Semantic Web 1 (2010) 1-5
10S Press

OWLIink

Editor(s): Bernardo Cuenca Grau, Oxford University Computing Laboratory, Oxford, UK
Solicited review(s): Ernesto Jimenez-Ruiz, Universitat Jaume I, Castelld, Spain; anonymous reviewer

Thorsten Liebig®, Marko Luther®, Olaf Noppens®, and Michael Wessel@

& derivo GmbH, James-Franck-Ring, 89081 Ulm, Germany

E-mail: lastname @derivo.de

> DOCOMO Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany

E-mail: lastname @ docomolab-euro.com

¢ Racer Systems GmbH & Co. KG, Blumenau 50, 22089 Hamburg, Germany

E-mail: lastname @racer-systems.com

Abstract. A semantic application typically is a heterogenous system of interconnected components, most notably a reasoner.
OWLlIink is an implementation-neutral protocol for communication between OWL 2 components, published as a W3C member
submission. It specifies how to manage reasoning engines and their Knowledge Bases, how to assert axioms, and how to query
inference results. A key feature of OWLIink is its extensibility, which allows the addition of required functionality to the protocol.
We introduce the OWLIink structural specification as well as three bindings which use HTTP as concrete transport protocol for
exchanging OWLlIlink messages rendered according to selected OWL 2 syntaxes. Finally, we report on existing APIs, reasoners

and applications that implement OWLIink.

Keywords: OWL, OWL 2, Protocol, Reasoning, Semantic Web

1. Introduction

The W3C Web Ontology Language (OWL) is an
ontology representation language with the purpose of
enabling applications to meaningfully process infor-
mation by reasoning. In practice, not only a concrete
syntax but also a common protocol is needed to inter-
act with components that supply reasoning services to
tools or applications. OWLlinkE]is a W3C member sub-
mission which adds this piece of ontology infrastruc-
tureby providing an extensible protocol for communica-
tion among OWL 2-aware applications. The OWLIink
protocol is defined by a conceptual specification [9]
and comes with different bindings in terms of concrete
syntaxes paired with particular transport mechanisms.

OWLlIink is in the heritage of nowadays outdated
protocols such as DIG [1]] and KRSS [135]. It neither
depends on a particular data model such as SPARQL 1.1

"http://www.owllink.org/

[5]] nor on a specific transfer protocol or vendor-specific
service choice as offered by the PelletServer [4]. It
differs from ontology APIs, such as the Java-based
OWL API [[7], in that it is language-neutral and open
in how to encode and transmit API calls and responses.
This provides more flexibility to developers of semantic
applications because they can choose from a broader
range of reasoning components as well as exchange
them more easily. Moreover, such a protocol based
link-up typically increases the stability of the overall
system. Reasoning can be transparently separated from
the application and it inherently adds the option of
outsourcing this task to other machines.

OWLIink consists of a protocol core and a set of
bindings. The core [9] specifies how to introspect the
capabilities of an OWL reasoning engine and how to
set common or specific system options. It also defines
primitives for dealing with Knowledge Bases (KBs),
such as the creation or deletion of KBs or the succes-
sive assertion of axioms. Furthermore, the core offers

0000-0000/10/$00.00 (©) 2010 — IOS Press and the authors. All rights reserved

http://www.owllink.org/

2 Th. Liebig et al. / OWLlink

a set of basic queries to access the standard inference
services supported by OWL reasoning engines.

The OWLlIlink bindings specify the respective trans-
port protocols as well as the content serializations. The
primary binding is XML over HTTP [14], but alterna-
tive bindings such as Functional [20] or S-Expression
Syntax over HTTP [[19]] are available as well. New bind-
ings can be defined as appropriate.

The OWLIink core aims at covering basic query
and management functionality for typical applications.
However, over time requirements may change or new
systems with novel services might emerge. To allow
developers to add their desired functionality, OWLIlink
provides an extension mechanism. The definition of
new extensions is explicitly intended to be an open and
community-driven process. Since there are activities
aiming at widely accepted ontology query languages
we expect corresponding OWLlIink extensions in the
near future.

This paper provides an introduction to the OWLIlink
protocol as of July 2010, which is fully aligned to the
OWL 2 W3C recommendation from October 2009 [12]
and accepted by the W3C as a member submission
[9]. In the following we summarize the protocol basics
and outline the core structural specification together
with the extension mechanism. This is followed by a
description of the set of initial bindings and a survey of
supporting protocol implementations.

2. Basic protocol

OWLlIink is a client-server protocol for interaction
of an application (the client) with an ontology reason-
ing system (the server). It is designed for OWL 2 as
ontology exchange language but potentially supports
a wide range of logic-based languages. OWLlIlink does
not address issues such as transactions, authentication,
encryption, compression, concurrency and so on. Some
of those features might be provided transparently by the
access protocol (e. g., HTTP/1.1) of a particular binding
or need to be added by an OWLIink extension.

This section describes the basic design of the com-
munication protocol and introduces its structural speci-
fication. The latter defines the conceptual mechanisms
for asserting axioms, asking queries and defining exten-
sions. This structural specification makes use of a subset
of the UML class diagram notation and uses the UML
classes provided by the OWL 2 specification. OWLIlink
is in compliance with the OWL 2 conformance condi-
tions [[17] and OWLIink servers have to meet the re-

spective tool conformance requirements. The only no-
table exception is, that the default language binding of
OWLlIink is based on the OWL 2 XML serialization
(rather than RDF/XML).

2.1. Sessions, messages, and errors

An OWLIink session abstracts the actual bidirec-
tional communication channel between the client and
the server. It provides primitives to transport requests
and responses. The actual implementation of a session
is defined by the transport syntax and mechanism in
terms of an OWLIlink binding (see Section3).

The basic interaction pattern is that of request-
response. Each request is paired with exactly one re-
sponse. Depending on the transport mechanism, it
might be inefficient to send individual requests to a
server one by one. Therefore, OWLlIlink requests are
bundled into messages. A RequestMessage encapsu-
lates a list of Request objects, whereas a ResponseMes-—
sage encapsulates a list of Response objects as shown
in Figure[I] The server must send the responses to the
client in exactly the same order in which the requests
were received. If a request has been processed success-
fully, the type of the returned response depends on the
request type. For instance, if a request addresses a spe-
cific KB, i.e. the request is a subclass of the abstract
class kBrRequest, the corresponding response has to be
a subclass of the abstract class kBrResponse. If a suc-
cessful request does not produce any specific data, the
server has to return a subclass of the general confir-
mation response, €.g. an Ok, to the client. Any con-
firmation may carry a warning string intended to be
meaningful to a human user.

If a request fails, the server has to return an Exrror
response to the client containing a message reporting
the cause of failure. Specific error classes allow the
reporting of syntactic violations (SyntaxError), seman-
tic problems (semanticError) and issues regarding the
management of a Knowledge Base (kBeError). Partic-
ular errors do come with more specific errors types
such as the UnsatisfiablekBError which is raised in
response to queries referring to an unsatisfiable KB. If a
server cannot process a request, it should attempt to re-
cover gracefully, and process other pending requests as
if the error did not happen. If, however, this recovery is
not possible, the server should send an Error response
and close the session.

Th. Liebig et al. / OWLlink 3

RequestMessage

| {ordered, nonunique}

ResponseMessage

| {ordered, nonunique}

requests responses
V1. 1.
Request Response
[le]
owl.fulllRI KBRequest : Confirmation Error
16 kb — warning: String [0..1] error: String

T ——1

Lll

[
! KBResponse KBError SemanticError SyntaxError

JA

z'x

Unknown OK

BooleanResponse UnsatisfiableKBError

result: boolean

Fig. 1. Basic protocol objects

2.2. Servers and Knowledge Bases

The GetDescription request has to be supported by
any OWLlIink server, to allow clients to discover their
identity and introspect their capabilities. The response
to this request is a Description, providing information
about the server’s current state, including its name, its
version, an optional identification message, the proto-
col version, the currently managed KBs, the supported
extensions, and a set of configurations.

A configuration is either a Property Or a Setting.
While properties are read-only, settings can be adjusted
per KB at any time via a set request. The settings given
in a description indicate the server’s defaults that hold
for newly created KBs. The actual settings of a KB can
be retrieved via Getsettings. While OWLIink defines
the general format of configurations, it does not provide
specific details on available configurations — these will
be defined on a per-server basis. However, some config-
urations such as the language profile (namely select-
edProfile, which lists the supported language frag-
rnentsE| as its type and the active profile as value) or the
underlying semantic (appliedSemantics) of OWL2
have to be supported by any OWLlIlink server. A server

2Can be any well-defined DL fragment (e.g. "ALC’) or OWL 1
and OWL 2 sublanguage (e.g. "'OWL 2 RL).

is free to refuse the adjustment of a setting at any point
in the lifetime of a KB.

OWLlIink servers can manage more than one KB
simultaneously. A new KB is allocated within the
OWLlIink server by sending a createks request. If the
optional argument kb is given, the new KB is allocated
with the given IRI, otherwise a fresh, server-generated
IRI is used. On successful creation, a response named
kB with the identifying IRI of the allocated KB is re-
turned. An optional argument name allows to associate
a name with a KB, which is then published to other
clients (together with its IRI) within the server descrip-
tion. After disposal of a KB with the Releasexs re-
quest the server has to respond with an KBError to any
requests to the respective KB IRI.

2.3. Assertions

OWLlIink relies on the language primitives of OWL 2.
Axioms can be added to a KB by a Te11 request that
refers to the various term constructors about classes,
properties or facts defined in the OWL 2 specification
[12]]. A Te1l request contains a (non-empty) set of
OWL 2 axioms and will be answered with an ox re-
sponse when successfully processed by the server (see
Figure [2). In analogy to the definition of an ontology
in OWL 2, an OWLIink KB is the cumulative set of
all asserted axioms without duplicates with respect

4 Th. Liebig et al. / OWLlink

KBRequest KBResponse
Tell OK
|
axioms
Vi.x
owl.Axiom

Fig. 2. Asserting axioms

to the structural equivalence of OWL 2. However, an
OWLlink KB has neither an ontology IRI nor a version
IRI, but is identified by a KB IRI.

In addition to sending axioms directly via succes-
sive Tell requests, OWLIink allows to read ontology
documents via the Loadontologies request. Such a re-
quest loads one or more ontologies, and optionally all
imported ontologies, into a given KB by dereferencing
the given IRIs. This request also offers an IRI map-
ping which allows to redirect ontology IRIs to physical
ontology documents.

2.4. Basic queries

The OWLlIink core includes a set of general requests
for retrieving information about a KB. These so called
basic asks cover common queries with respect to the
given and inferred axioms. More complex queries are
delegated to appropriate query extensions. To provide
an informal overview, the table in the Appendix lists
all of the basic asks with their response types and op-
tional argument flags ("neg" for negative property as-
sertions and "dir" for direct with respect to the sub-
sumption relationship). Their semantics and a detailed
description of their corresponding responses is given in
the OWLlink structural specification [9]. The follow-
ing briefly describes selected queries to show the key
aspects of the interface.

One important query for an OWL 2 compliant rea-
soning system is to check whether a KB entails an ax-
iom. The corresponding OWLIink 1sEntailed request
returns either Unknown Or @ BooleanResponse carrying
the value true in case the supplied OWL 2 axiom is en-
tailed by the respective KB with respect to the underly-
ing semantics and false otherwise. To also support com-
monly used entailments such as the direct subsumers

of a class or the direct types of an individual OWLIink
also provides the IsEntaileddirect request. The lat-
ter is only applicable to a subset of the OWL 2 axioms
(that is the sub-entity and class assertion axioms).
OWLlIink responses contain structures that group
equivalent entities. As an example, whenever a query
returns a collection of classes, properties, or individu-
als whose elements potentially are equivalent to each
other, the response is a set consisting of synonym sets
(so called synsets). The OWLIlink naming schema pro-
vides general rules on naming request and response
identifiers including when and how to use prefixes such
as "1s", "Get", or "setot". According to this naming
schema, in case of class entities a synset is denoted
by a classsynset element. For instance, the Get Types
request retrieves all classes an individual is an instance
of. The corresponding response therefore returns one or
more ClassSynset elements which contain at least one
owl.Class (see Figure[3). Since this grouping might be

KBRequest

I I

GetTypes ClassSynsets
direct: boolean=false

KBResponse

individual synsets
1 \l/ 1.°
owl.Individual

ClassSynset

|
classes

1.+
owl.Class

Fig. 3. Individual types request and response

an undesired overhead under some conditions (e. g. in
case of a unique name assumption or global disjointness
of classes), there are flattened versions for particular
queries. The GetFlattenedTypes query, for instance,
rules out any information about class equivalence from
the response and simply returns a set of classes.
Another commonly used query refers to the class
hierarchy of an ontology. The OWLIlink Getsub-
ClassHierarchy request retrieves the partial or com-
plete class hierarchy of a KB. Since OWLIink aims

Th. Liebig et al. / OWLlink 5

KBRequest KBResponse

GetSubClassHierarchy ClassHierarchy

class unsatisfiableClasses J pairs
0..*
— ClassSubClassesPair
superClass

1 1\
ClassSynset |
subClasses
0..1 1

I
owl.Class classes
synsets —|

SubClassSynsets

Fig. 4. Class hierachy request and response

at minimizing the size of its messages this response
only returns the direct subsumption relationships
and eliminates all those relationships, which refer
to owl:Nothing. More precisely, it omits all those
pairs of direct super-/subclasses, which contain the
owl:Nothing class. The latter as well as all other unsat-
isfiable classes are carried as one extra synset within
each classHierarchy response as depicted in Figure 4]
With the help of this information an application can re-
construct the implicitly given but omitted relationships
from any classHierarchy W.r.t. . owl:Nothing

Note that OWLlIink offers requests for classifying or
realizing a KB but does not require any explicit pro-
cessing request before querying. The server has to take
care about computing inferences and decide when it is
appropriate to (re-)compute the internal data structures.

2.5. Extensions

The OWLIink core is extendable in terms of the sup-
ported language fragment, the offered services, as well
as provided management tasks. An extension consists
of a set of documents specifying the additional mes-
sages, a structural specification providing sufficient in-
formation about their meaning, and a document per sup-
ported binding defining the extra syntax. An extension
should not redefine core OWLIink statements and has
to adopt the given naming schema. A server reports the

set of extensions supported in the bescription object
by listing their associated IRIs.

To date there are a couple of extensions under devel-
opment, such as the Told Data Access, providing access
to previously told axioms, and the Ontology Based Data
Access, supporting the access to data stored in heteroge-
neous sources through a semantic layer. While the first
extension allows to differentiate inferred from asserted
knowledge, the second one can be used to maintain
mappings between data in sources and KB entities.

A further extension, Retraction [10], enables the re-
traction of previously told axioms to efficiently update
KBs without making the detour of a KB release and re-
submission cycle. More precisely, the Retract request
is the inverse of a Te11 and removes a set of OWL 2 ax-
ioms from the given KB. The removal must be sensitive
to the rules of structural equivalence of OWL 2. If all
axioms of a retraction request are successfully removed
from the KB, the server issues an ok response.

3. Bindings

An OWLlIink binding defines a syntax for the re-
quests and responses of the structural specification
as well as a concrete transport protocol in order to
practically enable communication among system com-
ponents. This section introduces three such bindings
namely XML expressions over HTTP, Functional ex-
pressions over HTTP, and S-Expressions over HTTP.

All transport related communication issues such as
authentication, encryption, or compression need to be
handled by the binding. Compression, for instance, of-
ten a key feature to decrease response latency in a re-
mote scenario, is transparently supported by transport
protocols such as HTTP.

3.1. HTTP/XML binding

HTTP/XML[14] is the default binding for OWLlink.
It utilizes HTTP for exchanging requests an responses
serialized as XML data between a reasoner and a client.
OWLlIink sessions are mapped to HTTP connections
which are established upon sending the first request.
More precisely, request messages are sent using HTTP
Post requests. The actual content has to be valid with
respect to the OWLIlink XML Schema which has been
obtained from the structural specification by a straight-
forward translation. This schema relies on the OWL 2
XML serialization [[11] for the ontology primitives such
that developers can employ existing parsers to read the

Th. Liebig et al. / OWLlink

<RequestMessage
xmlns="http://www.owllink.org/owllink#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:ret=
"http://www.owllink.org/ex/retraction#">
<CreateKB kb="http://family">
<Prefix name="family"
fullIRI="http://example.com/family/"/>
<Prefix name="otherOnt"
fullIRI="http://example.com/otherOnt/"/>
</CreateKB>
<LoadOntologies kb="http://family">
<OntologyIRI
IRI="http://owllink.org/primer.owl"/>
</LoadOntologies>
<GetTypes kb="http://family" direct="true">
<owl:NamedIndividual
abbreviatedIRI="family:John"/>
</GetTypes>
<Tell kb="http://family">
<owl:SubClassOf>
<owl:Class
abbreviatedIRI="family:HappyPerson"/>
<owl:Class
IRI="http://example.com/family/Person"/>
</owl:SubClassOf>
</Tell>
<GetObjectPropertySources kb="http://family"
<owl:0bjectProperty
abbreviatedIRI="family:hasWife"/>
<owl:NamedIndividual
abbreviatedIRI="family:Mary"/>
</GetObjectPropertySources>
<ret:Retract kb="http://family">
<owl:SubClassOf>
<owl:Class
abbreviatedIRI="family:HappyPerson"/>
<owl:Class
abbreviatedIRI="family:Person"/>
</owl:SubClassOf>
</ret:Retract>
<ReleaseKB kb="http://family"/>
</RequestMessage>

<ResponseMessage
xmlns="http://www.owllink.org/owllink#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">
<KB kb="http://family"/>
<OK/>
<ClassSynsets>
<ClassSynset>
<owl:Class
abbreviatedIRI="family:Father"/>
</ClassSynset>
<ClassSynset>
<owl:Class
abbreviatedIRI="family:MyBirthdayGuests"/
</ClassSynset>
</ClassSynsets>
<OK/>
<SetOfIndividualSynsets>
<IndividualSynset>
<owl:NamedIndividual
abbreviatedIRI="family:John"/>
<owl:NamedIndividual
abbreviatedIRI="otherOnt :JohnBrown"/>
</IndividualSynset>
</SetOfIndividualSynsets>
<OK/>
<OK/>
</ResponseMessage>

Fig. 5. Example RequestMessage in XML syntax

OWL 2 content, for example, within Te11 and ask re-
quests. Figure 5] shows a sample request message that
provides an impression of the XML serialization re-
lated to this binding. A corresponding server response
is given in Figure[6]

The root element of any XML based binding has
to be either a RequestMessage Or a ResponseMessage.
In correspondence of the notion of prefixes in OWL 2
ontologies, OWLIink also has an optional mechanism
for declaring prefixes for KBs. However, in contrast
to OWL 2, these prefixes are valid within the whole

Fig. 6. Example ResponseMessage in XML syntax

scope of the KB (successive assertions, queries, etc.)
and not only within one particular ontology document.
The OWLIink prefix declarations need to be defined
at the time when creating the KB within the createks
request. Note that an OWLIink reasoner may bypass
the serialization syntax of a binding by using the L.oad-
ontologies request which delegates the processing of
loading ontologies to the server. This allows to utilize
alternative parsers for formats other than XML such as
OBO for example.

3.2. HTTP/Functional binding

The HTTP/Functional binding [20] also utilizes
HTTP Post requests to transfer messages. However, the
content is not encoded in XML. The OWLIink Func-
tional binding employs the functional syntax of OWL 2
[12] to represent OWL 2 axioms and a closely related
syntax for the OWLIink constructs. This allows to reuse
OWL 2 functional parsers to implement this binding.
The example request and response messages of Figure[7]
and Figure 8] are equivalent to their XML counterparts
given in the previous section, but utilize functional syn-
tax.

Th. Liebig et al. / OWLlink 7

NamespacePrefix ("ret"
<http://www.owllink.org/ext/retraction#>)
RequestMessage (
CreateKB (Attribute (kb <http://family>)
Prefix (Attribute (name "family")
Attribute (fullIRI
<http://example.com/family/>))
Prefix (Attribute (name "otherOnt")
Attribute (fullIRI
<http://example.com/otherOnt/>)))
LoadOntologies (kb <http://family>)
OntologyIRI (
Attribute (IRI
<http://owllink.org/primer.owl>)))
GetTypes (Attribute (kb <http://family>)
Attribute (direct "true")
family:John)
Tell (Attribute (kb <http://family>)
SubClassOf (family:HappyPerson
family:Person))
GetObjectPropertySources (
Attribute (kb <http://family>)
family:hasWife
family:Mary)
ret.Retract (Attribute (kb <http://family>)
SubClassOf (family: HappyPerson
family:Person))
ReleaseKB (Attribute (kb <http://family>)))

(NamespacePrefix () ret
|http://www.owllink.org/ext/retraction#|)
(RequestMessage ()

(CreateKB (:kb |http://family])
(Prefix (:name "family" :fullIRI
|http://example.com/family/|))
(Prefix (:name "otherOnt" :fulllIRI
|http://example.com/otherOnt/|)))
(LoadOntologies (:kb |http://familyl|)
(OntologyIRI
(:IRI |http://owllink.org/primer.owll|)))
(GetTypes (:kb |http://family]|
:direct "true"
| family:John]|)
(Tell (:kb |http://familyl|)
(SubClassOf
| family: HappyPerson|
| family:Person|))
(GetObjectPropertySources
(:kb |http://family])
| family:hasWife|
| family:Maryl)
(ret.Retract (:kb "http://family")
(SubClassOf
| family: HappyPerson|
| family:Person|))
(ReleaseKB (:kb |http://familyl|)))

Fig. 7. Example RequestMessage in Functional syntax

ResponseMessage (
KB (Attribute (kb <http://family>))
OK ()
ClassSynsets (
ClassSynset (family:Father)
ClassSynset (family:MyBirthdayGuests))
OK ()
SetOfIndividualSynsets (
IndividualSynset (family:John
otherOnt:JohnBrown))
OK ()
OK ())

Fig. 8. Example ResponseMessage in Functional syntax

Attribute values of OWLIlink messages are en-
coded as Attribute (<attribute-name> <attribute-
value>) terms. This schema shares the advantages of
associative argument-passing methods (over position-
based argument passing methods) and somehow resem-
bles XML attributes.

Namespace prefix declarations allow to declare ab-
breviations for IRIs of OWLlIink constructs. For exam-
ple, the Namespaceprefix statement in Figure [7]allows
to abbreviate <http://www.owllink.org/ext/retrac—

Fig. 9. Example RequestMessage in S-Expression syntax

tion#Retract> as ret.Retract . The extent of names-
pace prefix declarations is the current OWLIlink mes-
sage. Moreover, the standard OWL 2 prefixes (ow1,
rdf, rdfs, xsd), as well as o1 for the OWLIlink
namespace, can always be used without explicit decla-
ration. Elements from these namespaces do not have to
be qualified. Consequently, subClassOf is a synonym
for the qualified element owl . subclassof. This allows
to transmit OWL 2 ontologies by simply embedding
them in a surrounding Te11 message. Namespace dis-
ambiguation (as for owl.Literal VS. ol.Literal) is
resolved by taking the term context into account.
Adopting the spirit of the OWL 2 functional syntax,
entities are referenced by pure IRIs, not boxed within
additional entity constructions as in the OWLIlink XML
syntax. For example, the named individual representing
Mary is encoded as just family:Mary instead of the
boxed variant NamedIndividual (family:Mary).

3.3. HTTP/S-Expression binding

The OWLIink HTTP/S-Expression binding [19] is
tailored towards easy processability by OWLIink com-
ponents utilizing a functional programming language
such as Common Lisp. As the previous bindings it uses

8 Th. Liebig et al. / OWLlink

(ResponseMessage ()
(KB (:kb |http://familyl))
(OK ())
(ClassSynsets ()
(ClassSynset () |family:Father|)
(ClassSynset ()
(OK ())
(SetOfIndividualSynsets ()
(IndividualSynset ()
| family:John|
| otherOnt: JohnBrownl|))
(OK ())
(0K ()))

| family:MyBirthdayGuests|)

Fig. 10. Example ResponseMessage in S-Expression syntax

HTTP for exchanging requests and responses. The con-
tent, however, is encoded in the OWLIink S-Expression
syntax. This syntax can also be considered as a sub-
stitute for the KRSS language. The previous exam-
ple request and response messages are rendered as
S-Expressions in Figure 0] and Figure [I0] respectively.

The OWLIink S-Expression syntax is defined in
terms of a translation from the structural OWLIink
specification. Consequently, this translation also spec-
ifies an S-Expression syntax for OWL 2. The Names-
pacePrefix mechanism is used in the same way as
in the OWLIink Functional syntax to compensate for
the lack of XML namespaces. Also the rules regard-
ing unqualified OWL 2 elements are inherited from the
Functional syntax.

The guiding design criterion for the S-Expression
binding is Lisp-readability. Messages have to be
parsable by the (case-preserving and unicode-aware)
Common Lisp function read without requiring addi-
tional frameworks or machinery.

Since the OWL 2 functional syntax for (abbreviated)
IRIs is unreadable by Lisp, the S-Expression syntax
primarily uses Common Lisp symbols. Strings are ac-
ceptable as well if not used at operator (functor) po-
sition. As in Common Lisp, a symbol name must be
surrounded by bars (| .. . |) in case it contains a colon,
sharp (#), or some other non-alphanumeric characters
(with the exception of the period character).

Attribute values are specified the Lisp-way, using
keyword value pairs, with keywords prefixed by a colon.
Even if an OWLIlink message does not require attributes,
an empty attribute list has to be used for reasons of
uniformness and ease of implementation. This allows
for the specification of additional (i. e., system-specific
or future) attribute values without breaking the existing
message syntax. In contrast, the always empty attribute
list of OWL 2 terms is always omitted.

Since the OWL 2 functional syntax for owl.typed-
Literal elements is unreadable by Lisp, a different
syntax is used here. For example, the S-Expression
for "John Doe"“Axsd:stringiS (OWLLiteral "John
Doe" "xsd:string").

To make OWLIlink message more Lisp-like, some fur-
ther provisions were made, e. g., boolean attribute val-
ues can be specified as strings "true" Or "false", but
also as standard boolean values t, nil. More impor-
tantly, the rendering and hence verbosity of Response
messages can be influenced via a set of rendering op-
tions. More details can be found in the binding specifi-
cation [19].

4. Implementations

A number of implementations of OWLlIink are al-
ready available. Besides applications that connect to
reasoning engines acting as OWLlIink servers, there are
frameworks available that facilitate the incorporation
of OWLlIink support into existing and future systems.

The RacerPr(ﬂ 2.0 reasoner implements the com-
plete OWLlIink protocol and its retraction extension. It
not only supports the standard OWLIlink HTTP/XML
binding, but also the HTTP/Functional as well as the
HTTP/S-Expression binding. Moreover, RacerPro can
be used as converter between these different syntaxes.
Its Lisp-based OWLIlink module, including parsers and
renderers for OWL 2, has been released as part of the
open-source ontology framework OntoLispE]

The OWLIink AP]E] [[13]] realizes a client and server
API for the Java platform (see Figure [TI). The
client adapter enables Java applications to access re-
mote OWLlIink servers. It builds on the widely used
OWL API [7] and therefore enables OWLlink support
for a large number of applications. The OWLIlink API
provides an extensible API that supports the full
OWLlIink core as well as the retraction extension. Addi-
tionally, it fully integrates with the OWL API structures
by implementing its owLReasoner interface. The server
adapter, on the other hand, turns existing OWL API
version 2 and 3 reasoners, such as FaCT++E] Pellet[] or
HermiTE] into OWLlIink servers, ready for remote ac-

3http://www.racer-systems.com/
4http://ontolisp.sourceforge.net/
Shttp://owllink-owlapi.sourceforge.net/
Shttp://owl.man.ac.uk/factplusplus/
Thttp://clarkparsia.com/pellet/
8http://hermit-reasoner.com/

http://www.racer-systems.com/
http://ontolisp.sourceforge.net/
http://owllink-owlapi.sourceforge.net/
http://owl.man.ac.uk/factplusplus/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/

Th. Liebig et al. / OWLlink 9

OWL API OWLlIink API

Semantic
Application

Client Adapter

31 OWLIink

n CEL
OWLIink API OWLAPI | —
2.2
Reasoner [Pellet 1.x
s OWL APl | — Pellet 2.x
erver 3.1)
Adapter Reasoner K HermiT
FaCT++

== RacerPro 2.x

Fig. 11. OWLIink API architecture

cess. In addition, it provides a framework for reasoner
developers to enhance existing reasoners with OWLIlink
functionality directly. Aside from the Java platform,
OWLlIink support is also available via the Thea library
[L8]] for Prolog.

The implementation and adaption of OWLIlink has
also been started on the application side. The widely
used ontology editor Protégdﬂ version 4.1 has been
extended to access OWLIlink servers via a plug-in®
that builds on the OWLIink API. The context-aware
IYOUIT system [3] connects to RacerPro via its na-
tive OWLlIink interface. Other applications, like the
LarKC platform [8], still make use of the outdated
DIG protocol, or utilize some proprietary protocol, like
HERAKLES [2]. However, the implementors of those
systems intent to replace their reasoner link-up by the
common OWLIink protocol in the near future.

5. Outlook

As a W3C member submission, OWLlIink is officially
suggested to be contributed to any future W3C activity
involved in the development of OWL or consider this
as a starting point for work in a new working group.
Even if there is no official activity on the radar right
now, OWLIink can — and is intended to — be refined at
least by its extension mechanism. As far as we see there
is strong demand for extensions which provide a con-
junctive query language as well as support for an OWL
compatible rule language such as SWRL. As regards
tool support and implemenations we see a solid starting
point for adoption by the OWLIlink API which basically
allows to transform almost all reasoning systems with
OWL API support into an OWLlIink server.

9http://protege.stanford.edu/

References

[1] S. Bechhofer, R. Moller, and P. Crowther. The DIG Description
Logic interface. In Proc. of the Int. Workshop on Description
Logics (DL’03), June 2003.

[2] J. Bock, T. Tserendorj, Y. Xu, J. Wissmann, and S. Grimm. A
reasoning broker framework for OWL. In Hoekstra and Patel-
Schneider [6].

[3] S. Bohm, J. Koolwaaij, M. Luther, and et al. Introducing
IYOUIT. In Proc. of ISWC’08, volume 5318 of LNCS, pages
804-817. Springer Verlag, October 2008.

[4] B. Bulka and E. Sirin. PelletServer: HTTP & OWL 2 reasoning.
In Sirin [16].

[5] S.Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C
Working Draft, World Wide Web Consortium, June 2010.

[6] R. Hoekstra and P. F. Patel-Schneider, editors. Proc. of the
OWLED’ 09 Workshop, volume 529 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, October 2009.

[7]1 M. Horridge and S. Bechhofer. The OWL API. In Hoekstra and
Patel-Schneider [6]].

[8] Z.Huang. Initial evaluation and revision of plug-ins deployed

in use-cases. EU IST FP7 Project Deliverable 4.7.1, The Large

Knowledge Collider (LarKC), September 2009.

T. Liebig, M. Luther, and O. Noppens. OWLlIink: Structural

Specification. Member Submission, World Wide Web Consor-

tium, July 2010. http://www.w3.org/Submission/

owllink-structural-specification/.

[10] T. Liebig and O. Noppens. = OWLIink Extension: Re-
traction. Member Submission, World Wide Web Consor-
tium, July 2010. http://www.w3.org/Submission/
owllink—-extension-retraction/,

[11] B. Motik, B. Parsia, and P. F. Patel-Schneider. OWL 2 Web On-
tology Language: XML Serialization. W3C Recommendation,
World Wide Web Consortium, October 2009.

[12] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web On-
tology Language: Structural Specification and Functional-Style
Syntax. W3C Recommendation, World Wide Web Consortium,
October 2009.

[13] O. Noppens, M. Luther, and T. Liebig. The OWLIlink API:
Teaching OWL components a common protocol. In Sirin [16].

[14] O. Noppens, M. Luther, T. Liebig, and M. Wessel. OWLlIink:
HTTP/XML Binding. Member Submission, World Wide
Web Consortium, July 2010. http://www.w3.0rg/
Submission/owllink-httpxml-binding/,

[15] P.F. Patel-Schneider and B. Swartout. Description-Logic knowl-
edge representation system specification from the KRSS group.

[9

—

http://protege.stanford.edu/
http://www.w3.org/Submission/owllink-structural-specification/
http://www.w3.org/Submission/owllink-structural-specification/
http://www.w3.org/Submission/owllink-extension-retraction/
http://www.w3.org/Submission/owllink-extension-retraction/
http://www.w3.org/Submission/owllink-httpxml-binding/
http://www.w3.org/Submission/owllink-httpxml-binding/

10 Th. Liebig et al. / OWLlink

Working version (draft), 1993.

[16] E. Sirin, editor. Proc. of the OWLED’10 Workshop, CEUR
Workshop Proceedings. CEUR-WS.org, 2010.

[17] M. Smith, I. Horrocks, M. Krétsch, and B. Glimm. OWL 2 Web
Ontology Language: Conformance. W3C Recommendation,
‘World Wide Web Consortium, October 2009.

[18] V. Vassiliadis, J. Wielemaker, and C. Mungall. Processing
OWL 2 ontologies using Thea: an application of logic program-
ming. In Hoekstra and Patel-Schneider [6].

[19] M. Wessel. OWLIlink: HTTP/S-Expression Binding. Member
Submission, World Wide Web Consortium, July 2010.

[20] M. Wessel and M. Luther. OWLIlink: HTTP/Functional
Binding. Member Submission, World Wide Web Consor-
tium, July 2010. http://www.w3.org/Submission/
owllink-httpfunct-binding/.

http://www.w3.org/Submission/owllink-httpfunct-binding/
http://www.w3.org/Submission/owllink-httpfunct-binding/

Appendix: List of Basic Asks and Responses

Th. Liebig et al. / OWLlink

Ask KBResponse
GetAllClasses SetOfClasses
,ﬁ 7GetAllObjectProperties SetOfObjectProperties
é 7GetAllDataProperties SetOfDataProperties
2 :GetAllAnnotationProperties SetOfAnnotationProperties
M GetAllIndividuals SetOfIndividuals
7GetAllDatatypes SetOfDatatypes
» |IsKBSatisfiable BooleanResponse
% 7IsKBConsistentlyDeclared BooleanResponse
v 7GetKBLanguage StringResponse
IsEntailed BooleanResponse
" |IsEntailedDirect BooleanResponse
“|IsClassSatisfiable BooleanResponse
“lcetsubClasses [dir] SetOfClassSynsets
7GetSuperClasses [dir] SetOfClassSynsets
7GetDisjointClasses ClassSynsets
7GetEquivalentClasses SetOfClasses
7GetSubClassHierarchy ClassHierarchy
E :IsObjectPropertySatisfiable BooleanResponse
&2 |IsDataPropertySatisfiable BooleanResponse
A 7GetSubObjectProperties [dir] SetOfObjectPropertySynsets
7GetSubDataProperties [dir] SetOfDataPropertySynsets
7GetSuperObjectProperties [dir] SetOfObjectPropertySynsets
7GetSuperDataProperties [dir] SetOfDataPropertySynsets
7GetDisjointObjectProperties ObjectPropertySynsets
7GetDisjointDataProperties DataPropertySynsets
7GetEquivalentObjectProperties SetOfObjectProperties
7GetEquivalentDataProperties DataProperties
7GetSubObjectPropertyHierarchy ObjectPropertyHierarchy
7GetSubDataPropertyHierarchy DataPropertyHierarchy
GetTypes [dir] ClassSynsets
7GetFlattenedTypes [dir] Classes
" GetDifferentIndividuals SetOfIndividualSynsets
" |GetFlattenedDifferentIndividuals SetOfIndividuals
" GetSameIndividuals IndividualSynonyms
7GetObjectPropertiesOfSource [neg] SetOfObjectPropertySynsets
7GetDataPropertiesOfSource [neg] SetOfDataPropertySynsets
7GetObjectPropertiesOfTarget [neg] SetOfObjectPropertySynsets
7GetDataPropertiesOfLiteral [neg] SetOfDataPropertySynsets
§ :GetObjectPropertiesBetween [neg] SetOfObjectPropertySynsets
I GetDataPropertiesBetween [neg] SetOfDataPropertySynsets
“lcetInstances [dir] SetOfIndividualSynsets
7GetObjectPropertyTargets [neg] SetOfIndividualSynsets
7GetDataPropertyTargets [neqg] SetOfLiterals
7GetObjectPropertySources [neg] SetOfIndividualSynsets
7GetDataPropertySources [neg] SetOfIndividualSynsets
"|GetFlattenedInstances [neqg] SetOfIndividuals
7GetFlattenedObjectPropertyTargets [neg] SetOfIndividuals
7GetFlattenedObjectPropertySources [neg] SetOfIndividuals
7GetFlattenedDataPropertySources [neg] SetOfIndividuals

http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBEntities
http://www.owllink.org/owllink-20091116/#Asks-KBStatus
http://www.owllink.org/owllink-20091116/#Asks-KBStatus
http://www.owllink.org/owllink-20091116/#Asks-KBStatus
http://www.owllink.org/owllink-20091116/#KBEntailmentResponses
http://www.owllink.org/owllink-20091116/#KBEntailmentResponses
http://www.owllink.org/owllink-20091116/#ClassAsks
http://www.owllink.org/owllink-20091116/#ClassQueries
http://www.owllink.org/owllink-20091116/#ClassQueries
http://www.owllink.org/owllink-20091116/#ClassQueries
http://www.owllink.org/owllink-20091116/#ClassHierarchy
http://www.owllink.org/owllink-20091116/#ClassHierarchy
http://www.owllink.org/owllink-20091116/#ObjectPropAsks
http://www.owllink.org/owllink-20091116/#ObjectPropAsks
http://www.owllink.org/owllink-20091116/#ObjectPropQueries
http://www.owllink.org/owllink-20091116/#DataPropQueries
http://www.owllink.org/owllink-20091116/#ObjectPropQueries
http://www.owllink.org/owllink-20091116/#DataPropQueries
http://www.owllink.org/owllink-20091116/#ObjectPropGets
http://www.owllink.org/owllink-20091116/#DataPropGets
http://www.owllink.org/owllink-20091116/#ObjectPropGets
http://www.owllink.org/owllink-20091116/#DataPropGets
http://www.owllink.org/owllink-20091116/#ObjectPropHierarchy
http://www.owllink.org/owllink-20091116/#DataPropHierarchy
http://www.owllink.org/owllink-20091116/#IndividualClassQuery
http://www.owllink.org/owllink-20091116/#IndividualClassQuery
http://www.owllink.org/owllink-20091116/#IndividualDisjoint
http://www.owllink.org/owllink-20091116/#IndividualQuery
http://www.owllink.org/owllink-20091116/#IndividualQuery
http://www.owllink.org/owllink-20091116/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091116/#IndividualDataPropQueries
http://www.owllink.org/owllink-20091116/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091116/#IndividualDataPropQueries
http://www.owllink.org/owllink-20091116/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091116/#IndividualDataPropQueries
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091116/#IndividualConstantDataPropSynsets
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091116/#IndividualConstantDataPropSynsets
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091116/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091116/#DataPFlattenS

