use the edit distance to
find the lexical similarity between two entities, such
as the MLMA+ algorithm [2] which, amongst other
measures, makes use of the Levenshtein (Edit) distance
[19].

Another algorithm (for ontology matching) is pre-
sented in [1] for finding similarities between two enti-
ties, of some given ontologies based on the combina-

tion of structural and lexical information provided by
the ontology, which is divided into three stages. In the
first stage each entity is lexically analyzed, based on
information given from their labels and descriptions.
The second stage involves the comparison of the enti-
ties based on the structure of the graph, while the third
stage combines the results of the two previous stages
and produces a final result that represents the similarity
between the two entities.

Another related work aiming at identifying cases
where the same objects are identified by different URIs
in different datasets, in the context of LOD, is [22].

Finally, [27] proposes a metric for entity compari-
son in hierarchical ontologies (however that work ex-
ploits only hierarchical relationships and ignores prop-
erties).

Similar in spirit problem is that of blank node
matching which aims at defining a mapping between
the blank nodes of two KBs (related works include
PromptDiff [23], Ontoview [18], CWM [3], RDFSync
[30]).

To synopsize, most of the related works aim at find-
ing similarities between entities of different knowl-
edge bases. Therefore they mainly identify similarities
between entities of the same type. Such approaches
would not be convenient for our system, since we
would have to design several class-specific similarity
functions, i.e. similarity functions between movies and
actors, directors and actors, writers and movies, and so
on. For this reason, we decided to move towards a sim-
ilarity computation method that is type-independent al-
lowing the comparison of entities of the same or dif-
ferent types. At last we should note that the similarity
function that we needed for our system, apart from be-
ing type-independent should exploit both the instance
and the schema layer (for being able to compute sim-
ilarities between entities which do not belong to the
same classes).

4. Background (RDF definitions and notations)

An RDF Knowledge Base (KB) is defined as a set
of RDF triples, denoted by K, each having the form
(subject, predicate, object), for short (s, p, o). A KB
K can also be viewed as a directed labeled graph
G = (N,E). The nodes of the graph are the URIs, the
literals and the blank nodes that appear in the triples of
K, while the edges of the graph are labeled arcs that
connect the corresponding nodes.

5

DaVinci Code

Illuminati

Sherlock
Holmes

Location

Novel

Mystery Novel

ItalyIan McKellen

Tom Hanks

Carnelutti

Mystery genre

Victor Alfieri

England

Jude Law Guy Ritchie

DaVinci Code
Book

Illuminati
Book

Sherlock
Holmes
Book

basedOn

Dan Brown

Conan Doyle

writer

nationality

Ewan McGregor

Scotland

Film

Actor

Director

Genre
Writer

writer

Ron Howard

subclassOf

instanceOf

property domain/range

instancesOf

Fig. 3. The RDF graph G of our running example

We shall use as running example the KB that is illus-
trated at Figure 3. For the sake of completeness, even
if the LOD dataset did not have an explicitly defined
schema, we have created one (for capturing the gen-
eral case of RDF/S KBs). Furthermore, we added some
extra entities 4 apart from those fetched from LOD.

All resources which are instances of a class are verti-
cally aligned with the class. Below we introduce some
notations which are necessary for defining the similar-
ity metric.

We shall use Pr to refer to the properties that
occur in K. For a given resource u we shall use
ResFrom(u) (resp. ResTo(u)) to denote the re-
sources which are pointed to by (resp. point to) re-

4Specifically DaVinciCode Book, Illuminati Book,
Sherlock Holmes Book, Dan Brown, and Conan
Doyele.

source u, i.e.

ResFrom(u) = { o | (u, p, o) ∈ K, p ∈ Pr}

ResTo(u) = { o | (o, p, u) ∈ K, p ∈ Pr}

In our running example we have:
ResFrom(SherlockHolmes) = {England,GuyRitchie,

JudeLaw,Mystery, SherlockHolmesBook}.
We define the classes and the superclasses of a re-

source u as:

Classes(u) = { c | (u, type, c) ∈ K}

SuperClasses(u) = { c | (u, subClassOf, c) ∈ K}

For example in Figure 3 we have:
Classes(IlluminatiBook) = {MysteryNovel} while
SuperClasses(MysteryNovel) = {Novel}. Obvi-
ously if an element x is a class then, Classes(x) = ∅,
while if x is an instance of a class then superClasses(x)
= ∅.

6

Some notations for edges follow. We define the set
of classification and inheritance links of a resource u
and a class c as:

ClassLinks(u) = { (u, c) | (u, type, c) ∈ K}

SupLinks(c) = { (c, c′)|(c, subClassOf, c′) ∈ K}

The inbound and outbound property links of a resource
u are defined as:

PropsFromLinks(u) = { (u, o) |(u, p, o) ∈ K, p ∈ Pr}

PropsToLinks(u) = { (o, u) |(o, p, u) ∈ K, p ∈ Pr}
Now we extend the above definitions to take as pa-

rameter a set (S) of resources, so we have:

ResFrom(S) = ∪u∈SResFrom(u)

ResTo(S) = ∪u∈SResTo(u)

PropsFromLinks(S) = ∪u∈SPropsFromLinks(u)

PropsToLinks(S) = ∪u∈SPropsToLinks(u)

Classes(S) = ∪u∈SClasses(u)

SuperClasses(S) = ∪u∈SSuperClasses(u)

ClassLinks(S) = ∪u∈SClassLinks(u)

SupLinks(S) = ∪u∈SSupLinks(u)

A path over G, is any sequence of edges of the
form: (A,P,C), (C,P ′, D), · · · , (E,P ′′, u), where
all predicates (P, P ′, ..P ′′) are either properties in Pr
or the predicate type or the predicate subClassOf.

We define the distance between two nodes A and B
over G, denoted by distG(A,B), as the length of the
shortest path from A to B. If no path exists then the
distance is assumed to be infinite.

5. Similarity Function

In this section, we will introduce and analyze, step
by step, the proposed similarity metric, over the run-
ning example of Fig. 3. Suppose we want to compute
the similarity between two nodes A and B of the RDF
graph G. At first we define the subgraphs of A and B
of radius k, denoted by:

gA(k) = (Nk(A), Ek(A))

gB(k) = (Nk(B), Ek(B))

They consist of all nodes and edges that are visited if
we start from A and B respectively, and traverse all
links (properties, type, subclassOf) for depth up to k

where the value of k is configured externally (and it
will be discussed later on).

These graphs can be computed in an iterative man-
ner. For instance, for defining gA(k) we start from
gA(0) = (N0(A), E0(A)) where N0(A) = {A} and
E0(A) = ∅. Subsequently, from
gA(i−1) = (Ni−1(A), Ei−1(A)) we can compute
gA(i) = (Ni(A), Ei(A)) (for all 1 ≤ i ≤ k − 1), as
follows:

Ni(A) =Ni−1(A) ∪

ResFrom(Ni−1(A)) ∪

Classes(Ni−1(A)) ∪

SuperClasses(Ni−1(A))

Ei(A) = Ei−1(A) ∪

PropsFromLinks(Ni−1(A)) ∪

ClassLinks(Ni−1(A)) ∪

SupLinks(Ni−1(A))

Each step of the iteration enriches the current set of
nodes Ni−1(A) with the nodes:

– which are classes of a node in Ni−1(A) (since
classes carry important information),

– the values of the properties that start from the
nodes in Ni−1(A) (they are actually attribute val-
ues),

– the superclasses of the nodes in Ni−1(A) (for
climbing up the subClassOf hierarchy)

The iterative expansion allows collecting values of
complex attributes, as well as higher level superclasses
(in this way we can detect similarities even between
very "distant" entities which belong to different class
hierarchies).

We should stress at this point, that one could adopt
a different policy regarding how a subgraph expands.
For instance, one could also expand the graph using
properties which point to the current set of nodes (in
that case ResTo(Ni−1(A)) would be added to Ni(A)
and PropsToLinks(Ni−1(A)) to Ei(A)). The deci-
sion is application or ontology specific. [16,17] have
also made the observation that it is often not enough
to use a single similarity measure to achieve good re-
sults, therefore a combination of features needs to be
engineered or even learned. In our case we decided to
take only the forward property direction since in most
cases a property is more important for its origin than
for its destination.

7

To better illustrate the construction of the subgraph,
consider the graph G of Figure 3 and suppose that A
= DaVinci Code and B = Illuminati. The sub-
graphs gA(3) and gB(3) are shown at Figure 4 and Fig-
ure 5 respectively (the latter depicts all subgraphs for
k = 0 to k = 3).

Table 1 shows the distances distgA(A, u) and
distgB (B, u) for various u nodes. The nodes for which
both distgA(A, u) and distgB (B, u) are defined (i.e.
both are different than ∞), actually belong to the in-
tersection of the nodes of the two subgraphs, while the
rest are nodes that belong only to one of the subgraphs.

u distgA (A, u) distgB (B, u)

Genre 2 2

Actor 2 2

Film 1 1

Director 2 2

Location 2 2

Novel 3 3

Mystery Novel 2 2

Writer 2 2

Mystery 1 1

Ian McKellen 1 ∞
Carnelutti 1 ∞
Tom Hanks 1 1

Victor Alfiery ∞ 1

Ewan McGregor ∞ 1

Ron Howard 1 1

Italy 2 1

Scotland ∞ 2

England 2 ∞
DaVinci Code Book 1 ∞
Illuminati Book ∞ 1

Dan Brown 2 2
Table 1

Distances from A and from B

After having constructed the graphs gA and gB , one
could compute the similarity between A and B by ap-
plying the Jaccard similarity coefficient [15] over their
node sets, i.e. between N(A) and N(B), as follows:

simk(A,B) =
|Nk(A) ∩Nk(B)|
|Nk(A) ∪Nk(B)|

(1)

In our example the intersection between N3(A) and
N3(B) is illustrated (vertically aligned) at the center
of Figure 6 where for reasons of space we do not show
the schema level intersections.

Note that by considering the nodes at depth greater
than 1, we can identify similarities between resources
of different types. If resources of different types are
compared (e.g. a film with an actor), they will rarely
have the same properties in small depth (e.g. for k = 1)
and therefore we will not get many (or any) intersect-
ing nodes.

Obviously the similarity value obtained depends on
the value of k. For example, for k = 1 we get:

sim1(DaV inciCode, Illuminati) = 4
15 = 0.26

while for k = 3 we get

sim3(DaV inciCode, Illuminati) = 13
21 = 0.61

However a shortcoming of this approach, is that a
common node spotted at depth 1, is equally weighted
as a common node of a larger distance. For this rea-
son below we introduce a different similarity func-
tion which takes into account the values distgA(A, u)
and distgB (B, u). We should clarify that this exten-
sion does not increase the computational cost of the
similarity function since these distances are computed
anyway during the construction of the subgraphs gA(k)

and gB(k).
To understand the extension we shall first express

function (1) in a different, but equivalent, manner:

simk(A,B) =

∑
n∈(Nk(A)∩Nk(B)) 1∑
n∈(Nk(A)∪Nk(A)) 1

(2)

This form makes evident that each element in the in-
tersection or union contributes the value of one. Now
we will introduce the new formula in which each el-
ement in the intersection or union does not contribute
the value of one, but a value based on its average dis-
tance from nodes A and B.

Since the closest node is at distance 1 while the most
distant is at distance k (or infinite) we shall use the
expression k+1− dist for giving to the closest nodes
a contribution equal to k and to the more distant nodes
a contribution equal to 1. If a distance equals ∞ we
consider it as k+1. In this way the expression k+1−
dist yields a zero5.

The proposed similarity function is defined as:
simk(A,B) =∑

n∈(Nk(A)∩Nk(B))

(k′−distgA (A,n))+(k′−distgB (B,n))

2∑
n∈(Nk(A)∪Nk(B)

(k′−distgA (A,n))+(k′−distgB (B,n))

2

(3)

5This means that the cells of Table 1 that have an infinite value
(∞) are actually considered to have the value k + 1, i.e. 4.

8

DaVinci Code

Novel

Mystery Novel

Ian McKellen

Tom Hanks

Carnelutti

Ron Howard

Mystery

DaVinci Code
Book

Location

Italy

England

Actor
Director

Writer

Genre

Dan Brown

Film

Fig. 4. gA(3) where A = DaVinci Code

Illuminati

Italy

Ewan McGregor

Ron Howard

Mystery

Victor Alfieri

Illuminati
Book

Dan Brown

Tom Hanks

Scotland

Novel

Mystery Novel

LocationActor Director

Writer

Genre

Film

N0

N1

N2

N3

Fig. 5. gB(3) where B =Illuminati

9

DaVinci Code: Film

writer

Illuminati: Film

b
a

se
d

O
n

writer

actor

n
at

io
na

lit
y

Ian McKellen: Actor

England: Location

DaVinci Code: Mystery Novel
Book

Dan Brown: Writer Illuminati: Mystery Novel
Book

Carnelutti: Actor

Tom Hanks: Actor

Victor Alfieri: Actor

Ewan McGregor: Actor

Scotland: Location

Mystery: Genre

Italy: Location

Ron Howard: Director

Fig. 6. Intersection between Illuminati and DaVinci Code Subgraphs

where k′ = k + 1.
If we apply (3) to our running example we now get:
sim3(DaV inciCode, Illuminati) = 29.5

42
= 0.7

In brief, the proposed similarity between two nodes
A and B is actually the Jaccard similarity coefficient
evaluated over the nodes of the extended neighbor-
hoods of the compared nodes. Each node of the neigh-
borhoods is weighted so that the nodes closer to the
compared nodes get a greater weight than the distant
ones.

5.1. Properties of the Similarity Function

For any resource u, and for any positive integer k it
holds: simk(u, u) = 1.

It is also clear that the metric is symmetric i.e.
simk(a, b) = simk(b, a).

Although in the examples that we have seen earlier
it happens to hold: if m > m′ then simm(a, b) ≥
simm′(a, b), in the general case this does not hold. The
reason is that for a high k we may have several non
intersecting sets of nodes which increase the denomi-
nator of the similarity function.

6. Examples and Analysis

6.1. Behavior

Table 2 shows the computed similarities between the
films DaVinci Code, Illuminati and Sherlock

Holmes, for k = 1, 2, 3. We observe that the most
similar movie with DaVinci Code, is Illuminati
(and not Sherlock Holmes) for all values of k
from 1 to 3.

k simk(DaVinciCode, Illu-
minati)

simk(DaVinciCode,
SherlockHolmes)

1 0.53 0.30

2 0.67 0.54

3 0.70 0.58

Table 2
Similarity for different values of k

Let us now use some examples to justify the benefits
of k values higher than 1, and to better understand the
behavior of the similarity function. Table 3 shows the
computed similarities between the nodes A, B, C and D,
for k = 1 . . . 3, for the example shown at Figure 7(I).
We observe that for k = 1, B is the most similar to A
since they are under the same class, while the similar-
ity of A with C and D is zero. However for k = 2 the
similarity of A with C and D is not zero, and C is more
similar than D.

To demonstrate the potential of the similarity func-
tion to exploit commonalities in property paths, Table
4 shows the computed similarities between the nodes
A, B, C and D, for k = 1 . . . 3, for the example shown
at Figure 7(II). We observe that for k = 2 A is more
similar to C than to D because even though they do not

10

subclassOf

instanceOf

property domain/range

C1

C2 C3

A B C D

A

B

C

D

v1

v2

v3

v4

C1

C2

(I) (II)

A

B

C

v1

v2

v6

v3

v5

v4

(III)

Fig. 7. Three examples

k simk(A, B) simk(A,C) simk(A,D)

1 1 0 0

2 1 0.60 0.33

3 1 0.625 0.40

Table 3
Similarity for different values of k over Fig. 7(I)

have any direct value in common, v1 and v2 are un-
der the same class C1, and v4 is a common value at
depth 2. Notice that the similarity between A and D is
not zero for k = 2, due to the value v4.

k simk(A, B) simk(A,C) simk(A,D)

1 1 0 0

2 1 0.50 0.25

3 1 0.57 0.28

Table 4
Similarity for different values of k over Fig. 7(II)

It is also worth noting that the most similar entity
can change as k changes. For instance, in the example
of Figure 7(III), as we can see from Table 5, for k = 1
the most similar to A is the entity C, while for k = 2
(and higher) the most similar to A is the entity B.

k simk(A, B) simk(A,C)

0 0 0

1 0 0.40

2 0.60 0.46

3 0.625 0.47

Table 5
Similarity for different values of k over Figure 7(III)

6.2. Computational Complexity

Let d be the average number of edges which are ad-
jacent to a node. For a node A, the number of nodes in
the graph gA(k) is at most in O(dk). This is therefore
the cost of simk(·, ·).

6.3. On Selecting a value for k

One issue that plays an important role in the com-
putation of similarity is the choice of the appropriate
k. The choice can be made by the application designer
(or even by the end user at run-time). By choosing a
greater k more complexity is added to the computation
of the similarity and this is the cost to pay for more ac-
curate results in the sense that a wider part of the graph
is taken into account. By choosing a lower k the com-
putational cost gets decreased, but the results may not
be as accurate as the user would like.

One method for selecting a k is to measure graph
features of the RDF/S graph, e.g. the diameter of the
graph.

6.4. Variations of the Similarity Function

As one may have noticed, the similarity function ig-
nores the names of the properties.

The benefit of this choice is that the function can
yield positive similarities also between objects that use
different properties. For example consider the triples
(a, hasFriend, e) and (b, worksFor, e).
The similarity function will return a positive value for
sim1(a, b) although these entities have different prop-
erties. It would be zero if the property names were
taken into account. However, the shortcoming is in-
ability to promote matches also at the properties. For

11

example, if we had another triple (c, hasFriend,
e) then we would have sim1(a, c) = sim1(a, b), al-
though we would prefer sim1(a, c) > sim1(a, b).

If we wanted to take into account the property
names then we could prefix the nodes of the subgraphs
which are reached from properties by the correspond-
ing property name. In particular, instead of
ResFrom(u) = { o | (u, p, o) ∈ K, p ∈ Pr}, we
could define
ResFrom′(u) = { p : o | (u, p, o) ∈ K, p ∈ Pr},
where "p : o" is treated as one string. Clearly, with
such a change, the new similarity function, denoted by
sim′, would yield sim′

1(a, c) > sim′
1(a, b) = 0.

One approach to reconcile the two approaches is
to change the graph expansion step so that both
ResFrom(u) and ResFrom′(u) are used for the def-
inition of the nodes of the subgraphs. Specifically
Ni(A) can now be defined as:

Ni(A) =Ni−1(A) ∪

ResFrom(Ni−1(A)) ∪

ResFrom′(Ni−1(A)) ∪

Classes(Ni−1(A)) ∪

SuperClasses(Ni−1(A))

In this way we will get sim′′
1(a, c) > sim′′

1(a, b) > 0.

6.5. Experimental Results
We created a bigger KB for testing the similarity

function, i.e. for judging whether it returns intuitive re-
sults and for investigating how the value of k affects
the results.
[Setup of the KB]
Our measurements were based on a KB that we created
by extracting data from LinkedMDB, through Virtu-
oso’s SPARQL Endpoint, with explicit queries. More
specifically, we selected and downloaded 10 entities,
that were quite relevant to each other. For each one
of them we expanded their subgraphs for depth 3,
and with the fetched information we created a KB on
which our measurements were conducted. The entities
that were chosen and their types are shown in Table 6.

The resulting KB contained: 16 classes, 70 prop-
erties, 3326 resources, 4301 property instances, and
4877 triples in sum.

[Top-3 Results]
We computed the similarity between every pair of
these 10 entities for all k = 1, 2, 3. Table 8 shows the
top-3 most similar entities for each entity.

Angels and Demons Film

The DaVinci Code Film

That Thing You Do! Film

Original Sin Film

Jude Film

Catch Me If You Can Film

Leonardo DiCaprio Actor

Tom Hanks Actor

Phil Alden Robinson Director

Joe Dante Director

Table 6
Selected (seed) entities

We can observe that for some entities, the 3 most
similar entities change when k changes. For example,
the 3 most similar entities for Tom Hanks and k = 1,
are:
⟨ Leonardo DiCaprio,
Phil Alden Robinson,
Joe Dante ⟩
while for k = 2, 3 they are:
⟨ Angels and Demons,
Leonardo DiCaprio,
That Thing You Do!⟩.

We also observed that for k = 1 for some entities
we could not get any similar entity. Therefore higher
values of k are beneficial.

[Comparison with sim′′]
At Section 6.4 we described a variation of the simi-

larity function, denoted by sim′′. Table 9 shows again
the top-3 most similar entities (as in Table 8) when us-
ing sim′′. We observe that the results are quite simi-
lar to those of Table 8, in most times only the relative
ordering of the three more similar entities differs.

[Times]
The average time to compute simk() between two ran-
domly selected resources, for k = 2 equals 3 millisec-
onds, while for k = 3 equals 32 milliseconds. All ex-
periments were carried out in a computer with proces-
sor Intel(R) Core(TM)2 Duo @2.40GHz, 2 GB Ram,
running Microsoft Windows 7 Ultimate.

7. Implementation Approaches

Here we discuss implementation issues.

[The Straightforward approach]

12

Entity Top-3 more similar entities
sim1 sim2 sim3

The Da Vinci Code ⟨ Angels and Demons,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Angels and Demons,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Angels and Demons,
Catch Me if You Can,
That Thing You Do! ⟩

Angels and Demons ⟨ The Da Vinci Code,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Tom Hanks,
The Da Vinci Code,
That Thing You Do! ⟩

⟨ Tom Hanks,
The Da Vinci Code,
That Thing You Do! ⟩

Tom Hanks ⟨ Leonardo DiCaprio,
Phil Alden Robinson,
Joe Dante ⟩

⟨ Angels and Demons,
Leonardo DiCaprio,
That Thing You Do! ⟩

⟨ Angels and Demons,
Leonardo DiCaprio,
That Thing You Do! ⟩

That Thing You Do! ⟨ Catch Me if You Can,
Angels and Demons,
The Da Vinci Code ⟩

⟨ Catch Me if You Can,
Tom Hanks,
Angels and Demons ⟩

⟨ Phil Alden Robinson,
Tom Hanks,
Angels and Demons ⟩

Original Sin ⟨ Jude,
Angels and Demons,
That Thing You Do! ⟩

⟨ Jude,
Angels and Demons,
That Thing You Do! ⟩

⟨ Jude,
Angels and Demons,
The Da Vinci Code ⟩

Jude ⟨ That Thing You Do!,
Angels and Demons,
Original Sin ⟩

⟨ Angels and Demons,
Original Sin,
That Thing You Do! ⟩

⟨ Phil Alden Robinson,
Angels and Demons,
Original Sin ⟩

Catch Me if You Can ⟨ That Thing You Do!,
The Da Vinci Code,
Angels and Demons ⟩

⟨ That Thing You Do!,
The Da Vinci Code,
Angels and Demons ⟩

⟨ Joe Dante,
The Da Vinci Code,
That Thing You Do! ⟩

Leonardo DiCaprio ⟨ Tom Hanks,
Phil Alden Robinson,
Joe Dante ⟩

⟨ Tom Hanks,
Catch Me if You Can,
Angels and Demons ⟩

⟨ Tom Hanks,
Angels and Demons,
Catch Me if You Can ⟩

Phil Alden Robinson ⟨ Joe Dante,
Tom Hanks,
Leonardo DiCaprio ⟩

⟨ That Thing You Do!,
Catch Me if You Can,
Angels and Demons ⟩

⟨ That Thing You Do!,
Catch Me if You Can,
Jude ⟩

Joe Dante ⟨ Phil Alden Robinson,
Tom Hanks,
Leonardo DiCaprio ⟩

⟨ Catch Me if You Can,
Phil Alden Robinson,
That Thing You Do! ⟩

⟨ Catch Me if You Can,
The Da Vinci Code,
Phil Alden Robinson ⟩

Fig. 8. Comparative Results for sim

Entity Top-3 more similar entities
sim1 sim2 sim3

The Da Vinci Code ⟨ Angels and Demons,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Angels and Demons,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Angels and Demons,
That Thing You Do!,
Catch Me if You Can ⟩

Angels and Demons ⟨ The Da Vinci Code,
That Thing You Do!,
Catch Me if You Can ⟩

⟨ Tom Hanks,
The Da Vinci Code,
That Thing You Do! ⟩

⟨ Tom Hanks,
The Da Vinci Code,
That Thing You Do! ⟩

Tom Hanks ⟨ Leonardo DiCaprio,
Phil Alden Robinson,
Joe Dante ⟩

⟨ Angels and Demons,
Leonardo DiCaprio,
That Thing You Do! ⟩

⟨ Angels and Demons,
Leonardo DiCaprio,
That Thing You Do! ⟩

That Thing You Do! ⟨ Catch Me if You Can,
The Da Vinci Code,
Angels and Demons ⟩

⟨ Catch Me if You Can,
Tom Hanks,
Angels and Demons ⟩

⟨ Phil Alden Robinson,
Tom Hanks,
Angels and Demons ⟩

Original Sin ⟨ Jude,
Angels and Demons,
That Thing You Do! ⟩

⟨ Jude,
Angels and Demons,
That Thing You Do! ⟩

⟨ Jude,
Angels and Demons,
The Da Vinci Code ⟩

Jude ⟨ That Thing You Do!,
Angels and Demons,
Original Sin ⟩

⟨ That Thing You Do!,
Angels and Demons,
Original Sin ⟩

⟨ Phil Alden Robinson,
That Thing You Do!,
Angels and Demons ⟩

Catch Me if You Can ⟨ That Thing You Do!,
The Da Vinci Code,
Angels and Demons ⟩

⟨ That Thing You Do!,
The Da Vinci Code,
Angels and Demons ⟩

⟨ Joe Dante,
The Da Vinci Code,
That Thing You Do! ⟩

Leonardo DiCaprio ⟨ Tom Hanks,
Phil Alden Robinson,
Joe Dante ⟩

⟨ Tom Hanks,
Catch Me if You Can,
Angels and Demons ⟩

⟨ Tom Hanks,
Angels and Demons,
Catch Me if You Can ⟩

Phil Alden Robinson ⟨ Joe Dante,
Tom Hanks,
Leonardo DiCaprio ⟩

⟨ That Thing You Do!,
Catch Me if You Can,
Angels and Demons ⟩

⟨ That Thing You Do!,
Catch Me if You Can,
Jude ⟩

Joe Dante ⟨ Phil Alden Robinson,
Tom Hanks,
Leonardo DiCaprio ⟩

⟨ Catch Me if You Can,
Phil Alden Robinson,
That Thing You Do! ⟩

⟨ Catch Me if You Can,
The Da Vinci Code,
Phil Alden Robinson ⟩

Fig. 9. Comparative Results for sim′′

13

One could attempt to compute the similar entities at
run-time during the construction of the page at hand.
However, that would not be efficient in the sense that
a lot of information would have to be fetched and pro-
cessed. In particular, to compute the similar entities for
an entity A we should compute the values simk(A, x)
for all possible resources x. The cost could be reduced
by limiting the set of values that x may take. Specif-
ically, we can first specify the classes of the possible
similar entries, in our case the classes of actors, direc-
tors, editors, movies, writers (as we described at Sec-
tion 2), and then download all information available
only for these resources. In any case that would be un-
acceptably slow and inefficient for large KBs.

[The Single Repository (and Preprocessing) approach]
An alternative approach is to download and process
the entire KB (e.g. as we did in the previous section).
Since for each entity we need to show only the L (e.g.
L=5) most similar entities, we can compute offline the
L most similar entities for each entity of the classes of
interest, and then store these L resources (e.g. in main
memory) for immediate use at run time. Recall that
current WSE (Web Search Engines) also compute off-
line and store for each page the 20 most similar pages.
This preprocessing can be done offline, before the de-
ployment of the application, and it can be periodically
redone as new information becomes available at LOD.

[A Similarity-Reversal approach]
An alternative and more challenging implementation
approach is sketched below. One could attempt to "re-
verse" the similarity function, i.e. try traversing the
graph around A and collect those entities which have
high chances to be in the top-L most similar entities,
and compute the similarities only for them. Such an ap-
proach does not require any preprocesssing and could
be feasible at run time. Its feasibility also depends
on how exactly the similarity function is defined. Be-
low we will elaborate on such an approach. The pre-
sented approach can be applied to our similarity met-
ric, as well as to other similarity metrics whose com-
putation requires analyzing the subgraphs of the com-
pared entities. The ultimate objective is to devise effi-
cient top-k algorithms (in the spirit of [8,9]), appropri-
ate for graph-based similarity measures. Nevertheless,
such a method cannot be faster than the preprocess-
ing method. On the other hand, the benefit of adopting
such a method is that it does not require having access
(or ability to store) the entire KB. We should note that
[13] also proposes to query the Web of Linked Data by

traversing RDF links during run-time since due to the
openness of the LOD space it may not be possible to
know in advance all data sources that might be relevant
for query answering. We should stress at this point that
our problem is more difficult since we do not want to
evaluate a single SPARQL query but to find the most
similar entities and this in general requires the evalua-
tion of several queries.

7.1. On Reversing the Similarity Function

Consider an entity A and suppose that we want to
compute the more similar entities to A. This requires
computing the subgraphs of A as well as the subgraphs
of the other entities of the KB. Below we will study
this problem by considering one kind of graph expan-
sion at a time.

• ResFrom(·)-graph expansion.
Suppose the graph expansion is defined only by
ResFrom(·). It is not hard to see that for each x ∈
ResTo(ResFrom(A)) it holds:
ResFrom(A) ∩ResFrom(x) ̸= ∅.
Let Xrf (A) = ResTo(ResFrom(A)). Moreover if
x′ ̸∈ Xrf (A), then ResFrom(A)∩ResFrom(x′) =
∅. This means that the nominator of the similarity func-
tion is certainly greater than zero only for these enti-
ties.

• Classes(·)-graph expansion.
For this expansion method, it is not hard to see that
for each x ∈ Xcl(A) = Instances(Classes(A))) it
holds Classes(A) ∩ Classes(x) ̸= ∅.

• SupClasses(·)-graph expansion.
Analogously, for each
x ∈ Xsp(A) = SubClasses(SuperClasses(A))) it
holds
SuperClasses(A) ∩ SuperClasses(x) ̸= ∅.

It follows from the above that all elements of
X∪(A) = Xrf (A)∪Xcl(A)∪Xsp(A), and only these
elements, have certainly non zero similarity.

Let now discuss the case where k > 1. In general a
value of k greater than one specifies a set of expansion
paths. We can follow these expansion paths to get the
nodes of subgraph for A, and then "reverse" the expan-
sion paths and apply them to the ending nodes of the
graph of A. This should be done with care, since al-
though a path can have length 3 (i.e. k = 3), an end-
ing node of the subgraph could be the result of an ex-

14

pansion of shorter length (e.g. of one), implying that
reversed paths should be shorter too.

The application of these reversed paths, can give us
the candidate entities. This is actually what we have
described above for the case where k = 1. Below we
describe in detail this process for any value of k.

Consider the set of strings Directions = { Res-
From, ResTo, Classes, Instances, SubClasses, Super-
Classes}. A graph expansion step over RDF/S can be
specified by a subset of this set. For instance, the graph
expansion used by the proposed similarity metric is
specified by the set {ResFrom, Classes, SubClasses}.
We can define the "reverse" of a direction as:

Rev(ResFrom) = ResTo

Rev(Classes) = Instances

Rev(SubClasses) = SuperClasses

For a subset S ⊆ Directions, we define Rev(S) =
∪s∈SRev(s).

The Algorithm getCandidateSimilar (shown at
Fig. 10) takes as input a node A, the value k, and a
policy being a subset of Directions. It returns those
objects which have high chances to be very similar to
A (actually those whose similarity with A is certainly
positive) assuming simk over subgraphs defined using
the directions in policy.

Algorithm getCandidateSimilar
Input: A, k, policy
Output: A set of resources
(1) R = ∅;
(2) compute gk(A) = (Nk(A), Ek(A)) w.r.t. policy
(3) For each n ∈ Nk(A)
(4) let d = dist(n,A)
(5) R = R ∪ traverse(Rev(policy)), n, d)
(6) End for
(7) return R;
Fig. 10. Alg. for getting the resources which have "similar" sub-
graphs to A using simk

At line (2) the algorithm computes the subgraph
of A according to the directions set in policy. The
distance at line (4) has been computed during line
(2). The invocation traverse(dirs, n, d) starts from
n and follows the links that correspond to the argu-
ment dirs, for up to distance d, and returns the en-
countered nodes. To make it more clear the set of
nodes Nk(A) (at line 2) can be computed by Nk(A) =
traverse(policy, A, k). Regarding the correctness of
the algorithm, as explained earlier, only the elements in

the returned R can have non zero similarity to A. After
having run the algorithm, the next step is to compute
simk(A, r) for each r ∈ R and return the more sim-
ilar elements. Specifically, for each r ∈ R we should
get all information returned by traverse(policy, r, k).
With these information we can compute simk(A, r).
This can be done either by code or with queries. For
instance, sim1(A,B), assuming that the subgraphs of
A and B are defined only by Classes(·), can be com-
puted with a query of the form6:

SELECT
(count(distinct ?class1) as ?intersCard)/
(count(distinct ?class2) as ?unionCard)
as ?res WHERE {
{
A rdf:type ?class1.
B rdf:type ?class1.

} UNION{
{ A rdf:type ?class2. }
UNION
{ B rdf:type ?class2. }

}
}

The above query can be extended to capture also the
rest graph expansion steps. However the case where
k > 1 requires the formulation of much more complex
queries. It is easier to do the required computation with
a programming language than with a query language.

We have just seen how we can collect only those
elements with positive similarity to A, by first getting
the subgraph of A, and then reversing the expansion
paths that defined the subgraph of A.

[Top-L Algorithm]
The above algorithm can be extended to become a top-
L algorithm, in case we are interested in finding only
the L more similar entities. Let’s start from the case
where k = 1 and suppose that the cardinality of the set
X∪(A) is high. Since we are interested in finding the
L most similar to A entities, we can adopt a different,
more efficient, evaluation approach, specifically we
can avoid collecting all elements that will be fetched at
line (5) of the algorithm getCandidateSimilar. The
idea is to collect at first those elements in X(A)∩ =
Xp(A) ∩ Xcl(A) ∩ Xsp(A). Clearly, the elements in
X(A)∩ will have a positive summand for each part
of the similarity function, and thus have high proba-

6To be more precise the division has to be casted using XSD data
type.

15

bility to contain the L most similar entities. If they
are more than the desired number of objects L, i.e.
if |X∩(A)| ≥ L, then we can rank them and present
the L most similar entities. The benefit of this method,
in comparison to collecting the elements of the entire
X∪(A) (i.e. line (5)), is that the elements of X∩(A)
apart from being less, they can be fetched efficiently,
specifically with one query.

For instance, the set Xrf (A) can be computed by
the following SPARQL query:

SELECT ?y
WHERE { A ?p1 ?x.

?y ?p2 ?x.
FILTER (?p1 != rdf:type &&

?p2 != rdf:type) }

Note that if we wanted to use ResFrom′ instead of
ResFrom, then we would have to use the query:

SELECT ?y
WHERE { A ?p ?x.

?y ?p ?x.
FILTER (?p != rdf:type) }

The set Xcl(A) can be computed by the following
SPARQL query:

SELECT ?y
WHERE{ A rdf:type ?x.

?y rdf:type ?x.}

The set Xsp(A) can be computed by the following
SPARQL query:

SELECT ?y
WHERE{ A rdfs:subClassOf ?x.

?y rdfs:subClassOf ?x. }

Now Xrf (A)∩Xcl(A)∩Xsp(A) can be computed
by the following SPARQL query:

SELECT ?y
WHERE{ A ?p1 ?x.

?y ?p2 ?x.

A rdf:type ?z.
?y rdf:type ?z.

A rdfs:subClassOf ?w.
?y rdfs:subClassOf ?w.

FILTER (?p1 != rdf:type &&
?p2 != rdf:type) }

Note that the above query can give a non empty re-
sult only if A is at class level and thus can have super-
classes.

If however the fetched elements are less than L, i.e.
if |X∩(A)| < L, then we have to fetch more elements.

We can start collecting those elements that belong in
intersections of two of the above sets, i.e. the elements
in Xp(A) ∩Xcl(A), Xp(A) ∩Xsp(A), and Xcl(A) ∩
Xsp(A).

For example, Xrf (A)∩Xcl(A) can be computed by
the following SPARQL query:
SELECT ?y
WHERE{ A ?p1 ?x.

?y ?p2 ?x.

A rdf:type ?z.
?y rdf:type ?z.

FILTER (?p1 != rdf:type &&
?p2 != rdf:type)

}

If again the fetched elements are less than L, then
we can collect those in Xrf (A)∪Xcl(A)∪Xsp(A), i.e.
run the original line (5). These elements can be fetched
using the following query
SELECT ?y
WHERE {

A ?p1 ?x.
?y ?p2 ?x.
FILTER (?p1 != rdf:type &&

?p2 != rdf:type)
}
UNION {

A type ?z.
?y type ?z.

}
UNION {

A subClassOf ?w.
?y subClassOf ?w.

}

Essentially the main idea is the following. If the sub-
graph is defined by a set of directions dirs, then in-
stead of reversing each one direction in isolation and
getting the union, try reversing all directions at once.
Then all directions except one, and so on. In other
words, it is like starting from the top node of the Hasse
diagram of the powerset of dirs (P(dirs),⊆) and then
descend level wise. E.g.:

{P,C S} :level 1
/ | \

{P,C} {P,S}{C,S} :level 2
| \ / | \/ |
| / \ | /\ |

{P} {C} {S} :level 3

Below we report the number returned resources, for
various entities and for various queries, including the

16

A |Answer(q)|
Xrf∪cl(A) Xrf (A) Xcl(A) Xrf (A) ∩Xcl(A)

DaVinciCode 82 76 81 75
Tom Hanks 185 5 182 2
The Thing You Do! 82 75 81 74

Fig. 11. Measurements over the local KB

A |Answer(q)|
Xrf∪cl(A) Xrf (A) Xcl(A) Xrf (A) ∩Xcl(A)

Americano 1,679,605 32,318 1,679,318 32,031
DaVinciCode 1,683,729 246,918 1,668,503 231,692
Illuminati 1,676,081 98,032 1,668,503 90,454
Tom Hanks 2,218,574 862,458 2,183,320 827,204

Fig. 12. Measurements over DBPEDIA

query that returns the union of Xrf (A) and Xcl(A),
denoted by Xrf∪cl(A), defined as:

SELECT ?y
WHERE{ A ?p ?x.

?y ?p ?x.
FILTER (?p1 != rdf:type &&

?p2 != rdf:type)
} UNION {

A rdf:type ?z.
?y rdf:type ?z.

}

We did not manage to obtain reliable results for
the above queries over the LinkedMDB SPARQL end-
point, since for some reason it does not return very big
answers. Therefore at Table 11 we report some indica-
tive (and quite predictable) results over the local KB.
Even in this toy KB we can see how the resources are
reduced while the required time does not increase a lot.

To get more realistic results, we tried the SPARQL
endpoint of DBPEDIA7. If A is the movie Americano8

then

|Xrf∪cl(A)| = 1, 679, 605

|Xrf (A)| = 32, 318

|Xrf ′(A)| = 32, 094

|Xcl(A)| = 1, 679, 318 (i.e. all films)

|Xrf∩cl(A) = 32, 031

Measurements for other entities are shown at Table
12. We observe some big reductions in the answer set
(from millions to tens of thousands). However, even

7http://dbpedia.org/sparql
8http://dbpedia.org/resource/The_Americano

for the intersection query the returned answer is quite
big; 32 thousands hits although much less than mil-
lions, are probably many for fast real-time interaction.
One approach to tackle this problem is to try formu-
lating even more restrictive queries which capture the
desired characteristic of similarity function in a more
accurate way. The extra condition(s) can be added to
the query as extra graph pattern, or the query can be
enriched with an appropriate order by clause. In
the latter case the application can consume only the top
hits of the ranked hits of the computed answer.

The general approach would be to enrich the query
with aggregated counts or similarity functions aiming
at reaching a query that directly returns ranked the top-
L similar entities. However this is not always possi-
ble (depends on how the similarity metric is defined),
and in some times this approach is expected to be less
efficient than getting through queries the information
that is needed and then rank the entities using pro-
gramming language code. Of course the availability of
LOD SPARQL endpoints which support extended ver-
sions of SPARQL would be useful. For instance, [17]
investigates methods to integrate customized similar-
ity functions into SPARQL. Among the proposed tech-
niques, it seems that the, so called virtual triple ap-
proach, would be beneficial (shorter queries which are
easier to write, optimization potential). However, the
scenarios described are more simple in the sense that
only on the direct neighborhood of the compared en-
tities is taken into account, and similarity thresholds
should be adopted (instead of a parameter L). This di-
rection should be further researched. In general, there
is a need for semantic query optimization techniques
for similarity queries.

17

Another important point, which is independent of
the query language, is that the refinement of the in-
formation that is available in the LOD cloud, i.e. the
classification of the available resources to more refined
classes, is expected to improve not only the quality
of the computed similarities, but will make the com-
putation of the similar entities more efficient. Specifi-
cally, if entity A were not classified only as film, but
to more refined classes (e.g. Thriller, Anti-war
Film etc), then |Xcl(A)| would be smaller.

Above we have sketched a top-L version of the al-
gorithm and identified evaluation approaches and diffi-
culties, for the case k = 1. If k is greater than one, then
one approach is to start from a k′ = 1 and apply the
above algorithm. If the fetched elements are less than
L then move to k′ = 2, and so on, until having fetched
L elements or reached the original value of k (i.e. until
k′ = k). However, as we saw in the example of Fig-
ure 7(III), such an approach does not guarantee that
the top-L similar entities with respect to sim1 are the
same with the top-L similar with respect to simk (nev-
ertheless this approach could be used as an approxima-
tion).

Probably, the best feasible solution, for the time be-
ing, is to define, store and periodically update, materi-
alized views accessible through LOD endpoints, which
for each entity contain the set of most similar entities.

8. Conclusion

In this paper, we motivated the need for similarity-
based browsing over entities which are semantically
defined. This kind of browsing can be applied for
various kinds of entities e.g. for movies, paintings,
photographs, videos, restaurants, or even social enti-
ties (groups or individual persons). We introduced a
similarity metric which is type-independent, meaning
that it can find similarities between entities of differ-
ent type (for example similarities between an actor
and a movie), which is very convenient for similarity-
based browsing. The way the similarity metric func-
tions is somehow similar with the spreading activation
retrieval method proposed for semantic networks [6].
The metric can also be configured (the radius k as well
as the graph expansion policy) according to the char-
acteristics of the corpus at hand (and the "affordable"
computational complexity). We demonstrated the be-
havior and the benefits of this metric over a LOD-

based application offering similarity-based browsing
for movie information. We believe that this metric can
also be useful in semantic search [10]. We do not argue
that the graph expansion method adopted by the simi-
larity function is the best for all occasions. Instead we
have the impression that in many cases the selection
of the graph expansion method should be application
specific.

Finally, we discussed implementation approaches
and we elaborated on a method which is "harmo-
nized" with the distributed and open nature of LOD.
The described method can be used for computing the
L most similar entities according to similarity met-
rics which are neighborhood-based. Specifically we
showed how a neighborhood-based similarity metric
can be reversed to get a query which can collect only
those entities whose similarity is certainly greater than
0. Furthermore we sketched possible top-L extensions
of the algorithm.

Below we discuss some directions which according
to our opinion are worth further research. Regarding
similarity functions there is a need for test collections
appropriate for comparative evaluation. Regarding al-
gorithms, it is worth investigating top-K (or nearest
K) algorithms appropriate for the LOD domain. Re-
garding services for end users, a next step is to de-
vice methods for clustering the set of similar entities.
Finally, as in web searching, log analysis can be ex-
ploited for improving the computation of similarities
at application layer.

Moreover, we would like to note that as the num-
ber of sources increases, the need for ontology match-
ing techniques (and lexical similarity functions) in-
creases as well. In our application, and since we used
two sources of information, we did not face this prob-
lem. In any case, the approach presented in this pa-
per can be applied after applying entity matching ap-
proaches. A related issue is the management of the
sameAs predicate. In brief, if two entities are related
with such relationships, then they should be treated as
equal by the similarity function. Another direction is to
consider weighted triples, e.g. investigate a represen-
tation framework like Fuzzy RDF [28], and investigate
similarity functions for such KBs (an extension of the
faceted browsing for such sources is described at [21].

References

[1] I. Akbari and M. Fathian. A novel algorithm for ontology
matching. Journal of Information Science, 36(3):324, 2010.

18

[2] A. Alasoud, V. Haarslev, and N. Shiri. An empirical compari-
son of ontology matching techniques. Journal of Information
Science, 35(4):379, 2009.

[3] T. Beners-Lee and D. Connoly. "Delta: An Ontology for
the Distribution of Differences Between RDF Graphs", 2004.
http://www.w3.org/DesignIssues/Diff (version: 2006-05-12).

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story
so far. International Journal on Semantic Web and Information
Systems, 5(3):1–22, 2009.

[5] D. Borth, C. Schulze, A. Ulges, and T. Breuel. Navidgator-
Similarity Based Browsing for Image and Video Databases. KI
2008: Advances in Artificial Intelligence, pages 22–29, 2008.

[6] P. R. Cohen and R. Kjeldsen. “Information Retrieval by Con-
strained Spreading Activation in Semantic Networks". Infor-
mation Processing and Management, 23(2):255–268, 1987.

[7] J. Euzenat and P. Valtchev. Similarity-based ontology align-
ment in OWL-lite. In ECAI 2004: 16th European Conf. on Ar-
tificial Intelligence, August 22-27, 2004, Valencia, Spain, page
333, 2004.

[8] Ronald Fagin. “Combining Fuzzy Information From Mul-
tiple Systems". Journal of Computer and System Sciences,
58(1):83–99, 1999.

[9] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggre-
gation algorithms for middleware. In PODS ’01: Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 102–113, New York,
NY, USA, 2001. ACM.

[10] B. Fazzinga and T. Lukasiewicz. Semantic search on the Web.
Semantic Web, 1(1-2):89–96, 2010.

[11] S. Ferré. Conceptual Navigation in RDF Graphs with
SPARQL-Like Queries. Formal Concept Analysis, pages 193–
208, 2010.

[12] A. Harth. Visinav: Visual web data search and navigation. In
Procs of the 20th Intern. Conf. on Database and Expert Sys-
tems Applications (DEXA ’09), 2009.

[13] O. Hartig, C. Bizer, and J.-C. Freytag. Executing sparql queries
over the web of linked data. In Procs of the 8th Intern. Semantic
Web Conference (ISWC ’09). Springer, 2009.

[14] M. Hildebrand, J. Ossenbruggen, and L. Hardman. /facet: A
browser for heterogeneous semantic web repositories. In Procs
of ISWC ’06, 2006.

[15] Anil K. Jain and Richard C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[16] C. Kiefer, A. Bernstein, H. Lee, M. Klein, and M. Stocker. Se-
mantic process retrieval with iSPARQL. The Semantic Web:

Research and Applications, pages 609–623, 2007.
[17] C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of

isparql: A virtual triple approach for similarity-based semantic
web tasks. The Semantic Web, pages 295–309, 2007.

[18] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. “Ontol-
ogy versioning and change detection on the web". In Procs of
EKAW’02, pages 197–212, Siguenza, Spain, Oct 2002.

[19] V.I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. In Soviet Physics Doklady, vol-
ume 10, pages 707–710, 1966.

[20] E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - A Seman-
tic View-Based Search Engine Service for Web Applications.
In Procs of ISWC ’06, pages 847–860, 2006.

[21] N. Manolis and Y. Tzitzikas. Interactive Exploration of Fuzzy
RDF Knowledge Bases. In Procs of ESWC’11, 2011.

[22] Jan Noessner, Mathias Niepert, Christian Meilicke, and Heiner
Stuckenschmidt. Leveraging terminological structure for ob-
ject reconciliation. In Procs. of ESWC’10, pages 334–348, Her-
aklion, Crete, Greece, 2010.

[23] N. F. Noy and M. A. Musen. "PromptDiff: A Fixed-point Al-
gorithm for Comparing Ontology Versions". In Procs of AAAI-
02, pages 744–750, Edmonton, Alberta, July 2002.

[24] E. Oren, R. Delbru, and S. Decker. Extending Faceted Naviga-
tion for RDF Data. In Procs of ISWC ’06, 2006.

[25] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel - a
browser-independent presentation vocabulary for rdf. In Procs
of the Second InterN. Workshop on Interaction Design and the
Semantic Web, pages 158–171. Springer, 2006.

[26] G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and
Faceted Search: Theory, Practice, and Experience. Springer,
2009.

[27] V. Schickel-Zuber and B. Faltings. Oss: A semantic similarity
function based on hierarchical ontologies. In Proc. of IJCAI,
volume 7, pages 551–556, 2007.

[28] Umberto Straccia. A minimal deductive system for general
fuzzy rdf. In Procs of the 3rd Intern. Conf. on Web Reasoning
and Rule Systems (RR ’09), 2009.

[29] R.D.K. Thanh-Le Bach. Measuring Similarity of Elements in
OWL DL Ontologies. In Procs of AAAIâĂŹ2005 workshop on
Contexts and Ontologies: Theory, Practice and Applications,
Pittsburgh, Pennsylvanis, USA, 2005.

[30] G. Tummarello, C. Morbidoni, R. Bachmann-Gmur, and O. Er-
ling. RDFSync: efficient remote synchronization of RDF mod-
els. In Procs of the 6th International Semantic Web Conference
(ISWC-07), pages 537–551. Springer, 2007.

