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AbstractQuality is a complicated and multifarious topic in contemporary Linked Data research. The aspect of literal quality
in particular has not yet be rigorously studied. Nevertheless, analyzing and improving the quality of literals is important since
literals form a substantial (one in seven statements) and crucial part of the Semantic Web. Specifically, literals allow infinite
value spaces to be expressed and they provide the linguistic entry point to the LOD Cloud. We provide a toolchain that builds on
the LOD Laundromat data cleaning and republishing infrastructure. This toolchain alows us to analyze the quality of literals on
a very large scale, using a collection of quality criteria we systematically specify. We illustrate the viability of our approach by
lifting out two particular aspects in which the current LOD Cloud can be immediately improved by automated means. Since not
all quality aspects can be addressed algorithmically, we also give an overview of problem areas that may steer future endeavours
in tooling, training, and best practices.

1. Introduction

In this article we investigate the quality of literals in
the Linked Open Data (LOD) Cloud. A lot of work
has focused on assessing and improving the quality
of Linked Data. However, the particular topic of lit-
eral quality has not yet been thoroughly addressed. The
quality of literals is particularly important because (1)
they provide a concise notation for large (and possibly
infinite) values spaces and (2) they allow text-based in-
formation to be integrated into RDF’s graph based data
model.

Our approach consists of the following steps. First,
we create a toolchain that allows billions of literals to
be analyzed. The toolchain is made available as Open
Source code to the community and is integrated in
two state-of-the-art data quality services: Luzzu and
LOD Laundromat. Secondly, we use this toolchain

to analyze the overall quality of literals on the LOD
Cloud. Thirdly, based on the previous step, we give
concrete suggestions for improving the quality of liter-
als. Fourthly, we implement and evaluate some of these
suggestions and show that our approach and toolchain
are well-suited for implementing quality analysis and
improvement on a Web scale. Our approach is differ-
ent from existing work on quality assessment and im-
provement because we analyze and improve quality as-
pects on a very large scale and we integrate our results
into existing tooling for quality assessment and data
cleaning.

This paper is structured as follows. Section 2 discusses
related efforts on quality assessment and improvement.
In Section 3 we give our motivation for performing
this work. In Section 4 we define a set of quality cri-
teria for literals. The following Section describes the
toolchain and its role in supporting the defined quality
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criteria. Section 6 reports our analysis in terms of the
quality criteria defined in the previous section. In Sec-
tion 7 we enumerate opportunities for improving the
quality of literals based on our observations in the pre-
vious section. We implement two of those opportuni-
ties and evaluate their precision and recall. Section 8
concludes the paper and discusses further opportuni-
ties for research on literals quality.

2. Related work

Quality assessment for Linked Data is a difficult and
multifarious topic. We purposefully focus on only a
relatively isolated and restricted part of quality: the
syntactic, semantic and linguishtic aspects of literal
terms. Many publications have quantified various as-
pects of Linked Data in so-called ‘observatory’ stud-
ies. However, these studies have not included any-
thing but a cursory analysis of RDF literals. A formal
characterization of problem categories for data quality
has been developed by [18]. These categories are not
specifically targetted or tuned to fit Linked Data, but
we use somewhat similar distinctions in our this chrac-
terization in Section 4, Many vocabularies have been
created that can be used to express data quality in, e.g.,
[12]. Currently a W3C Working Group is developing a
standard vocabulary for expressing Linked Data qual-
ity.1.

A test-driven approach towards Linked Data qual-
ity assessment has been developed by [15]. By using
SPARQL query templates this allows the set of quality
metrics to be easily extended. Another SPARQL-based
approach is developed in [11]. Some aspects of qual-
ity are highly subjective and cannot be determined by
automated means. For this [1] have presented a crowd-
sourcing approach towards quality assessment. Quality
is not a static property of data, but something that can
change over time as data gets updated. The dynamic
aspects of data quality are observed in [16].

1See http://www.w3.org/TR/vocab-dqv/

3. Motivation

Literals are an important syntactic and semantic com-
ponent of the Semantic Web’s data model. They pro-
vide a concise notation for infinite value spaces such
as (natural) numbers. The cute Linked Open Numbers
dataset [22] shows that it simply does not make sense
to assign an IRI to everything. Some things are bet-
ter expressed in an abstract and possibly infinite value
space with well-defined orderings. For instance, the or-
dering relation between the natural number is better
expressed intentionally, by a short and simple function
definition, than extensionally, by an inifinite number of
pairs.

The second main benefit of literals is that they allow
linguistic or text-based information to be expressed in
addition to RDF’s graph-based data model. While IRIs
are (also) intended to be human-readable [9], there is
an advantage to the use of literals containing natural
language strings in order to convey human-readable in-
fromation about resources. Also, in some datasets IRIs
are intentionally left opaque as the human-readability
of universal identifiers may negatively affect their per-
manence [4]. Since the Semantic Web is a universally
shared knowledge base, natural language specifiers are
particularly important in order to ease the human pro-
cessability of information in different languages.

Assessing the quality of literals for each dataset is
an important ingredient for assessing the overall qual-
ity of a dataset. Specifically, indicators of literal qual-
ity can be fed into Luzzu [8], a state-of-the-art qual-
ity assessment framework. Secondly, a LOD Cloud-
wide overview indicates what are the current problems
for the consumption of literals and can point to ar-
eas where data publication practices can be improved.
Specifically, quantified quality indicators can be used
in order to improve the cleaning process of the LOD
Laundromat [3], a price winning data cleaning and re-
publishing Web Service. We believe that it is best to
base tomorrow’s tooling, training, best practices and
future standards on an empirical overview of today’s
problems.

Improving the quality of literals has (at least) the
following concrete benefits for the consumption of
Linked Data:

http://www.w3.org/TR/vocab-dqv/
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Efficient computation
If a data consumer wants to check whether lit-
erals l1 and l2 are identical she first has to per-
form the appropriate mappings. This is especially
cumbersome in certain use cases in which the
data consumer wants to check whether a given
literal appears in a (possibly large) collection
of RDF statements. However, if the data con-
sumer can rely on the fact that all lexical expres-
sion are canonical with respect to their associated
datatype, then she is able to perform literal in-
dentity checking based on a simple, character-for-
character string similarity check.

Data enrichment The availability of reliable lan-
guage tags that indicate the language of a textual
string is an enabler for data enrichtment. Sim-
ilarity metrics of literals are an important part
of existing instance matching approaches [13].
If the language tags of strings are known then
this allows notions of similarity to be defined
that move beyond (plain) string similarity and
that utilize richer linguistic means like natu-
ral language translation and lexical relationships
between words such as “is synonymous with”.
Notice that this will even benefit monolingual
datasets by pulling in statements about the same
concept based on translations/synonyms, where
the language-tagged string in a foreign language
is merely a means for enriching the data.

User eXperience Knowing the language of user-oriented
literals such as rdfs:label or dc:description
helps to improve the User eXperience (UX) of
Linked Data User Interfaces. Provided the lan-
guage preference of the user is known or can be
dynamically assessed, an application can priori-
tize language-compliant literals in the display of
user-facing literals. Similar remarks apply to the
approach of “value labeling” [21], in which nat-
ural language labels are used to denote resources
rather than their resource-denoting IRIs. Finally,
the canonicalization of literals can result in more
readable lexical expressions overall (e.g., deci-
mal “01.0” is canonicalized to “1.0”). While
the data publisher may have intended to display
literals in a certain serialization format, the util-
ity of intended formats is application-specific and
should therefore not be considered a good ap-
proach in Linked Data where unanticipated reuse
is a major goal.

Natural Language Processing Various NLP tasks are
shown to benefit from background knowledge

available in the LOD Cloud. Examples of such
tasks are Named Entity Linking, Entity Corefer-
ence, Event Coreference and Sentiment Analy-
sis. To facilitate the use of semantic knowledge
these tasks need to link natural language text to
Semantic Web resources. This is generally a two-
stage process: Firstly, a natural lagnuage expres-
sion is linked to relevant Semantic Web literals,
e.g., by using a full-text index like LOTUS [14].
Secondly, the literals from the previous step are
linked to IRIs. The second step is straightforward
and directly follows from the data definition by
the data creator. The first step of matching textual
expressions to relevant literals is more challeng-
ing, since a relevance metric has to be calculated
based on structured data and meta-information.
The improvement of literal quality, specifically
the availability of reliable language tags, results
in more reliable relevance metrics. E.g., a rele-
vance metric may favor literals whose language
tag matches the text-based query. In addition, re-
liable datatype information can be used to distin-
guish 〈"007", dt:kilo〉 (the weight of a bag of
potatoes) from 〈"007", xsd:string〉 (the name
of a fictional character).

4. Specifying quality criteria for literals

4.1. Syntax of literals

We define the set of literal terms as L := (IRI ×
LEX ) ∪ ({rdf:langString} × LEX × LTAG),
where IRI is the set of Internationalized Resource
Identifiers as per RFC 3987 [10], LEX is the set of
Unicode strings in Normal Form C [6], and LTAG
is the set of language tags as per RFC 5646 [20].
Literals that are triples are called language-tagged
strings LTS . The first element of a literal is called its
datatype IRI, the second element is called its lexi-
cal expression, and the third element – if present – is
called its language-tag. Syntactic RDF formats some-
times allow literals to be denoted by only a lexical ex-
pression lex . Such literals have previously been called
simple literals and are mere abbreviations of the [air
〈xsd:string, lex 〉.

When we talk about a given collection of data we of-
ten want to lift out those specific literal terms that ap-
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pear within it. Let OG denote the set of object terms
that appear in a given graph G , defined as OG :=
{o | 〈s, p, o〉 ∈ G}. The literal terms that appear in
G are then defined as LG := L ∩ OG . Similarly,
the literal terms that appear in a given dataset H =
〈G0, 〈i1,G1, , 〉 . . . , 〈in ,Gn〉〉, with default graph G0

and named graphs G1 through Gn , are defined as
LH :=

⋃n
i=0 LGi .

4.2. Semantics of literals

The meaning of RDF data is determined by an inter-
pretation function I that maps RDF terms to resources,
denotes by IR, and RDF statements to the binary truth
values, denoted by 0 and 1. Not every IRI denotes a
datatype. Let us call the subset of resources that are
datatypes D . The datatype IRIs are then defined by
IRID := {i | i ∈ IRI ∧ I (i) ∈ D}. Not every lexical
expression is allowed to occur in combination with ev-
ery datatype. More specifically, every datatype d ∈ D
specifies a subset of the lexical expressions, denoted
LEX (d), that are syntactically valid to appear in a lit-
eral pair or tuple together with a datatype IRI i for
which I (i) = d .

On the Semantic Web the meaning of an RDF term
is the resource it denotes. We first consider the mean-
ing of datatype IRIs. Every datatype IRI i ∈ IRID \
{rdf:langString} denotes a datatype d ∈ IR. Ev-
ery datatype d defines the following four things:

1. A set of syntactically well-formed lexical expres-
sions LEX (d) called the lexical space of d .

2. A set of resources VAL(d) that can be denoted by
literals of that datatype, called the value space of
d .

3. A functional lexical-to-value mapping l2v(d) :
LEX (d) → VAL(d). The resource that is de-
noted by a literal l is called its value or, symboli-
cally, I (l).

4. A (not necessarily functional) canonical value-
to-lexical mapping v2l(d).

The denotation of literal terms is determined by the
partial mapping IL : LIT → IR (definition 1). IL is
partial because a lexical expression may not belong to
the datatype’s lexical space. Which resource is denoted
by which literal is determined by the combination of a
specific datatype IRI i and lexical expression lex . No-

tice that the use of I (i) is required in definition 1 in
order to consider cases in which i denotes the same
datatype as rdf:langString while not being the ex-
act same term.

Definition 1 (Literal value).

IL(l) :=


lex if l = 〈lex 〉
〈lex , lc(tag)〉 if CondA(l)
l2v(I (e))(lex ) if CondB (l)
undefined otherwise

where

CondA(l)⇔ l = 〈rdf:langString, lex , tag〉

CondB (l)⇔ l = 〈e, lex 〉 ∧ lex ∈ LEX (I (e))

∧ I (i) 6= I (rdf:langString)

RDF processers are not required to recognize datatype
IRIs other than rdf:langString and xsd:string.
Literals with unrecognized datatype IRIs are seman-
tically treated as unknown names. An RDF processor
that recognized more datatypes is therefore not “more
correct” but it is able to distinguish and utilize more
subtleties of meaning.

4.3. Measures for literal quality

We want to distinguish between different aspects of lit-
eral quality. We start with the quality categories that
relate to the interpretability and processability of lit-
erals. These categories, shown in Figure 1, are related
to the four components a datatype specification should
ideally contain as enumerated in Section 4.2.

A literal lit is undefined if its IRI i does not denote
a datatype in D . Whether an IRI denotes a datatype
or not is not specified in the RDF standards. We say
that an IRI is defined iff lookup of the IRI leads to
either (A) a machine-processable specification, (B) a
human-readable formal specification, or (C) a human-
readable informal description that can be unambigu-
ously turned into a formal specification. For instance,
the XSD datatype IRIs point to the XML Schema 1.1
Part 2: Datatypes specification, which includes (A) and
(B). We require the specification to include a lexical
space, a value space and a mapping between the two.
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Figure 1. Quality categories for datatype support in RDF literals.

Literal
100%
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10%
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10%
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10%
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10%
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10%
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10%
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10%
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10%

If a specification is only missing a canonical value-to-
lexical mapping we include its literals under the ‘non-
canonical’ category (see below). The only exception
to these criteria is rdf:langString which does not
have a lexical space (and therefore no mappings ei-
ther).

A literal is unimplemented if its IRI denotes a defined
datatype but is not implemented in a specific RDF pro-
cessor. A literal is unsupported if it is either undefined
or unimplemented. A supported literal is valid if its
lexical expression can be mapped by l2v(d) to a value.
Valid literals are of higher quality than invalid or un-
supported ones because they expose more meaning,
i.e., they are not treated as unknown names.

A literal lit is canonical iff there exists a canonical
value-to-lexical mapping v2l(d) for its datatype d and
lit = v2l(l2v(d)(lit)). Canonical literals are of higher
quality than non-canonical ones because they allow
identity to be assessed more efficiently.

As is apparent from the foregoing, language-tagged
strings are to be handled in a special way. They de-
fine a value space but no lexical space (since language
tags are expressed external to the lexical expression).
Language tags must follow the grammar given in RFC
5646 [20] and the constituting subtags must match reg-
istrations inside the IANA Language Subtag Registry2.

2Downloaded from http://www.iana.org/
assignments/language-subtag-registry/
language-subtag-registry

For language-tagged strings we can define multiple
quality criteria. Firstly, the language tag may be mal-
formed. Secondly, a well-formed language tag may
not be registered in the IANA language tag registry.
Thirdly, some registered language tags are out of date.
Fourhtly, the language tag may be well-formed, reg-
istered and up-to-date, but it may not denote the (pri-
mary) language of the lexical expression.

Another aspect of the linguistic quality of literals
is that linguistic content is often encoded in other
datatypes, mainly xsd:string. We expect that there
is a wealth of linguistic content encoded in today’s Se-
mantic Web that cannot be effectively used to serve
users. In addition, there are use cases for the integra-
tion of NLP tooling, combining structure and un- or
semi-structured data, that would benefit from knowing
the language tag of a given string.

5. Implementation

In this section we describe the data and software we
use for our analysis and for the algorithmic improve-
ments we make.

5.1. LOD Laundromat data collection

The analysis as well as the evaluation of the improve-
ment modules is conducted over the LOD Laundro-
mat [3] data collection, which currently consists of
about 650K data documents and 38 billion ground
statements. The data is collected from data catalogues
(e.g., Datahub) and contains datasets that users have
uploaded through the Web API3. The LOD Laundro-
mat collection contains approximately 12.38 billion
literals and already stores the following metadata prop-
erties about literals for each of its datasets:

– The number of distinct literals.
– The number of literal occurrences (possibly con-

taining duplicate occurrences).
– The minimum, maximum, average, median and

standard deviation of the literal lengths.

3See http://lodlaundromat.org/basket

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://lodlaundromat.org/basket
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Since the LOD Laundromat only includes syntactically
processable statements it is missing all literals that are
part of syntactically malformed statements. The reason
for this is that whenever a statement is syntactically
malformed it is impossible to reliably locate whether a
literal terms is present and, if so, where it occurs. For
example, the syntactically malformed line [0] inside a
Turtle-family document may be fixed to a triple [1], a
quadruple [2] or two triples [3].

[0] <a> <b> "c, d> .
[1] <a> <b> <c,d> .
[2] <a> <b> "c," <d> .
[3] <a> <b> "c" , <d> .

The absence of well-formed literals that appear within
malformed statements does not influence the mean-
ing of an RDF graph or dataset. A statement must (at
least) be syntactically well-formed in order to be inter-
pretable. RDF semantics describes meaning in terms
of truth-conditions at the granularity of statements:
I (〈s, p, o〉) = 1 ⇔ 〈I (s), I (o)〉 ∈ IExt(I (p)),
where IExt is the extension function mapping re-
sources (called properties) to pairs of resources. While
a literal can have a reference or denotation of its own,
that denotation does – by itself – not express a basic
thought or proposition. Paraphrasing Frege, it is only
in the context of a triple that a literal has meaning.

5.2. Toolchain

While all LOD Laundromat data can be accessed
through open Web APIs, we have used the following
dedicated tools that we have developed to support run-
ning large-scale experiments over LOD Laundromat
data. All our tools are (of course) published as Open
Source software or as Web Services to the community.

Frank [2] A command-line tool that allows data to
be streamed at the level of singular triple pattern
fragments.

LOD-Laundromat-API4 A SWI-Prolog5 library that
allows LOD Laundromat data and services to be
accesses from whithin the ClioPatria triple store
and Semweb library [23].

plRdf 6 A SWI-Prolog library that implement genera-
tors and parsers for the primitive XSD datatypes

5See http://www.swi-prolog.org

as well as several other datatypes that occur in
RDF data.

For the assessment and improvement of language-
tagged strings we use three existing state-of-the-art
Automatic Language Detection (ALD) libraries:

1. Apache Tika - We use a NodeJS wrapper7 for
the 1.10 version of Apache Tika8. Apache Tika
constructs a language profile of the text to de-
tect and compares it with the profile of the set of
known languages. The profiles of these languages
are collections of texts which should be represen-
tative for the usage of those languages in practice.
Such language profile is called corpus. Corpus ac-
curacy depends on the profiling algorithm chosen
(word sets, character encoding, N-gram similar-
ity, etc.). Apache Tika uses 3-gram similarity as
such three-word groups are useful in most prac-
tical situations. According to the documentation,
this algorithm is expected to work accurately with
short texts. Tika can detect 18 languages (17 lan-
guages with European origin and Thai language).

2. CLD (Compact Language Detection) library -
The NodeJS CLD library9, which is built on top
of Google’s CLD2 library10. The original library
recognizes text in 83 languages, while the NodeJS
wrapper detects text in over 160 languages. CLD
is programmed as a Naive Bayesian classifier
which chooses one of the three possible algo-
rithms: based on unigrams, on quadrams or de-
fined by the script itself. This library makes use of
hints supplied by the user, on encodings, expected
language or domain URL.

3. Language-detection11 (abbreviated as LangDe-
tect or LD) is a library developed by Nakatani
Shuyo in Java. A commonly used plugin for lan-
guage detection in ElasticSearch12 is based on
this library. This library uses 3-gram similarity
metric and a Naive Bayesian filter. The language
profiles (corpora) used by the library have been
generated from Wikipedia abstracts.

7https://github.com/ICIJ/node-tika
8http://tika.apache.org/1.10/index.html
9https://github.com/dachev/node-cld
10https://github.com/CLD2Owners/cld2
11https://github.com/shuyo/

language-detection
12https://github.com/jprante/

elasticsearch-langdetect

http://www.swi-prolog.org
https://github.com/ICIJ/node-tika
http://tika.apache.org/1.10/index.html
https://github.com/dachev/node-cld
https://github.com/CLD2Owners/cld2
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
https://github.com/jprante/elasticsearch-langdetect
https://github.com/jprante/elasticsearch-langdetect
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The reported precision of the language-detection
library is 99.8% for 53 languages.

The chosen ALD libraries are reportedly widely used
(for e.g. in ElasticSearch) and characterized with re-
markable accuracy on the supported languages and text
sizes. Although the chosen set still remains – to some
extent – arbitrary, note that it is trivial to include more
libraries as one sees fit.

5.3. Luzzu Framework

Luzzu13 [8] is a quality assessment framework for
Linked Data. The rationale of Luzzu is to provide
an integrated platform that: (1) assesses Linked Data
quality using a library of generic and user-provided do-
main specific quality metrics in a scalable manner; (2)
provides queryable quality metadata on the assessed
datasets; (3) assembles detailed quality reports on as-
sessed datasets. Furthermore, we aim to create an in-
frastructure that:

– can easily be extended by users by defining cus-
tom, domain-specific metrics;

– implements quality-driven dataset ranking algo-
rithms facilitating use-case driven discovery and
retrieval.

Two quality metrics were implemented and used
within Luzzu14: (i) to assess the validity of a datatype
vis-a-vie their lexical value; and (ii) to assess the cor-
rectness of a string’s language tag.

5.3.1. Assessing the Datatype’s Compatibility

In this metric we assess the compatibility of a datatype
literal against its lexical value. For example whilst
“10”^^xsd:int is correct, a value “10” with a
datatype defined as xsd:dateTime is incorrect.
Given Tliterals as the total number of literals, and
TcorrectLiterals total number of correctly defined liter-
als, a quality value (Qdt ) is calculated as follows:

Definition 2. Qdt =
TcorrectLiterals

Tliterals

13Sources: https://github.com/EIS-Bonn/Luzzu;
Website: http://eis-bonn.github.io/Luzzu/

14All metric implementations are external to Luzzu, therefore the
results obtained are through the metrics imported to the framework.

A literal is a correct literal, if its lexical value is not
malformed or ill-typed, or if the literal is not unde-
fined.

5.3.2. Assessing the Correctness of a Language Tag

This metric determines whether the language tag
used in an RDF Literal is the correct one, in terms
of (i) its tag syntax (following the RDF 1.1 Con-
cepts15) and (ii) also in terms of actual language of
the word (or description). For example, “bread”@en
and “h̄obż”@mt have the correct language tag, on
the other hand “h̄obż”@en or “h̄obż”@maltese
should be flagged as incorrect.

For simple single word literals we use the Lexvo [7]
service 16. Lexvo is an enriched linguistics knowledge
base that interconnects entities to each other (for ex-
ample different meanings and translations of a word)
and also to entities on the Web of Data. Given a
string literal with its corresponding tag, a request to
the Lexvo API is made and a dereferenceable RDF re-
source is returned. This resource is then queried and
if a rdfs:seeAlso is found, then we deem a string
literal to have the correct tag.

In order to identify the correctness of a language tag
in a multi-word literal (e.g in a description) we use the
Xerox Language Identifier17. We experimented with
the service for its identification correctness by provid-
ing various sentences in English, Italian and German.
The service always returned the correct identification.
On the other hand, this cannot be considered as a guar-
antee for all languages. The authors in [17] state that
the service’s identification correctness is not guaran-
teed for certain languages.

The result of this metric is dependent of these two ser-
vices, therefore we consider this metric to give us an
estimate. The quality value (Qlt ) is calculated as fol-
lows:

Definition 3. Qlt =
TcorrectLanguageTags

TstringLiterals

15http://www.w3.org/TR/rdf11-concepts/
16http://lexvo.org
17https://services.open.xerox.com/bus/op/

LanguageIdentifier/GetLanguageForString, an
external service that tries to identify the language of a given
sentence

https://github.com/EIS-Bonn/Luzzu
http://eis-bonn.github.io/Luzzu/
http://www.w3.org/TR/rdf11-concepts/
http://lexvo.org
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
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where TcorrectLanguageTags is the number of cor-
rect language tags attached to a string literal and
TstringLiterals is the total number of string literals.

6. Analysis

We have analyzed 1,457,568,017 literals from the
LOD Laundromat data collection for the quality crite-
ria described in Section 4.3. The full and up-to-date re-
sults are available online at http://wouterbeek.
github.io/quality. We see that the vast major-
ity of literals are valid and a modest majority of them
are also canonical. However, 79% (or 1,108,813,673
occurrences) of literals are (plain) strings which have
very few syntactic strictures. When we look at the
more complex datatypes, e.g., dates, times and floating
point numbers, we see that there is still a lot of room
for improvement (see below).

Undefined Most IRIs that occur in the context of a
literal come with neither of the three criteria we con-
sider sufficient for an IRI to denote a datatype, as spec-
ified to Section 4.3. For instance, none of the DBpedia
datatype IRIs is currently defined. Many datatypes that
have some form of human-readable informal descrip-
tion do not provde enough information and/or clarity
that would allow them to be implemented. An example
of this is sysont:Markdown18 which is described
in Listing 1. This informal specification still lacks sev-
eral key components: Firstly, the value space can either
be defined as the set of Markdown-formatted strings
or in terms of a formal abstraction of Markdown docu-
ments, similar to rdf:XMLLiteral’s DOM model.
The grammar pointed to in the rdfs:seeAlso prop-
erty is itself not formally specified. Finally, there does
not yet exist a (generally accepted) canonical form for
writing Markdown.

Listing 1: Informal description of Markdown datatype.

sysont:Markdown a rdfs:Datatype ;
rdfs:comment "A string literal formated using

markdown syntax." ;
rdfs:label "Markdown formated string" ;
rdfs:seeAlso "http://daringfireball.net/

projects/markdown/syntax" .

18sysont expands to http://ns.ontowiki.net/SysOnt/

Table 1
The five most occurring undefined datatypes.

Datatype IRI Occurrences
dt:second 2,326,298
dt:minute 682,790
dt:squareKilometre 643,493
dt:centimetre 382,281
dt:kilogram 356,321

We notice that there is currently not a strong practice
of defining datatypes in terms of XML Schema. In fact,
we did not find such a definition outside of the origi-
nal XSD specification. Also, while there is no inherent
reason why an informally specified datatype should be
ambiguous and/or incomplete, in practice we have not
found an informal description that is unambiguous and
complete. Table 1 shows the most often occurring un-
defined datatypes. The vast majority of these datatypes
are defined in DBpedia.

1457568017

Partially defined Some datatypes are partially de-
fined. For instance http://purl.org/dc/terms/W3CDTF
does not define a canonical mapping, but does allow
multiple lexical expressions to denote the same value.
For instance the time zone designator is defined as “Z
or +hh:mm or -hh:mm”, with hh and mm ranging from
0 to 23 and 59 respectively. This allows +01:00 and
-23:00 or +00:00 and -00:00 to express the same
value. We also note that a canonical mapping is some-
times hard to specify and may sometimes not be very
useful. An example of this is rdf:HTML which does
not specify a canonical mapping, which would have to
map DOM models to HTML serializations.

Invalid Table 2 shows the datatypes that have the high-
est number of invalid literals. Overall, only 0.11% of
the literals are invalid. However, as was mentioned be-
fore, 79% of all literals are (language-tagged or plain)
strings for which almost every lexical expression is
valid. As soon as the data gets more compliated, the
percentage of invalid occurrences goes up.

Non-canonical Table 3 shows the eight datatypes with
the highest number of non-canonical literals. Over-
all, 3.5% of the literals are non-canonical. Again, the
strings are canonical by definition, since they map
onto themselves. On the other hand, the majority of
the floating-point numbers (either xsd:dobule or

http://wouterbeek.github.io/quality
http://wouterbeek.github.io/quality
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Table 2
The five datatype IRIs with the highest number of invalid literals.

Datatype IRI Occurrences
xsd:int 511,741
xsd:decimal 122,738
xsd:dateTime 98,505
xsd:gYearMonth 16,469
xsd:gYear 11,957

Table 3
The eight datatype IRIs with the highest number of non-canonical
literals.

Datatype IRI Occurrences
xsd:float 30,152,304
xsd:double 17,783,414
xsd:decimal 2,127,133
rdf:XMLLiteral 245,457
xsd:dateTime 224,994

xsd:float) are non-canonical. The reason for this is
that their canonical format is quite specific: it must al-
ways be written in scientific notation with the exponent
sign E. For instance ,this means that a floating point
number “1.0” must be canonically written as “1.0E0”.

6.1. Language-tagged strings

The LOD Laundromat currently contains 5.31 billion
natural text expressions, out of which 2.74 billion
(51.66%) have a language tag specified by the data cre-
ator. This means that around half (48.34%) of the LOD
Laundromat natural text literals do not have associated
language tag. Furthermore, we looked into the distri-
bution of the encountered language tags (Table 4). By
far the most literals (over 1 billion) are tagged as En-
glish literals, followed by several other languages of
European origin: German, French, Italian and Spanish.
70.33% of the defined language tags describe literals
in one of the 10 most frequent languages.

6.2. Quality Analysis using the Luzzu Framework

In order to illustrate that the here presented toolchain
integrates well with existing quality frameworks, we
have also run initial experiments on the Luzzu frame-
work for quality analysis [8]. We used Luzzu in or-
der to process 470 data document from the LOD Laun-

Table 4
The distribution of language tags as calculated over 12,380,443,617
literals.

Language tag Occurrences
en 1,049,037,147

de 165,996,755

fr 149,507,401

it 126,550,182

es 89,464,945

ru 84,663,662

nl 81,413,963

pl 67,271,847

pt 61,105,515

ja 53,954,942

other 813,744,170

no tag 2,577,080,307

text literals 5,319,790,836

all literals 12,380,443,617

dromat collection. For each of these documents Luzzu
calculated the compatible datatype metric and the cor-
rect language tag usage metric. For these specific doc-
uments Luzzu determined that, on average, 70.44% of
the RDF string literals in LOD Laundromat have a cor-
rect language tag. On the other hand, only 38.69% of
RDF literals have a compatible datatype.

We inspected a sample of documents whose quality
value was less than 40% for both metrics. Starting from
the correct language tag usage metric, we group prob-
lematic (as opposed to correct) triples in the following
categories:

– Literal values without a language tag;
– Literal values with non-alphabet symbols (e.g
“related software”@en);

– Literal values with syntactic errors (e.g. “flow
cytometer sorter”@en);

– Literal values with an unknown language tag (e.g
“article”@en-US).

The majority of problematic triples fall in the first cat-
egory. The third and fourth categories are the most in-
teresting. The former category deals with literals that
were identified incorrect by the metric’s external ser-
vice due to some language syntactic flaw. For example,
in “flow cytometer sorter”@en the term cy-
tometer should have been written as cytometry. The fi-
nal category deals with the actual syntax expected of
the language tag. Although the tag @en-US is cor-
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rectly defined as per the BCP47 standard [20], our met-
ric expects two/three letter language tag as defined by
the Linked Languages Resources19.

On the other hand, the compatible datatype metric was
more simple to analyse as most of the literals lacked
a datatype. Figures 2 and 3 show a subset of the doc-
uments that were analysed and their quality. All qual-
ity results can be visualised at http://jerdeb.
github.io/LODLaundromatCrawler.

7. Improvement

In this section we discuss opportunities for improving
the quality of literals on the LOD Cloud. We base this
discussion on the results of the analysis in the previous
section. Some quality aspects can only be improved
by the original data creator and/or publisher. While we
cannot automate these improvements, we can give sug-
gestions and point to the major pain points based on
empirical observation rather than intuition. In order to
show that our toolchain can indeed be used to scale
quality improvement, we lift out two quality improve-
ments that can be automated and that support two of
the use cases in Section 3: (1) Efficient computation
for equivalence tests, by automatically converting non-
canonical valid literals to canonical ones. (2) Natural
language processing by automatically assigning lan-
guage tags to textual literals that did not have language
tags before.

7.1. Improving datatypes

Undefined → defined Undefined literals can only
be improved by adding definitions that take all as-
pects of Section 4.2 into account. This may be par-
tially automated based on the lexical expressions
that appear in the context of a given IRI. However,
merely looking at the associated lexical expressions
is not enough. For instance, the fact that the values
“1”, “203”, “9009” appear in the data does not tell us
whether the datatype is an xsd:positiveInteger

or an xsd:nonNegativeInteger. Deciding on the
most general primitive datatype, xsd:decimal in

19http://linkedvocabs.org/lingvoj/

this case, also does not suffice since, for this partic-
ular example, xsd:gYear would apply just as well.
The problem becomes even more complex when non-
standard datatypes are considered, which could map
lexical expression “1” to the Mount Everest and lexical
expression “203” to afternoon sunsets. The analysis in
Section 6 gives an overview of the size of this quality
issue and hints at actions that may be undertaken to
improve quality in this respect (e.g., defining DBpedia
datatypes in terms of the XSD primitives).

Unimplemented → implemented Unimplemented
literals can only be improved upon by adding support
to a particular RDF processor. At the moment, only
few datatypes beyond the XSD primitive types are im-
plemented by any processor. Section 6 shows that it is
not easy to implement most datatypes since many of
them are underspecified. Improving this may require a
more structured way of defining a datatype, something
the current standards do not cover. Also, while imple-
menting plRdf, we discovered that it helps to cross-
validate against another library (in our case Sesame 4).
In a similar way, we hope that the availability of plRdf
will make it easier for other to add support for more
datatypes in their RDF processors.

7.2. Improving lexical expressions

Invalid→ valid Invalid literals can only be improved
upon by the original data publisher. We cannot au-
tomate this task as it requires us to choose between
changing the datatype IRI to match the lexical ex-
pression, changing the lexical expression, or changing
both. We can however give a list of the often occurring
mistakes that data creators should be aware of. Based
on our empirical observations these are the top 5 mis-
takes, along with suggestions of how to avoid them:

1. xsd:int is not the same as xsd:integer. The
former is a short integer and cannot be used to ex-
press integers smaller than -2147483648 or larger
than 2147483647.

2. RDF IRIs are case sensitive [5]. Specifically
xsd:datetime is not the same as xsd:dateTime.

3. xsd:date must not include a temporal specifiers.
xsd:dateTime is used for this instead.

4. Datatype IRI are regularly not resolved with re-
spect to their RDF prefixes.

http://jerdeb.github.io/LODLaundromatCrawler
http://jerdeb.github.io/LODLaundromatCrawler
http://linkedvocabs.org/lingvoj/


Literally Better: Analyzing and Improving the Quality of Literals 11

Figure 2. Quality Assessment over a subset (around 30 documents) of LOD Laundromat for Compatible Datatypes

Figure 3. Quality Assessment over a subset (around 30 documents) of LOD Laundromat for Correct Language Tag Identification

Non-canonical → canonical Canonical literals pro-
vide a significant computational benefit over non-
canonical valid literals for several use cases. For in-
stance, checking whether two terms or statements are
identical or not no longer requires parsing and gener-
ating, i.e., string similarity suffices where one whould
have to calcuate v2c(l2v(l1)) ≡ v2c(l2v(l2)) other-
wise.

The improvement of non-canonical literals is con-
ditional on other quality improvements. Firstly, the
datatype has to specify a canonical mapping. Secondly,
there has to be a tool that implements this mapping.
When these two preconditions are met we can algo-
rithmically generate canonical out of non-canonical lit-
erals. We have done this for {ToDo Wouter} literals.
We have compared the results of our plRdf library to
Sesame 4, to the extent that there is a single canonical
form. Specifically, the canonical form for XSD dou-
bles and float allows some deviation according to the
specification [19]. While we have implemented several
other often occurring datatypes, e.g., dct:W3CDTF and
dct:RFC4646, it is not easy to check our implemen-

tation’s correctness since very few comparable imple-
mentations exist.

7.3. Improving language tags

Invalid → valid As is the case with lexical expres-
sions, invalid language tags can only be improved by
the original data publisher.

Outdated → up-to-date Outdated language can be
automatically updated, since IANA registers the dep-
recation process of language tags.

No language tag → language tag We test tools to
assign a language tag to textual literals without one.
For this purpose we test language detection improve-
ments on textual lexical expressions from the first
20,000 documents of the LOD Laundromat data col-
lection. We define a textual lexical expression as a lexi-
cal expression of datatype xsd:string or xsd:langString
which has at least two consecutive Unicode letters.
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In an attempt to improve the language tags coverage of
LOD Laundromat, we apply three language detection
libraries (described in Section 5.2). We are interested
in the following aspects. How often does the automat-
ically detected language tag coincide with the user-
assigned tag? How accurate are the language detection
libraries? Does the accuracy of detection differ per pri-
mary language or for various string sizes? Are certain
languages or string sizes easier for language detection?
How often do the libraries refrain from assigning a lan-
guage tag? Can we combine the libraries and thus im-
prove the accuracy of language detection?

In our experiments, we primarily focus on the set of
tagged literals. These contain a “golden” language tag,
which allows us to easily evaluate the accuracy of our
solutions. For these, we report the precision, recall and
F1-value of each of the language detection libraries.
We assume that the accuracy of the language detection
on the language-tagged strings is comparable to the
accuracy on textual lexical expressions with no user-
defined language tag.

The language tag assigned by the users and by the au-
tomatic detection libraries can be of arbitrary length or
complexity. Since our language detection tools provide
an ISO 639-2 two-character language code in most of
the cases, we focus our comparison on the initial two
characters of each language-tagged string. This gran-
ularity of comparison is satisfactory for most cases,
although in exceptional situations the secondary lan-
guage tag can also describe the language. This is the
case for Chinese languages where zh-cn denotes a
different language than zn-tw.

The accuracy for each of the libraries over all language-
tagged natural text is shown in Table 5. The high-
est precision and F1-score is achieved by the CLD
library, which covers highest number of languages
(160). LangDetect has best performance in terms of
recall, while Apache Tika has lowest. It is interesting
to notice that Apache Tika never returns an empty lan-
guage tag, while CLD often gives no language sugges-
tion.

We further investigate whether the accuracy of the li-
braries is sensitive to specific language tags or string
sizes. The outcome of this analysis is shown in Table 6.
Each of the cells in the Table represents an intersection
of a language and string size bucket, while the values
in the cell show the F1-accuracy of each of the three

libraries: Tika, CLD and LangDetect, correspondingly.
While CLD has highest accuracy in the majority of the
cells, there are notable exceptions. For instance, when
it comes to Italian text expressions or short French ex-
pressions, the accuracy of the LangDetect library is
higher. Guided by these insights, we combine the li-
braries by applying the most accurate libraries per cell.
As a result, the detection judgement by CLD is used
for most cells (55.04%), while Apache Tika (28.82%)
and LangDetect (16.13%) come second and third. By
combining the libraries in such manner we are able
to improve slightly the F1-value in comparison to the
most successful library (see last row of Table 5).

Figure 4 shows the aggregated accuracy per bucket for
each of the libraries. Note that there is no intersec-
tion of the plotted lines: for any bucket of text size,
CLD has the highest F1-value, while Tika has the low-
est. However, the text size does correlate with the gen-
eral success of language detection (by any library).
Concretely, short strings which contain only one word
(bucket 0) or two words (bucket 1) are much harder
to detect correctly than longer strings. On the other
hand, expressions from bucket 8 (between 129 and 256
words) can be detected with almost perfect accuracy.

This tendency is confirmed for the most frequent 10
languages (Figure 5). Every data point represents an
average F1-value over the three libraries for a given
language and bucket. Libraries can successfully detect
the language of sufficiently long literals (bucket 3 lit-
erals already have an F-measure of around 80%, grow-
ing to above 90% for bucket 4). Languages of Indo-
European origin closely follow this distribution, while
Chinese and Vietnamese have a different behavior: the
accuracy depends much less on the length of text.

8. Conclusions

We predented our toolchain for large-scale data qual-
ity analysis and improvement, which extends the LOD
Laundromat data cleaning and republishing architec-
ture. We have focussed on the quality of literals, an
area of Linked Data quality that has not been thor-
oughly investigated before. We have systematically
specified a collection of quality criteria that are specific
for RDF literals. We have shown that our toolchain is
able to analyze data quality, in terms of those quality
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Figure 4. Accuracy per language detection library

Figure 5. Accuracy per language tag for the 10 most frequent languages
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Table 5
Performance of the ALD solutions

Library Precision Recall F1-value
Apache Tika 19.77% 19.77% 19.77%
CLD 75.55% 32.21% 45.16%
LangDetect 36.97% 35.45% 36.19%
Combined 59.53% 37.22% 45.80%

Table 6
F1-value accuracy of the libraries per bucket size and language

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
en 1.88

12.76
12.45

7.11
39.55
27.22

26.53
76.85
57.75

60.09
93.07
80.45

86.53
99.24
96.45

96.01
99.64
98.9

98.85
99.78
99.4

98.98
99.56
99.16

98.55
99.33
99.14

96.54
98.62
98.42

64.4
90.31
84.03

83.66
94.11
93.97

77.54
93.33
90.88

71.43
91.43
82.14

n/a
n/a
n/a

de 6.87
14.1
31.55

15.07
33.52
48.88

54.63
80.06
83.4

84.26
96.96
95.79

88.9
96.74
97.71

94.23
97.75
98.47

96.85
98.54
98.72

98.4
99.13
99.14

98.05
98.9
99.26

95.45
98.02
98.65

67.39
84.9
85.49

45.87
86.67
89.91

61.54
92.31
92.31

81.82
100.0
100.0

100.0
100.0
100.0

nl 1.39
4.49
8.25

4.83
8.13
11.19

21.01
45.89
46.22

66.15
64.13
74.77

96.53
93.67
96.66

97.15
94.78
97.63

98.8
97.48
98.92

98.65
98.72
98.81

97.84
98.83
98.26

92.39
96.54
94.74

62.92
84.21
75.77

49.72
80.35
67.96

41.18
81.25
47.06

16.67
40.0
16.67

0.0
0.0
0.0

fr 3.62
4.93
9.71

19.96
24.32
35.01

60.01
67.08
73.52

82.74
90.0
93.09

88.66
96.17
95.87

95.12
97.01
98.12

98.61
98.54
98.02

99.02
99.06
97.44

99.08
99.19
98.64

96.5
97.31
97.39

86.44
91.0
89.27

86.14
90.1
88.12

60.0
60.0
60.0

60.0
75.0
100.0

n/a
n/a
n/a

pl 11.98
14.9
20.51

23.24
31.71
32.12

35.61
45.47
43.54

75.02
85.88
85.02

96.86
97.75
98.15

99.29
99.38
99.36

99.28
99.39
99.21

99.05
99.19
98.93

98.82
99.09
98.76

97.97
98.17
97.88

93.69
95.15
93.17

76.39
77.61
77.78

41.67
43.48
41.67

100.0
100.0
100.0

n/a
n/a
n/a

vi 0.0
0.02
2.29

0.0
14.33
19.27

0.0
61.44
56.62

0.0
87.06
85.19

0.0
98.51
98.08

0.0
98.2
98.19

0.0
98.45
97.92

0.0
98.65
98.27

0.0
99.2
98.9

0.0
98.88
98.17

0.0
90.15
44.27

0.0
89.3
85.84

0.0
46.15
45.0

n/a
n/a
n/a

0.0
100.0
0.0

it 8.85
1.45
17.31

18.89
9.44
28.12

40.53
29.94
49.02

80.1
62.07
85.33

93.63
81.93
94.25

93.81
89.85
93.33

97.57
94.44
97.66

98.23
96.44
98.33

98.65
96.77
98.48

97.53
95.6
97.12

90.25
82.81
87.0

89.02
53.37
66.47

86.67
53.21
63.33

0.0
0.0
0.0

n/a
n/a
n/a

sv 0.97
3.4
12.61

2.31
8.15
9.41

12.56
19.68
21.9

49.28
65.39
72.64

73.23
84.89
91.12

89.12
94.21
97.8

94.35
96.79
98.76

97.12
98.57
98.71

96.83
98.67
97.82

94.5
97.78
95.66

78.89
88.32
84.43

52.17
73.68
60.87

0.0
44.44
40.0

0.0
100.0
100.0

n/a
n/a
n/a

pt 1.85
7.47
4.87

5.26
12.72
11.76

8.19
27.5
26.3

16.16
64.33
66.63

19.29
82.0
84.18

34.28
94.88
94.71

41.77
98.04
98.23

55.76
99.17
98.87

63.08
99.45
99.12

70.0
99.18
98.68

74.01
98.71
98.11

61.11
88.55
81.94

78.95
100.0
100.0

n/a
n/a
n/a

n/a
n/a
n/a

zh 0.0
50.94
61.6

0.0
52.59
44.77

0.0
63.78
61.5

0.0
82.17
79.95

0.0
87.84
85.2

0.0
84.47
81.02

0.0
77.99
75.69

0.0
79.76
77.2

0.0
85.84
83.59

0.0
87.25
88.06

0.0
6.75
83.91

0.0
46.15
64.29

n/a
n/a
n/a

0.0
100.0
12.5

n/a
n/a
n/a

criteria, on a very large scale. We have illustrated that
our toolchain can be used by existing quality assess-
ment frameworks, such as Luzzu. We have also pointed
to areas where literal quality would be most effectively
improved, because it is now possible to quantify the
impact of data cleaning, and other quality improve-
ment attempts, beforehand.

Finally, we have shown that it is possible to improve
the quality of millions of literals (and thereby state-
ments) very quickly, by algorithmic means. This does
of course not apply to every quality criterion, e.g., it
does not apply to subjective criteria. But at least the
quanlity criteria that can be automatically improved
in theory should now also be automatically improved
in practice. We have shown that, when given state-of-
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the-art algorithms, our toolchain is able to improve the
overall quality of the LOD Cloud in days, not decades.
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