
AN OWL ONTOLOGY LIBRARY REPRESENTING JUDICIAL

INTERPRETATIONS

Marcello Ceci
1

Aldo Gangemi
2,3

1
CIRSFID, University of Bologna

2
ISTC-CNR, Rome, Italy

3
LIPN, Université Paris13-Sorbonne-Cité-CNRS, Paris, France

m.ceci@unibo.it

aldo.gangemi@cnr.it

Abstract: The paper introduces a formal model of judgments that, starting from the

text of decisions, produces an OWL ontology that represents the interpretations
performed by a judge while conducting a discourse towards an adjudication. The

final goal of this method is to design an ontology framework capable of detecting

and modelling jurisprudence directly from the text, and performing some basic
reasoning on the resulting ontologies.

1. Introduction

Precedents are core elements of legal knowledge worldwide: by settling conflicts

and sanctioning illegal behaviours, judicial activity enforces law provisions within

national borders, therefore supporting the validity of laws as well as the sovereignty of

the government that issued them. Moreover, precedents (or case-law) are a fundamental

source for law interpretation, to the point that the exercise of jurisdiction can even

influence the scope of the same norms it has to apply, both in common law and civil

law legal systems – although to different extents. The AI & Law research community

has gathered significant results on this topic since the 1980s, with different approaches:

legal case-based reasoning [1][6], ontology-based systems [15], and more recently

argumentation [9][10].

The goal of the present research

is to define a semantic web

framework for precedent modelling,

by using knowledge extracted from

text, metadata, and rules [3][16].

Cornerstones of the framework are

an ontology that represents the core

structure of case-law, and the

metadata connected with judicial

legal concepts.

The ontology constitutes the

basis of a semantic tool that enriches Fig. 1 - Tim Berners Lee's semantic web layer cake,

adapted to the legal domain by G. Sartor [21]

the XML mark-up of precedents and supports legal reasoning. We believe that the new

features of OWL2 could unlock useful reasoning for legal knowledge, especially if

combined with rules.

The research relies on the previous efforts of the community in the field of legal

knowledge representation [5] and rule interchange for applications in the legal domain

[9]. The issue of implementing logics to represent judicial interpretation has already

been faced [4], albeit only for the purposes of a sample case. The aim of the present

research is to apply these theories to a set of real legal documents, stressing the OWL

axioms definitions as much as possible in order to enable them to provide a

semantically powerful representation of the legal document and a solid ground for an

argumentation system using a defeasible subset of predicate logics.

Our task is to formalize the legal concepts and argumentation patterns contained in

a judgment, in order to check, validate and reuse the discourse of a judge - and the

argumentation he produces - as expressed by the text. In order to achieve this, we have

used four different models:

a) a document metadata structure, capturing the main parts of the judgments,

which create a bridge between text and semantic annotation of legal concepts;

b) a legal core ontology, modelling the abstract legal concepts and the

institutions that capture the main parts of a rule of law [18];

c) a legal domain ontology, modelling the main legal concepts in a specific

domain concerned by the case-law (e.g. contracts, e-commerce, tort law, etc.);

d) an argumentation system [7], modelling the structure of argumentation

(arguments, counterarguments, premises, conclusions, rebuttal, etc.).

This article only introduces the structure of the core and domain ontologies - points

b) and c) - which have been designed to organize the metadata coming from the text of

judgment decisions, and to infer relevant knowledge about precedents. The approach is

exemplified with reference to a sample of Italian case law. The metadata layer and

argumentation systems - points a) and d) - are not described in the present work: the

metadata layer relies on the Akoma Ntoso standard [2], while multiple solutions are

being tested for building argumentation out of this ontology library: Carneades [7],

SPINdle [14], and a Drools application currently under development [20].

Our approach for the ontology layer intends to satisfy the following functional

requirements:

 text-to-knowledge morphism: we want to design the knowledge that can be

extracted from a text (i.e. a judicial decision, or a fragment of it) as a module in an

ontology library, so that each module constitutes a particular morphism of the legal

meaning expressed by that text [17];

 distinction between document layers: we want the ontology to clearly

distinguish between the medium and expression (the legal text) and its meaning (the

legal concepts and rules contained in the text), so that more (and possibly inconsistent)

legal meanings can correspond to a same legal text;

 shallow reasoning on judgement's semantics: we want the ontology to enable

reasoning on the material circumstances, legal concepts and judicial interpretations

contained in precedents, deriving inferences out of the legal concepts and elements

involved in a judicial decision;

 querying: being able to perform complex querying, e.g. by using SPARQL-

DL [22], on qualified parts of a judgment text. For example, we want to make

(successful) queries that encode a question such as: “give me all the judgments in the

last year, with a dissenting opinion, in the e-commerce field and where the main

argument of the decision is the application of Consumer Law, art. 122”;

 supporting text summarization: we want to detect relevant parts of a judicial

text by using semantic annotations based on judicial ontologies;

 modularity: the legal core ontology should define common concepts of all

domain ontologies, which in turn should be automatically imported depending on the

task;

 supporting case-based reasoning: we want to perform legal case-based

reasoning [7] by using the ontology reasoner in combination with a set of rules and a

rule engine.

Judicial ontologies are intended to create an environment where the knowledge

extracted from the decision text can be processed and managed, and a deeper reasoning

on the judicial interpretation grounding the decision itself is made possible. Deeper

reasoning leads to the satisfaction of the following domain requirements:

 finding relevant precedents that are not explicitly cited in the decision;

 validating the adjudications of the judge on the claims brought forward by the

parties during the trial on the basis of applicable rules, accepted evidence, and

interpretation;

 suggesting legal rules/precedents/circumstances that could bring to a different

adjudication of the claim.

The structure of the ontology library also aims at an efficacious scaling from legal

concepts to factors, up to dimensions and legal principles: all these concepts can be

represented in the domain ontology, and the hook of the judicial concepts to the core

ontology should foster semantic alignment between differently designed domain

ontologies (the current ontology library alignments have not yet been tested).

Eventually, practical applications of the ontology library include:

 compliance check of contract drafts, i.e. through a plugin of a word processor

using NLP techniques to recognize sentences and clauses that could be relevant under

consumer law;

 juridical analysis tools for legal professionals, enriching case-law collections

by semantically relating and grouping precedents for lawyers to browse, making the

precedent extraction process for legal cases easier and more effective;

 judgement management tools for courts and tribunals, useful to evaluate and

optimize judgements (i.e. integrated into a word processor to help the judge while

writing the judgement, avoiding grounds for appeals due to missing elements in the

decision's groundings);

 impact analysis tools for legislators, providing a list of (common or

uncommon) judicial interpretations for a given law, in order to take them into account

when modifying that law;

 new tools representing formalized legal doctrine and case law, where legal

experts could rely on a social platform to share their views and interpretations on a law

or a precedent, using a graphical interface and a formal argumentation structure instead

of plain text.

2. Legal ontology design methods applied

Judicial ontologies are currently designed in two modules [18]:

 a Core Ontology describing the constituents of a precedent in terms of general

concepts, through an extension to the LKIF-Core [5][13] legal ontology;

 a Domain Ontology representing the concepts and the rules expressed by the

Italian "Codice del Consumo" (Consumer Code) and in artt. ("articles") 1241-1242 of

the Italian Civil Code, as well as all relevant knowledge extracted from a set of Italian

judgments containing interpretation of private agreements in the light of those laws.

Our design method is based on a middle-out methodology: bottom-up for capturing

and modelling the legal domain ontology, and top-down for modelling the core

ontology classes and the argumentation theory components [15].

The approach adopted is based on a multi-layer paradigm, where the legal resource

is managed in separated levels which are linked to each other but organized in order to

allow multi-annotation, multi-interpretation, and multi-ontology with redundancy of

representation. The syntactical approach was based on the following schema:

 Text annotation in XML: the Akoma Ntoso standard [2][23] grants proper

mark-up of the structure of the judgement and of citations;

 Metadata annotation: the Akoma Ntoso metadata block captures not only the

metadata concerning the lifecycle of the document (e.g. workflow of the trial, formal

steps, jurisdiction, level of judgments), but also the legal qualification of relevant parts

of the decision, such as the minority report or the dissenting opinion;

 Ontology annotation: using external OWL definitions and linked through

special mechanism to the XML document;

 Rules: unfortunately OWL, even with the functionalities of version 2.0, is

unable to represent complex and defeasible legal arguments. It is therefore necessary to

extend the model with rule modelling, using the argumentation theory (see below).

Evaluation has been performed on a sample set of Italian case law of 27 decisions

of different grade (tribunal, court of appeal, Cassation Court) concerning the legal field

of oppressive clauses in Consumer Contracts. The matter is specifically disciplined in

the Italian "Codice del Consumo" (Consumer Code) as well as in many non-Italian

legal systems, so that an extension of this research to foreign decisions (and laws) can

be envisaged.

Contract law is an interesting field because the (either automatic or manual)

markup of contract parts allows the highlight of single clauses and their comparison to

general rules as well as to case law concerning the matter. These possibilities can be

used to introduce a semi-automatic compliance check of a contract draft.

The domain considered involves situations where strictly deductive logic is not

sufficient to represent the legal reasoning as performed by a judge. In particular,

defeasible logics [12] seem needed to represent the legal rules underlying judicial

reasoning. For example, many norms concerning contracts are not mandatory: they

could be overruled by a different legal discipline through specific agreements between

the parties. The problem of representing "defeasible" rules, in fact, is a core problem in

legal knowledge representation. Exploring how OWL2 could help designing the

background for applying defeasible logic is therefore an important goal of our research:

in fact, OWL in general is not designed for managing defeasibility directly, being only

able to capture the static factual and legal knowledge to be reused in the rule layer.

Nevertheless, the gap between ontology and rules is often underestimated, and the

benefits coming from OWL2 have not yet been considered in detail. For this reason,

well aware of the limitations of OWL2 in representing defeasible logics, we want to

investigate how far OWL2 can be used in order to improve performance,

computability, and management of classes in a defeasible logic context.

The software used to model the ontology (and from which the images of this paper

are taken) is Protégé 4.1.0, supporting some of the features introduced by OWL2.

2.1 Judgement Structure

The judgment in Akoma Ntoso [23] is a particular type of document modelled for

detecting the main significant parts of the precedent document: header for capturing

main information such as parties, court, neutral citation, document identification

number; body for representing the main part of the judgment, including the decision;

conclusion for detecting the signatures.

The body is divided into four main blocks:

 the introduction, where

usually (especially in common

law decisions) the story of the

trial is introduced;

 the background, dedicated to

the description of the facts;

 the motivation, where the

judge introduces the arguments

supporting his decision;

 the decision, where the final

outcome is given by the judge.

This division is fundamental for detecting facts and factors from the background: in the

motivation we detect arguments and counterarguments and in the decision the

final conclusion of the legal argumentation process. Those qualified fragments of text

should be annotated by legal experts with the help of a special editor tool (e.g. Norma-

Editor) that allows an easily linking between text, metadata and ontology classes.

Fig. 2 – Judgment structure in Akoma Ntoso

2.1 Core Ontology

The core ontology 1 introduces the

main concepts and interactions in the legal

domain, defining the classes which will be

later filled with information taken from the

judicial decisions. Even though the core

ontology should be domain-generic and not

modeled upon a specific legal subject, the

model presented here was conceived to

successfully represent the interaction in the

civil law subject, when contracts, laws and

judicial decisions come into play.

Obviously, it will be necessary to add

further classification prior to successfully

expand the ontology library to a different

domain (es. Public contracts, administrative

law, tort law).

The backbone of the Core Ontology is

represented by three LKIF-Core classes:

 Qualificatory_Expression (subclass of Mental_Entity>

Mental_Object>Proposition>Expression>Legal_Expression)

represents a legal expression which ascribes a legal status to a person or an object

(for example, “x is a citizen”, “x is an intellectual work”, “x is a technical

invention”).

 Qualification (Mental_Entity>Mental_Object>Proposition)

expresses e.g. a judgement: the thing qualified by the qualification is comparable

to something else.

 Qualified represents anything which is the object of some qualification.

On the basis of those classes the following ontology design pattern [8] was built.

Since the main object to be represented in the present set of ontologies is the

normative/judicial qualification brought forward by performative utterances

(contractual agreements, legal rules and judicial interpretations), the classes presented

above constitute the nucleus of the Core Ontologies. The LKIF-Core

Qualification and Qualified classes are linked only by a single property

(qualifies/qualified_by), but what we rather want to model is an n-ary relation

between (1) a qualifying expression, (2) the kind of qualification and (3) the object

being qualified. In order to represent this, the property “qualifies” has been forked into

two new properties: “considers” and “applies”. The first one, “considers” (modeled

as superclass of the LKIF-Core properties “evaluates”, “allows”, “disallows”)
represents the object of the qualification. The second property, “applies”, shows

towards which concept the qualification is made. For example, a

1 http://codexml.cirsfid.unibo.it/ontologies/judging_contracts_core.owl

Fig. 3 – Core Ontology's specification of LKIF-Core

Contractual_Agreement considers a Material_Circumstance and

applies a Legal_Status; a Legal_Rule considers a Legal_Status and

applies a Legal_Consequence; a Judicial_Interpretation considers a

Material_Circumstance and applies a Legal_Status; an Adjudication

considers a Judicial_Claim and applies a Judicial_Outcome.

Qualifying Legal Expressions - To overcome the limited expressivity of the

original LKIF-Core classes a new ontology conceptual class called

“Qualifying_Legal_Expression” has been conceived, putting together the

characteristics of the Qualificatory_Expression and Qualification

classes, enhanced by the fork of the qualifies property. This class represents the

formalization of dispositions, such as the three legal expressions involved in contract

law-related judicial decisions: Contractual_Agreement, Legal_Rule and

considers

applied_by considered_by

applies

judged_as

Legal_Rule

Contractual_Agreement

Judicial_Interpretation

Adjudication

Material_Circumstance

Legal_Status

Judicial_Claim

Legal_Status

Legal_Consequence

Judicial_Outcome

Fig. 4 – Interactions between qualifications, qualifiers, and qualified things.

Fig. 5 – Visualization of the Judgement class as a Qualifying Legal Expression

Fig. 6 – Visualization of the Expression class

Judgement.

As Qualificatory_Expression sub-classes, the Qualifying Legal

Expressions contain all information related to their original “speech act”: its semantic

bonds with the externalization, the legal power and the agents ensure a complete

representation of all aspects that may come into play when facing a legal issue (the

legitimacy of the legislative body/court/legal party, the characteristics of the

corresponding legal document, the identity/characteristics of people/bodies involved...).

Their main properties are “medium” and “attitude” (see below for a specification of

the Medium, Attitude and Agent classes).

As Qualification subclasses, the Qualifying Legal Expressions contain all

information related to the effects they have in the legal world: the legal

categories/obligations/legal effects they create, modify or repeal. A subdivision can be

made between one direct subclass (Judgement, which in this perspective is

furtherly divided into the Judicial_Interpretation and Adjudication

subclasses) and two subclasses of Norm (Legal_Rule and

Contractual_Agreement). As explained before, the property “qualifies” -

linking the qualifying expression to the Qualified expression - has been forked into

two new properties: “considers” and “applies”, representing respectively the direct

object and the “destination” of the qualification.

Fig. 7 – Visualization of the Qualification class

Fig. 8 - Visualization of the qualified class

Qualified Expressions - All the ranges of the “considers” and “applies”

properties presented above are subclasses of the Qualified class. Its subclasses are

Normatively_Qualified, a class already present in LKIF-Core, and

Judicially_Qualified, created anew.

Normatively_Qualified expressions include

Material_Circumstance, Legal_Status and Legal_Consequence.

They represent the expressions that can be directly bound to a Norm: while

Material_Circumstance represents any fact or act which is taken into

consideration by the Norm, Legal_Status represents an institutional fact (i.e.

fulfillment of contract, oppressive clause, contract breach) that is normally

considered_by a Legal_Rule and applied_by a Contractual_Agreement or

a Judgement. As we will see, the link between a Contractual_Agreement

and the Legal_Status it applies is a “weak” link until a

Judicial_Interpretation has confirmed (or denied) it. Finally,

Legal_Consequence represents the sanction provided by the law in the presence

of some Legal_Status or Material_Circumstance. It covers all cases when

the Legal_Rule considers some Normatively_Qualified expression, but

does not simply allows, disallows or evaluates it.

Judicially_Qualified expressions include Judicial_Claim,

Judicial_Outcome and all elements taken into consideration during a legal

proceeding (i.e. Contractual_Agreeement, but also Legal_Rule, expecially

in Cassation Court and Costitutional Court sentences). Judicial_Claim is the

claim of the legal proceeding. It is considered_by an Adjudication, the answer

of the judge to the claim (subclass of Qualification>Judgement). The content

of the answer (rebuttal/acceptation of the claim or any other possible outcome foreseen

by the law) is represented by the Judicial_Outcome class, applied_by the

Adjudication. So the representation is the following: a Judicial_Claim is

considered_by an Adjudication that applies a Judicial_Outcome.

The judged_as Property Chain - The miscellaneous elements that can be taken

into consideration during a legal proceeding are included in the

Judicially_Qualified class as long as they are actually considered_by some

Judicial_Interpretation. So, for example, a Contractual_Agreement

can be considered_by some Judicial_Interpretation who applies some

Legal_Status to it (i.e. the agreement is oppressive, is inefficacious, represents an

arbitration clause, is specifically signed by both parties). In these cases, a OWL2

property chain directly links the Contractual_Agreement to the

Legal_Status judicially applied to it. This “strong” link, represented by the

property “judged_as”, is the the fundamental information that we want to represent –

and manage – through this set of ontologies.

Mediums, Propositional Attitudes and Agents - these LKIF-Core classes

describe the background of an Expression. The Medium class identifies the support

through which the proposition is expressed. It does not represent the material support

of the Expression instance but rather its genus (Contract, Precedent, Code).

The Propositional_Attitude class was specified with the Jurisdiction,

Law_Declaration and Agreement subclasses, representing the enabling powers

that stand behind a Judgement, a Legal_Rule and a

Contractual_Agreement, respectively. On the contrary, to represent the authors

of a Qualifying Legal Expression there was no need to specify the subclasses of

Agent already present in LKIF-Core (Person and Organization). This

knowledge about agents and attitudes can be important in some judicial cases: i.e. if a

claim is based on the lack of contractual power by one of the parties, or on the

identity/characteristics of a part, or on the lack of force by some law or other regulation

(which can in turn depend by the lack of legitimacy of one of its authors). Also the

modeling of roles (already present in LKIF) can be very useful in representing critical

factors of particular precedents.

Modularity of the Core Ontology - The expansion brought by the Core Ontology

to the LKIF-Core concepts is currently oriented to the representation of the elements

involved in civil-law cases regarding contract law. Nevertheless, the Core Ontology

provides general – and relatively open - categories for this kind of judicial activity to be

represented, and can therefore be considered as a core to be “expanded” with

categorization from other branches of law, but not to be “substituted”, since the basic

concepts introduced here may come into play also in judgements concerning different

subjects.

Qualified

Medium

Qualifying

Expressions

Judicially Qualified

Normatively Qualified

Attitude

 Act

Precedent
Material

Circumstance

Judicial Claim

Code

Sanctioned
Agreement

Jurisdiction

Law Declaration

Legal Act

Judgement

Legal Rule

Interpretation

Adjudication Judicial Outcome

Legal Act

Legal Consequence

Legal Status

attitude

author

holds

applies

considers

bears

Fig. 9 – The Core Ontology graph.

2.2 Domain Ontology

Following this structure, the metadata taken from judicial documents are represented

in the Domain Ontology2. The modeling was carried out manually by an expert in the

legal subject, which actually represents the only viable choice in the legal domain,

albeit giving rise to important bottleneck issues (see below 6.1). Also, building a legal

domain ontology is similar to writing a piece of legal doctrine, thus it should be

manually achieved in such a way as to maintain a reference to the author of the model,

following an open approach (i.e. allowing different modeling of the same concept by

different authors).

Modeling of the law - the laws involved in the domain are represented into the

ontology in a quite complex fashion, in order to allow full expressivity of their deontic

powers. First of all, they are represented as instances of the Legal_Rule class,

whose only stated property is to apply the Legal_Consequence indicated in the

head of the legal rule (fig. 11). The reasoner will infer knowledge about the rule,

linking it (through the considers property) to the contractual agreements which fall

under the scope of that norm.

2 http://codexml.cirsfid.unibo.it/ontologies/judging_contracts_domain.owl

Legal
Consequences

Legal Rules

Legal
Statuses

Law

Legal
Acts

Material
Circumstanc

es

Through qualified class

Precedent

Judgements

Act

Fig. 10 – semantic relations between represented knowledge

Legal rules are also represented through anonymous subclasses of the

Normatively_Qualified class, called

Relevant_Ex<rulename> (ex is the

latin proposition for indicating a source). An

axiom stating the requirements for an instance

to be relevant under the legal rule is included

in the description of the class, as well as an

equivalence linking each of its instances to

the legal rule, through the property

"considered_by" (fig. 13). Please notice that,

in the graph visualizer (fig. 12), these

anonymous classes are classified under the

Contractual_Agreement class: that is,

because the effect of the legal rule in this

context is to enrich the definition of

Contractual_Agreement, adding

Fig. 12 – Visualization of the expression class, highlighting the subclasses of Contractual_Agreement

introduced by the legal rules.

Fig. 13 - Axiom for classification of

Contractual Agreements under Art.

1341co2

Fig. 11 - Stated property
assertion of a Legal Rule

instance

subdivisions which depend on the legal framework created by the legal rules of the

domain.

Modeling of the contract - A contract is a composition of one or more

Contractual_Agreements (a Contract for the whole, multiple

Contract_Clauses for its parts), each of which represents an obligation arising

from the contract. All components of the contract share the same Attitude (the

“meeting of minds” between the Agents) and Medium (the kind of support in which

the expression is contained.

A
Contractual_Agreem

ent normally considers

some
Material_Circumsta

nce and applies some

Legal_Status to it.

In the actual model, the material circumstances considered by the contractual

agreement were not included: that is, because this has no relevance when capturing the

sheer interpretation instances these agreement undergo: it would rather become useful

when delving deeper into the single interpretation, capturing the smaller factors which

led to that specific interpretation.

Modeling of

the decision -The

Judgement class

includes an instance

identifying the case

as a whole (the

precedent) and

several ones

identifying its parts: at least an Adjudication and zero or more

Judicial_Interpretations. They

share a common attitude (a

Jurisdiction power) a Precedent

medium and some agents (claimant,

defendant, and court). The Adjudication

contains the Judicial_Outcome of the

Judicial_Claim. (it considers the claim

and applies the outcome), while the
Judicial_Interpretation

considers a Material_Circumstance

and applies one or more Legal_Status

(and zero or more Precedents) to it. The

precedents cited by the judge in the decision

are added directly to the Interpretation

instance: the reasoner is then capable of

distinguishing between legal statuses and

precedents, the latter being searchable in

Fig. 14 - Description and property assertions of the contract

clause's content.

Fig. 16 - Inferred knowledge on the

Contractual Agreement instance.

Fig. 15 - Description and property assertions of the judicial interpretation.

queries and other information retrieval applications. Rules expressed by precedents (i.e.,

if a clause is signed through a recall at the end of the document, it is specifically

signed) can be modeled in the same way as legal rules are.

Reasoning on the knowledge base - To check the consistency of this knowledge

we will use Hermit 1.3.63 queries. This tool was built to extract data from the OWL

ontology, but could also be used to check if the ontology gives a unique and correct

answer to some formalized question (i.e. asking about the validity of some proof, or

about the qualification of factual events under legal principles). When a

Contractual_Agreement (the expression brought by a Contract_Clause) is

considered_by some Judicial_Interpretation, the ontology gathers all

relevant information on the documents involved: contract parties, judicial actors, legal

status applied to the agreement (eventually in comparison to the one suggested by the

contract/judicial parties), the law rules which are relevant to the legal status, the final

adjudication of the claim, the part played in it by the interpreted agreement, and so on.

The first objective for gathering all this semantically-rich information is advanced

querying on precedents, but more can be achieved by combining different

Judicial_Interpretations with knowledge coming from the contract and the

applicable law: the ontology reasoner is in fact capable of predicting – to some extents

– the outcome of the judge (i.e. predicting that a clause will be judged as valid/invalid)

and to run inferences about the agreement (i.e. as interpreted, the clause is irrelevant for

the whole Italian Consumer Law/for the legal rule contained in article 1342 comma 2

of Italian Civil Code).

This inferred knowledge is important for two reasons: a. by “predicting” the

judge’s final statement on the clause (even if not that on the claim), this knowledge

represents a logic and deontic check on the legal consequences the judge takes from its

interpretation; b. it gives a fundamental element for the argumentation system to

support the explanation of the adjudication of the claim. The argumentation system, in

fact, will be able to use the (stated and inferred) elements of the decision’s groundings

to support and explain the Adjudication contained in the last part of the judgment.

3. OWL2 Constructs Used

OWL 2 introduces several features to the original Web Ontology Language, some of

which allow a richer representation of knowledge, mostly when dealing with properties

and datatypes. Two features concerning properties have resulted useful in the design of

the judicial ontologies:

Keys: An HasKey axiom states that each named instance of a class is uniquely

identified by a (data or object) property or a set of properties - that is, if two named

instances of the class coincide on values for each of key properties, then these two

individuals are the same. This feature can be useful for identifying the unique “actors”

of the judicial claim, such as the parties, the contract, the norm, and the decision itself.

3 http://hermit-reasoner.com/

Property Chains: The OWL 2 construct ObjectPropertyChain in

a SubObjectPropertyOf axiom allows a property to be defined as the composition of

several properties. Such axioms are known as complex role inclusions in SROIQ. In the

present ontology library, the property chain "judged_as = considered_by o applies"

is used in two different ways (in interpretations and rule applications) to create a strong

interpretational link between a material circumstance and its status. When a

Judicial_Interpretation considers a Material_Circumstance and

applies a Legal_Status, the judged_as property chain comes into play and

creates a direct link between the circumstance and its status, that link being

distinguished from the "weak" one introduced directly by the contract (represented by

the property applies). Reasoners can therefore treat these two links accordingly.

Secondarily, as already said, the legal rule axiom work through an “anonymous

qualified class” which links all relevant expression to the legal rule instance through

the considered_by property, and the legal rule applies a legal consequence. The

judged_as property chain unifies the two properties (from the qualified expression to

the law, and from the law to the legal consequence) and brings their semantics to the

surface by creating a direct property linking the contract clause to its status

(judged_as Inefficacy). A better exploitation of the OWL 2.0 property chains

could lead to an ever more direct and complete solution, mainly by removing the need

for the anonymous subclass in order to identify the clause instances considered_by

the relevant law.

4. An Example of Precedent Modeling

The modeling of the ontology is explained here through a simple example of data

insertion and knowledge management by the Domain Ontology:

In the decision given by the 1
st
 section of the Court of Piacenza on July 9

th
, 20094,

concerning contractual obligations between two small enterprises (New Edge sas and

Fotovillage srl, from now on α and β), the judge had to decide whether clause 12 of α/β

contract, concerning the competent judge (Milan instead of Piacenza) could be applied.

The judge cites art. 1341 comma 2 of Italian Civil Code who says “a general and

unilateral clause conerning a competence derogation is invalid unless specifically

signed”. In the contract signed by the parties there is a distinct box for a “specific

signing” where all the clauses of the contract are recalled (by their number). The judge,

with the support of precedents (he cites 9 Cassation Court sentences) interprets the

“specific signing” as not being fulfilled through a generic recall of all the clauses, and

therefore declares clause 12 of α/β contract invalid and inefficacious. The claim of

inefficacy of clause 12, brought forward by α, is thus accepted, undercutting the claim

of a lack of competence by the judge of Piacenza, brought forward by β, which is

rejected.

4 Sent. N. 507 del 9 Luglio 2009, Tribunale di Piacenza, giudice dott. Morlini.

In order to represent the knowledge contained in that judgment text, we need to

model three documents: Art. 1341 comma 2 of Italian Civil Code, the contract between

the two enterprises α and β, and the decision by the Court of Piacenza.

Modeling of the law – following is the law disposition involved in the judicial

decision:

Article 1341 comma 2 of Italian Civil Code – Clauses concerning arbitration,

competence derogation, unilateral contract withdrawal, and limitations to: exceptions,

liability, responsibility, and towards third parties, are inefficacious unless they are

specifically signed by writing.

The disposition is represented as a Qualifying

Legal Expression (Legal_Rule) called

“art1341Co2” (with a Code medium, a

Law_Declaration attitude and a

Parliament as agent) and the qualified class

Relevant_ExArt1341co2. Any individual

which has the characteristics required by the law is

considered_by the Legal_Rule, which in turn

allows/disallows/evaluates or applies some

Legal_Consequence to it. In the example,

each Contractual_Agreement which

applies “General”, “Unilateral”,

“NotSpecificallySigned” and an

Oppressive_Status will be considered_by

Qualified

 Qualifying

Expressions

 Attitude

α/β Contract

Trib. Rome sent. x
α/β Contract

Competence is Milan

Art 1341 C. C.

α/β Agreement

Judge C

Jurisdiction

Voting of march
16, 1942

α/β Contractual

agreements

Judge C Decision

Rule on oppressive

clauses

Judge C interpr. 1

Judge C

Adjudication 1

Reject

α/β Clause 13 agreement

Invalid Clause agr.

General + Unilateral

bears

attitude
holds applies

α/β Clause 12

agreement

Not Specifically Signed

Oppressive Status

Competence Derogation

Claims on α/β Contract

considers

 Medium

Fig. 17 - The example graph

Fig. 18 - Description of the abstract

class used to sort contractual

agreements under the legal rule.

“art1341Co2”, which in turn applies the

Legal_Consequence of

“invalidityExArt1341co2”. The individuals

“competentJudge” and “notSpecificallySigned”

are thus created as Legal_Statuses that can

be considered_by a Legal_Rule and

applied_by a Contractual_Agreement,

and the individual “invalidityExArt1341co2” is

created as a Legal_Consequence

applied_by the Legal_Rule “art1341Co2”.

Modeling of the contract clause- The

Contract_Clause “α/βClause12” is created

and linked to a Contractual_Agreement

which applies the Legal_Statuses of “General”,

“Unilateral” and “CompetenceDerogation”. This is

done because there is no argue between the parties

about whether clause 12 concerns a competence

derogation. However, as explained before, this kind

of link is a “weak” one, considering that the

contractual parties have no power to force a legal

status into a contract, and that reconducting a

contractual

agreement to the

legal figure it evokes is the main activity brought

forward by judicial interpretation in the contracts

field. For this reason, the property “applies”

related to a Legal_Status is weak when its

domain is a Contractual_Agreement, and

prone to be overridden by a contrasting application

performed by a Judicial_Interpretation.

Modeling of the

decision - The Judgment

instance is created, as well

as its components (single

interpretation instances,

adjudication...). Among

them, the

“tribPiacenzaI_Int1”
Judicial_Interpret

ation is created: it

considers the
Contractual_Agreem

ent contained in

“α/βClause12” and

applies the

Fig. 19 - The list of legal statuses
classified as oppressive.

Fig. 21 - Stated property assertions

of the sample judicial
interpretation

Fig. 20 - Stated property

assertions for the sample

agreement.

Fig. 22 - Inferred Description and property assertions of the
contract clause's content.

“notSpecificallySigned” Legal_Status. The instance contains also a reference to

the precedent (Cass.1317/1998), which represent a semantically-searchable information

on the interpretation instance.

Reasoning on the knowledge base - In the example, when all the relevant

knowledge is represented into the ontology, the reasoner is capable of inferring that

“The agreement contained in clause 12 of the α/β contract is invalid ex article 1341

comma 2”. As already explained, this result is reached through a subclass of the
Contractual_

Agreement

and Qualified

classes, defined

by an axiom

representing the

rule of law.

Clauses that

fulfill the axiom

are automatically

classified in that

class, and thus

considered_by
the proper law.

At this point, a

simple property

chain gives the

clause its final

(efficacy/ineffica

cy) status under that law.

5. Evaluation of the ontology library

The ontology library, in its sample taken from real judicial decisions, proved to

meet the requirements of:

 text-to-knowledge morphism: the ontology can correctly classify all instances

representing fragments of text. The connection to the Akoma Ntoso markup language

ensures the identification and management of those fragments of text and of the legal

concepts they contain.

 distinction between document layers: The qualifying expression class

constitutes the main expressive element, introducing an n-ary relation that ignites the

reasoning engine. Its instances can refer to the same text fragment, yet represent

different (and potentially inconsistent) interpretations of that text. Moreover, the LKIF-

Core's Medium class allows to represent different manifestations of the same

expression;

 shallow reasoning on judgement's semantics: The property chain judged_as

and the axioms for law relevancy and legal consequence application allow the reasoner

to complete the framework, also with the purpose of easening the effort needed to

Fig. 23 - Explanation for the sample agreement being inefficacious.

model all knowledge contained in the ontology. These axioms could also be used to

support tools that automatically complete partially-modeled documents;

 querying: the considers/applies properties allow complex querying on the

knowledge base, and the judged_as shortcuts provides semantic sugar in this

perspective;

 modularity: the layered (core/domain) structure of the ontology library renders

domain ontologies independent between each other - and yet consistent, through their

compliance to the core ontology template.

 supporting case-based reasoning: An argumentation system has been built on

a "lite" version of the ontology library [7]. The axioms concerning law relevancy and

law application have been removed from the ontology and moved to the rules layer, in

order to have them applied not only on the ontology library's knowledge base, but also

on the new knowledge derived from the application of the rules.

The Carneades application succeeded in performing the tasks of finding relevant

precedents, validating the adjudications and suggesting legal rules, precedents,

circumstances that could bring to a different adjudication of the claim.

Computability was not an issue in the last ontology library version (<5 seconds

reasoning time on a Intel i5@3.30 Ghz), while the Carneades reasoner was moderately

encumbered by the application of the rules to the ontology (8-15 seconds). This could

be improved by optimizing the reasoner and/or with a proper management of the

ontology (and rules) modules.

6. Issues

6.1. The knowledge acquisition bottleneck

The modeling of the sample ontology library and the extraction of knowledge from

the case law sample was carried out manually by a graduated jurist. Also the qualified

fragment of text under the Akoma Ntoso standard should be annotated by legal experts:

at the present time, this seems the only viable choice in the legal domain, as automatic

information retrieval and machine learning techniques, do not yet ensure a sufficient

level of accuracy (even if some progress in the field has been made, for example in

applying NLP techniques to recognize law modifications [16]).

The manual markup of judicial decisions, however, doesn't seem to be sustainable

in the long time. For an efficient management of the knowledge acquisition phase, a

combination of tools supporting an authored translation of text into semantics should

limit the effects of this (still) unavoidable bottleneck: special editor tools (e.g. Norma-

Editor) can allow an easy linking between text, metadata and ontology classes, while

the more complex ontology constructs (i.e. the "considers/applies" constructs) could be

managed by an editor plug-in. In this perspective, stronger constraints could be added

to the legal core ontology in order to allow these plugin to automatically complete a

part of the classification work, leaving to the user the duties of checking and

completing the model drafted by the machine.

6.2. Representing exceptions

Fig. 25 - Explanation for Relevancy being inferred as a subclass of Inefficacious

A critical issue

in representing

the decision's

content is

represented by

exceptions to

legal rules. How

can we model a

situation when a

material

circumstance

applies all the

legal statuses

required by the

legal rule, but

nevertheless

does not fall

under that legal

rule's legal

consequence because it follows some additional rule which defeats the first one? As it

should be clear, that issue has no straight solution inside DL, such as OWL-DL logics:

if we introduced some negative condition for the rule to apply (if (not (exception))), the

open-world assumption OWL relies on would require us to explicitly state for each

case that no exception applies. This would annihilate the reasoning capabilities of the

ontology library we explained so far.

A solution to this problem could rely on the modeling of the exceptional case as a

subclass of the normal case: this means that only the material circumstances which are

relevant under the "regular" law can be classified as "exceptional".

This solution has the advantage of allowing reasoning on exceptions without the

need to rely on rules. The backside is that the classification of the circumstance as

"exceptional" is added to the classification of inefficacy, not substituted to it. Again,

this issue takes origin from the open world assumption, and cannot be easily avoided

while remaining inside OWL-DL: whenever we prevent the reasoner to "judge" a

circumstance with a legal consequence, asking him to check that no exception exists,

Fig. 24 - Explanation of a sample contract clause being not inefficacious
because of an exception.

the reasoner will be incapable of inferring anything

unless all information concerning the exceptions is

explicitly stated in the ontology.

This issue represents the main reason why a

complete syntactic modelling of legal rules is not

reachable inside the ontology library, requiring

instead a rule system (such as LKIF-Rules [11],

Clojure, or LegalRuleML [19]) to be fully

implemented. Nevertheless, the so-built ontology

library represents the ideal background for such a

rule system to work.

6. Conclusions

The ontology library presented in this paper is the

pivot of an innovative approach to case-law

management, filling the gap between text, metadata,

ontology representation and rules modeling, with

the goal of detecting all the information available in

the text to be enhanced in the legal reasoning through an argumentation theory. This

approach allows to directly annotate the text with peculiar metadata representing the

hook for the core, domain and argument ontologies. OWL2 is used to get as close as

possible to the rules, in order to exploit the computational characteristic of description

logics. On the other hand, the ontology framework has a strong weak point in the

management of exceptions.

References

[1] Ashley K. D., Ontological requirements for analogical, teleological, and hypothetical legal reasoning.

In: ICAIL 2009, pp. 1-10.

[2] Barabucci G., Cervone L., Palmirani M., Peroni S., Vitali F., Multi-layer Markup and Ontological
Structures in Akoma Ntoso. In: LNCS 6237/2010, pp. 133-149.

[3] Bench-Capon T. J. M., Gordon T. F., Isomorphism and argumentation. In: ICAIL 2009, pp. 11-20.

[4] Boella G., Governatori G., Rotolo A., van der Torre L., A Logical Understanding of Legal
Interpretation. In: KR 2010.

[5] Boer, A., Radboud, W., Vitali, F., MetaLex XML and the Legal Knowledge Interchange Format. In:

Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.), Computable Models of the Law, Springer,

Heidelberg (2008), pp. 21-41.

[6] Brüninghaus, S., Ashley K. D., Generating legal arguments and predictions from case texts. In:
ICAIL 2005, New York, NY, USA, ACM Press, pp. 65–74.

[7] Ceci, M., Gordon, T.: Browsing Case-Law: An Application of the Carneades Argumentation System.

In: Proceedings of the RuleML@ECAI 6th International Rule Challenge (2012).
[8] Gangemi, A., Design Patterns for Legal Ontology Construction, in Trends in Legal Knowledge. The

Semantic Web and the Regulation of Electronic Social Systems, European Press Academic Publishing,

2007, pp. 171-191.
[9] Gordon, T. F., Governatori G., Rotolo A., Rules and Norms: Requirements for Rule Interchange

Languages in the Legal Domain. In: RuleML 2009, pp. 282-296.

[10] Gordon, T. F., Walton, D.: The Carneades Argumentation Framework: using presumptions and
exceptions to model critical questions. In: Dunne, P.E.: Computational Models

Fig. 26 - Stated and inferred

property assertions on the

"exceptional" contractual
agreement.

[11] Gordon, T. F., Constructing Legal Arguments with Rules in the Legal Knowledge Interchange Format
(LKIF). In: Computable Models of the Law, Languages, Dialogues, Games, Ontologies (2008), pp.

162-184.

[12] Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In: Deontic logic in
computer science, Springer (2004).

[13] Hoekstra R., Breuker J., Di Bello M., Boer A., The LKIF Core Ontology of Basic Legal Concepts. In:

Casanovas P., Biasiotti M.A., Francesconi E., Sagri M.T. (eds), Proceedings of LOAIT 2007.
[14] Lam, H.P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke, A. (eds.):

RuleML 2009. LNCS 5858, 315–322.Springer, Berlin (2009).

[15] Mommers L., Ontologies in the Legal Domain. In: Poli R., Seibt J. (eds.), Theory and Applications of

Ontology: Philosophical Perspectives, Springer 2010, pp. 265-276.

[16] Palmirani, M., Brighi, R., Model Regularity of Legal Language in Active Modifications. In: LNCS

6237/2010, pp. 54-73.
[17] Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge Modelling. In:

Proceedings of RuleML 2009, pp. 305-314.
[18] Palmirani, M., Ceci, M.: Ontology framework for judgement modelling. In: AICOL 2011 Proceedings.

Springer, 2012 (under publication).

[19] Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML: XML-
Based Rules and Norms. In: RuleML 2011, pp. 298-312

[20] Palmirani, M., Ognibene, T., Cervone, L.: Legal Rules, Text and Ontologies over Time. In:

Proceedings of the RuleML@ECAI 6th International Rule Challenge (2012).
[21] Sartor G., Legal Concepts as Inferential Nodes and Ontological Categories. In Artif. Intell. Law 17(3)

2009, pp. 217-251.

[22] Sirin, E., Parsia, B.:, SPARQL-DL: SPARQL Query for OWL-DL. In 3rd OWL Experiences and
Directions Workshop, 2007.

[23] Vitali F., Akoma Ntoso Release Notes. 1997. http://www.akomantoso.org.

