
Semantic Web 0 (0) 1 1
IOS Press

Watson, more than a Semantic Web search
engine
Editor(s): Jérôme Euzenat, INRIA Grenoble Rhône-Alpes, France
Solicited review(s): Philipp Cimiano, Universität Bielefeld, Germany; Laura Hollink, Delft University of Technology, The Netherlands; Eero
Hyvönen, Aalto University, Finland; anonymous reviewer

Mathieu d’Aquin and Enrico Motta
Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, UK
{m.daquin, e.motta}@open.ac.uk}

Abstract. In this tool report, we present an overview of the
Watson system, a Semantic Web search engine providing
various functionalities not only to find and locate ontologies
and semantic data online, but also to explore the content of
these semantic documents. Beyond the simple facade of a
search engine for the Semantic Web, we show that the avail-
ability of such a component brings new possibilities in terms
of developing semantic applications that exploit the content
of the Semantic Web. Indeed, Watson provides a set of APIs
containing high level functions for finding, exploring and
querying semantic data and ontologies that have been pub-
lished online. Thanks to these APIs, new applications have
emerged that connect activities such as ontology construc-
tion, matching, sense disambiguation and question answer-
ing to the Semantic Web, developed by our group and others.
In addition, we also describe Watson as a unprecedented re-
search platform for the study the Semantic Web, and of for-
malised knowledge in general.

Keywords: Watson, Semantic Web search engine, Semantic
Web index, Semantic Web applications

1. Introduction

The work on the Watson system1 originated from
the idea that formalised knowledge and semantic data
was to be made available online, for applications to
find and exploit. However, for knowledge to be avail-

1http://watson.kmi.open.ac.uk

able does not directly imply that it can be discov-
ered, explored and combined easily and efficiently.
New mechanisms are required to enable the develop-
ment of applications exploring large scale, online se-
mantics [12].

Watson collects, analyses and gives access to on-
tologies and semantic data available online. In princi-
ple, it is a search engine dedicated to specific types
of ‘documents’, which rely on standard Semantic Web
formats. Its architecture (see next section) therefore
includes a crawler, indexes and query mechanisms to
these indexes. However, beyond this simple facade of a
Semantic Web search engine (see Section 3), the main
objective of Watson is to represent a homogeneous and
efficient access point to knowledge published online,
a gateway to the Semantic Web. It therefore provides
many advanced functionalities to applications, through
a set of APIs (see section 4), not only to find and lo-
cate semantic documents, but also to explore them, ac-
cess their content and query them, including basic level
reasoning mechanisms, metrics and links to user eval-
uation tools. Of course, Watson is not the only tool
of its kind (see related work in Section 6), but it can
be distinguished from others by its focus on providing
a complete infrastructure component for the develop-
ment of applications of the Semantic Web. It has led
to the development of a large variety of applications,
both from our group and from others. In this paper, we
present a complete, up-to-date overview of the Watson
system, as well as of applications which are made pos-
sible by the functionalities it provides. We also show
through several examples how, as a side effect of pro-
viding a gateway to the Semantic Web, Watson is being
used as a platform to support research activities related
to the Semantic Web (see Section 5).

0000-0000/0-1900/$00.00 c© 0 – IOS Press and the authors. All rights reserved

2 M. d’Aquin and E. Motta / Watson

Fig. 1. Overview of the Watson architecture.

2. Anatomy of a Semantic Web search engine

Watson performs three main activities:

1. it collects available semantic content on the Web,
2. it analyses it to extract useful metadata and in-

dexes, and
3. it implements efficient query facilities to access

the data.

While these three tasks are generally at the basis of any
classical Web search engine, their implementation is
rather different when dealing with semantic content as
opposed to Web pages.

To carry out these tasks, Watson is based on a num-
ber of components depicted in Figure 1, relying on
existing, standard and open technologies. Locations
of existing semantic documents are first discovered
through a crawling and tracking component, using
Heritrix, the Internet Archive’s Crawler2. The Valida-
tion and Analysis component is then used to create a
sophisticated system of indexes for the discovered doc-
uments, using the Apache Lucene indexing system3.
Based on these indexes, a core API is deployed that
provides all the functionalities to search, explore and
exploit the collected semantic documents. This API
also links to the Revyu.com Semantic Web based re-
viewing system to allow users to rate and publish re-
views on ontologies.

2http://crawler.archive.org/
3http://lucene.apache.org/

Different sources are used by the crawler of Wat-
son to discover ontologies and semantic data: Google,
Swoogle4, PingTheSemanticWeb5, manually submit-
ted URLs. Specialised crawlers were designed for
these repositories, extracting potential locations by
sending queries that are intended to be covered by a
large number of ontologies. For example, the keyword
search facility provided by search engines such as
Swoogle and Google is exploited with queries contain-
ing terms from the top most common words in the en-
glish language. Another crawler heuristically explores
Web pages to discover new repositories and to locate
documents written in certain ontology languages, by
including “filetype:owl” in a query to Google. Finally,
already collected semantic documents are frequently
re-crawled, to discover evolutions of known semantic
content or new elements at the same location.

Once located and retrieved, these documents are fil-
tered to keep only the elements that characterise the
Semantic Web. In particular, to keep only the docu-
ments that contain semantic data or ontologies, the
crawler eliminates any document that cannot be parsed
by Jena6. In that way, only valid RDF-based docu-
ments are considered. Furthermore, a restriction ex-
ists which imposes that all RDF based semantic docu-
ments be collected with the exception of RSS. The rea-
son to exclude these elements is that, even if they are
described in RDF, RSS feeds represent semantically
weak documents, relying on RDF Schema more as a
way to describe a syntax than as an ontology language.

Many different elements of information are ex-
tracted from the collected semantic documents: in-
formation about the entities and literals they contain,
about the employed languages, about the relations with
other documents, etc. This requires analysing the con-
tent of the retrieved documents in order to extract rel-
evant information (metadata) to be used by the search
functionality of Watson.

Besides trivial information, such as the labels and
comments of ontologies, some of the metadata that
are extracted from the collected ontologies influence
the way Watson is designed. For instance, there are
several ways to declare the URI of an ontology: as
the namespace of the document, using the xml:base
attribute, as the identifier of the ontology header, or

4http://swoogle.umbc.edu
5http://pingthesemanticweb.com/
6http://jena.sourceforge.net/

M. d’Aquin and E. Motta / Watson 3

even, if it is not declared, as the URL of the document.
URIs are supposed to be identifiers in the scope of the
Semantic Web. However, two ontologies that are in-
tended to be different may declare the same URI. For
these reasons, Watson uses internal identifiers that may
differ from the URIs of the collected semantic docu-
ments. When communicating with users and applica-
tions, these identifiers are transformed into common,
non-ambiguous URIs from the original documents.

Another important step in the analysis of a semantic
document is to characterise it in terms of its content.
Watson extracts, exploits, and stores a large range of
declared metadata or computed measures, such as the
employed languages/vocabularies (RDF, RDFS, OWL,
DAML+OIL), information about the contained enti-
ties (classes, properties, individuals and literals), or
measures concerning the richness of the knowledge
contained in the document (e.g., the expressiveness of
the employed language, the density of the class def-
initions, etc.) These elements are then stored and ex-
ploited to provide quality related filtering, ranking and
analysis of the collected semantic content.

3. Watson as a Semantic Web search engine

Even if the first goal of Watson is to support se-
mantic applications, it is important to provide Web in-
terfaces that facilitate access to ontologies for human
users. Users may have different requirements and dif-
ferent levels of expertise concerning semantic tech-
nologies. For this reason, Watson provides different
‘perspectives’, from the most simple keyword search,
to complex, structured queries using SPARQL (see fig-
ure 2).

The keyword search feature of Watson is similar in
its use to usual Web or desktop search systems (see
figure 2(a)). The set of keywords entered by the user is
matched to the local names, labels, comments, or liter-
als of entities occurring in semantic documents. A list
of matching ontologies is then displayed with, for each
ontology, some information about it (languages, size,
expressivity of the underlying description logic) and
the list of entities matching each keyword. The search
can also be restricted to consider only certain types of
entities (classes, properties, individuals) or certain de-
scriptors (labels, comments, local names, literals).

One principle applied to the Watson interface is that
every URI is clickable. A URI displayed in the result

of the search is a link to a page giving the details of ei-
ther the corresponding ontology or a particular entity.
Since these descriptions also show relations to other
elements, this allows the user to navigate among enti-
ties and ontologies. It is therefore possible to explore
the content of ontologies, navigating through the rela-
tions between entities (displayed as a list of relations
–Figure 2(b)– or a graph –Figure 2(c)), as well as to
inspect ontologies and their metadata.

In order to facilitate the assessment and selection
of ontologies by users, it is crucial to provide easy
to read and understand overviews of ontologies, both
at the level of the automatically extracted metadata
about them, as well as at the level of their content. For
each collected semantic document, Watson provides
a page that summarises essential information such as
the size of the document (in bytes, triples, number of
classes, properties and individuals), the languages used
(OWL, RDF-S and DAML+OIL, as well as the un-
derlying description logic), the links with other docu-
ments (through imports) and the reviews from users of
Watson (see Figure 2(d)). Watson also generates small
graphs (Figure 2(e)), showing the 6 first key-concepts
of each ontology and an abstract representation of the
existing relations between these concepts, based in the
key concept extraction method described in [21].

Finally, a SPARQL endpoint has been deployed on
the Watson server and is customisable to address a se-
lected semantic document to be queried. A simple in-
terface allows to enter a SPARQL query and to execute
it on the selected semantic document (Figure 2(f)).
This feature can be seen as the last step of a chain of
selection and access tasks using the Watson Web in-
terface. Indeed, keyword search and ontology explo-
ration allow the user to select the appropriate semantic
document to be queried.

4. Building Semantic Web applications with
Watson

As explained above, the focus of Watson is on im-
plementing an infrastructure component, a gateway,
for applications to find, access and exploit ontologies
and semantic data published online. To achieve this,
Watson implements a set of APIs giving access to its
functionalities through online services (see Figure 3).

4 M. d’Aquin and E. Motta / Watson

Fig. 2. Overview of the Watson Web interface.

4.1. The Watson APIs

The most commonly used and complete API to
Watson is a Java library, giving remote access to the
many functions of Watson through a set of SOAP ser-
vices7. The basic design requirements for these APIs
is that they should allow applications to exploit on-
tologies online, which they might have to identify at
runtime, while not having to download these ontolo-
gies and the corresponding data, or to implement their

7http://watson.kmi.open.ac.uk/WS_and_
API-v2.html

own infrastructure for handling, accessing and explor-
ing them. More precisely the Watson Java/SOAP API
gives access, through three different services and in a
lightweight (for the application) way to functions re-
lated to:

Searching ontologies and semantic documents: Using
keywords and restrictions, related for example to
the type of entities (classes, properties, individu-
als) the keywords should match to, or the place
where they can match (name, label, comment or
other literals in the entity), these functions allow
to locate ontologies that relate to a particular do-
main and contain particular concepts.

M. d’Aquin and E. Motta / Watson 5

Fig. 3. Using the Watson API to build applications that exploit the
Semantic Web as source of knowledge.

Searching in ontologies and semantic documents:
Similarly, using keywords and restrictions, func-
tions are provided to identify, within an given
ontology or semantic document, the entities that
match the given keywords.

Retrieving metadata about an ontology: Many func-
tions are implemented that allow to characterise
a particular ontology through automatically gen-
erated metadata (such as the languages used, the
size, labels and comments, imported ontologies,
etc.), as well as evaluations from users of Watson.

Retrieving metrics on ontologies and entities: Mea-
sures are provided in a dedicated service regard-
ing ontologies and entities (e.g., depth of the hi-
erarchy of an ontology or ‘density’ of an entity in
terms of connections). This allows applications to
define filters and selection criteria ensuring cer-
tain characteristics from the elements they ex-
ploit.

Exploring the content of ontologies: Functions are
provided that allow an application to access the

content of an ontology, through exploring its en-
tities and their connections. These functions in-
clude the possibility to ask for the subclasses
of an RDF, DAML or OWL class in any of the
collected ontologies, the labels of a given entity
or any relation ‘pointing to’ a given individual.
Some of these functions are also available in a
variant providing basic level reasoning, in order
to, for example, obtain all the subclasses of a
class, i.e., both the directly declared ones and the
ones inferred from the transitivity of the subclass
relation.

SPARQL Querying: In case the functions provided
are not sufficient, and complex queries are re-
quired, a SPARQL query can be executed directly
from the API, or alternatively by using the de-
ployed SPARQL endpoint.

[6] provides an example of a simple, lightweight ap-
plication using the Watson API overviewed above to
achieve some basic ontology-based query expansion
mechanisms for a search engine. This application sim-
ply suggests to the user keywords that are either more
general or more specific than the ones used, by query-
ing Watson for the subclasses and superclasses of cor-
responding classes in online ontologies. While being
only a basic demonstrator, this application shows one
of the key contributions of Watson: giving applications
the ability to efficiently make use of large scale seman-
tics in an open domain. More advanced examples are
described in the next section.

Similarly to the Java/SOAP API, Watson also pro-
vides a set of REST services/APIs8 including a sub-
set of Watson’s functionality. This API is more conve-
nient (and more often used) in dynamic Web applica-
tions using scripting languages such as JavaScript (an
example of such an application is described in [18]).

4.2. Derived tools and example applications

The Watson APIs described above as been devel-
oped for, and following the requirements of, new
Semantic Web applications exploiting online knowl-
edge. Many of such applications have been developed,
with varying degrees of complexity and sophistication,
mostly by research groups involved in the Semantic
Web area. Details of several of them are available in

8http://watson.kmi.open.ac.uk/REST_API.html

6 M. d’Aquin and E. Motta / Watson

the two papers [12] and [15].

Probably one of the most obvious applications of an
automated ontology search mechanism is for ontology
engineering itself. Related to this task, the Watson plu-
gin [14] is an extension of an ontology editor (namely,
the NeOn toolkit9) that allows the ontology engineer
to check for knowledge included in online ontologies,
and reuse part of them while building a new ontology.
It can integrate statements from ontologies discovered
by Watson and keep links between the created ontol-
ogy and the elements reused by generating mappings
connecting entities on the local ontologies with the
ones of identified, online ontologies.

Staying in the Semantic Web domain, Scarlet10 fol-
lows the paradigm of automatically selecting and ex-
ploring online ontologies to discover relations between
two given terms, as a way of realising ontology match-
ing [23]. It achieves this by finding, through Watson,
ontologies that contain relations between the two given
terms, possibly exploring multiple ontologies and de-
riving a relation from complete paths across different
ontologies. When evaluated on two large scale agri-
culture thesauri, Scarlet demonstrated good precision,
while using hundreds of external ontologies identified
at run-time.

Using PowerAqua11, a user can simply ask a ques-
tion, such as “Who are the members of the rock band
Nirvana?” and obtain an answer, in this case in the
form of a list of musicians (Kurt Cobain, Dave Grohl,
Krist Novoselic and other former members of the
group). The main strength of PowerAqua resides in the
fact that this answer is derived dynamically from the
relevant data available on the Semantic Web, as dis-
covered and explored through Watson.

Garcia et al. in [17] exploit Watson to tackle the task
of word sense disambiguation (WSD). Specifically,
they propose a novel, unsupervised, multi-ontology
method which 1) relies on dynamically identified on-
line ontologies as sources for candidate word senses
and 2) employs algorithms that combine information
available both on the Semantic Web and the Web in or-
der to integrate and select the right senses. They have

9http://neon-toolkit.org
10http://scarlet.open.ac.uk/
11http://kmi.open.ac.uk/technologies/

poweraqua/

shown in particular that the Semantic Web provides a
good source of word senses that can complement tra-
ditional resources such as WordNet12.

Also, in [22], the authors use Watson in a sophisti-
cated process to gather information about people and
include this information in an integrated way into a
learning mechanism for the purpose of identifying
Web citations. In [20], Watson is used as a main source
of knowledge for annotating Web services from their
documentation published online.

Finally, the Watson engine itself is at the basis of the
Cupboard13 ontology publishing tool, which provides
functionalities to expose, promote, evaluate and reuse
ontologies for the Semantic Web community [10].

These are only brief descriptions of a few of the
applications developed so far that rely on the Watson
platform. Moreover, as described in the next section,
Watson is also used within research processes, as a way
to obtain corpora of real-life, online formalised knowl-
edge for analysis and tests.

5. Using Watson as a research platform

A Semantic Web search engine such as Watson is
not only a service supporting the development of Se-
mantic Web applications. It also represents a unprece-
dented resource for researchers to study the Seman-
tic Web, and more specifically, how formalised knowl-
edge and data are produced, shared and consumed on-
line [8].

For example, to give an account of the way seman-
tic technologies are used to publish knowledge on the
Web, of the characteristics of the published knowl-
edge, and of the networked aspects of the Semantic
Web, [9] presented an analysis of a sample of 25,500
semantic documents collected by Watson. This analy-
sis looked in particular into the use of Semantic Web
languages and of their primitives. One noticeable fact
that was derived from analysing both the OWL (ver-
sion 1) species and the description logics used in on-
tologies is that, while a large majority of the ontologies
in the set were in OWL Full (the most complex variant
of OWL 1, which is undecidable), most of them were
in reality very simple, only using a small subset of the

12http://wordnet.princeton.edu
13http://cupboard.open.ac.uk

M. d’Aquin and E. Motta / Watson 7

primitives offered by the language (95% of the ontolo-
gies where based on the ALH(D) description logic).

More recently, research work has been conducted
using Watson as a corpus to detect and study various
implicit relationships between ontologies and semantic
documents on the Web [2]. For example, in [7], we in-
troduced fine-grained measures of agreement and dis-
agreement between ontologies, which were tested on
real-life ontologies collected by Watson. We also de-
rived from agreement and disagreement, measures of
consensus and controversy regarding particular state-
ments, within a large collection of ontologies, such
as the one of Watson. Indeed, an implementation of
such measures allowed us to build a tool indicating
the level of consensus and controversy that exist on a
given statement with respect to online ontologies. We
recently integrated this tool in the NeOn toolkit on-
tology editor, as a way to provide an overview of the
developed ontology with respect to its agreement with
other, online ontologies [11].

Many other aspects of online ontologies can also be
considered for study, including for example how on-
tologies evolve online [1], as well as for testing new
techniques and approaches applicable to ontologies at
large. In [5] for example, Watson is used to provide
ontologies where ‘anti-patterns’ can be identified. In
a more systematic manner, in [13], the Watson API is
used to constitute groups of ontologies with varying
characteristics to be used to benchmark semantic tools
on resource-limited devices. In such a case, the large
number and variety of ontologies online represent an
advantage for testing systems and technologies.

6. Related Work

There are a number of systems similar to Watson,
falling into the category of Semantic Web search en-
gines. However, Watson differs from these systems in
a number of ways, the main one being that Watson is
the only tool to provide the necessary level of services
for applications to dynamically exploit Semantic Web
data. Indeed, we can mention the following systems:

Swoogle has been one of the first and most popular
Semantic Web search engine [16]. It runs an auto-
mated hybrid crawl to harvest Semantic Web data
from the Web, and then provide search services
for finding relevant ontologies, documents and

terms using keywords and additional semantic
constraints. In addition to search, Swoogle also
provides aggregated statistical metadata about the
indexed Semantic Web documents and Semantic
Web terms.

Sindice14 is a Semantic Web index or entity look-up
service that focuses on scaling to very large quan-
tities of data. It provides keyword and URI based
search, structured-query and rely on some sim-
ple reasoning mechanisms for inverse-functional
properties [25].

Falcons15 is a keyword-based semantic entity search
engine. It provides a sophisticated Web interface
that allows to restrict the search according to rec-
ommended concepts or vocabularies [4].

SWSE16 is also a keyword-based entity search engine,
but that focuses on providing semantic informa-
tion about the resulting entities rather than only
links to the corresponding data sources [19]. Its
collection is automatically gathered by crawlers.
SWSE also provides a SPARQL endpoint en-
abling structured query on the entire collection.

Semantic Web Search17 is also a semantic entity
search engine based on keywords, but that allows
to restrict the search to particular types of enti-
ties (e.g. DOAP Projects) and provides structured
queries.

OntoSelect18 provides a browsable collection of on-
tologies that can be searched by looking at key-
words in the title of the ontology or by providing
a topic [3].

OntoSearch219 is a Semantic Web Search engine that
allows for keyword search, formal queries and
fuzzy queries on a collection of manually submit-
ted OWL ontologies. It relies on scalable reason-
ing capabilities based on a reduction of OWL on-
tologies into DL-Lite ontologies [24].

Sqore20 is a prototype search engine that allows for
structured queries in the form of OWL descrip-
tions [26]. Desired properties of entities to be
found in ontologies are described as OWL entities
and the engine searches for similar descriptions in
its collection.

Among these, Sindice for example, is one of the
most popular. However, while Sindice indexes a very
large amount of semantic data, it only provides a sim-
ple look-up service allowing applications/users to ‘lo-
cate’ semantic documents. Therefore, it is still nec-
essary to download and process these documents lo-
cally to exploit them, which in many cases, is not feasi-

8 M. d’Aquin and E. Motta / Watson

ble. The Swoogle system is closer to Watson, but does
not provide some of the advanced search and explo-
ration functions that are present in the Watson APIs
(including the SPARQL querying facility). The Fal-
cons Semantic Web search engine has been focusing
more on the user interface aspects, but now provides
an initial API including a sub-set of the functions pro-
vided by Watson. The other systems focus on a re-
stricted set of scenarios or functionalities (e.g., anno-
tation and language information in OntoSelect), and
have not been developed and used further than as re-
search prototypes.

Another important aspect to consider is how open
Semantic Web Search engines are. Indeed, Watson is
the only Semantic Web search engine to provide un-
limited access to its functionalities. Sindice, Swoogle
and Falcons are, on the contrary, restricting the possi-
bility they offer by limiting the number of queries ex-
ecutable in a day or the number of results for a given
query.

Finally, it is worth noticing that the issue of collect-
ing semantic data from the Web has recently reached a
broader scope, with the appearance of features within
mainstream Web search engine exploiting structured
data to improve the search experience and presenta-
tion. Indeed, Yahoo! SearchMonkey21 crawls and in-
dexes semantic information embedded in webpages
as RDFa22 or microformats23, in order to provide en-
riched snippets describing the webpages in the search
results. Similarly, Google Rich Snippets24 makes use
of collected semantic data using specific schemas in
webpages to add information to the presentation of
results. Watson currently focuses on individual RDF
documents and does not index embedded formats such
as RDFa. Such an extension if planned to be realised
in a near future.

21http://developer.yahoo.com/searchmonkey/
22http://www.w3.org/TR/xhtml-rdfa-primer/
23http://microformats.org/
24http://googlewebmastercentral.blogspot.

com/2009/05/introducing-rich-snippets.html

7. Future work and planned functionalities

With many users, both humans and applications25,
and several years of development (the very first ver-
sion was released in 2007), Watson is now a mature
system that provides constant services, with very rare
down times. It has evolved based on the requirements,
requests and feedbacks from the community of devel-
opers using it in many different applications.

Of course, Watson is still being developed, includ-
ing an ever growing index of semantic documents from
the Web. New specialised indexes have been created
recently, with manually initiated crawls of large linked
data nodes such as DBPedia26. Also, the Cupboard
system mentioned earlier is an ontology publication
platform based on the engine of Watson, which means
that any document submitted to it is being indexed us-
ing the same process as the one of Watson, and is made
available through compatible APIs. A ‘federated ser-
vice’ where different instances of Watson, including
the current system and Cupboard, can be connected in
order to return aggregated results has been developed
and is currently being tested. This means in particu-
lar that user will be soon able to contribute ontologies
to the Watson collection in real time, shortcutting the
crawler, by simply submitting them the Cupboard.

New functionalities are also being considered. In
particular, Watson includes a minimalistic evaluation
mechanism through the connection with Revyu.com.
Many refinements could be imagined, from simple
integrations with social platforms (e.g., a Facebook
‘like’ button for ontologies) to monitoring and keep-
ing the connections between communities behind on-
tologies, and the communities using particular ontolo-
gies. This requires extensive research on the social as-
pects of ontologies and how to keep track of them, but
would ultimately improve the ability of Watson to sup-
port users in selecting ontologies.

An important characteristic of ontologies is that they
are not isolated artefacts. They are related to each other
in a network of semantic relations. However, apart
from exceptions (noticeably, import), these relations
are mostly kept implicit. Extensive research work is

25There is currently about 2,500 queries and 8,000 pages viewed
per month on the Watson user interface. The activities of applica-
tions using the Watson APIs cannot be traced, but is believed to gen-
erate a significantly greater number of requests than the user inter-
face, as some of the applications described earlier in this paper can
make several thousands of calls to the APIs in a very short time.

26http://dbpedia/org

M. d’Aquin and E. Motta / Watson 9

being carried out currently on formalising such rela-
tions (e.g., inclusion, versioning, similarity, see [2])
and deploying efficient methods to detect them in a
large scale collection such as the one of Watson, as
well as to evaluate the benefit of structuring search re-
sults on the basis of ontology relations, for a more ef-
ficient ontology selection approach.

References

[1] Carlo Allocca, Mathieu d’Aquin, and Enrico Motta. Detecting
different versions of ontologies in large ontology repositories.
In International Workshop on Ontology Dynamic, IWOD 2009
at ISWC, 2009.

[2] Carlo Allocca, Mathieu d’Aquin, and Enrico Motta. DOOR:
Towards a Formalization of Ontology Relations. In Proc.of In-
ternational Conference on Knowledge Engineering and Ontol-
ogy Development (KEOD), 2009.

[3] Paul Buitelaar, Thomas Eigner, and Thierry Declerck. Ontos-
elect: A dynamic ontology library with support for ontology
selection. In Proc. of the Demo Session at the International
Semantic Web Conference, 2004.

[4] Gong Cheng, Weiyi Ge, and Yuzhong Qu. Falcons: searching
and browsing entities on the semantic web. In WWW confer-
ence, pages 1101–1102. ACM, 2008.

[5] Oscar Corcho, Catherine Roussey, Francois Scharffe, and Vo-
jtech Svatek. SPARQL-based detection of anti-patterns in
OWL ontologies. In EKAW 2010 Conference - Knowledge En-
gineering and Knowledge Management by the Masses, Poster
session, 2010.

[6] Mathieu d’Aquin. Building Semantic Web Based Applications
with Watson. In WWW2008 - The 17th International World
Wide Web Conference - Developers’ Track, 2008.

[7] Mathieu d’Aquin. Formally Measuring Agreement and Dis-
agreement in Ontologies. In International Conference on
Knowledge Capture - K-CAP 2009, 2009.

[8] Mathieu d’Aquin, Carlo Allocca, and Enrico Motta. A plat-
form for semantic web studies. In Web Science Conference,
poster session, 2010.

[9] Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc,
Sofia Angeletou, Marta Sabou, and Enrico Motta. Characteriz-
ing Knowledge on the Semantic Web with Watson. In Evalua-
tion of Ontologies and Ontology-based tools, 5th International
EON Workshop at ISWC 2007, 2007.

[10] Mathieu d’Aquin, Jérôme Euzenat, Chan Le Duc, and Holger
Lewen. Sharing and reusing aligned ontologies with cupboard.
In Demo, International Conference on Knowledge Capture -
K-CAP 2009, 2009.

[11] Mathieu d’Aquin and Enrico Motta. Visualising Consensus
with Online Ontologies to Support Quality in Ontology Devel-
opment (submitted). In EKAW 2010 Workshop on Ontology
Quality (to appear), 2010.

[12] Mathieu d’Aquin, Enrico Motta, Marta Sabou, Sofia Angele-
tou, Laurian Gridinoc, Vanessa Lopez, and Davide Guidi. To-
ward a new generation of semantic web applications. Intelli-
gent Systems, 23(3):20–28, 2008.

[13] Mathieu d’Aquin, Andriy Nikolov, and Enrico Motta. How
much Semantic Data on Small Devices? In EKAW 2010 Con-
ference - Knowledge Engineering and Knowledge Manage-
ment by the Masses, 2010.

[14] Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Reusing
knowledge from the semantic web with the watson plugin. In
Demo, International Semantic Web Conference, ISWC 2008,
2008.

[15] Mathieu d’Aquin, Marta Sabou, Enrico Motta, Sofia Angele-
tou, Laurian Gridinoc, Vanessa Lopez, and Fouad Zablith.
What can be done with the Semantic Web? An Overview of
Watson-based Applications. In 5th Workshop on Semantic Web
Applications and Perspectives, SWAP 2008, 2008.

[16] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost,
Yun Peng, Pavan Reddivari, Vishal C Doshi, and Joel Sachs.
Swoogle: A search and metadata engine for the semantic web.
In CIKM’04: the Proceedings of ACM Thirteenth Conference
on Information and Knowledge Management, 2004.

[17] Jorge Garcia and Eduardo Mena. Overview of a semantic dis-
ambiguation method for unstructured web contexts. In Pro-
ceedings of the fifth international conference on Knowledge
capture table of contents,K-CAP 2009, Poster session, 2009.

[18] Laurian Gridinoc and Mathieu d’Aquin. Moaw - uri’s every-
where. In 4th Workshop on Scripting for the Semantic Web
(challenge entry), ESWC 2008, 2008.

[19] Andreas Harth, Aidan Hogan, Renaud Delbru, J?rgen Um-
brich, Se?n O’Riain, and Stefan Decker. Swse: Answers be-
fore links! In Semantic Web Challenge, volume 295 of CEUR
Workshop Proceedings, 2007.

[20] Maria Maleshkova, Carlo Pedrinaci, and John Domingue. Se-
mantic Annotation of Web APIs with SWEET. In 6th Work-
shop on Scripting and Development for the Semantic Web at
ESWC 2010, 2010.

[21] Silvio Peroni, Enrico Motta, and Mathieu d’Aquin. Identi-
fying key concepts in an ontology through the integration of
cognitive principles with statistical and topological measures.
In Proceedings of the Third Asian Semantic Web Conference,
ASWC 2008, 2009.

[22] Matthew Rowe and Fabio Ciravegna. Disambiguating Identity
Web References using Web 2.0 Data and Semantics. Journal
of Web Semantics, 2010.

[23] Marta Sabou, Mathieu d’Aquin, and Enrico Motta. Explor-
ing the semantic web as background knowledge for ontology
matching. Journal of Data Semantics, 2008.

[24] Edward Thomas, Jeff Z. Pan, and Derek H. Sleeman. On-
tosearch2: Searching ontologies semantically. In OWLED
workshop, volume 258 of CEUR Workshop Proceedings, 2007.

[25] Giovanni Tummarello, Eyal Oren, and Renaud Delbru.
Sindice.com: Weaving the open linked data. In Proceedings of
the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South
Korea, volume 4825 of LNCS, pages 547–560, Berlin, Heidel-
berg, November 2007. Springer Verlag.

[26] Rachanee Ungrangsi, Chutiporn Anutariya, and Vilas Wu-
wongse. Sqore-based ontology retrieval system. In DEXA con-
ference, volume 4653 of Lecture Notes in Computer Science,
pages 720–729. Springer, 2007.

