
Undefined n (2016) 1–14 1
IOS Press

SPARQLES:
Monitoring Public SPARQL Endpoints
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Pierre-Yves Vandenbussche a, Jürgen Umbrich b, Luca Matteis c, Aidan Hogan d & Carlos Buil-Aranda e

a Fujitsu (Ireland) Limited, Swords, Co. Dublin, Ireland
E-mail: pierre-yves.vandenbussche@ie.fujitsu.com
b Vienna University of Economy and Business (WU), Austria
E-mail: jurgen.umbrich@wu.ac.at
c Department of Computer Science, Sapienza University of Rome, Italy
E-mail: matteis@di.uniroma1.it
d Centro de Investigación de la Web Semántica, Department of Computer Science, University of Chile, Chile
E-mail: ahogan@dcc.uchile.cl
e Centro de Investigación de la Web Semántica, Departamento de Ciencia de la Computación, Pontificia
Universidad Católica de Chile, Chile
E-mail: cbuil@ing.puc.cl

Abstract. We describe SPARQLES: an online system that monitors the health of public SPARQL endpoints on the Web by
probing them with custom-designed queries at regular intervals. We present the architecture of SPARQLES and the variety of
analytics that it runs over public SPARQL endpoints, categorised by availability, discoverability, performance and interoperabil-
ity. We also detail the interfaces that the system provides for human and software agents to learn more about the recent history
and current state of an individual SPARQL endpoint or about overall trends concerning the maturity of all endpoints monitored
by the system. We likewise present some details of the performance and usage of the system thus far.

Keywords: SPARQL endpoints, Linked Data, Semantic Web, Web of Data

1. Introduction

Thousands of Linked Datasets have been made
publicly available in recent years.1 These datasets
span a plethora of topics, varying from general-
interest datasets like DBpedia [20]2 or GeoNames3, to
more niche datasets on topics like proteins4 or Poké-

1At the time of writing, LODstats [11] reports 9,960 datasets:
http://stats.lod2.eu/ (l.a.: November 29, 2015). The most re-
cent “State of the LOD Cloud” report found 1,014 datasets.

2http://datahub.io/dataset/dbpedia
3http://datahub.io/dataset/geonames-semantic-web
4http://datahub.io/dataset/uniprot-databases

mon5. Each dataset follows the Semantic Web stan-
dards [32,19] for describing its content, and the Linked
Data principles [7] for making that content accessible
on the Web. The goal is to enable clients to access these
diverse datasets in an automated and uniform way, and
also to combine content from multiple locations in a
similarly automated fashion.

To entice new consumers, many publishers began
hosting public SPARQL endpoints over their datasets
such that clients can pose complex queries to the server
as a single request and retrieve direct answers. Hun-

5http://datahub.io/dataset/pokepedia-fr

0000-0000/16/$00.00 c© 2016 – IOS Press and the authors. All rights reserved

http://stats.lod2.eu/
http://datahub.io/dataset/dbpedia
http://datahub.io/dataset/geonames-semantic-web
http://datahub.io/dataset/uniprot-databases
http://datahub.io/dataset/pokepedia-fr


2 SPARQLES: Monitoring Public SPARQL Endpoints

dreds of public SPARQL endpoints have thus emerged
on the Web in recent years [9]. These endpoints in-
dex content with a variety of topics and sizes and
(in theory at least) accept arbitrary SPARQL queries
from remote clients over the Web. However, applica-
tions using these endpoints have been slow to emerge.
The convenience of SPARQL queries for clients trans-
lates into significant server-side costs maintaining such
heavyweight query services, which translate into a va-
riety of technical problems on the level of the SPARQL
infrastructure itself [9].

With respect to what that SPARQL infrastructure
consists of, the recent SPARQL 1.1 standard issued
recommendations relating to the following:

Query The SPARQL 1.1 Query Language recom-
mendation [18] extends the original SPARQL
Query Language [27] with features such as prop-
erty paths, sub-queries, aggregates, etc. The re-
lated SPARQL 1.1 Federated Query recommen-
dation [26] specifies how a SPARQL engine can
invoke a remote endpoint at runtime.

Protocol The SPARQL 1.1 Protocol recommenda-
tion [12] specifies how clients should interact
with a SPARQL endpoint over HTTP, includ-
ing how GET/POST requests should be structured,
what sorts of responses should be returned, etc.
Three output result formats have also been recom-
mended, extending the XML format introduced
in the original standard with options for returning
data in JSON or CSV/TSV.

Description The SPARQL 1.1 Service Description
recommendation [36] provides a vocabulary with
which the capabilities and configuration of a
SPARQL endpoint can be described in RDF such
that, for example, clients can discover endpoints
with the features they need.

Update The SPARQL 1.1 Update specification [15]
describes a language for inserting, deleting and
updating the data present in a SPARQL engine.

Entailment The SPARQL 1.1 Entailment Regimes
recommendation [16] describes how ontological
entailments can be included when computing the
answers for a SPARQL query.

With respect to public SPARQL endpoints, the lat-
ter two aspects of the SPARQL infrastructure are cur-
rently of lesser interest: updates to data are unlikely to
be enabled on a public query service and we do not
yet know of any public SPARQL endpoint supporting
entailment regimes. Thus, for clients of current public

endpoints, the former three aspects – query, protocol,
and description – appear to be of most relevance.

With respect to these three infrastructural aspects,
in previous work [9] we performed an empirical in-
vestigation of the maturity of public SPARQL end-
points from the perspective of the client, who we argue
needs endpoints that are: (i) highly-available through
the SPARQL protocol, thus allowing queries to be an-
swered reliably at any time; (ii) described using stan-
dard vocabularies in well-known locations, thus allow-
ing for the (automatic) discovery of relevant endpoints
over the Web; (iii) capable of answering queries in
acceptable time, thus enabling their use in real-time
applications; (iv) compliant with respect to support-
ing the query features of SPARQL (1.1), thus enabling
them to be interrogated alongside other endpoints in
a uniform manner. If an endpoint has high availabil-
ity, is well-described, supports all features of SPARQL
1.1, and returns query answers quickly, we consider it
to meet all of the basic infrastructural requirements a
client would have. However, these goals fall on a con-
tinuum rather than being binary or discrete: for exam-
ple, endpoints may support a majority of features of
SPARQL 1.1, or may only be able to answer certain
queries within a given expected response time. Thus
the question is to what extent are endpoints mature. We
thus defined four general dimensions for assessing the
maturity of public SPARQL endpoints, as follows.

First, we looked at AVAILABILITY: the ratio of time
for which a given endpoint is responsive through the
SPARQL protocol, or alternatively, the probability of a
SPARQL endpoint being able to successfully respond
to a (simple valid) SPARQL query at a given point in
time. In our study, we found that many of the end-
points listed on the DataHub had issues with availabil-
ity: we found that on average, over 27 months, 29.3%
of the endpoints were online 0–5% of the time, and that
32.2% were available more than 95% of the time [9].
Endpoints are often provided on a not-for-profit ba-
sis, where the resources available to host and main-
tain them may be limited and thus services may go of-
fline temporarily or even permanently without warn-
ing. Likewise, executing SPARQL queries can be ex-
pensive for a server, which may reach its capacity and
be unable to respond to further requests. An applica-
tion relying on a given endpoint would inherit these
underlying availability issues; the situation can be even
worse if an application relies on multiple endpoints.

Second, we looked at DISCOVERABILITY: the de-
gree to which an endpoint provides descriptions of



SPARQLES: Monitoring Public SPARQL Endpoints 3

its content, configuration and functionality in well-
known locations using well-known vocabularies, such
that clients can (automatically) discover that endpoint
based on criteria such as the classes and properties its
content pertains to, the amount of data it contains, the
query features it supports, etc. For the endpoints in our
survey, we checked the availability of associated Ser-
vice Description (SD) [36] and Vocabulary of Inter-
linked Datasets (VoID) [2] descriptors in well-known
locations: we found VoID meta-data for approximately
one-third of the endpoints (mostly in external cata-
logues, such as DataHub), and SD meta-data for ap-
proximately one-tenth of the endpoints [9]. Without
these meta-data, clients may struggle to find endpoints
with content and features relevant for their needs.

Third, we looked at PERFORMANCE: the amount
of time taken for an endpoint to answer a query
over HTTP using standard SPARQL protocol methods.
Running generic forms of queries over the endpoints
surveyed, we found that for comparable query loads,
the slowest 10% of the endpoints took around 45% of
the overall experiment time, and that the simplest form
of query – a basic ASK query – took around 300 ms
in the median case; as a side result, we also found
that for performance reasons, many endpoints limited
the maximum number of results returnable, with the
most common threshold being 10,000 [9]. Evaluat-
ing a SPARQL 1.0 query is PSPACE-complete [25];
the analogous complexity for SPARQL 1.1 evaluation
is at least as hard. Of course, these types of worst-
case queries are likely to be quite rare [14], but even
“PTIME queries” can require huge amounts of pro-
cessing to satisfy over even moderate datasets. In our
experiments, even sticking to “modest” queries with a
bounded number of joins, intermediate results and final
results, we still encountered slow response times and
partial results for some endpoints, which may make
them unsuitable for use in real-time applications.

Finally, we looked at INTEROPERABILITY: how
compliant the endpoint is with respect to the features
of the SPARQL 1.1 query language. In particular, an
endpoint that does not support some query features of
SPARQL 1.1 may not be interoperable with other end-
points or applications that expect these features to be
supported. In our survey, we found that support for
SPARQL 1.1 features – which was recently standard-
ised at the time – was patchy, with for example 7%
supporting federated queries (with the SERVICE key-
word). This diversity in features supported means that
a client may not have a uniform query interface com-

mon to all endpoints against which they can program
the logic of their application(s).

Given the mixed results of our initial experiments,
we foresaw the need for an online system to track
such aspects of public endpoints over time, and to help
clients assess for themselves the maturity of individ-
ual endpoints based on the empirical tests. Along these
lines, we initiated work on the SPARQL Endpoint Sta-
tus (SPARQLES) system, which is currently available
at http://sparqles.ai.wu.ac.at/.6 The SPAR-
QLES system has been online since October 2013 (two
years at the time of writing), during which time we
have made various refinements based on community
feedback, and have made the system more reliable and
less expensive for the public endpoints we monitor.
This paper extends upon previous works [9,33] and de-
scribes the current SPARQLES system itself in detail:
how it is constructed, what sorts of tests it performs,
what queries it issues, what data it collects, what kinds
of conclusions can be drawn, what interfaces and visu-
alisations are provided, etc.

In Section 2, we first discuss works relating to stud-
ies of public endpoints and monitoring Web services.
In Section 3, we introduce the high-level SPARQLES
architecture. In Section 4 we describe in more detail
the analytics that SPARQLES runs over public end-
points and in Section 5 we describe the interfaces that
we provide for agents to interact with the data col-
lected. In Section 6 we present evaluation of the sys-
tem including runtimes of analytics, growth in storage
overheads, and A.P.I. performance. We later discuss
the impact, limitations, and sustainability of SPAR-
QLES in Section 7 before concluding with Section 8.

The SPARQLES system – both code and data –
is published under a Creative Commons 4.0 license
(cb), with code available from https://github.

com/pyvandenbussche/sparqles and data avail-
able through interfaces described in Section 5.

2. Related Work

A number of works and systems have dealt with
issues relating to public SPARQL endpoints. The
DataHub7 catalogue lists hundreds of Linked Datasets,

6SPARQLES is also a predecessor of an older system that
tracked only availability [33]: http://labs.mondeca.com/

sparqlEndpointsStatus/; l.a. 2015/01/30.
7http://datahub.io/, (l.a.: November 29, 2015).

http://sparqles.ai.wu.ac.at/
https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
http://labs.mondeca.com/sparqlEndpointsStatus/
http://labs.mondeca.com/sparqlEndpointsStatus/
http://datahub.io/


4 SPARQLES: Monitoring Public SPARQL Endpoints

many of which link to a SPARQL endpoint; it is the
resulting list of endpoints that we monitor. Lorey [21]
proposed a number of metrics for determining the
performance of SPARQL endpoints, such as latency,
throughput, random access time and join execution;
experiments were performed in controlled settings
rather than over public endpoints on the Web. Paul-
heim & Hertling [23] tried to find relevant SPARQL
endpoints for a random sample of ten thousand IRIs;
using VoID descriptions and the DataHub catalogue,
they were successful in about 15% of cases. Mehdi
et al. [22] proposed best-effort methods to find pub-
lic endpoints relevant to a list of domain-specific key-
words by querying endpoints for RDF literals gen-
erated from the terms. With respect to how pub-
lic SPARQL endpoints are being used, a number of
works have also performed analyses of the query logs
of prominent endpoints [14,29], which were made
available by the USEWOD initiative [6] and later by
LSQ [31]. While all of these works have helped to
build a more detailed picture of the current state-of-
the-art with respect to public SPARQL endpoints, none
provide an online system like SPARQLES, nor does
any one work look at the range of analytics we provide.

More generally, since public SPARQL endpoints
can be considered as Web Services, our work also re-
lates to the topic of monitoring Web Services, and in
particular, the notion of Quality of Service (QoS). One
of the seminal works in this area was by Ran [28], who
proposed an influential list of twenty-three QoS di-
mensions for Web services in four categories: runtime
(R), transaction support (T), configuration (C), and se-
curity (S). In this context, our work touches upon the
following dimensions:

Performance (R) The response time, latency and
throughput of the service.

Availability (R) The probability of a system being op-
erational at any given point in time.

Robustness/Flexibility (R) The degree to which a
service can cope with diverse inputs.

Exception Handling (R) The gracefulness with which
errors are handled and explained.

Supported Standard (C) The degree of compliance
of the service with respect to some standards.

Completeness (C) The ratio of advertised features
that are found to work in practice.

Some of the other QoS dimensions defined by Ran [28]
are either not currently relevant for public SPARQL
endpoints – such as authentication, authorization, etc.

– or cannot be easily tested in our setting – for exam-
ple, the accuracy of results. On the other hand, we also
consider the discoverability of endpoints, which refers
to how well the service describes itself, which was not
explicitly mentioned by Ran [28].

3. SPARQLES Architecture

The SPARQLES system is designed to observe a
set of public SPARQL endpoints over time. Currently
SPARQLES is tracking all of the endpoints listed in the
DataHub catalogue8 found using the DataHub APIs;
we thus align the inclusion criteria of SPARQLES with
that of the DataHub. SPARQLES performs a fixed set
of analytics against each listed endpoint at fixed inter-
vals, stores the historical results and allows these re-
sults to be accessed through online interfaces.

The high-level architecture for observing the se-
lected endpoints is depicted in Figure 1, where we
show the offline and online parts of the system. The
offline parts are responsible for collecting information
about the endpoints. The online parts are responsible
for presenting the results to the clients of the system.
The main components are as follows:

Analytics (offine): responsible for performing analy-
sis over endpoints at regular intervals, thus pro-
ducing the raw observational data.

– This component is implemented with custom
Java code that uses Jena as a query client to in-
teract with endpoints over the SPARQL proto-
col. Analytics are scheduled using cron jobs.

Storage (both): offers persistence over the results of
the offline Analytics component and enables on-
line querying and aggregation.

– For this, we use MongoDB, which stores both
low-level data – such as the responses of end-
points to individual queries – as well as higher-
level, aggregated data – such as the number of
queries that succeeded in the past month.

A.P.I. (online): offers software agents a RESTful ap-
plication programming interface through which
to query key data about endpoints.

– Agents may access the A.P.I. through simple
HTTP GET calls, which return JSON-formatted
data from the storage back-end.

8http://datahub.io/; l.a. 2015/01/30.

http://datahub.io/


SPARQLES: Monitoring Public SPARQL Endpoints 5

SPARQLES

Offline

Online

Analytics (Java/Jena)

Storage (MongoDB)

A.P.I. (MongoDB/HTTP/JSON)

U.I. (node.js/nvd3)

Endpoints (DataHub/Web)

Fig. 1. High-level System Architecture

U.I. (online): offers human agents a user interface
with a mix of aggregate visualisations and per-
endpoint visualisations.

– The search and user interactions provided by
the U.I. are built on top of the data deliv-
ered by the A.P.I. The user interface is imple-
mented using various Javascript libraries, in-
cluding Node.js9 and nvd310 for rendering in-
teractive visualisations.

We describe these components in more detail in the
following sections. In Section 4, we focus on the of-
fline phase, and in particular, the types of analytics
we run. Thereafter, in Section 5, we describe the stor-
age and online parts of the system, including the types
of interfaces that we provide for the public to interact
with the collected data by the SPARQLES system.

4. Analytics

We now provide details of the offline phase, and in
particular, the analytics performed by the system.

The following analytics are implemented with cus-
tom Java code that uses Apache Jena (2.12.2) to co-

9http://nodejs.org/; l.a. 2015/09/09.
10http://nvd3.org/; l.a. 2015/09/09.

ordinate making requests to and collecting responses
from SPARQL endpoints.11 These analytics are sched-
uled to run at regular intervals using cron jobs. SPAR-
QLES is hosted in the Vienna University of Economy
and Business (WU), served by a 1 Gigabit network.

4.1. Availability

From our previous experiments, we have found that
many endpoints have significant periods of down-
time [9]. Some downtimes may be temporary, caused
by network failures, sporadic high server loads, engine
crashes, and so forth. Other downtimes appear perma-
nent, indicating that an endpoint has probably been
discontinued. Anticipating downtimes or distinguish-
ing reliable endpoints from unreliable ones can be cru-
cial for many clients. Hence SPARQLES closely mon-
itors the historical availability of endpoints.

Availability analytics We define an endpoint as avail-
able if it can respond to a simple SPARQL query with
some compliant response through the SPARQL proto-
col. To avoid unnecessary load on remote servers, we
send queries that should, in general, be as simple as
possible to compute responses for.

To check availability, the system first issues a
generic ASK query as follows:

ASK WHERE { ?s ?p ?o . }

Responding to this query should be trivial (is the index
empty or not?). As soon as a valid response (positive or
negative) is received, the system considers the request
successful and concludes that the endpoint is available.
However, some SPARQL endpoints cannot handle this
ASK query. For such endpoints, we try a second query
using the SELECT operation as follows:

SELECT ?s WHERE { ?s ?p ?o . } LIMIT 1

Again, this query should be cheap to compute: re-
turn any triple from the index (if any). We deem any
endpoint responding to either query with any valid
SPARQL response as available at that time.

Schedule We run availability tests once an hour,
which allows us to monitor, e.g., the uptimes at dif-
ferent times of the day, including hours of peak Web-
usage (performance will be discussed later). Availabil-
ity results can then be aggregated per endpoint into a
success rate for fixed time intervals, e.g., to compute
availability over the past day, week, month, etc.

11https://jena.apache.org; l.a. 2015/01/30.

http://nodejs.org/
http://nvd3.org/
https://jena.apache.org


6 SPARQLES: Monitoring Public SPARQL Endpoints

Limitations The local SPARQLES server may expe-
rience some downtimes or local network issues that
may lead to remote endpoints being falsely reported as
unavailable. In general however, when errors known to
be local are omitted and when hourly results are ag-
gregated into larger time intervals, such as weeks or
months, such local effects should be smoothed out.

4.2. Discoverability

For a client, finding a SPARQL endpoint that con-
tains content relevant for their needs [24,9] and the
features that they require [9] can be challenging. The
goal of the discoverability analytics is to determine the
degree to which endpoints offer descriptions of them-
selves and their contents using (de facto) standards: to
what extent an endpoint offers descriptions – in well-
known locations using well-known vocabularies – of
(i) its content and (ii) the features it supports. The
SPARQLES system thus checks if a client can auto-
matically find, for a given endpoint:

1. An SD description of its configuration [36].
2. A VoID description of its content [2].

The type of engine (Fuseki, Virtuoso, etc.) powering
a SPARQL endpoint can also be an important infor-
mation for a client; for example, some engines support
non-standard keyword search functions that a client
may be interested in. We thus also look for:

3. The type of engine powering the endpoint, some-
times mentioned in the HTTP header [9].

SD Analytics Endpoint capabilities – such as the ver-
sion of SPARQL supported, query and update fea-
tures, I/O formats, custom functions, and/or entailment
regimes – can be described in RDF using the SPARQL
1.1 Service Description (SD) vocabulary, which be-
came a W3C Recommendation in March 2013 [36].
Such descriptions, if made widely available, could help
a client find public endpoints that support the features
it needs (e.g., find SPARQL 1.1 endpoints).

The service description for an endpoint is retrieved
by simply dereferencing the endpoint IRI itself [36].
As such, the SPARQLES system performs a HTTP
GET request for an endpoint IRI, follows redirects and
uses content negotiation to request RDF formats (viz.
RDF/XML, N-Triples, Turtle or RDFa).

VoID Analytics The Vocabulary of Interlinked Data-
sets (VoID) [2] has become the de facto standard for
describing RDF datasets (in RDF). The vocabulary al-

lows for specifying, e.g., the number of triples a dataset
contains, the number of unique subjects, a list of prop-
erties and classes used, the number of triples with a
given property as predicate, the number of instances of
a given class, the number of triples used to describe in-
stances of a given class, and so forth. If VoID descrip-
tions were widely available for SPARQL endpoints, a
client could leverage them to discover endpoints with
potentially relevant content.

There are a number of best-practices regarding how
VoID should be published; SPARQLES looks in three
locations. First, the system looks in the content got-
ten by dereferencing the endpoint URL (i.e., the same
document as the SD description). Second, the system
checks the location denoted by the Well-Known IRI
pattern http://{domain}/.well-known/void rec-
ommended for use with VoID, where {domain} is re-
placed with the fully-qualified domain name (FQDN)
extracted from the endpoint URL.12 Third, SPAR-
QLES uses the following query to detect if the end-
point indexes its own VoID description, where %%ep is
replaced with the URL of the endpoint in question:

PREFIX void: <http://rdfs.org/ns/void#>

SELECT DISTINCT ?ds

WHERE { ?ds a void:Dataset ;

void:sparqlEndpoint %%ep . }

Server Name Analytics A variety of options are
now available for SPARQL engines, including Virtu-
oso [10], Sesame [8], 4store [17], etc. However, per-
formance and compliance across different vendors can
vary quite dramatically. Knowing which engine – or
even which version of an engine – powers a given
SPARQL endpoint may be useful for (expert) clients
to know which version of a query to send. For exam-
ple, in previous works we found that certain analo-
gous strategies for processing joins in a federated set-
ting worked well for certain SPARQL engines but per-
formed poorly or even outright failed for others [3].

Unfortunately, neither VoID nor the SD vocabu-
lary provide terms for specifying an engine or ver-
sion number to a client. Hints are available, such as
scanning the frontpage or an error page for mention
of a fixed list of engines. However, when dereferenc-
ing the endpoint URL, the type of engine and the ver-
sion number is often (though not always) provided in
the Server field of the HTTP header. Although not al-

12http://vocab.deri.ie/void/autodiscovery; l.a. 2015-
01-27.

http://vocab.deri.ie/void/autodiscovery


SPARQLES: Monitoring Public SPARQL Endpoints 7

ways provided – perhaps since it may require low-level
server configuration – this is the cleanest method we
have found to currently establish which implementa-
tion powers an endpoint without requiring hard-coded,
engine-specific heuristics.

Frequency When compared with availability, we do
not expect discoverability to be so dynamic: once de-
scriptions are published, they are likely to stay pub-
lished (and as discussed later, we do not check that
the descriptions are up-to-date). For this reason, we
run discoverability analytics once a week; we have re-
ceived no complaints from endpoint maintainers about
the remote expense of these analytics.

Limitations SPARQLES only checks for the exis-
tence of meta-data, but does not attempt to validate the
meta-data itself, nor does it try to measure the com-
pleteness of descriptions. Additionally, VoID descrip-
tions or engine information may be extracted from lo-
cations or with vocabularies not checked by SPAR-
QLES: however, to help clients, we believe it is impor-
tant to offer such information using well-recognised
vocabularies in discoverable locations.

4.3. Performance

SPARQLES runs a set of performance-related an-
alytics that aims to compare the runtimes of differ-
ent public endpoints for comparable queries from a
client’s perspective (i.e., including HTTP overhead).
Since we cannot control or know in detail about the
content of endpoints, for the purpose of comparability,
we must rely on generic queries that would execute in
a similar manner independent of the exact content in-
dexed by the endpoint. We test three fundamental as-
pects of a query engine: lookups, streaming and joins.

Lookup Analytics The goal is to measure the time
taken to perform an atomic lookup (according to differ-
ent triple patterns). The query template is as follows:

ASK {<x> ?p ?o}

Here <x> is replaced with an arbitrary IRI that is
not expected to exist in the remote data (a lookup
still needs to be performed to ensure this). To mitigate
caching effects, we generate a fresh IRI each time.

Since in the above example the subject is set, we
call it an ASKs query. We also run ASKp, ASKo, ASKsp,
ASKso, ASKpo, ASKspo versions of the query.

Given that an atomic lookup should be fast to exe-
cute, we consider this query as estimating the latency

of querying the endpoint, which would most likely be
dominated by the HTTP network overhead.

Streaming Analytics We measure the time taken for
an endpoint to stream a large result-set that should be
trivial to compute. The query is as follows:

SELECT * {?s ?p ?o} LIMIT 100001

Here we ask to stream 100,001 results. Since we
have found that public endpoints may limit maximum
result sizes to a “round number” – say 100,000 – we
ask for one hundred thousand and one results to de-
tect such a case. We also send queries for limits with
50,000, 25,000, 12,500, 6,250 and 3,125 results. Since
the endpoint should be able to stream results contigu-
ously from its index, we consider this query as giving
an estimate of the maximum throughput of the service.

Join Analytics We use the following three queries to
measure a generic notion of join performance:

SELECT DISTINCT ?s ?q

WHERE {?s ?p ?o OPTIONAL {?s ?q <x>}} LIMIT 1000

SELECT DISTINCT ?s ?q

WHERE {?s ?p ?o OPTIONAL {<x> ?q ?s}} LIMIT 1000

SELECT DISTINCT ?o ?q

WHERE {?s ?p ?o OPTIONAL {<x> ?q ?o}} LIMIT 1000

These queries are designed – insofar as possible – to
be comparable across endpoints no matter what con-
tent is indexed. In these queries, <x> is an fresh IRI not
expected to appear in the data. For example, the first
query requests that 1,000 unique subjects be joined
with a pattern that generates no answers: this join must
still be executed to check that ?q is indeed unbound.
The result will return 1,000 distinct subject–unbound
pairs. While the first query looks at s–s joins, the sec-
ond performs an s–o join and the third an o–o join.
(These three join-types were the most common found
in analyses of real-world logs [14,31].)

Frequency Like availability, we expect performance
to vary for different times of the day, different days
of the week, etc. For this reason, like availability, we
would like to have frequent experiments. However, un-
like availability, the queries required to test perfor-
mance are not so trivial for endpoints to compute (we
present more details on this later). For this reason, we
opted to run performance experiments once a day; at
this level of frequency, we have received no complaints
from endpoint maintainers.



8 SPARQLES: Monitoring Public SPARQL Endpoints

Limitations The performance results do not indicate
why specific queries are slow: is it due to the engine,
the HTTP overhead, the content indexed? In general,
we try to make the query load balanced irrespective of
the content and our goal is to measure the costs from
the perspective of a client who is concerned about the
“bottom line” of response times.

Performance results may also be affected by local
issues. For example, slow runtimes may be due to a
busy network on the SPARQLES end (e.g., if other an-
alytics happen to run simultaneously); to help mitigate
this issue, in the system’s interfaces, we display the
median value of the last ten performance runs. Other
factors may be more difficult to control for; e.g., end-
points on servers that are geographically closer to the
SPARQLES host may be given an advantage. Still, the
performance results should serve as a useful guide.

4.4. Interoperability

If available, the Service Description of an endpoint
should describe the query features and the version of
SPARQL that an endpoint supports. However, we have
seen that SD meta-data are often unavailable and, in
any case, an endpoint may claim to support features
that it does not, or may claim support for SPARQL 1.1
while only supporting a subset of new features.

SPARQLES thus offers analytics for interoperabil-
ity, whose goal is to verify which SPARQL features
– i.e. specific operators, solution modifiers, etc. – are
supported, gathering data about what SPARQL fea-
tures are available for the users of various endpoints.

Along these lines, SPARQLES takes a subset of
queries from the W3C Data Access Working Group
test-cases – designed to test all features from both ver-
sions of the standard – and issues them on a weekly
basis to SPARQL endpoints. We consider the test as
passed if a valid SPARQL response is returned. Since
we cannot control the content of endpoints, we can-
not verify that the returned response is actually correct;
hence we may overestimate compliance with the stan-
dard. We expect that if an endpoint does not support a
feature, an exception will be thrown (e.g., a parse ex-
ception). However, since an endpoint may time-out on
a given query, we may also underestimate compliance
where the feature may be supported but the endpoint
cannot answer the query instance provided.

SPARQL 1.0 Analytics First, the SPARQLES sys-
tem tests the endpoints for the core SPARQL 1.0
query features that it supports. We issue endpoints a

subset of the Data Access Working Group test-cases
for SPARQL 1.0,13 omitting syntax tests and focus-
ing on core functionalities.14 This test-set checks a
range of aspects of the SPARQL 1.0 standard includ-
ing query types SELECT, CONSTRUCT and ASK (we omit
DESCRIBE since it is an optional feature); filter fea-
tures, such as REGEX, IRI and blank node checks, etc.;
support for datatypes, such as numerics, strings and
booleans; support for graph selection features, includ-
ing FROM (NAMED) and GRAPH; and the solution mod-
ifiers, ORDER BY, LIMIT and OFFSET (DESC|ASC), as
well as DISTINCT and REDUCED modifiers.

SPARQL 1.1 Analytics SPARQLES also performs
tests on SPARQL 1.1 features using a test suite taken
from the W3C SPARQL Working Group.15

We first test support for aggregates, where expres-
sions such as average, maximum, minimum, sum and
count can be applied over groups of solutions (possi-
bly using an explicit GROUP BY clause). We then test
support for sub-queries in combination with other fea-
tures. Next we test support for property-paths, binding
of individual variables, and support for binding tuples
of variables (VALUES). We also check support for fil-
ter features that check for the existence of some data
(MINUS, EXISTS), and some new operator expressions
(STRSTARTS and STRCONTAINS for strings; ABS for
numerics). Finally, the last three queries test a miscel-
lany of features including NOT IN used to check a vari-
able binding against a list of filtered values, an abbrevi-
ated version of CONSTRUCT queries whereby the WHERE
clause can be omitted, and support for the SPARQL
SERVICE keyword, which invokes a federated request
from the remote endpoint being tested to a local end-
point we have set up on the SPARQLES server.

Frequency Much like discoverability, we do not ex-
pect interoperability to be a highly dynamic property
of an endpoint; for example, we suppose that once an
endpoint adds support for SPARQL 1.1 features, it will
continue to support these features until it is discontin-
ued. For this reason, we schedule interoperability ana-
lytics to run once a week. During the first year of oper-
ation, we began to receive complaints that the queries
we were using – based on the W3C test-cases – were

13http://www.w3.org/2001/sw/DataAccess/tests/r2;
l.a. 2015/01/30.

14Queries available at https://github.com/

pyvandenbussche/sparqles.
15http://www.w3.org/2009/sparql/docs/tests/

data-sparql11/; l.a. 2015/01/31.

http://www.w3.org/2001/sw/DataAccess/tests/r2
https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/


SPARQLES: Monitoring Public SPARQL Endpoints 9

causing a high load on remote servers.16 We consid-
ered lowering the frequency of these analytics but in-
stead decided to make the queries less demanding by
refactoring them to include fresh IRIs in such a way
that it should be efficient for the server to compute that
the result is empty; as usual, we then simply monitor
for exceptions. With these new queries, we have re-
ceived no complaints thus far.

Limitations As aforementioned, the main limitation
of these experiments is that we classify an endpoint
as implementing a specific SPARQL 1.1 feature if that
endpoint returns any valid response without throwing
an exception. If an endpoint times out, we will clas-
sify it as not implementing that feature, and conversely,
if it returns an incorrect solution, we will count it
as supporting that feature.17 Our recent refactoring of
the test-case queries has helped to reduce false nega-
tives due to time-outs. Another limitation is that the
SERVICE call relies on our local endpoint being acces-
sible; to mitigate problems, we designed the federated
call to be cheap and simple and to restart our local end-
point just before calling these analytics.

Another limitation is that we do not test some fea-
tures of the SPARQL 1.1 standard, such as SPARQL 1.1
Update – since we presume we should not have write
privileges for public endpoints – or SPARQL 1.1 En-
tailment Regimes – since we do not know of any public
SPARQL endpoints with this feature.

5. Storage & Interfaces

We now describe how SPARQLES manages the ex-
perimental data gathered during these analyses and the
public interfaces through which software agents and
users can interact with these data.

5.1. Storage

As tests are performed, the results and metrics col-
lected are serialised using the Apache AVRO (1.7.5) li-
brary and sent to a MongoDB instance for storage. The
MongoDB instance maintains 11 different collections
that, loosely speaking, represent different materialised
views over the data collected:

16See, e.g., https://github.com/pyvandenbussche/

sparqles/issues/23.
17Strictly speaking, a query timing out is not compliant with

SPARQL 1.1; however, in spirit, we are more interested about
whether a feature is supported in general and not about if a specific
query instance runs or not.

– 4 collections store the “raw” version of the data
collected for the four analytical dimensions;

– 1 collection maintains the current list of endpoints
registered in the DataHub;

– 6 collections correspond to aggregated views of
the raw data as required by the User Interface.

The aggregate views are recomputed at regular in-
tervals using cron jobs: these views return the data re-
quired by the U.I. in a single lookup and thus avoid
running aggregations while the user waits.

5.2. Application Programming Interfaces

SPARQLES provides seven RESTful APIs that al-
low remote access to the data collection. These APIs
are designed to provide clients with both (i) informa-
tion relating to specific endpoints, as well as (ii) infor-
mation about all endpoints relating to a specific type of
analytical experiment. Likewise we split the APIs into
two groups, as follows.

The first group contains endpoint-specific APIs,
which helps to find a specific endpoint, or returns de-
tailed results for a specific endpoint:

LIST takes no input and returns a list of all endpoints
in SPARQLES: the URL of the endpoint, as well
as the name and URL of the dataset they are as-
sociated with in the DataHub catalogue.

AUTOCOMPLETE takes as input a string, such as
“dbpedia”, and returns all endpoints in SPAR-
QLES whose URL, dataset label, or dataset URL
contains the input as a sub-string.

INFO takes as input the URL of a specific endpoint,
and returns all data for that endpoint, including
dataset URL and label; availability over the past
day, week, month, and overall; performance re-
sults for cold/warm runs of ask and join queries
and suspected threshold size; interoperability in-
formation regarding support for SPARQL and
SPARQL 1.1 query features; and discoverabil-
ity information regarding locations (if any) where
VoiD and SD descriptions could be found, and the
server-name extracted from the HTTP header.

The second group contains analytical APIs, which
return aggregate results for all endpoints on a given
analytical dimension:

AVAILABILITY returns uptimes for the last test, day,
week, month – and overall – for all endpoints.

https://github.com/pyvandenbussche/sparqles/issues/23
https://github.com/pyvandenbussche/sparqles/issues/23


10 SPARQLES: Monitoring Public SPARQL Endpoints

index discoverability

interoperability

performance

availability

endpoint

api

data

Fig. 2. SPARQL user-interface sitemap

DISCOVERABILITY provides the server name, VoID
locations and SD availability found (if any) for
each endpoint in the most recent experiment.

INTEROPERABILITY counts the SPARQL 1.0 and
SPARQL 1.1 queries passed by each endpoint in
the most recent experiment.

PERFORMANCE provides the mean performance for
join and ask queries in cold/warm runs from the
most recent experiment for all endpoints.

The APIs are provided and described online at:
http://sparqles.ai.wu.ac.at/api.

5.3. User Interface

The SPARQLES user interface – publicly available
at http://sparqles.ai.wu.ac.at – offers an en-
try point for human users interested in the experimen-
tal results gathered. The interface is implemented us-
ing various Javascript libraries, including Node.js and
nvd3 for rendering interactive visualisations.

The homepage offers “at-a-glance” aggregated views
of the four dimensions computed across all endpoints.
In Figure 3, for example, we see the aggregate view
for availability, which shows the evolution of the num-
ber of endpoints falling into five different availability
intervals ([0–5[, [5–75[, [75–95[, [95–99[, [99-100]).
Other aggregate views likewise provide an overview
of performance, interoperability and discoverability.

From the homepage, the user has a number of pos-
sible navigation steps, as illustrated in Figure 2.

The user can navigate to a page dedicated to each
dimension to get an overview of key results for all end-
points in a list view, as follows:

AVAILABILITY lists the availability for each endpoint
over the past 24 hours and the past 7 days.

PERFORMANCE lists the suspected result-size thresh-
old and the median cold/warm run-times for ASK
and JOIN queries over the last 10 runs.

INTEROPERABILITY lists the ratio of SPARQL 1.0
and SPARQL 1.1 query test-cases passed by each
endpoint in the most recent run.

DISCOVERABILITY indicates whether or not a VoID
and/or SD description is available for each end-
point in some location, and what server name
could be found (if any), in the most recent run.

Otherwise, either by using the auto-complete search
function (available on all pages), or by clicking on
a specific endpoint mentioned in one of the previous
four list-view pages, the user can arrive to an endpoint-
specific view with detailed information about all four
dimensions for a given endpoint. An example for the
main DBpedia endpoint is provided in Figure 4 & 5
(referring to the same page but split here for format-
ting purposes). The views provide information on the
weekly availability for the past year, median perfor-
mance for the past ten runs, the interoperability test
queries failed or passed18 as well as the locations in
which VoID/SD descriptions can be found and the
server name detected (if any).

From the homepage, there are also links to down-
load data dumps or view the A.P.I. documentation.

6. Evaluation

SPARQLES has been running since October 2013
where, at the time of writing, it currently monitors
535 endpoints. We now present some high-level results
with respect to operating, maintaining and improving
various aspects of the SPARQLES system.

Analytics With respect to running the individual an-
alytical tasks, we measured the time of the four most
recent runs within the SPARQLES system.

The fastest were the AVAILABILITY experiments,
which took between 41–44 minutes (µ = 41.8 minutes,

18On hovering the mouse pointer over the query name, the user
can see the full query, and on hovering the pointer over a red icon,
the user can see details the exception encountered.

http://sparqles.ai.wu.ac.at/api
http://sparqles.ai.wu.ac.at


SPARQLES: Monitoring Public SPARQL Endpoints 11

Fig. 3. Screen capture of SPARQLES online system’s homepage fo-
cusing on availability overview. The homepage offers “at-a-glance”
aggregated views for the four dimensions of analytics described.

σ = 1.1 minutes) in the four most recent runs. These
experiments involve sending either one or two simple
queries to each server. This runtime fits within the cur-
rent one hour interval; however, if we were to increase
the number of endpoints observed by about 33%, we
would need to increase the interval to (say) two hours,
to ensure that the analytics terminate in time.

Second were the DISCOVERABILITY experiments,
which took between 65–67 minutes (µ = 65.5 minutes,
σ = 1 minute) in the most recent four runs. These ex-
periments involve sending a single query and check-
ing two Web documents for metadata about each end-
point. These experiments could easily be maintained
at the weekly interval, even if the number of endpoints
observed were to increase, e.g., a hundredfold.

Third were the INTEROPERABILITY experiments,
which took between 65–87 minutes (µ = 72.6 minutes,
σ = 9 minutes) in the four most recent runs. These
experiments involve running 42 queries against each
remote endpoints. However, since we have refactored
these queries to return empty results, they should be
trivial to run. These experiments are likewise easily
maintained within their current weekly interval.

Fourth were the PERFORMANCE experiments, which
took between 537–614 minutes (µ = 583.5 minutes, σ

= 28.8 minutes) in the four most recent runs. Against
each endpoint, we run 17 queries twice (once cold
and once warm). These experiments take significantly
longer than the others: although INTEROPERABILITY

has more queries, the queries in PERFORMANCE are
designed to be non-trivial to answer, returning thou-
sands of results and requiring a significant amount of
processing for the endpoint to service. Within the cur-
rent daily interval and settings, we could support these
analytics for about twice the number of endpoints.

Storage An important question for the sustainability
of SPARQLES is how its storage requirements grows
over time: we not only add information about each
endpoint, but also add new endpoints. Along these
lines, Figure 6 presents the sizes of weekly compressed
backup dumps of the MongoDB store captured over a
22 week period in 2015 (from April 20th to Septem-
ber 14th). We see that the dump sizes grew on aver-
age by 3.5 megabytes per month. The most recently
compressed dump – 397 megabytes – corresponds to a
live MongoDB index of 14 gigabytes (approximately
35.25× larger than the dump). Thus although the in-
dex size growth is accelerating, we still have consid-
erable time before, for example, the SPARQLES ser-
vice would fill a standard 1 terabyte harddrive; at that
stage, we would need to consider aggregating and/or
archiving older experimental data.

A.P.I. In order to ensure that our A.P.I.’s would per-
form well under high loads, we sent 1,000 requests to
each of our A.P.I.’s from 10, 50 and 100 parallel clients
respectively. Figure 7 provides box-plots of the indi-
vidual runtimes encountered. Under this type of load,
although we see that the slowest request can range in
the tens of seconds (especially for a higher number of
clients), typical performance in the lower three quar-
tiles remains reliably below half a second. In summary,
we encounter a few slow requests that require up to 20
seconds to complete, but the majority of requests are
answered within 0.5 seconds, even with 100 clients si-
multaneously issuing 1,000 requests.

Usability We are constantly collecting and reacting
to user feedback relating to bugs, feature-requests and
usability on the issue tracker for the project avail-
able on https://github.com/pyvandenbussche/

sparqles/issues (which at the time of writing con-
tains 21 open issues and 24 closed issues). Feedback
has related to varied aspects, be it misreported statis-
tics for the endpoints maintained by users, or the ex-
pense of certain queries for remote services, or prob-
lems with characters/escaping in the interface, or re-
quests for various enhancements. This feedback has
been invaluable for improving the usability, correct-
ness and sustainability of the service. For example, one

https://github.com/pyvandenbussche/sparqles/issues
https://github.com/pyvandenbussche/sparqles/issues


12 SPARQLES: Monitoring Public SPARQL Endpoints

Fig. 4. Screen capture of the detailed view about the DBpedia endpoint (http://dbpedia.org/sparql) showing the results of availability for
the past year and performance tests based on the median result for the most recent ten runs.

of the most important changes we have made based on
this feedback was to modify the INTEROPERABILITY
queries to reduce the computational strain they were
placing on the public endpoints that SPARQLES mon-
itors. We are continuing to address the open issues and
consider the other feedback and requests for enhance-
ments that we receive from the community.

7. Discussion

We now discuss the use-cases, impact thus far, lim-
itations and sustainability of SPARQLES.

7.1. Impact

One of the main goals of the system is to dissemi-
nate timely information about the health of individual
endpoints. To help characterise the impact of SPAR-
QLES, in the following we present some statistics col-
lected from the Google Analytics for the site.

Over a 23 month period, SPARQLES has seen a to-
tal of 11,420 user sessions, averaging about 497 ses-

sions per month. Figure 8 presents the data for the past
23 months, where we see a peak in October 2013, after
which the number of user sessions was between 172
(February 2014) and 823 (June 2015). In Table 1, we
present the number of sessions broken down by the
most visited first page, second page, and third page.19

The table provides details on the first page the visi-
tors access, followed by the page accessed from the 1st

and 2nd interaction. In general, we see that of the four
dimensions analysed, users are most concerned with
availability. We also found that the most common user
interaction involves starting on the homepage, travers-
ing to the availability overview, and then onto the de-
tailed view of a specific endpoint: this can be seen from
the first (non-total) data row of Table 1.

Another indirect goal of the system is to encour-
age endpoints to follow best practices: we would hope

19Please note that since we cannot access raw data, some of the
figures may be rounded (for example, the Google Analytics system
reports “3.4K” rather than an exact figure). Likewise we only have
details of visits to the top twenty pages, hence we may only have an
upper-bound for other pages.

http://dbpedia.org/sparql


SPARQLES: Monitoring Public SPARQL Endpoints 13

Fig. 5. Screen capture of the detailed view about the DBpedia endpoint (http://dbpedia.org/sparql) showing the results of interoperability
(individual queries passed or failed) and discoverability tests (locations of VoID and SD descriptions) in the most recent runs.

Table 1
Number of SPARQLES sessions over a 22 month period spanning
from 2013/09/27–2015/07/27.

START PAGE 1ST INTERACTION 2ND INTERACTION

Total 11,420 Total 3,400 Total 2,300

/ 8,300 /availability 1,500 specific endpoint 1,202
specific endpoint 1,247 specific endpoint 949 /availability 340
/availability 1,200 /discoverability 286 / 326
/discoverability 221 /interoperability 214 /interoperability 179
/interoperability 172 /performance 201 /performance 151
/performance 45 / 133 /discoverability 126
/api 16 /api 27 /api <12
/data <11 /data <7 /data <12

that by tracking such metrics about endpoints, main-
tainers might be made aware of shortcomings with the
SPARQL services they offer and rectify these accord-
ingly. Though from personal communications with
some endpoint maintainers we know that there have
been anecdotal instances of this,20 it is difficult to as-

20See for example https://github.com/pyvandenbussche/
sparqles/issues/42.

certain to what degree SPARQLES has had an impact
on the maturity of SPARQL endpoints in this respect.

Perhaps the most important impact of this work thus
far has been to formally acknowledge the kinks in
the current public SPARQL infrastructure, which has
helped motivate new lines of research. We can, for ex-
ample, point to works proposing Linked Data Frag-
ments – an alternative method for accessing Linked
Dataset aiming at high availability by reducing server

http://dbpedia.org/sparql
https://github.com/pyvandenbussche/sparqles/issues/42
https://github.com/pyvandenbussche/sparqles/issues/42


14 SPARQLES: Monitoring Public SPARQL Endpoints
20

15
-0

4-
20

20
15

-0
4-

27
20

15
-0

5-
04

20
15

-0
5-

11
20

15
-0

5-
18

20
15

-0
5-

25
20

15
-0

6-
01

20
15

-0
6-

08
20

15
-0

6-
15

20
15

-0
6-

22
20

15
-0

6-
29

20
15

-0
7-

06
20

15
-0

7-
13

20
15

-0
7-

20
20

15
-0

7-
27

20
15

-0
8-

03
20

15
-0

8-
10

20
15

-0
8-

17
20

15
-0

8-
24

20
15

-0
8-

31
20

15
-0

9-
07

20
15

-0
9-

14

0

100

200

300

400

Date of dump

D
um

p
si

ze
(M

B
)

Fig. 6. Evolution of data-volumes spanning 22 weeks

costs – which draws heavily upon the availability
statistics from our original analysis to justify why al-
ternatives to SPARQL are needed [35,34]. We can also
point to works like SHEPHERD [1], which uses the
statistics about query performance to generate more ef-
ficient query plans for public SPARQL endpoints, or
to works by Netahu et al. [13] on profiling datasets
for the purposes of enabling better discoverability, or
indeed to our own work on taking the weaknesses of
endpoints into account when creating federated query
plans [3]. Aside from this, we can point to a number of
papers explicitly using the SPARQLES system itself,
including works by Benedetti et al. [5], Atemezing &
Troncy [4], Rietveld & Hoekstra [30], etc. At the time
of writing, according to Google Scholar, the original
paper describing our original experiments [9] has re-
ceived 99 citations over the past two years.21

7.2. Limitations

For each of the analytics presented in Section 4,
we discussed a variety of specific limitations, refer-
ring, e.g., to the difficulty in distinguishing local prob-
lems from remote problems. There are also a couple of
global limitations of the system worth mentioning.

First, SPARQLES is subject to Goodhart’s law:

When a measure becomes a target, it ceases to be
a good measure.

21https://scholar.google.com/citations?view_

op=view_citation&hl=en&citation_for_view=

CP-fgY4AAAAJ:RHpTSmoSYBkC

An over-eager endpoint maintainer could, for example,
detect and artificially respond to SPARQLES queries
so as to improve how the endpoint is “rated” by the
system. In general, we know of no such example of
this happening but it is very much possible.

Second, as a more pragmatic issue, since we first put
the system online in November 2013, we have had var-
ious local reliability issues, where data were not col-
lected for certain weeks, where data were lost due to
server migration, and where the site itself was offline.
During this period, we have been resolving various is-
sues as they occur such that, although there are still
some known issues, we now believe that the system is
reaching maturity. Likewise, we have received a lot of
feedback from the community, which has been invalu-
able for improving the service in the past years.

Third, some of the analytics may be biased towards
servers that are closer geographically to the SPAR-
QLES host in Austria. One option to mitigate this bias
– as well as local reliability issues – would be to repli-
cate SPARQLES analytics in multiple remote loca-
tions and create a mechanism for aggregating a global
consensus across all remote instances. Currently we
do not have the resources available to host another in-
stance of SPARQLES. However, the SPARQLES code
is available for download, where the community can
download and install their own instances, perhaps tar-
geted at those endpoints of interest to them.

7.3. Sustainability

One indirect but important aspect of sustainabil-
ity is the load that SPARQLES puts on the public
SPARQL infrastructure. For example, we discussed
before about how the original versions of the interop-
erability queries were causing a heavy load for a num-
ber of SPARQL services. To mitigate this, we run more
expensive tasks less frequently: while simple availabil-
ity tests are done hourly, performance analytics are run
daily and interoperability tests are run weekly. Like-
wise we have revised the interoperability queries to
make them less costly and have been attentive in ad-
dressing all complaints raised in our issue tracker re-
lating to the cost SPARQL puts on remote servers.

As the system has been maturing, we have started
to consider adding some new features as requested by
the community. One of the most popularly request fea-
tures is to have data collected by the SPARQLES tool
made available as Linked Data. Though we are (per-
haps ironically) reluctant to make a SPARQL endpoint
available, as a starting point, we are looking into cre-

https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=CP-fgY4AAAAJ:RHpTSmoSYBkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=CP-fgY4AAAAJ:RHpTSmoSYBkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=CP-fgY4AAAAJ:RHpTSmoSYBkC


SPARQLES: Monitoring Public SPARQL Endpoints 15

AUT.
AVA.

DIS
.
IN

FO
IN

T.
LIS

T
PER.

100

1,000

10,000

(a) 10 clients

AUT.
AVA.

DIS
.
IN

FO
IN

T.
LIS

T
PER.

100

1,000

10,000

(b) 50 clients

AUT.
AVA.

DIS
.
IN

FO
IN

T.
LIS

T
PER.

100

1,000

10,000

(c) 100 clients

Fig. 7. A.P.I. response times for 1,000 requests with 10, 50 and 100 parallel clients. On the x-axis, AUT. denotes Autocomplete, AVA. denotes
Availability, DIS. denotes Discoverability, INT.. denotes Interoperability, PERF.. denotes performance. The y-axis shows the response times in
milliseconds; the axis is given in log scale and aligned horizontally for comparison across the three plots. The box plots are drawn for the
maximum, third quartile (75th percentile), median, first quartile (25th percentile) and minimum times from the individual responses.

Se
p-

13
O

ct
-1

3
N

ov
-1

3
D

ec
-1

3
Ja

n-
14

Fe
b-

14
M

ar
-1

4
A

pr
-1

4
M

ay
-1

4
Ju

n-
14

Ju
l-1

4
A

ug
-1

4
Se

p-
14

O
ct

-1
4

N
ov

-1
4

D
ec

-1
4

Ja
n-

15
Fe

b-
15

M
ar

-1
5

A
pr

-1
5

M
ay

-1
5

Ju
n-

15
Ju

l-1
5

0

500

1,000

1,500

Month

N
um

be
ro

fs
es

si
on

s

Fig. 8. Number of unique sessions per month for SPARQLES

ating Linked Data IRIs for individual endpoints that
dereference to SPARQLES statistics about them. Other
requested features included offering an email notifica-
tion system to contact endpoint administrators when
their system was not available, or offering badges for
endpoints with high availability, and so forth. There are
numerous directions in which SPARQLES could still
be improved, which we will tackle as time progresses.

8. Conclusion

In this paper, we have presented the SPARQL End-
point Status (SPARQLES) system for keeping track of

the health and maturity of public SPARQL endpoints.
We presented the high-level architecture, which con-
sists of an offline component for running tests over
endpoints, and an online component for providing vi-
sualisations and A.P.I.’s for the collected results. We
presented four dimensions of analytics that the system
runs over public endpoints. Thereafter, we presented
some of the details of the interfaces SPARQLES pro-
vides for human and automated agents to interact with
the underlying data collection. We also presented some
measures with respect to the overall runtime of analyt-
ics, the growth in storage requirements, and the perfor-
mance of our A.P.I.’s under load. Finally, we discussed
some aspects relating to the high-level impact, limita-
tions and sustainability of the tool.

In general, we believe that the SPARQLES system
provides the community with a unique and quite crit-
ical perspective on public SPARQL endpoints. The
system has shed light not only on some cobwebs
and cracks in the SPARQL infrastructure, but also
on the cream of the crop: those SPARQL endpoints
that are highly-available, readily-discoverable, highly-
performant and highly-interoperable.

Acknowledgements This work was supported by Fu-
jitsu Laboratories Limited, by CONICYT/FONDE-
CYT Project no. 3130617, by CONICYT/FONDE-
CYT Project no. 11140900, and by the Millennium
Nucleus Center for Semantic Web Research under
Grant NC120004. We would like to broadly thank



16 SPARQLES: Monitoring Public SPARQL Endpoints

all of the members of the Linked Data community
who have offered their feedback and suggestions about
SPARQLES through the project page, mailing lists,
and personal communications. We would also like to
thank the Open Knowledge Foundation for agreeing to
host the project for over a year.

References

[1] M. Acosta, M. Vidal, F. Flöck, S. Castillo, C. B. Aranda, and
A. Harth. SHEPHERD: A shipping-based query processor to
enhance SPARQL endpoint performance. In ISWC Posters &
Demos, pages 453–456, 2014.

[2] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-
scribing linked datasets. In LDOW. CEUR (Vol. 538), 2009.

[3] C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for exe-
cuting federated queries in SPARQL1.1. In ISWC 2014, pages
390–405, 2014.

[4] G. A. Atemezing and R. Troncy. Towards a linked-data based
visualization wizard. In PInternational Workshop on Consum-
ing Linked Data (COLD 2014), 2014.

[5] F. Benedetti, S. Bergamaschi, and L. Po. Online index extrac-
tion from linked open data sources. In Second International
Workshop on Linked Data for Information Extraction (LD4IE
2014), pages 9–20, 2014.

[6] B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rösch,
K. Möller, and D. Vallet. Usage analysis and the web of data.
SIGIR Forum, 45(1):63–69, 2011.

[7] T. Berners-Lee. Linked Data. Design issues for the World
Wide Web, World Wide Web Consortium, 2006. http://

www.w3.org/DesignIssues/LinkedData.html.
[8] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A

generic architecture for storing and querying RDF and RDF
schema. In ISWC, pages 54–68, 2002.

[9] C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche.
SPARQL web-querying infrastructure: Ready for action? In
ISWC, pages 277–293, 2013.

[10] O. Erling and I. Mikhailov. RDF support in the virtuoso dbms.
In Networked Knowledge – Networked Media. Springer, 2009.

[11] I. Ermilov, M. Martin, J. Lehmann, and S. Auer. Linked open
data statistics: Collection and exploitation. In Knowledge Engi-
neering and the Semantic Web (KESW), pages 242–249, 2013.

[12] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres.
SPARQL 1.1 protocol. W3C Recommendation, March 2013.

[13] B. Fetahu, S. Dietze, B. Pereira Nunes, M. Antonio Casanova,
D. Taibi, and W. Nejdl. A scalable approach for efficiently
generating structured dataset topic profiles. In The Semantic
Web: Trends and Challenges, volume 8465, pages 519–534,
2014.

[14] M. A. Gallego, J. D. Fernández, M. A. Martínez-Prieto, and
P. D. L. Fuente. An empirical study of real-world SPARQL
queries. In USEWOD Workshop, 2012.

[15] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 update.
W3C Recommendation, March 2013.

[16] B. Glimm and C. Ogbuji. SPARQL 1.1 update. W3C Recom-
mendation, March 2013.

[17] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and
implementation of a clustered RDF store. In SSWS, 2009.

[18] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C
Recommendation, March 2013.

[19] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/owl2-
primer/.

[20] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,
and C. Bizer. DBpedia - A large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semantic Web Journal,
6(2):167–195, 2015.

[21] J. Lorey. Identifying and determining SPARQL endpoint char-
acteristics. IJWIS, 10(3):226–244, 2014.

[22] M. Mehdi, A. Iqbal, A. Hogan, A. Hasnain, Y. Khan, S. Decker,
and R. Sahay. Discovering Domain-Specific Public SPARQL
Endpoints: A Life-Sciences Use-Case. In IDEAS, 2014.

[23] H. Paulheim and S. Hertling. Discoverability of SPARQL End-
points in Linked Open Data. In ISWC (Posters & Demos),
pages 245–248, 2013.

[24] H. Paulheim and S. Hertling. Discoverability of SPARQL end-
points in Linked Open Data. In Proceedings of the ISWC 2013
Posters & Demonstrations Track, Sydney, Australia, October
23, 2013, pages 245–248, 2013.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complex-
ity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[26] E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 feder-
ated query. W3C Recommendation, March 2013.

[27] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation, January 2008.

[28] S. Ran. A model for web services discovery with qos. SIGecom
Exchanges, 4(1):1–10, 2003.

[29] L. Rietveld and R. Hoekstra. Man vs. machine: Differences in
SPARQL queries. In USEWOD workshop, 2014.

[30] L. Rietveld and R. Hoekstra. The YASGUI Family of SPARQL
Clients. Semantic Web Journal, 2015. (under review).

[31] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N.
Ngomo. LSQ: the linked SPARQL queries dataset. In ISWC,
pages 261–269, 2015.

[32] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C
Working Group Note, June 2014. http://www.w3.org/TR/
rdf11-primer/.

[33] P. Vandenbussche, C. B. Aranda, A. Hogan, and J. Umbrich.
Monitoring SPARQL endpoint status. In ISWC Posters & De-
mos, pages 81–84, 2013.

[34] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D.
Vocht, M. V. Sande, R. Cyganiak, P. Colpaert, E. Mannens, and
R. V. de Walle. Low-cost queryable linked data through triple
pattern fragments. In ISWC Posters & Demos, pages 13–16,
2014.

[35] R. Verborgh, M. V. Sande, P. Colpaert, S. Coppens, E. Man-
nens, and R. V. de Walle. Web-Scale Querying through Linked
Data Fragments. In Workshop on Linked Data on the Web,
2014.

[36] G. T. Williams. SPARQL 1.1 Service Description. W3C Rec-
ommendation, March 2013.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/

