
Semantic Web – Interoperability, Usability, Applicability 0 (2010) 1 1
IOS Press

KOMMA: An Application Framework for

Ontology-based Software Systems

Ken Wenzel ∗

Fraunhofer-Institute for Machine Tools and Forming Technology IWU,

Department for Production Planning and Ressource Management,

Reichenhainer Str. 88, 09126 Chemnitz, Germany

Abstract. The Knowledge Modeling and Management Architecture (KOMMA) is an application framework for Java software

systems based on Semantic Web technologies. KOMMA supports all application layers by providing solutions for persistence

with object triple mapping, management of ontologies using named graphs as well as domain-specific visualization and editing

of RDF data. This article gives a short introduction to KOMMA’s architecture and illustrates its usage with examples.

Keywords: application framework, eclipse, rdf, semantic web, object triple mapping, model-driven architecture

1. Introduction

Semantic Web technologies have gained popularity

in the fields of information integration and semantic

search. Therefore research and development activities

mainly focused on ontologies, ontology editors, stor-

age and inference solutions for RDF data as well as on

generic solutions for presenting, navigating and edit-

ing RDF data sets.

Among other things, these activities led to the de-

velopment of

– large upper ontologies including SUMO [1] or

domain-specific ones such as OntoCAPE [2], the

ISO 15926 ontologies [3,4] or the Open Biomed-

ical Ontologies [5],

– ontology engineering software like Protégé [6],

TopBraid Composer [7] or NeOn Toolkit [8],

– RDF frameworks like Jena [9] and OpenRDF

Sesame [10] as well as

– semantic wikis like OntoWiki [11] or Semantic

Media Wiki [12].

Ontology engineering software mainly focuses on

the development of domain ontologies for their later

*Corresponding author. E-mail: ken.wenzel@iwu.fraunhofer.de

usage in ontology-based software systems. This results

in a strong orientation towards graphical presentation

and editing support for ontology languages, rather than

for data described by domain ontologies.

Another approach is followed by semantic wikis.

These systems usually provide form-based access to

large RDF data sets, as implemented by OntoWiki, or,

as in the case of Semantic Media Wiki, offer RDF-

based tagging and searching capabilities for existing

hyperlinked data sets.

We argue that the wide adoption of Semantic Web

technologies can be accelerated by providing sophis-

ticated application frameworks that lower the barriers

for the development of RDF and OWL-based software

systems.

These frameworks should reduce the effort for trans-

formations of model definitions into implementations

of software systems. One approach that fulfils this re-

quirement is Model-driven engineering (MDE), a soft-

ware development methodology that simplifies the cre-

ation of model-based applications by providing tools

that support the required transformation tasks.

Because knowledge representation languages like

RDFS or OWL can also be regarded as some type of

modeling language in the sense of MDE, we’ve started

the development of KOMMA by investigating several

MDE tools.

0/10/$ c© 2010 – IOS Press and the authors. All rights reserved



2

One of these is the Eclipse Modeling Framework

(EMF) [13]. It combines a modeling language for

structured data models with an application framework

and a code generation facility to transform models into

classes for the Java programming language.

The EMF project shows that there is large industrial

request for model-based application frameworks. Over

recent years this project was able to acquire a large

community that actively uses and develops a variety of

solutions around the EMF core components.

EMF’s modeling language Ecore is a subset of the

Meta Object Facility (MOF), an extensible model-

driven integration framework, defined by the Object

Management Group (OMG). The application frame-

work delivered with EMF applies the adapter pattern

[14] to provide tailored presentation and editing capa-

bilities for different model elements. Code generation

is used to create classes for domain objects as well

as to implement generic adapters for presentation and

editing.

The goal of KOMMA is to combine OpenRDF

Sesame as an RDF persistence provider with a sophis-

ticated solution for object triple mapping and the flexi-

ble visualization and editing capabilities of EMF into a

unified application framework for RDF- and ontology-

based software systems.

2. Related Work

This section covers some related projects that influ-

enced the development of KOMMA or have similar

goals.

2.1. Empire

Empire [15] is an implementation of the Java Persis-

tence API (JPA) [16] for RDF and provides a solution

for object triple mapping based on JPA’s ORM princi-

ples. Empire supports querying of RDF databases with

SPARQL or Sesame SeRQL. The mapping of Java

classes to RDF types is realized by using standard JPA

annotations which are extended by some RDF specific

ones for namespaces, RDFS classes and RDF proper-

ties.

Empire aims at replacing existing JPA providers for

relational databases to simplify the transition of legacy

systems towards RDF-based data models.

2.2. OpenRDF Elmo and AliBaba

Elmo provides a JPA compatible implementation

of an entity manager that provides object triple map-

ping for Sesame repositories. In contrast to Empire,

Elmo uses its own annotations for the mapping of Java

classes to RDF types and does not rely on annotations

defined by JPA.

AliBaba is developed as a successor to Elmo and

uses similar principles for object triple mapping. It is

more tightly coupled with Sesame and does not adhere

to the JPA specification.

AliBaba provides RESTful subject-oriented imple-

mentations of client and server libraries for distributed

storage of documents and RDF metadata. One of its

most notable features is the extensibility mechanism

through a messaging ontology that enables the im-

plementation of domain logic by embedding Java or

Groovy code into RDF data. This mechanism in com-

bination with AliBaba’s RESTful services allows for

creation of flexible RDF-based applications.

KOMMA reuses parts of Alibaba’s solution for ob-

ject triple mapping that is also exposed through Al-

ibaba’s client interface.

2.3. Callimachus

Callimachus [18] is a Semantic Web framework that

aims at the development of hyperlinked web applica-

tions. It is largely based on OpenRDF AliBaba and ap-

plies its extension mechanisms to provide a pluggable

architecture for web applications. Callimachus uses a

template engine in combination with RDFa to generate

forms for viewing and editing of resources.

2.4. EMFTriple and EMF4SW

EMFTriple [17] provides basic object triple map-

ping for EMF by partially implementing JPA. Its main

goal is to provide RDF persistence for arbitrary EMF

models which is realized by synchronizing RDF data

sources with corresponding EMF models.

This approach enables the usage of existing EMF

technologies, like the editing framework or model

transformations and comparisons, for RDF data. Us-

ing EMF to represent RDF data implies that the asso-

ciated data model and hence the ontologies need to be

expressed in Ecore which is less expressive than OWL.

EMF4SW [17] provides EMF Ecore models for

RDF and OWL. These models are comparable to ODM

which is developed by OMG to create an MOF-based



3

Sesame

KommaManager

ModelSet

Model

Edit Presentation

Named
Graphs

Storage and
Mapping

Fig. 1. Architecture overview.

meta model for the definition of ontologies. EMF4SW

can help create tools for ontology engineering but is

less useful for domain-specific ontology-based appli-

cations.

3. Architecture and Object Model

KOMMA uses a layered architecture as depicted in

Figure 1 to improve the reusability of its components.

The storage and mapping layer (Section 4) is based

on OpenRDF Sesame for managing RDF data and pro-

vides an advanced solution for the mapping between

Java objects and RDF triples. It is not aware of OWL

or other ontology markup languages and hence does

not consider any ontological information contained in

the data. This ensures its reusability for all kinds of

RDF based systems no matter which kind of ontology

language, if any, is used.

The next layer on the stack deals with RDF named

graphs (Section 5). It is aware of OWL ontologies with

their dependencies and uses models and sets of models

to manage them. In its current implementation the data

of each OWL ontology is mapped to one model that

itself is contained in a set of interrelated models. Con-

sequently, a model set contains models that constitute

the imports closure of all contained ontologies.

The last layer implements mechanisms for the pre-

sentation and editing of RDF resources (Section 6). It

uses the adapter pattern to create views and editors for

RDF resources and already provides many generic im-

plementations and base classes to quickly create ed-

itable lists, tables or tree views.

Figure 2 shows KOMMA’s core object model. All

objects representing RDF nodes implement the inter-

face IReference. In the case of named nodes an

IReference is associated to a corresponding URI,

for blank nodes this URI is null.

By defining both interfaces, URI and IEntity, as

specialization of IReference, we get a normalized

class hierarchy where objects of type IEntity can

be used interchangeably with basic references (URI

for named nodes, IRefence for blank nodes) to RDF

nodes.

The interface ILiteral complements the inter-

face IReference to represent RDF literals.

RDF resources mapped to Java objects are managed

by an instance of IKommaManager – KOMMA’s

equivalent for RDF to JPA’s entity manager for rela-

tional databases. This IKommaManager is responsi-

ble for object triple mapping which is described in Sec-

tion 4.

IResource is a subject-oriented interface for re-

flective access to properties of RDF nodes. Among

other things, it can be used for determining the direct

RDF types of a resource or for adding and removing of

property values.

IReference

URI

0..10..1

m
et
aD

at
aM

an
ag

er

IEntity

IObjectIModel

IModelSet

IKommaManager

1
*

*

*

ILiteral

IResource

Fig. 2. Core object model.



4

The shaded classes in Figure 2 are core components

of KOMMA’s subsystem for the management of RDF

named graphs and OWL ontologies which is covered

by Section 5.

4. Object Triple Mapping

KOMMA’s solution for object triple mapping is

based on the work done for the OpenRDF [10] projects

Elmo and AliBaba.

4.1. Mapping of RDF types to Java classes

RDF resources may have multiple associated types

while Java supports only single inheritance and hence

only objects of one type. This fact imposes problems

for the mapping of RDF resources to Java objects. One

solution to circumvent this issue is by using the adapter

pattern to create multiple views for a Java object that

reflect the different types of the underlying RDF re-

source. For example, Jena uses the adapter pattern to

create different views for RDF nodes to reflect differ-

ent semantics.

KOMMA follows another approach by using an en-

gine that is able to combine multiple interfaces and

classes encapsulating object behaviour into one class

that represents the union of multiple RDF types. These

classes are generated dynamically by KOMMA at run-

time of the application.

Interfaces and classes can be mapped to RDF types

by using the @iri annotation that expects an absolute

IRI to associate its target with an RDF resource.

When KOMMA needs to create a new Java class to

represent an RDF resource as Java object, it first re-

trieves its RDF types and then determines all associ-

ated Java interfaces and classes. The resulting set of

interfaces and classes is combined into one class that

embodies the resource’s types.

The example in Figure 3 shows two interfaces for

OWL properties that are associated to their corre-

sponding RDF types owl:SymmetricProperty

and owl:TransitiveProperty.

If KOMMA encounters an OWL property that is

both transitive and symmetric then it also assigns both

interfaces to this property.

A more complex example is depicted in Figure

5. It contains mappings for the class Pet and its

subtypes Cat and Dog. Each pet has the ability to

yell. Since cats and dogs usually make different

@iri("http://www.w3.org/2002/07/owl#

SymmetricProperty")

public interface SymmetricProperty extends

ObjectProperty {}

@iri("http://www.w3.org/2002/07/owl#

TransitiveProperty")

public interface TransitiveProperty extends

ObjectProperty {}

Fig. 3. Example for mapping of symmetric and transitive OWL prop-

erties.

sounds, the method yell is implemented for cats by

CatSupport and also for dogs by DogSupport.

An RDF resource of types Cat and Dog would

be represented by the exemplary Java class depicted

in Figure 4. The implementation of yell illustrates

KOMMA’s method chaining that calls both methods

of DogSupport and CatSupport. The order of

chained method calls can be defined by establishing a

hierarchy between behaviour classes by using the an-

notation @precedes .

public class CatDogEntity

implements Cat, Dog

{

private IReference nodeRef;

private CatBehaviour cat;

private DogBehaviour dog;

private CatSupportBehaviour catSupport;

private DogSupportBehaviour dogSupport;

public CatDogEntity(IReference nodeRef) {

this.nodeRef = nodeRef;

}

public void yell() {

getDogSupport().yell();

getCatSupport().yell();

}

public void getCatSupport() {

if (catSupport == null) {

catSupport =

new CatSupportBehaviour(this);

}

return catSupport;

}

...

}

Fig. 4. Entity class generated by KOMMA’s object triple mapper.



5

4.2. Mapping of RDF properties to object methods

The example in Figure 5 contains mappings for the

properties name and parent of the type Pet. Both

mappings are defined by annotating the corresponding

getter methods with an @iri annotation. If a setter

method is also present then the property is treated as

writable, else as read-only.

The mapping of properties is implemented by using

PropertySet objects that encapsulate the required

logic to convert between their RDF and Java represen-

tation. KOMMA contains a bytecode generator to im-

plement all behaviour interface methods that are anno-

tated with @iri. The generator uses a pluggable fac-

tory for property sets to enable the usage of various

storage back ends.

@iri("http://example.org/pets#Pet")

public interface Pet {

@iri("http://example.org/pets#name")

String getName();

void setName(String name);

@iri("http://example.org/pets#parent")

Set<Pet> getParents();

void setParents(Set<Pet> parents);

void yell();

}

@iri("http://example.org/pets#Cat")

public interface Cat extends Pet {}

@iri("http://example.org/pets#Dog")

public interface Dog extends Pet {}

abstract public class CatSupport implements

Cat {

public void yell() {

System.out.println(getName() + " says

MEOW");

}

}

@precedes(CatSupport.class)

abstract public class DogSupport implements

Dog {

public void yell() {

System.out.println(getName() + " says

WUFF WUFF");

}

}

Fig. 5. Example for mapping of multiple types and object be-

haviours.

4.3. Scalability

As with all object-relational or object triple map-

ping solutions scalability is an issue. The reason is

that the creation of proxy classes for mapped ob-

jects is costly and that the lazy loading of property

values requires many individual database requests.

KOMMA improves the application performance by us-

ing a second-level cache for mapped objects and by

providing mechanisms to prefetch object properties.

4.3.1. Second-level cache

The second-level cache is realized by JBoss Infin-

ispan [19], a data grid platform with distributed cache

capabilities that also includes a tree-structured cache

API.

KOMMA caches mapped objects by using a tree-

like structure for each object and its associated prop-

erty values.

Automatic caching can be enabled for arbitrary be-

haviour methods by using the @Cacheable annota-

tion. An optional key can be provided to use prefetch-

ing as described in Section 4.3.2.

public interface IClass extends ... {

@Cacheable(key =

"urn:komma:directSuper")

Set<IClass> getDirectSuperClasses();

}

KOMMA’s cache invalidation policy uses Sesame’s

notification API to invalidate cached objects if some of

their associated properties change. A problem arises if

reasoning is used, since most triple stores with Sesame

API do not offer notification support for changes of in-

ferred statements. Therefore cache invalidation is also

possible by calling IKommaManager.refresh for

a corresponding entity object.

4.3.2. Prefetching of property values

KOMMA supports prefetching for mapped proper-

ties annotated with @iri or for return values of be-

haviour methods that carry a @Cacheable(key)

annotation.

Prefetching works by using SPARQL CONSTRUCT

queries to retrieve the corresponding property val-

ues in addition to the original results. Figure 6 illus-

trates an example query for retrieving classes along

with prefetching of their direct super classes and RDF

types.

The construct template

?class a <urn:komma:Result>



6

CONSTRUCT {

?class a <urn:komma:Result> .

?class <urn:komma:directSuper> ?super .

?class a ?type

} WHERE {

?class a rdfs:Class .

OPTIONAL {

?class rdfs:subClassOf ?super .

OPTIONAL {

?subClass rdfs:subClassOf ?otherSuper .

?otherSuper rdfs:subClassOf ?super .

FILTER (?super != ?otherSuper)

}

FILTER (! bound(?otherSuper))

}

OPTIONAL {

?class a ?type

}

}

Fig. 6. Example query to prefetch direct super classes and RDF

types.

marks the original results while the other two tem-

plates

?class <urn:komma:directSuper> ?super .

?class a ?type

are used to prefetch the corresponding property values.

KOMMA provides a SPARQL builder that simpli-

fies the usage of prefetching by automatically trans-

formingSELECT queries into equivalentCONSTRUCT

queries while adding constructs to preload property

values.

4.4. Transactions and Concurrency

In its current implementation KOMMA leaves the

handling of transactions to the underlying RDF repos-

itory. Sesame does not implement nested transactions,

so neither does KOMMA.

The class IKommaManager contains a method

getTransaction that returns a transaction object

that can be used to begin, commit or rollback

transactions.

Unlike most JPA providers, KOMMA does not di-

rectly implement any methods for concurrency control.

This means that there is no simple way to detect con-

current changes by multiple users and transactions to

the same RDF resources. This shortcoming can be cir-

cumvented by using Sesame providers like AliBaba’s

Optimistic Repository that implements optimistic con-

currency control (OCC) or Bigdata RDF [21] that im-

plements multiversion concurrency control (MVCC).

5. Named graphs and models

RDF named graphs are a means to structure RDF

data sets. With named graphs it becomes possible to as-

sign an IRI to a related set of RDF statements that can

then be directly selected by its name within SPARQL

queries.

KOMMA provides models and model sets to man-

age data contained in RDF named graphs.

Models implement the interface IModel that pro-

vides methods for loading the model’s contents into a

repository, for saving them to an external resource and

for deleting them from a repository. A model does also

provide methods to access information about modifi-

cation state or about diagnostics like warnings and er-

rors.

Each model keeps track of its imported models by

using the owl:imports directive. The imports closure

and hence the corresponding named graphs are also ac-

cessible through the model’s IKommaManager.

Loading and saving models is done with the help of

a so-called URI converter that uses a set of rules for re-

solving model URIs (and hence ontologies) to physical

locations in the local file system or on a remote server.

After resolving the correct location, a specialized URI

handler for the encoded scheme (e.g. http, ftp or file) is

responsible for accessing the corresponding resource.

An IModelSet is a group of multiple interrelated

models that is backed by a Sesame repository where

each model is stored in its own context (named graph).

Figure 2 reveals that each IModelSet has an

associated metaDataManager. The reason is that

KOMMA implements models and model sets by using

its own object triple mapping mechanism. This results

in the ability to handle these objects in the same way

as all other RDF resources and enables the usage of

SPARQL to access metadata about models and model

sets.

The code in Figure 7 exemplifies the basic usage of

KOMMA’s core components. It demonstrates the us-

age of KommaModules to register concepts and be-

haviours for object triple mapping, the construction of

model sets by using the ModelSetFactory, the ba-

sic interaction with IKommaManager as well as the

serialization of model data to file.



7

// create module with model concepts

// and behaviours

KommaModule module = ModelCore

.createModelSetModule(

getClass().getClassLoader());

// use factory to create model set

IModelSet modelSet = new ModelSetFactory(

module,

URIImpl.createURI(MODELS.NAMESPACE +

"MemoryModelSet"))

.createModelSet();

// register concepts and behaviours

module = modelSet.getModule();

module.addConcept(Cat.class);

module.addConcept(Dog.class);

module.addBehaviour(CatSupport.class);

module.addBehaviour(DogSupport.class);

// create an example model

IModel model = modelSet.createModel(URIImpl

.createURI("file:///tmp/example.owl"));

// import pets ontology

model.addImport(URIImpl.createURI(

"http://example.org/pets"), "pets");

IKommaManager m = model.getManager();

// create famous CatDog

Pet catDog = m.createNamed(

model.getURI().appendFragment("TheCatDog"),

Cat.class, Dog.class);

catDog.setName("CatDog");

// create CatDog’s parents

catDog.getParents().add(m.create(Cat.class));

catDog.getParents().add(m.create(Dog.class));

// let CatDog say something, output is:

// CatDog says WUFF WUFF

// CatDog says MEOW

catDog.yell();

// save model contents to file

Map<Object, Object> saveOptions =

new HashMap<Object, Object>();

model.save(saveOptions);

Fig. 7. Example for interaction with models and model sets.

6. Editing Framework

KOMMA includes an Eclipse framework compris-

ing generic reusable classes for building editors for

RDF data models. This framework is strongly modeled

after EMF.Edit, the editing framework for EMF.

Likewise, it simplifies the creation of GUI editors

by providing

– content and label providers for JFace viewers,

– a command framework, including a set of generic

commands for common editing operations as well

as

– automatic undo and redo support for changes to

models.

6.1. Content providers

Eclipse JFace is an MVC [20] framework that pro-

vides viewer implementations for displaying struc-

tured models as lists, tables or trees. It decouples the

presentation of domain objects by using content and la-

bel providers to transform the underlying models into

GUI elements.

For example, a JFace content provider for tree view-

ers has the following structure:

interface ITreeContentProvider ... {

Object[] getChildren(Object parent);

Object getParent(Object element);

boolean hasChildren(Object element);

...

}

By implementing this interface, it is possible to trans-

form any domain model into a tree-like representation.

6.2. Providing content and labels for RDF resources

KOMMA contains generic classes for content and

label providers that use the adapter pattern to create

representations for RDF resources.

The AdapterFactoryContentProvider im-

plements interfaces for several JFace content providers

by delegating to specialized adapters that know how

to navigate the model objects. For example, an adapter

for tree structures would implement the KOMMA in-

terface ITreeItemContentProvider to provide

items for tree viewers.

interface ITreeItemContentProvider ... {

boolean hasChildren(Object element);

Collection<?> getChildren(Object parent);

Object getParent(Object element);

...

}

As can be easily seen, this interface has similar

methods to ITreeContentProvider since it is di-

rectly used by KOMMA’s generic content provider to

implement the corresponding methods.

The getChildrenmethod is, for example, imple-

mented as follows:



8

public Object[] getChildren(Object object) {

ITreeItemContentProvider

treeItemContentProvider =

(ITreeItemContentProvider) adapterFactory

.adapt(object,

ITreeItemContentProvider.class);

return treeItemContentProvider != null ?

treeItemContentProvider

.getChildren(object) :

Collections.emptyList()).toArray();

}

The AdapterFactoryLabelProviderworks

in the same way to provide labels for RDF resources.

Figure 8 shows an example where the tree on the left

side as well as the labels and icons are created by

adapters.

6.3. Adapter factories

As stated before, KOMMA’s generic content and la-

bel providers use adapters to handle different model el-

ements. These adapters are created by an adapter fac-

tory:

public interface IAdapterFactory {

Object adapt(Object object, Object type);

boolean isFactoryForType(Object type);

}

An adapter factory may support different adapter

types (isFactoryForType). In contrast to EMF

where each model object keeps track of its associ-

ated adapters, KOMMA transfers this obligation to the

adapter factories. This decision was made to decou-

ple the domain model from transient applications ob-

jects. The reason is that KOMMA’s domain objects

are rather lightweight references to RDF resources and

may be instantiated multiple times while EMF’s do-

main objects usually exist only once in memory.

6.4. Commands

The modification of model objects is done by com-

mands implementing the interface ICommand. Each

command is responsible to execute or, if possible, undo

and redo the encapsulated operations. The execution

of commands is managed by an ICommandStack

that also keeps track of an execution history. This

command stack is associated to a model set by an

IEditingDomain object that is also responsible for

creating generic commands by using an adapter fac-

tory. Hence an editing domain encapsulates the re-

quired objects to modify one ore more models during

a user session.

KOMMA simplifies the implementation of editors

by providing generic command implementations for

common operations like create, add, delete, move,

copy or drag and drop.

The basic commands can be overridden by domain-

specific adapters that provide tailored commands for

the corresponding model objects. An example can be

seen in Figure 8 where menu actions for the creation

of new children or siblings are determined by using an

adapter that is responsible for the selected element.

6.5. Automatic undo and redo

Although basic support for undoing and redoing op-

erations is provided by the interfaces ICommand and

ICommandStack the commands need to remember

changes made to model elements during their execu-

tion to restore the original state in case of an undo.

KOMMA simplifies the implementation of undo

and redo by a RecordingWrapperCommand that

is able to capture all model changes during command

execution. This special command uses the notification

capabilities of Sesame’s NotifyingRepository

to track added and removed triples.

Undoing the command simply deletes all added

triples and inserts all removed triples while redoing the

command does the opposite.

7. Basic vocabulary for applications

KOMMA defines a basic ontology for applications

that want to use KOMMA’s generic content providers

or commands. This ontology is mainly intended to

specify properties that express containment relation-

ships and to provide concepts that enable the direct

mapping of EMF’s Ecore models to OWL ontologies.

The KOMMA ontology defines the following con-

tainment properties:

komma:containsTransitive

< komma:contains

< komma:orderedContains

The property komma:containsTransitive is of

type owl:TransitiveProperty to allow recur-

sive inference of containments.

Its subproperty komma:contains is declared as

owl:InverseFunctionalProperty to specify

that an object may only be part of one parent object.



9

Fig. 8. Editing framework in action.

Many application scenarios require tree structures to
be presented in a deterministic way where the order

of elements is defined by a user. This is accomplished

by using the property komma:orderedContains

in combination with the property komma:precedes

that defines a partial ordering between elements.

These properties are directly supported by object

triple mapping through providing a specialized prop-
erty set for komma:orderedContains that uses

the propertykomma:precedes to preserve the order

of its values.

The KOMMA ontology additionally introduces the

concepts Map, MapEntry and some specializations

with their related properties entry, key and value

to simplify the transformation of EMF models that use

the data type java.util.Map.

8. Contributing to KOMMA

KOMMA is offered as open source software, li-

censed under the terms of the Eclipse Public License

(EPL) [22]. This decision was motivated by the fact

that open source projects always benefit from commu-

nities contributing to their development.

The public community site for KOMMA is hosted at

komma.sourceforge.net. This is the entry point

to public forums, a bug tracker as well as KOMMA’s
source code repositories. The latter are based on GIT

to simplify distributed development.

Source code contributions are managed by our Ger-

rit instance at git.iwu.fraunhofer.de. This

code review system enables any user to participate

in KOMMA’s development by submitting patches for

bugs or features.

9. Conclusions and future work

KOMMA complements existing model-driven ap-

plication frameworks by providing an integrated archi-

tecture for RDF and ontology-based software systems.

Therefore, it is able to reduce the effort for the creation

of semantic desktop and internet applications.

Future developments of KOMMA include the exten-

sion of its editing framework towards more advanced

domain-specific graphical and textual presentations of

RDF data as well as seamless support of rich client and

rich internet applications. We hope that these activities

will improve KOMMA’s applicability to a wide range

of real-world usage scenarios.

KOMMA already implements required core features

to support innovative software design paradigms like

Data, Context and Interaction (DCI) [23]. Further re-

search could investigate how KOMMA’s role-based

object triple mapping in combination with its notion of

models can be used to implement context-based poli-

cies for user interaction to accomplish goals of the DCI

principle.

Acknowledgements

The work presented in this paper is co-funded by the

European Union with the European Fund for Regional

Development (EFRE) and by the Free State of Saxony.

References

[1] A. Pease, I. Niles, and J. Li, The Suggested Upper Merged On-

tology: A Large Ontology for the Semantic Web and its Appli-



10

cations, in: Working Notes of the AAAI-2002 Workshop on

Ontologies and the Semantic Web, 2002.

[2] J. Morbach, A. Wiesner, and W. Marquardt, OntoCAPE – A

(re)usable ontology for computer-aided process engineering,

in: Computers & Chemical Engineering, Vol. 33, 2009, pp.

1546–1556.

[3] R. Batres, M. West, D. Leal, D. Price, K. Masaki, Y. Shimada,

T. Fuchino, and Y. Naka, An upper ontology based on ISO

15926, in: Computers & Chemical Engineering, Vol. 31, May

2007, pp. 519–534.

[4] ISO 15926-2, ISO-15926:2003 Integration of lifecycle data for

process plants including oil and gas production facilities: Part

2. Data model., 2003.

[5] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W.

Ceusters et al., The OBO Foundry: coordinated evolution of

ontologies to support biomedical data integration, in: Nature

Biotechnology, Vol. 25, 2007, pp. 1251–1255.

[6] The Protégé Ontology Editor and Knowledge Acquisition Sys-

tem,

http://protege.stanford.edu/.

[7] TopQuadrant TopBraid Composer,

http://www.topquadrant.com/.

[8] NeOn Toolkit, http://neon-toolkit.org/.

[9] Jena, http://jena.sourceforge.net/

[10] OpenRDF, http://www.openrdf.org/.

[11] N. Heino, S. Dietzold, M. Martin, and S. Auer, Developing

Semantic Web Applications with the OntoWiki Framework, in:

Networked Knowledge - Networked Media, S. Schaffert et al.

(eds.), Springer, Berlin / Heidelberg, 2009, SCI 221, pp. 61–77.

[12] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R.

Studer, Semantic Wikipedia, in: Web Semantics: Science, Ser-

vices and Agents on the World Wide Web, vol. 5, 2007, pp.

251–261.

[13] Eclipse Modeling Framework (EMF),

http://www.eclipse.org/modeling/emf/.

[14] Adapter pattern, http://en.wikipedia.org/wiki/Adapter_pattern.

[15] M. Grove, Empire: RDF & SPARQL Meet JPA, Semantic

Universe, http://www.semanticuniverse.com/articles-empire-

where-rdf-sparql-meet-java-persistence-api.html, 2010.

[16] R. Biswas and E. Ort, The Java Persistence API -

A Simpler Programming Model for Entity Persistence,

http://java.sun.com/developer/technicalArticles/J2EE/jpa/,

2006.

[17] EMFTriple, http://code.google.com/p/emftriple/.

[18] Callimachus, http://callimachusproject.org.

[19] Infinispan, http://jboss.org/infinispan/.

[20] T. Reenskaug, MVC XEROX PARC 1978-79,

http://heim.ifi.uio.no/ trygver/themes/mvc/mvc-index.html.

[21] Bigdata, http://www.bigdata.com/.

[22] Eclipse Public License (EPL),

http://www.opensource.org/licenses/eclipse-1.0.php.

[23] T. Reenskaug and J. O. Coplien, The DCI Architecture: A New

Vision of Object-Oriented Programming,

http://www.artima.com/articles/dci_vision.html.


