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Abstract. One of the open problems in Semantic Web research is which tools should be provided to users to explore linked data.
This is even more urgent now that massive amount of linked data is being released by governments worldwide. The development
of single dedicated visualization applications is increasing, but the problem of exploring unknown linked data to gain a good
understanding of what is contained is still open. An effective generic solution must take into account the user’s point of view,
their tasks and interaction, as well as the system’s capabilities and the technical constraints the technology imposes. This paper
is a first step in understanding the implications of both, user and system by evaluating our dashboard-based approach. Though
we observe a high user acceptance of the dashboard approach, our paper also highlights technical challenges arising out of
complexities involving current infrastructure that need to be addressed while visualizing linked data. In light of the findings,
guidelines for the development of linked data visualization (and manipulation) are provided.
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1. Introduction

A growing amount of information is continuously
being made available to public as linked open data1.
If, on the one hand, this amass of data is exciting to

*Corresponding author. E-mail: S.Mazumdar@dcs.shef.ac.uk.
1As of July 2012, http://ckan.net registered 3,865 datasets of dif-

ferent types such as Census Records, Railway Maps, Greenhouse
Gas data, Airport data, Gene information and so on.

have, on the other hand it would be great if there was

an easy way to get a grip on what such repositories

contain. The Semantic Web community is facing new

challenges in terms of consuming the linked data made

available, e.g. dynamic discovering of sources, prove-

nance and quality assessment, effective integration to

name a few. However this is only one side of the coin

as data are intended to be, in the end, for human con-

sumption, not just for machine crunching.
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While some well-crafted visualization applications
are being developed for specific data sets and specific
purposes2, the vast majority of tools to explore linked
data are based on a variation of an aggregated list. In
some cases this is the best option as the abstraction of
the data itself make it difficult to display it otherwise,
e.g. information about a person and their work is prop-
erly displayed as a (web)page and applications like
Sig.ma3 are a good example of user-centred display.
However, although this is a solution easy to generalize,
it cannot be considered the best one as the aggregation
of data into a list flattens the depth of the linked data
itself and could hide its most important characteristics.
For example, numeric data may be more meaningful
and revealing when visualized as graphs or plots or pie
charts than as a table or list. [6] describes that finding
the right visualization for a given set of data is not a
trivial task: “One must determine which questions to
ask, identify the appropriate data, and select effective
visual encoding to map data values to graphical fea-
tures such as position, size, shape, and colour.”. To fa-
cilitate this investigation specific tools are needed that
support looking at the same data from different angles
and, eventually, take a decision on which visualization
is the most effective for the task in hand.

We propose a tool that, in a dashboard metaphor,
provides consumers of linked data different visualiza-
tions to be used simultaneously. We define “consumers
of linked data” as both potential users and application
developers interested in understanding what a specific
linked data set is about. To be effective, such a tool has
to be easy to use but also easy to plug into any linked
data set made available. This paper discusses the im-
plementation of a generic dashboard-based visualiza-
tion framework, Points of View (.views.) and reports
on the exploration of two fundamental aspects: User
needs and System requirements. On the bases of the
lessons learnt, we provide basic guidelines for the de-
sign of generic linked data applications. The paper is
organized as follows: Section 2 discusses related work
and Section 3 the design rationale. Section 4 discusses
the user interactions involved in the system. Section
5 provides an insight into the implementation. Sec-
tions 6 and 7 report our findings of user and system
formative evaluation. Section 8 discusses the proposed

2http://www.data.gov/developers/showcase has some interesting
examples [accessed 04/07/2012]

3Sig.ma Semantic Information Mash-up http://sig.ma/ [accessed
04/07/2012]

guidelines. An outline of the future work concludes the
paper.

2. Related Work

Visualization of linked data has focussed so far
mainly on providing browsers for visualizing RDF.
Our intention of providing a generic and customiz-
able framework for supporting multiple visualizations
has focussed our review of the related literature into
two main categories - Generic interfaces/browsers and
multiple visualizations.

Applications like mSpace [16], user-composed facets
browsing for a classical music database, or Muse-
umFinland [11], a web-based pre-defined facet brows-
ing for museum collections, provide browsing func-
tionalities on specific data sets. Some researchers have
addressed the visualization of data in a generic way:
Longwell provides faceted browsing for arbitrary data,
but requires a domain-expert to configure the different
facets, while Welkin4 loads RDF models and provides
a graphical representation of the data along with lists
of predicates and resources. Both RDF Gravity5 and
IsaViz6 are graph-based visualizations of RDF OWL
graphs or ontologies: the latter uses graph visualiza-
tions to help authoring RDF data, the former provides
a visualization of existing RDF data. Experimenta-
tion with large scale RDF is progressing with several
graphing tools available to try 7.

In order to be generic, all these examples map the
data onto highly abstract visualization structures like
graphs, missing out on the advantage of visual dis-
play for understanding and reasoning [6]. To provide
domain-independent tools that are at the same time fa-
miliar, some approaches started from the standard web
content and enrich it with semantics. PowerMagpie8

adds semantics to web browsing sessions by analyz-
ing the text of a web-page and maps the extracted con-
cepts to existing semantic web ontologies. Similarly,
PiggyBank [9] extracts concepts from browsed pages,

4Welkin, http://simile.mit.edu/welkin/ [Accessed 04/07/2012]
5RDF Gravity, http://semweb.salzburgresearch.at/apps/rdf-

gravity/ [Accessed 04/07/2012]
6IsaViz, http://www.w3.org/2001/11/IsaViz/ [Accessed

04/07/2012]
7Large-scale RDF Graph Visualization Tools,

http://www.mkbergman.com/414/large-scale-rdf-graph-
visualization-tools [accessed 04/07/2012]

8PowerMagpie, http://powermagpie.open.ac.uk/ [Accessed
04/07/2012]
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aggregates and stores them in a local database for later
facet browsing or search, e.g. sorted lists of subsequent
links, dates, times etc.

Closer to our intended goal of providing generic, in-
formative and intuitive visualizations on large linked
datasets are Tabulator [2], /facet [8] and Semantic
Wonder Cloud [13]. Tabulator [2] visualizes RDF data
on geographical maps, timelines and calendar views;
/facet [8] is a generic semantic browser that allows the
user to select the facet sequence, results are visualized
as list or on timeline enriched by concepts; and the Se-
mantic Wonder Cloud [13] provides a mind-map like
visualization on DBpedia with large central concepts
and satellite ones. Although closer to our intent, these
three systems differ in core design decisions. Tabula-
tor provides multiple views in different tabs on a single
page thus loading the user with the cognitive effort of
remembering the content of a visualization from one
tab to the next when exploring the data, while we in-
tend to support visual comparison by providing simul-
taneous views. As /facet and Semantic Wonder Cloud,
we intend to provide visualizations of different facets,
but rather than just displaying a preconceived view,
(e.g. a timeline in /facet) or as related concepts in a
simplified graph (Semantic Wonder Cloud), we go a
step further mapping the data on several, specific and
intuitive visual frameworks (as we attempted in [15]).
However, the possibilities for visualizing data are mul-
tiple [6], many more of those we explored in [15],
therefore a larger range of views is considered here.

A few projects share our goal of aggregating and
visualising data, by simultaneously presenting multi-
ple facets of the data. The Paggr system [14] aggre-
gates and displays information collected from multiple
distributed semantic sources in widgets, using several
SPARQL operations. While Paggr focusses on mash-
ing up data from several sources using multiple text-
based widgets, each customized to focus on a particu-
lar facet of the data, our approach is to visually abstract
RDF responses to provide simultaneous multiple visu-
alizations. Sparks9 provides a good example of coordi-
nated multiple visualizations in a dashboard-like inter-
face, aimed at exploring linked data. The Sparks inter-
face mainly consists of a geographical map, displaying
geo-located data elements. Interactive filter elements
like sliders and tag clouds allow users to click and
select the relevant subsets of the data. However, the
user has little flexibility in defining filters or facets of

9Sparks Prism, http://sparksrdf.github.com/

their choice during an exploratory session. The Sparks
interface is further restricted to visualizing only geo-
located datasets and may not be the ideal choice for
datasets that do not (or sparsely) contain geographi-
cal information. Sgvizler10 is an interesting JavaScript
tool that enables different visualizations of results from
SPARQL SELECT queries. The two ways of using the
tool are either use a form based approach (where users
can write SPARQL queries on form elements, and vi-
sualize its results) or embed SPARQL queries within
<div> elements. It also functions as authoring tool,
where the onus is on a semantic web expert to build
individual <div> elements and present them in a web
page. Similar to Sparks, Sgvizler lacks the flexibility
of defining new filters or facets without being an expert
in building SPARQL queries.

Worth noticing as it points out in the opposite di-
rection, is the work done in Exhibit [10]. Instead of a
generic visualization framework, Exhibit offers to the
owner a simple environment for publishing data visu-
ally that a generic user could look at and interact with.
Although this approach is particularly relevant with the
current trend of Web 2.0 tools and amateur web author-
ship, it fails in situations where the data owner is just
interested in releasing it, but cannot spend effort on (or
does not know how to) making that data visually ac-
cessible. This is the case for the government data that
rely on the good will of others to make it graphically
accessible.

3. The Dashboard Design Rationale

A tool that provides the user with a flexible way
to look at the data from many perspectives needs to
be customizable as the most effective type of visual-
ization highly depends on the data type and the task
in hand [6]. This design decision on effective cus-
tomization led to the adoption of a dashboard layout
[4]. A dashboard provides simultaneous visual sum-
maries of large sets of information in a limited amount
of space (here, a single web page). Effective dash-
boards should be able to provide all the information
in a meaningful, correct and intuitive way [4]. While
widely used in business information systems since the
80s, dashboard-like user interfaces are becoming in-
creasingly common in other domains only now. Pop-
ular websites like igoogle11 and BBC12 use a design

10Sgvizler, http://code.google.com/p/sgvizler/
11igoogle interface, http://www.google.com/ig
12BBC website, http://www.bbc.co.uk/
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Fig. 1. The Web-based interface for grass data with generic filters (top) and four different views on the retrieved data set, namely: tag cloud,
result list, pie chart and geo-plot. (Data is courtesy of the GrassPortal (http://www.grassportal.org/) Project and Kew Gardens)

inspired by dashboard layout, by providing contextual
widgets, each tuned to display a specific set of infor-
mation. The design rationale embedded in our visual-
ization system Points of View, is to create a dashboard
for generic linked data by making visualizations avail-
able in customizable widgets as shown in Figure 1. As
linked data is given for public consumption, it is not
predictable which visualization users will find more
useful given their task. For example, government data
on schools performance would be better visualized as
individual items on a map for parents trying to decide
the best choice for their children, but would be more
meaningful to public servants who want to compare
schools performing trends across the country if it was
aggregated in tables. Therefore multiple views over the
same data seem to be indispensable to support the un-
derstanding of the value of linked data and facilitate its
use and consumption. Although we acknowledge that
not all visualizations are equal and that a specific view
can show or hinder interesting phenomena in the data
[6,4], we think it is important to explore the issue of
visualizing linked data as broadly as possible, leaving
the introduction of visualization constraints (i.e. which
data type should be visualized, how and for which pur-

pose) for a later stage when the basic framework has
been understood. So in this work we focus on:

1. Understanding how a dashboard approach could
support the user in exploring unknown datasets
and appreciate the multi-faceted nature of the un-
derlying linked data in a short span of time.

2. Understand which are the technical implications
and constraints to provide a generic visualization
service over linked data, both stored locally or re-
motely accessible via endpoints, and which tech-
nical contraints affect the user interaction.

In summary, our aim is to facilitate the visualization
of a generic linked data set in a way that is familiar and
easy to understand and customise.

4. User Interaction

Figure 1 and Figure 2 show the same interface ap-
plied on different datasets (though the CSS styles13 ap-
plied in the examples are different). The different visu-

13Cascading Style Sheets, http://www.w3.org/Style/CSS/
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Fig. 2. Social data after the flood in Cumbria, UK in 2007 visualised using .views. (Data harvested from Flickr (http://flickr.com) and Twitter
(http://twitter.com)). The CSS style in this instance has been modified from Figure 1, though the basic interface remains the same.

alizations provide complementary information to the
user as shown in Figure 2: the most discussed topic
was the police (from the tag cloud top left), two areas
were affected (from the geographical view, mid right),
and when Twitter and Flickr registered higher activi-
ties (timeline, bottom right). The different visual wid-
gets act on the same data set, each parsing it accord-
ing to the type of visualization they provide, e.g. geo-
plotting extracted geo-information, timeline focussing
on time values, etc.

It is important to notice that some visualizations
could be meaningless with certain data, e.g. if time
is not provided a timeline would be empty. Therefore
users can enable or disable widgets or re-arrange them
(via drag-and-drop) depending on their needs and the
data in hand. For example, numeric data would be bet-
ter visualized as a table, a pie chart or a bar chart than
as a list. The visualization widgets developed so far in-
clude: a tag-cloud; a result list with links; a geograph-

ical plot; a timeline; a pie chart; a bar chart (all in
Figure 2). Although this list is surely not exhaustive,
we were at this point more interested in providing a
generic framework that could be expanded with other
visual widgets than an exhaustive, but closed, tool. In-
deed, .views. acts as a visualization platform for linked
data where new visualization widgets can be plugged-
in as and when they are developed.

Essential for an effective use is to provide sim-
ple mechanisms to query the data set. As first exper-
imented in [15], .views. uses the concept of dynamic
query [1]: the interface provides graphical direct ma-
nipulation widgets, e.g. lists or slide-bars; while in-
teracting, the user automatically queries the underlin-
ing database and the data in the filtered set is dis-
played. This approach supports Schneidermans well-
known design paradigm “overview first, zoom and fil-
ter, then details-on-demand” [17]: the full set is dis-
played first, the user uses the filters to select the subset
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of interest, then clicks on a view to dig into the details,
e.g. at individual instances.

.views. provides two different types of filtering
mechanisms: global and local. Global filters act on the
whole data set and affect all of the visualization wid-
gets; local filters are attached to a single view (or wid-
get), e.g. zooming in a geographical view to see de-
tails; clicking on a slice of a pie chart to see the rel-
evant subset of data. Global filters are automatically
generated out of the data set, while local filters could
be already imbedded in some views (e.g. on maps) but
some need implementation (e.g. pie chart selection).
Global filters are composed to retrieve the result set:
items selected from a drop-down menu can be set to a
specific value for data querying (Figure 3). Local fil-
ters support digging-into the retrieved set from differ-
ent perspectives.

Fig. 3. Global filtering for user-defined queries on the DBpedia
dataset. On entering the values for filters, the number of results avail-
able is displayed in a button, clicking on which starts visualizing the
results.

Once the system has started up, the user queries the
data by selecting the appropriate global filters that re-
strict the entire dataset to the subset of interest. The fil-
ters are selected from a drop-down list that is automat-
ically generated during initialization by querying the
backend for all the query-able concepts. Upon select-
ing a filter from the list and clicking on the (+) but-
ton, the filter gets added in the filtering interface as
shown in Figure 3 where the user had previously se-
lected ‘country’ and ‘type’ as global filters. The in-
terface displays the filter name (as retrieved from the
data set) as a label, and provides a text box, which en-
ables the user to type the respective filter values. As for
the global filters, .views. automatically provides sug-
gestions on the possible values: while the user is typ-
ing, SPARQL queries are sent to the backend to collect
possible alternatives then displayed as suggestion list.
Figure 4 shows an example taken from the grass data
set: to a user typing “pa” the system suggests Paniceae,
Parianeae and Pappophoreae as possible values for the

filter named ‘< tribe > < < mandatory > >’, with the
number of occurrences in the data in brackets14. The
suggestion list is automatically extracted from the data
and therefore provides an insight into the underlying
data fostering understanding for users unfamiliar with
the set.

When the setting of global filters and their respec-
tive values is complete and the button ‘ # results avail-
able’ is clicked, the backend is queried. The results are
then simultaneously displayed in all of the visualiza-
tion widgets available on the interface. The user can
then explore a single visualization by making use of
local filters - such as: clicking on portions of aggre-
gate plots like the bars in a bar-chart, zooming into ge-
ographical maps etc.

Fig. 4. Automatic suggestions guide users for providing the right
query. Typing a few characters (here, “pa”) starts suggesting possible
filter values containing these characters, along with the total number
of times they have occurred within the dataset.

In summary, the novelty of our approach is in pro-
viding a generic mechanism that automatically gener-
ates the user interface (both filters and visualizations)
from a set of existing data and its structure without
relying on any pre-determined domain-specific doc-
ument templates. .views. tightly pairs the actual data
set with graphical widgets giving the user the power
to directly interact and explore the data. Contrary to
other approaches that start from the domain descrip-
tion, .views. prevents querying empty data set thus sav-
ing users’ time and frustration.

5. Architecture

.views. is composed of two sub-systems: the front-
end provides visualizations and user interactions, the
back-end deals solely with querying the endpoints
(Figure 5, backend on the left, front-end on the right).

14This feature is disabled while querying SPARQL endpoints, as
discussed in section 7.
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To start with a new data set, .views. has to go through a
configuration step: a file contains the mapping between
the widgets and the data feature, as well the corre-
sponding endpoint to query. The following set of prop-
erties are defined in the configuration file, the content
of which is represented in a tabular form:

Endpoint: “http://dbpedia.org/sparql”
Instance Type: “http://dbpedia.org/ontology/Place”

Visualization Widget Ontology property

Geographical Map “http://www.georss.org/georss/point”
Pie Chart “http://dbpedia.org/property/city”
Bar Chart “http://dbpedia.org/property/state”

.views. loads the configuration file at set up and
builds SPARQL queries accordingly. The visualization
properties15 define how the respective widgets will be
plotted, in a piechart, barchart, and on a map respec-
tively - the plots would be built out of the distinct val-
ues of the properties (predicates) of the resource being
queried for (instance type); ‘Endpoint’ defines which
endpoint will be queried; and ‘Instance Type’ defines
the type of instances that will be retrieved. Prepar-
ing a configuration file requires a certain understand-
ing of a new dataset. Although linked data providers
are likely to offer descriptions of their data models, a
pre-configuration step can identify properties that are
good candidates for certain visual widgets. For exam-
ple, aggregate-based widgets like pie charts, bar charts
are effective visualizations for faceted properties that
have a short list of possible values occurring multiple
times across the dataset whereas a tag cloud better suit
a situation where the list of possible values are much
larger. An example query to retrieve a list of properties
that may fit in this criteria could be:

SELECT DISTINCT ?concept, count(distinct ?value)
AS ?count WHERE {

?s ?concept ?value.
} ORDER BY DESC (?count)

The result would be an ordered list of all properties
along with the total number of unique values. Distri-
bution of the distinct values across the data set can be
retrieved by iterating through each property and query-
ing for the distribution of its unique values. An exam-
ple query (where the current property being investi-
gated is ‘city’) would be:

SELECT ?val COUNT(DISTINCT ?obj) AS ?count WHERE {
?obj <http://dbpedia.org/ontology/city> ?val.

}ORDER BY DESC(?count)

15These categories, essentially refer to properties (predicates) de-
fined within the dataset. When visualized, the distinct values of the
properties would be aggregated and plotted within the pie, bar and
geographical plots

The resulting distribution can be analyzed and a set
of interesting properties identified. It is to be noted,
however, that users can have different criteria for ex-
pressing interesting charts: a pie chart with too many
sections, having equal area could be more interesting
to some users than a pie chart with many sections with
minimal area and a few sections with larger areas. In-
deed, to determine which type of visualization better
fit which data for which task is still a matter of re-
search, but results coming from the field of visual an-
alytics [6,4] are promising and allow us to forecast
a time when this step of associating data features to
visualization widgets is done automatically or semi-
automatically.

The pre-configuration step can either be a back-end
process (the user enters a new dataset endpoint URL
and several PHP scripts automatically executes in the
background, thereby selecting several possible prop-
erties) or a user-directed process (where the user can
actively query the endpoint with a few pre-defined
scripts on an interactive ‘setup’ environment to iden-
tify the respective properties). A fully automatic pre-
configuration step can be time and resource intensive
for its large number of calls to an endpoint and may
result in unexpected time outs and performance issues,
as discussed in Section 7. Here we used a user-directed
definition of the properties in the configuration file
supported by queries similar to those above. However,
once the system has loaded, the user has the flexibility
to modify the faceting fields from each widget.

To explain the .views. interface, lets consider the
flow starting from the user interaction when querying
the DBpedia SPARQL endpoint. The user is shown
an HTML page with default widgets: on loading the
page, a script sends a SPARQL query to the back end
to retrieve all the concepts in the dataset. An example
SPARQL query would be as follows:

SELECT DISTINCT ?concept
WHERE {

?s a <http://dbpedia.org/ontology/Place>.
?s <http://www.georss.org/georss/point> ?location.
?s ?concept ?value.

} ORDER BY (?concept)

The example query looks for all places in DBpedia
that have a referenceable geo-location, but any other
configurable constrain, e.g. a time frame, could be used
too (by modifying the configuration file). Once the
query is passed to the backend, a PHP script passes the
query to the SPARQL endpoint using ARC16 classes.

16ARC RDF system, http://arc.semsol.org/
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The response from the endpoint is then parsed by the
backend and converted to JSON format, which is then
passed to the frontend. The frontend, upon receiving
this response, parses the JSON17 object to populate its
list of concepts that will support the user in selecting
the global filters.

Fig. 5. Architecture of the visualization interface

This is captured by the drop-down select list (next to
“Add filter:” in the Figure 4). The following shows an
example query, where the user has selected ‘country’
and ‘type’ as filters and entered the value for country
as ‘united_kingdom’. The user then starts typing ‘uni’
as the value for ‘type’.

SELECT DISTINCT ?type WHERE {
?s <http://dbpedia.org/property/country> ?country.
?s <http://dbpedia.org/ontology/type> ?type.
FILTER (regex(?type,"uni","i") &&

regex(?country,"united_kingdom","i")).
}

The query would return the types of instances that
contain the character sequence ‘uni’ as its type and
‘united_kingdom’ as its country. The user can then se-
lect one of the suggestions and that would add the fil-
ter term as a global query. In our current implementa-
tion, automatic suggestions have been disabled due to
back-end performance issues (as will be discussed in
Section 7). Currently, the SPARQL queries do not con-
tain any FILTER constraints. Instead, the user types
the URI (or a matching literal) to have a valid global
filter set up.

Once the user has followed the steps of selecting
global filters and entering filter terms (as shown in Fig-

17JavaScript Object Notation, http://www.json.org/

ure 3 and 4), .views. immediately displays the number
of matches in the database, number returned after an-
other query is sent to the endpoint. An example would
be:

SELECT COUNT (DISTINCT ?s) AS ?count WHERE {
?s <http://dbpedia.org/property/country>

<http://dbpedia.org/resource/United_Kingdom>.
?s <http://dbpedia.org/ontology/type>

<http://dbpedia.org/resource/Public_university>
}

This query counts the unique instances of pub-
lic universities that are located in United Kingdom18.
Clicking on the filtering interface (on ‘68 results avail-
able’ in Figure 3) triggers the simultaneous display of
the widgets.

Unique queries (tuned by the individual widgets)
are passed to the backend, which then responds with
the results provided by the endpoint (which are fur-
ther converted to JSON). In our previous example with
public universities across United Kingdom, if the pie
chart is focussed on visualising the results based on
cities, the following query would be generated from
the pie chart widget.

SELECT DISTINCT ?piecategory COUNT (?instance) AS ?count
WHERE {

?instance <http://dbpedia.org/property/country>
<http://dbpedia.org/resource/United_Kingdom>.

?instance <http://dbpedia.org/ontology/type>
<http://dbpedia.org/resource/Public_university>.

?instance <http://dbpedia.org/property/city>
?piecategory.

}ORDER BY DESC(?count)

The focus (or faceting field) of each widget is de-
fined in the configuration file, but, for some widget,
the user can alter it by selecting a new field from a
drop-down list, e.g. Figure 1 shows that the mapping
for both the tag cloud and pie chart can be changed
using the drop down list in the bottom of the widget,
whereas the map display is fixed. This flexibility en-
sures that the user has complete control over which
facet of the data are explored at any time. The change
of the faceting field (in our example, setting ‘county’
instead of previously defined ‘city’) from the drop-
down list triggers a SPARQL query to the backend, es-
sentially the same query, but with a different final triple
pattern:

?instance <http://dbpedia.org/property/county>
?piecategory.

18All the references to the filter values are as URIs and not plain
text to improve system performance, as discussed in Section 8
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The back-end responds with a JSON object, which
contains an ordered list of counties for the universi-
ties in United Kingdom. Each widget receives a simi-
lar JSON object, which is then parsed in its own way
to provide the specialized visualizations19.

Once the individual widgets are loaded with their
visualizations, the user can further interact with local
filters and drill down to individual instances or group
of homogeneous instances as in the case of maps and
tag cloud. Local filters are generated either when se-
lecting a different faceting field from a drop-down list
(as discussed previously) or clicking on instances. The
following example SPARQL query is generated when
a section (in our example, the city London) of a pie
chart is clicked:

SELECT ?instance ?property ?value
WHERE {

?instance <http://dbpedia.org/property/country>
<http://dbpedia.org/resource/United_Kingdom>.

?instance <http://dbpedia.org/ontology/type>
<http://dbpedia.org/resource/Public_university>.

?instance <http://dbpedia.org/property/city>
<http://dbpedia.org/resource/London>.

?instance ?property ?value.
}group by ?instance

The back-end responds with a JSON object con-
taining all the information regarding the selected in-
stance(s). JavaScript modules then parse the object to
create an HTML string that gets rendered on a popup
dialog, as shown in Figure 6.

This allows a separation of the user from the raw
data instances. The approach of providing aggregated
views and combinations of data instances as visualiza-
tions enables users to have a high-level overview of the
data. However, users can also drill-down to individual
instances of data, which provides them direct access to
the underlying data. The benefit of such a mechanism
is that the users would not need to be semantic-web or
database experts - their interactions would identify the
subset of the data they are interested in.

6. User Needs: A Focus Group Validation

As discussed previously, it is essential for any visu-
alization of linked data to take into account user needs.

19Several open-source JavaScript libraries have been used, to
implement the different visualization widgets, namely Highcharts
charting library, http://www.highcharts.com/ for timeline and bar-
chart, Raphaël http://g.raphaeljs.com/ for the pie-chart and Google
Maps http://code.google.com/apis/maps/index.html for the geo-
visualization.

Fig. 6. Popup dialog providing details on individual instances - here,
the details on the University of Sheffield.

Following a user-centred design approach [7], a group
of potential end-users has been involved in the forma-
tive evaluation of .views. A formative evaluation dif-
fers from a summative evaluation in several ways20: it
is done earlier in the design-development cycle, it aims
at exploring the design space (e.g. alternative possibil-
ities) and to have an overall sense of the user reaction
to the system under design. As such it uses less formal
techniques than a summative evaluation, but provide
richer data to support understanding and, eventually,
redesign.

Two sets of formative evaluations were carried out
over one year: the first evaluation used a focus group
technique with hands-on sessions and provided ev-
idence of use (via observations), participants’ com-
ments and suggestions that were used to re-design the
system; the second evaluation was a usability test con-
ducted in pairs in order to provoke a natural discus-
sion between the participants and reveal what is in their
mind better than other techniques, e.g. think aloud.
Data collected in this way, narratives and discussions
were analysed qualitatively, looking for emerging pat-
terns of consensus across groups.

While for the system evaluations .views. has been
tested on 4 different data sets (DBpedia21, grass dataset

20A summative evaluation occurs later in the development phase,
when decisions have been already taken, and aims at ascertain the
status of the system, e.g. by measuring its usability.

21DBpedia data, as available at http://dbpedia.org/sparql
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(Figure 1), social data (Figure 2) and UK Government
education data 22), only the grass data set23 was used
for the user evaluation. The set holds ecological and
evolutionary data collected by biologists around the
world, grass species descriptions and their global dis-
tribution and is of high interest to biologists: these
were the participants involved in the two formative
user evaluation. The dataset contains descriptions as
well as global distribution of 17,621 grasses, based on
1,090 different characteristics.

The goal of the evaluation was to understand how
.views. matched expert users expectations, as well as
gaining feedback on its usability. Over a period of a
week, 8 students from the Animal and Plant Sciences
department took part in 5 focus groups, each involv-
ing 1 to 3 participants24. Each session lasted between
1.5 hours and 2 hours; the screen interaction and the
comments were recorded for future analysis. Partici-
pants ranged from first year BSc to MSc graduates.
They were first briefed on the project as a whole and
a 15-minute demonstration of the data and system was
given. Then it was their turn to have their hands on
the system: a trace provided as a set of questions. A
user satisfaction questionnaire was then used to start
the conversation around their experience. Questions on
a 5-point Likert scale [12] were targeted to rate differ-
ent criteria in the system ranging from ease of use to
reliability. The response was overall positive: the sys-
tem was judged easy (72%), satisfying (72%), stimu-
lating (78%), fast (90%) and reliable (72%).

The comments from all the users were then collated
and analysed, which led to several interesting ideas
emerging: users appreciated the option of adding cus-
tomized filters to select the data of their choice. Com-
ments like “You can use a large number of filters and
so be as specific or vague as you want. All the infor-
mation was displayed well and linked together well”
were encouraging and show that our intuition about
user-selected querying was right in spite of the high
number (1,090) of filter choices they had to deal with.
This list, containing properties like flower color, sepal
length, height of plant etc. is gathered while initial-
izing the interface by querying for all the properties

22Edubase data, as available at
http://services.data.gov.uk/education/sparql

23The grass data set was kindly provided by the Kew Gardens via
the GrassPortal project.

24Sessions with one participant only were due to the partner miss-
ing the meeting. Although this is not the ideal setting, we believe
valuable data were collected in the individual sessions.

of grass. However, the long list had drawbacks: com-
ments like “Hard to find the required filter in the list”
clearly show that the filtering interface needs some fur-
ther thoughts.

Apart from an alphabetical order, participants sug-
gested providing frequently used filters (“Query box
could contain a few of the more commonly used fil-
ter region, leaf size, synonyms”) and to group them
into categories and sub-categories (e.g. general char-
acteristics (plant duration, sexuality, height etc.), re-
gion (Africa, Europe, Asia etc.), part of plant (anthers,
spikelets, caryopsis etc.)).

Some participants suggested new visualization fea-
tures we did not foresee during the design phase:
“Comparisons could be useful side by side visualiza-
tions? i.e. for one species distribution of annuals vs
perennials. Could be very useful to show basic climate
data on map”. Other interesting suggestions include
to overlay the geographical map with other imageries
(e.g. street map, satellite and 3D imagery) or the use
of a C-S-R triangle (Competitor, Stress tolerator, Rud-
eral) used by ecologists and botanists to show the per-
formance of a plant respect to these categories[5]. Data
could then be plotted on the triangle that would be-
come an alternative, topological view over the data.

The results from the focus group was analyzed to
identify what are the areas that needed improvements.
.views. was then modified to include new features,
bug fixes and cosmetic changes. Features that were
added were enabling users to replot visualization wid-
gets on the basis of the variables that they select (a
feature identified by users as essential), mechanisms
to improve transferring of queries and result sets and
improved backend to better handle different types of
queries as well as larger results. Cosmetic changes in-
clude modifying the look-and-feel of the user inter-
face to provide improved readability, adding domain-
specific labels to help domain experts understand the
interface better, removing certain pre-defined filters
(that were pointed out as unhelpful by students) and
improved interaction mechanisms.

The new version of the system was then used in
the user test with computer scientists and domain ex-
perts. This was conducted six months later, once the
improved version of the system was ready for user
testing. The study was conducted in three sessions of
two experts working in pairs - a computer scientist and
a biologist. This pairing was instrumental to under-
stand how each expert looks at and interprets the visu-
alizations and to foster discussion among the experts.
Each session lasted 30–40 minutes, and the mouse
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control was swapped mid-way. No prescriptive task
was given: participants were invited to try out tasks and
queries that they would perform in their daily activi-
ties. User interactions and conversations were logged
and recorded and a user satisfaction questionnaire was
collected. Finally, all 6 participants discussed their
comments and suggestions as a group.

The observations show a marked improvement from
the previous focus group with students. .views. was
judged easy to use (83%), reliable (83%), fast (83%),
stimulating(87%) and satisfying(87%). Figure 7 shows
the user-satisfaction questionnaire responses of do-
main experts and computer scientists(Right) as com-
pared to the responses of students.

In spite of the general consensus indicating a marked
improvement in the user experience of the software,
it is important to assess how individual experts with
different expertise appreciated the system. The users
rated the system on several criteria (ten) on a 5-point
Likert scale, which were then analyzed. In the table 1,
the odd numbered users (Users 1,3,5) were computer
science experts, whereas the even numbered users
(Users 2,4,6) were biologists. It was observed that in
general, computer science experts found difficulty with
the filters and interpreting some of the visualizations.

Biologists found the system easier to learn com-
pared to computer science experts, which could ex-
plain their higher level of satisfaction with the filters
and the system in general. This is likely to be due to the
partial familiarity with the data as some of the features
used are common across the discipline.

In the follow-up group discussions, users com-
mented positively on the intuitiveness and the gen-
eral look-and-feel of the system. Users also appreci-
ated the way in which they can “quickly see how data
is distributed” and “got straight to where I needed
to be”. Though users seemed to have difficulty in
querying the interface, some appreciated the ability
to “click on the menu to see all the possibilities” in-
stead of a taxonomic view, while others disliked the
drop-down list approach. Comments like “too much
time lost scrolling through all morphological charac-
teristics” and “Character list should be hierarchical
so that it is easier to navigate” indicate that there is
some re-thinking required regarding the filtering inter-
face. Few users mentioned that they would like to see
more data, for example, “Lack of specimen date infor-
mation (Collection dates)”. “The current version only
lists Accepted Names” and “The taxonomic data was
not clear in that will the final system include both Ac-
cepted Names and Synonyms” indicate the users would

like to perform disambiguation tasks like relate several
species to each other.

Some users found the large number of available wid-
gets was not always useful (“too many widgets at first,
which get you a bit lost”) and showed explicit prefer-
ences (“tag clouds seem to be less useful than other
features” and “geographical map not useful”) that
could be incorporated in user profiles.

The self-selected tasks showed biologists could re-
late the tool to their daily work, however they ex-
pressed the need for more datasets to be visualized.
They appreciated the ability to visualize a particular
facet of the data in an aggregate visualization, and then
swap the view to a completely different facet. This was
a feature that was added in the improved version of
the system, an outcome of the first focus group session
with students. Participants saw such visualization ap-
proaches as a step forward from traditional search en-
gines, as they could be empowered to find patterns or
distributions in very little time.

Overall the two formative evaluations were very
positive. Comments like “There is a huge amount of
information available and after a while playing with
the system it is rather intuitive” and “Clear layout,
easy to understand and use” indicate that the dash-
board approach holds much potential. A rather inter-
sting comment from an expert “Clear colour presen-
tation, gives pretty pictures very fast!” indicates the
proximity of our approach to the ideal goal of an inter-
face developer - efficiently provide aesthetically pleas-
ing visualizations to communicate essential informa-
tion to the user. Often, users are interested in gather-
ing a high level understanding of large datasets, rather
than looking at individual data instances. A few com-
ments such as “It was on occasion rather ‘hard to use’
(though this may have just been inexperience)” show
that there is probably room for improvement in the in-
tuitiveness of some parts, like the filter selection. How-
ever it should be noted that some of the difficulties
could come from the data itself, for example the long
list of filters (1,090!) the user has to go through to se-
lect the interesting item, is an essential part of the data
structure. This evaluation clearly showed how this kind
of details have to be considered beforehand if a generic
tool to visualize linked data has to be provided.

7. System Requirements: Understanding Public
Linked Data Endpoints

As linked data become available from different
sources, a visualization tool should be able to take dif-
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Fig. 7. User-satisfaction questionnaire responses for students (Left) and domain and computer science experts (Right) show the overall improve-
ment of the modified system.

Table 1 User-satisfaction responses for domain experts on a 5-point Likert scale.

ferent sets and visualize them without too much tun-
ing, ideally without any tuning. Porting a system onto
another domain might not be straightforward and the
technical implications of using a different infrastruc-
ture have to be understood in full as certain aspects
of the interaction, e.g. system reaction time, must be
kept between accepted thresholds to assure users ac-
ceptability. For example, a system is perceived as in-
teractive if the response time is under 2 seconds, but
for direct manipulation of data the reaction time must
be under 2 milliseconds. The portability of .views. was
tested on different domains and data sources: SQL
databases, RDF triple stores and SPARQL endpoints.
To better understand the limitations developers would
face while building user-interfaces for open linked
data, we used a realistic and large dataset: DBpedia
contains almost three and a half million resources,
stored in over a billion RDF triples (version 3.5.1, re-
leased Apr 28, 2010). This provided an excellent use-

case for our research. Before we started implementing
our system on SPARQL endpoints, we performed sev-
eral tests on large SQL databases. These tests had indi-
cated that in order to provide a fluent interaction with
the data via a user-interface, there are certain compro-
mises that are required. For example, dragging a slider
to continuously query the database would cause the
system to slow down, as it has to continuously send
queries and parse the results. Instead, sending queries
only when the user finishes dragging the slider (indi-
cated by a release of the slider handle) would make a
significant improvement on the system.

The system evaluation was composed of two parts
both logged and time-stamped:

1. Querying the endpoints and retrieving results
from the filtering interface;

2. Visualizing the result sets into 5 widgets textual
results, geographical map, pie chart, bar chart,
tag cloud.
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The setup consisted of four cases based on the number
of results returned 100, 600, 1100 and 2200. Sample
queries like “Select all the public Universities in the
United Kingdom”, or “Select all the places in United
Kingdom” were passed from the interface to the back-
end. For each case, four individual tasks were mea-
sured: time to transfer queries to the backend, time
to execute query, time to parse results and convert to
JSON, and time to transfer JSON objects to the fron-
tend. The frontend was evaluated by timing the perfor-
mance of each visualization widget. Figure 8 shows the
relative response times for the DBpedia endpoint (in-
crease in the result size maps: 100=1, 600=2, 1100=3,
2200=4). The time taken for the backend to process the
query and send the results to the frontend varied from
123.78ms to 6.9s, with the query execution time vary-
ing from 98ms to 6.85s. For most of the cases (60%),
the time taken for executing the query took more than
70% of the backend processing time. In order to see if
there were computational bottlenecks or patterns that
could be optimized, data was normalized to highlight
the proportion among the different phases. Figure 8
plots the distribution of the 4 tasks and show several
interesting points:

– The overall time taken by the backend is highly
dependent on either the query execution time or
the time taken to transfer the results to the fron-
tend as they take the maximum time to complete.

– The overall time taken by the backend is highly
variant.

– The time taken for transferring the query to the
backend and the time for converting the results to
JSON objects is negligible compared to the other
two.

A major concern is the query execution time, the
variation of which is alarming and cannot be con-
trolled. While it this could be attributed to high server
load or the way queries are distributed, this is an im-
portant aspect that user interface developers need to
take into consideration. The system tests show that
though the query execution phase often takes a lot of
time to complete, there are other phases in the backend
processing that can be significantly improved. More
investigation is needed to understand the causes of the
delays in transferring the result objects to the frontend
and further optimize this step.

This high variability in the query processing stage is
in contrast to the performance achieved by traditional
databases. In a similar experiment with a MYSQL
database, we tested how the backend performs with

similar query-result sets. The overall backend pro-
cessing time varied between 0.00026ms and 6.48ms.
Though SQL data stores can be expected to be faster,
the relative time taken by the query processing stage
has been consistent, consuming most of the entire
backend processing time.

8. Discussion and Guidelines

To better understand the constraints for an effective
and generic approach to the user-centred visualization
of linked data, both user and system aspects have to
be taken into account. Therefore both a formative user
evaluation and a testing of the backend performance
were needed to better understand pitfalls and potential.
This section pulls together the results of the two evalu-
ations and discusses which points have to be taken into
account when designing user interfaces to linked data.
Our initial intuition was that the response from pub-
licly available SPARQL endpoints would be quite slow
as compared to querying a local database; the system
tests proved that the real problem is the inconsistent
time laps of the query execution phase, a far greater
challenge, as it cannot be fully controlled. Reflecting
on the implications for the user interface and the inter-
action, these basic guidelines can be considered:

8.1. Instance Counts

Providing instance counts (while entering textual
queries, slider actions or selecting checkboxes etc.)
should be handled with care. We have often found that
due to the delay (in processing of a previous query) in
the backend, the results being passed to the frontend
(thereby parsed and rendered in the frontend) over-
write the recent results. This happens more often while
obtaining instance counts, as the interaction itself ex-
pects several quick responses from the backend. For
our implementation, timeouts of 200ms from the fron-
tend were introduced so that it would prevent delayed
results from previous queries over-writing recent re-
sults. Another suggestion would be to add user inter-
ventions before sending queries to the backend e.g.
pressing enter to retrieve instance counts.

8.2. Dynamic Querying

Real-time querying via generic filters (e.g. dragging
sliders to update visualizations dynamically) could
cause the system severe delays as queries are continu-
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Fig. 8. Plots showing the extremely high variation of query execution phase (98ms to 6.85s) in the backend processing. The size of the results
(1 – 2200 results returned, 2 – 1100 results returned, 3 – 600 results returned and 4 – 100 results returned) are shown as individual bars on the
y-axis, and the differently shaded x axis bars show the time taken to perform individual functions to retrieve the respective results. The plots
show the relative times in different parts of the system

ously fired creating a backing of unresolved requests.

To overcome this problem three solutions are possi-

ble: provide user interventions before passing queries

to the backend; prevent continuous dynamic querying

by providing only discrete interface items; cache the

result of a query and use the dynamic filtering on the

retrieved set, but in this case only restrictions of the

set will be possible. Our implementation focussed on

the first solution mainly due to the fact that it does not

pose any restrictions on the interactivity of the query-

ing interface.

8.3. Automatic Suggestions

Automatic suggestions were disabled, as responses

from the backend were often late and could overwrite

more recent suggestions, as explained in a previous

point. As the backend processing was time-exhaustive,

we decided to disable searching using regular expres-

sions. Instead, queries are presently performed using

URIs. Doing so does not put any demands on the end-

point to process regular expressions, thereby making

the backend respond quickly.
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Fig. 9. Improving readability (and speed) by limiting results for aggregate queries. Both figures show identical information (e.g., most resources
are in London). However, the first widget is almost illegible.

8.4. Aggregate Queries

When large result sets were returned from the back-
end, there was a significant delay in loading up aggre-
gate visualizations pie chart, bar chart and tag clouds.
We perceive two solutions to this: limit the response to
display the top few results or provide the results pro-
gressively. We decided to take the first approach as it
provides a comparatively lesser amount of data (often
the most important bit) to process. In our implemen-
tation, the users however have the option of the en-
tire result set, if they choose to do so. Doing so im-
proved the performance significantly to an average of
30.5 ms from 1059.6 ms. However, the inconsistency
of the SPARQL endpoints still remain. Apart from re-
ducing the time taken to process the queries (and re-
sults), this helped in providing a more readable visu-
alization. Figure 9 shows the improvement in the bar
chart widget when this was done. The figure on the left
shows the aggregate results before any limits applied.
The figure on the right shows the improved readability
achieved by applying limits.

8.5. Textual Results

As can be seen from Figure 8, the query execution
time for the text result widget was high. Further on,
more instance matches result in further delays since it
takes more time to process large data objects. Textual
result can then be presented on request in a separate
overlapping layer, i.e., by providing only a window (as
a page) of the entire result set (Figure 10). This solu-
tion reduces time and improves readability. Thereby,

instead of sending one highly time consuming query,
we modified the system to send several short queries
when required.

The above mentioned guidelines are often adopted
by software developers in order to cope with unreliable
or slow databases. Several other software engineering
approaches can be adopted for improving the system
performance like caching results, interacting with lo-
cal datasets, engineering SPARQL queries to provide
quicker responses etc. However, our intention of evalu-
ating the system limitations is to understand how good
practices in visualization can be harmonically aligned
with the current system infrastructure, keeping the user
expectations in mind. We have realized that the unre-
liability of the linked data endpoints may create issues
(like delays, timeouts etc.) in user interfaces as well
as deactivation of essential functionalities, which can
adversely affect the user experience. In order to ad-
here to specific guidelines established by the informa-
tion visualization community, the backend infrastruc-
ture needs to provide a consistent performance. Our ef-
forts are in understanding what are the existing infras-
tructure problems faced by interface developers, and
to benchmark such systems against the performance
of traditional datastores, from a developer/consumer’s
point of view.

Our focus group sessions have been instrumental
in identifying how we can generalize user needs and
expectations for exploring unknown datasets and do-
mains - transforming an intuition into a concrete ap-
proach. The discussions with domain experts, com-
puter science professionals and students have indi-
cated that such a generic approach is much appreci-
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Fig. 10. Improving readability for textual results by providing a page view of large result sets. Note the scroll bar for both figures indicating the
number of textual results contained in the widget.

ated, specially when data is provided to users unfamil-
iar with semantic web technologies. Majority of the
focus group participants were not conversant with se-
mantic web principles and query languages - in or-
der to be accepted by a wide audience, there must
be a complete separation of users from raw seman-
tic data. By providing multiple means of querying the
underlying data (global filters and local filters), we
equip the users with different interaction mechanisms
to explore their datasets. However, being completely
unaware that each subsequent interactive step results
in SPARQL queries being sent to the backend. This
transparency is important to a user - as end user’s in-
terest lies in understanding their data - not by writ-
ing complex scripts and queries, but by quick, seam-
less and fluid navigational and interaction techniques.
However, by being able to drill down into individual
data instances, the users will always have access to
their data.

Apart from understanding the potential impact of
the system architecture on user expectations and expe-
rience, our approach has also been to understand how
we can provide a generic visualization framework. The
dashboard approach has been applied over the years to
cater to different requirements for different domains.
.views. is capable of porting to several backends - tra-
ditional databases as well as linked data or triplestores.
The flexibility offered by such systems seems to be
ideal for a linked data visualization framework - devel-
opers can contribute by creating ‘add-on’ visualization
widgets that cater to specific domains or data types;
users can select which visualization widgets they pre-
fer to use and in which order; users can select sec-
tions of the visualizations within individual widgets
to further investigate areas of interest; data owners

can use such framework to quickly explore their own
datasets, shared data or even organizational data. It is
also the familarity of the users with systems following
the dashboard approach that has influenced our design
choices - the users would not need to be trained in us-
ing dashboards as they almost unknowingly use such
systems daily (BBC, igoogle, etc.).

9. Conclusion

Everyday more linked data is made available to the
public for consumption, e.g. citizens interested in gov-
ernment policy or developers of linked data applica-
tions. However, there is no generic interface for ex-
ploring unknown linked data set available today, and,
as a matter of fact, only Semantic Web people could
look into those repositories and, even they, with diffi-
culties. To be able to create effective interactive visual-
izations, a deeper and better understanding of the im-
plications of the current technical setting and the user
requirements are needed. Our portability experiments
with several different domains indicate that we can use
.views. as a generic exploratory tool. This paper is a
first step in this direction: the idea of multiple and si-
multaneous visualizations was well received by users,
but when the setting effective and efficient on a local
database was tested with public SPARQL endpoints
(DBpedia) the poor and patchy result push us to recon-
sider some design proposals. A formative user evalu-
ation was carried out in focus group sessions in order
to define which interface features were considered es-
sential. One was the automatic suggestion of possible
values for selected filters, as this would allow a pre-
exploration of the available data. However this feature
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is not available for online data sets, due to the slowness
and unpredictability of the endpoint reply. A possible
solution would be to load all the possible unique in-
stances of a concept during initiation, but the implica-
tions of this approach for a large datasets such as DB-
pedia need to be understood. Indeed, the type of data
and the technical setting (local vs. public endpoints)
has a substantial impact on the user interface. For ex-
ample, a data set may not have information for certain
visualization widgets, e.g. no date as in the grass data
set.

A concern that is commonly raised is how well the
continually increasing open data conforms to the 5
Star Linked Open Data25 standard - most of the open
data currently available satisfies only a few stars. We
will be attempting to understand the implications of
the quality and standard of datasets that are currently
being made available to public. A final remark goes
to the flexibility of multiple visualizations available to
the user. If this on one hand is considered very posi-
tively, on the other could generate misinterpretation of
data if an unsuitable visualization is applied to a given
data set [6,4]. More work is needed to better under-
stand which type of visualization would fit which type
of linked data so that the visualization interface could
embed those constraints and reduce the risk of data
misinterpretation.
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