
Semantic Web 0 (2016) 1–24 1
IOS Press

SPARQL with Property Paths on the Web
Editor(s): Fabien Gandon, INRIA, France; Marta Sabou, Technische Universität Wien, Austria; Harald Sack, Hasso Plattner Institute, Germany
Solicited review(s): Pedro Szekely, University of Southern California, USA; Jérôme Euzenat, INRIA Grenoble Rhône-Alpes, France; Oscar
Corcho, Universidad Politécnica de Madrid, Spain

Olaf Hartig a,b,∗, Giuseppe Pirrò c

a Hasso Plattner Institute, Universität Potsdam, Germany
b Department of Computer and Information Science (IDA), Linköping University, Sweden
E-mail: olaf.hartig@liu.se
c Italian National Research Council (ICAR-CNR), Rende(CS), Italy
E-mail: pirro@icar.cnr.it

Abstract. Linked Data on the Web represents an immense source of knowledge suitable to be automatically processed and
queried. In this respect, there are different approaches for Linked Data querying that differ on the degree of centralization adopted.
On one hand, the SPARQL query language, originally defined for querying single datasets, has been enhanced with features to
query federations of datasets; however, this attempt is not sufficient to cope with the distributed nature of data sources available
as Linked Data. On the other hand, extensions or variations of SPARQL aim to find trade-offs between centralized and fully
distributed querying. The idea is to partially move the computational load from the servers to the clients. Despite the variety and
the relative merits of these approaches, as of today, there is no standard language for querying Linked Data on the Web. A specific
requirement for such a language to capture the distributed, graph-like nature of Linked Data sources on the Web is a support of
graph navigation. Recently, SPARQL has been extended with a navigational feature called property paths (PPs). However, the
semantics of SPARQL restricts the scope of navigation via PPs to single RDF graphs. This restriction limits the applicability of
PPs for querying distributed Linked Data sources on the Web. To fill this gap, in this paper we provide formal foundations for
evaluating PPs on the Web, thus contributing to the definition of a query language for Linked Data. We first introduce a family
of reachability-based query semantics for PPs that distinguish between navigation on the Web and navigation at the data level.
Thereafter, we consider another, alternative query semantics that couples Web graph navigation and data level navigation; we
call it context-based semantics. Given these semantics, we find that for some PP-based SPARQL queries a complete evaluation
on the Web is not possible. To study this phenomenon we introduce a notion of Web-safeness of queries, and prove a decidable
syntactic property that enables systems to identify queries that are Web-safe. In addition to establishing these formal foundations,
we conducted an experimental comparison of the context-based semantics and a reachability-based semantics. Our experiments
show that when evaluating a PP-based query under the context-based semantics one experiences a significantly smaller number
of dereferencing operations, but the computed query result may contain less solutions.

Keywords: Property paths, Web navigational language, Web safeness, SPARQL

1. Introduction

The increasing trend in sharing and interlinking
pieces of structured data on the World Wide Web
(WWW) is evolving the classical Web—which is fo-
cused on hypertext documents and syntactic links
among them—into a Web of Linked Data. The Linked

*Corresponding author, e-mail: olaf.hartig@liu.se

Data principles [5] present an approach to extend the
scope of Uniform Resource Identifiers (URIs) to new
types of resources (e.g., people, places) and repre-
sent their descriptions and interlinks by using the Re-
source Description Framework (RDF) [8] as standard
data format. RDF adopts a graph-based data model,
which can be queried by using the SPARQL query
language [15]. When it comes to Linked Data on the
WWW, the common way to provide query-based ac-

1570-0844/16/$27.50 c© 2016 – IOS Press and the authors. All rights reserved

2 SPARQL with Property Paths on the Web

cess is via SPARQL endpoints; that is, services that
usually answer SPARQL queries over a single dataset.
Recently, the original core of SPARQL has been ex-
tended with features supporting query federation; it is
now possible, within a single query, to target multiple
endpoints (via the SERVICE operator). However, such an
extension is not enough to cope with an unbounded
and a priori unknown space of data sources such as the
WWW. Moreover, not all Linked Data on the WWW
is accessible via SPARQL endpoints. More recent pro-
posals are based on the idea of Linked Data Frag-
ments [39,40] and aim at moving part of the computa-
tional load from Web servers to clients.

However, as of today, there exists no standard query
language for Linked Data on the WWW, although
SPARQL is clearly a candidate. A key feature that such
a language should provide is navigation across the un-
bound, a priori unknown, graph-like environment rep-
resented by distributed Linked Data sources.

While earlier research on using SPARQL for Linked
Data is limited to fragments of the first version of the
language [6,16,18,38], the version 1.1 of SPARQL
introduces a feature called property paths (PPs) that
equips the language with navigational capabilities [15].
However, the standard definition of PPs is limited to
single RDF graphs and, thus, not directly applicable to
Linked Data that is distributed over the WWW.

Therefore, toward the definition of a language for
accessing Linked Data live on the WWW, the follow-
ing questions emerge naturally:

How can PPs be defined over the WWW?

and

What are the implications of such a definition?

Answering these questions is the broad objective of
this paper. In particular, we focus on Linked Data on
the WWW, by which we mean RDF data that is made
available on the WWW as per the Linked Data princi-
ples [5] and, thus, can be accessed by looking up HTTP
scheme based URIs. In this context we make the fol-
lowing main contributions:

1. We formalize a family of reachability-based
query semantics of PP-based SPARQL queries
that are meant to be evaluated over Linked Data
on the WWW. This formalization approach treats
navigation on the Web separate from navigation
on the level of data.

2. We also formalize an alternative, context-based
query semantics that intertwines Web graph nav-
igation and data level navigation.

3. We study the feasibility of evaluating queries
under these semantics. For this study we as-
sume that query engines do not have complete
information about the queried Web of Linked
Data (as it is the case for the WWW). Our study
shows that query evaluation under any reachabil-
ity-based semantics is possible in practice and
that a similarly general statement cannot be made
for the context-based semantics; that is, there ex-
ist cases in which query evaluation under the
context-based semantics is not possible.

4. We establish a decidable syntactic property of
queries for which an evaluation under the con-
text-based semantics is possible.

5. We provide an experimental comparison of the
context-based and a reachability-based seman-
tics. For this comparison we executed queries di-
rectly over the WWW. As its main result, our
experiment shows that when evaluating a PP-
based query under the context-based semantics,
one experiences a significantly smaller number
of dereferencing operations, but the computed
query result may contain less solutions.

This article extends a preliminary version that ap-
peared in the proceedings of the ESWC 2015 confer-
ence [21]. The extension includes: (i) the definition
and analysis of a family of reachability-based query
semantics for Property Paths on the Web; (ii) an ex-
perimental analysis and comparison of the different se-
mantics; (iii) a more detailed description of the main
technical results; (iv) further examples to better clarify
the terminology and the main concepts of the paper;
(v) a more comprehensive discussion of related work.

The paper is organized as follows. Section 2 provides
an overview on related work. In Section 3 we introduce
the formal framework for this paper, including a data
model that captures the notion of Linked Data on the
WWW. Section 4 focuses on PPs, isolated from other
SPARQL operators. In Section 5 we broaden our view
to define PP-based SPARQL graph patterns. In Sec-
tion 6 we characterize a class of Web-safe patterns and
prove their feasibility. Section 7 discusses the experi-
mental evaluation. Finally, in Section 8 we conclude.

2. Related Work

There is an extensive body of research on the foun-
dations of querying RDF data. An important work in
this context is the investigation of SPARQL provided

SPARQL with Property Paths on the Web 3

by Peréz et al. [30]. Other authors focused on the foun-
dations of SPARQL query optimization [34,26].

From the perspective of graphs, languages for the
navigation and specification of vertices in graphs
have a long tradition (see Wood’s survey [41]). For
RDF, extensions of SPARQL such as PSPARQL [2],
nSPARQL [31], and SPARQLeR [23] introduced nav-
igational features since those were missing in the first
version of SPARQL. Only recently, with the addition
of property paths (PPs) in version 1.1 [15], SPARQL
has been enhanced officially with such features. The
final definition of PPs has been influenced by research
that studied the computational complexity of an early
draft version of PPs [3,27]. There also already exists a
proposal to extend the expressive power of PPs [11].
Other strands of research focus on studying properties
of PPs such as containment [25] or supporting recur-
sion in SPARQL [32]. However, the main assumption
of all these navigational extensions of SPARQL is to
work on a single, centralized RDF graph.

The idea of querying the WWW as a database is
not new (see Florescu et al.’s survey [13]). Perhaps the
most notable early works in this context are by Konop-
nicki and Shmueli [24], Abiteboul and Vianu [1], and
Mendelzon et al. [28], all of which tackled the problem
of evaluating SQL-like queries on the hypertext Web.
While such queries included navigational features, the
focus was on retrieving specific Web pages, particular
attributes of specific pages, or content within them.

Our departure point is different: We aim at defin-
ing semantics of SPARQL queries (including property
paths) over Linked Data on the WWW; this involves
dealing with two graphs of different type; namely, an
RDF graph that is distributed over an unbounded num-
ber of documents on the WWW and the Web graph in
which these documents are interlinked with each other.

To express queries over Linked Data on the WWW,
two main strands of research can be identified. The first
studies how to extend the scope of SPARQL queries
to the WWW, with existing work focusing on basic
graph patterns [6,16,38] or a more expressive fragment
that includes AND, OPT, UNION and FILTER [18]. The sec-
ond strand of research focuses on emphasizing naviga-
tional features, which resulted in new languages such
as NautiLOD [10,12], LDPath [33], and LDQL [20].

These two strands have different departure points.
The former employs navigation over the WWW to col-
lect data for answering a given SPARQL query; here
navigation is a means to discover query-relevant data.
The latter provides explicit navigational features and
uses querying capabilities to filter data sources of in-

terest; here navigation (not querying) is the main fo-
cus. The context-based query semantics proposed in
this paper combines both approaches.

Another line of research slightly related to our pro-
posal is that of focused crawling. The idea is to en-
hance the behavior of classical Web crawlers, that con-
sider all pages reachable from a given page, to be more
selective; selectivity is obtained by considering e.g.,
a set of predefined topics [36] or meta data within
HTML pages [29]. A more recent line of related re-
search looks into building (domain-specific) knowl-
edge graphs by exploiting semantic technologies to
reconcile the data continuously crawled from diverse
sources [35]. In a way, these approaches mimic the
process of filtering performed by our approach but on
a less expressive scale due to the limited expressive-
ness of the filtering mechanism as compared to our lan-
guage. Nevertheless, our approach could be used to en-
able a finer-grained information filtering.

3. Formal Framework

This section provides a formal framework for defin-
ing semantics of PPs over Linked Data. In particular,
we first recall the definition of PPs as per the SPARQL
standard [15]. Thereafter, we introduce a data model
that captures the notion of Linked Data on the WWW.

3.1. Preliminaries

We assume four pairwise disjoint, countably infi-
nite sets I (IRIs), B (blank nodes), L (literals), and
V (variables, denoted by a leading ’?’ symbol). An
RDF triple (or simply triple) is a tuple from the set
T = (I ∪ B) × I × (I ∪ B ∪ L). For any such triple
t = 〈s, p, o〉 we call s the subject, p the predicate, and
o the object, and we write iris(t) to denote the set of
all IRIs in the triple; i.e., iris(t) = {s, p, o} ∩ I. A set
of triples is called an RDF graph.

A property path pattern (or PP pattern for short) is
a tuple P = 〈α,path, β〉 with α ∈ (I ∪ L ∪ V),
β ∈ (I ∪L∪ V), and path is a property path expres-
sion (PP expression) that is defined by the following
grammar (where u, u1, . . . , un ∈ I):

path = u
∣∣ !(u1 | . . . |un)

∣∣ path/path ∣∣
(path |path)

∣∣ (path)∗
∣∣ ∧path

As can be seen from this grammar, we have two
base cases for PP expressions, namely, arbitrary IRIs

4 SPARQL with Property Paths on the Web

M1 onM2 = 〈Ω, card〉 such that Ω = {µ1∪µ2 | (µ1, µ2) ∈ Ω1×Ω2 and µ1 ∼ µ2} and for every solution mapping
µ ∈ Ω we have card(µ) =

∑
(µ1, µ2)∈Ω1×Ω2 s.t. µ=µ1∪µ2

(card(µ1) · card(µ2)).

M1 \M2 = 〈Ω, card〉 such that Ω = {µ1 ∈ Ω1 |@µ2 ∈ Ω2 : µ1 ∼ µ2} and for every solution mapping µ ∈ Ω we
have card(µ) = card1(µ).

M1 tM2 = 〈Ω, card〉 such that Ω = Ω1 ∪ Ω2 and (i) card(µ) = card1(µ) for all solution mappings µ ∈ Ω \ Ω2,
(ii) card(µ) = card2(µ) for all µ ∈ Ω \ Ω1, and (iii) card(µ) = card1(µ) + card2(µ) for all µ ∈ Ω1 ∩ Ω2.

πV (M1) = 〈Ω, card〉 such that Ω = {µ | ∃µ′ ∈Ω1 : µ ∼ µ′ and dom(µ) = V ∩ dom(µ′)} and for every solution
mapping µ ∈ Ω we have card(µ) =

∑
µ′∈Ω1 s.t. µ∼µ′ card1(µ′).

Fig. 1. SPARQL algebra operators over multisets of solution mappings, M1 = 〈Ω1, card1〉 and M2 = 〈Ω2, card2〉.

and expressions of the form !(u1 | . . . |un). PP pat-
terns based on the former are ordinary triple patterns,
which, in the context of PPs, represent single naviga-
tion steps from the subject to the object of any triple
whose predicate is the given IRI. The second base case
captures a form of negation that represents a naviga-
tion step along any triple whose predicate is not among
the IRIs listed. Given these base types of PP expres-
sions, users may combine them via the classical regular
expression operators: concatenation /, disjunction | ,
and recursive concatenation (·)∗; additionally, ∧path
represents the inverse of path (a formal semantics of
PP patterns and PP expressions follows shortly).

The SPARQL standard introduces additional types
of PP expressions [15]. Since these are merely syntac-
tic sugar (they are defined in terms of expressions cov-
ered by the grammar given above), we ignore them in
this paper. As another slight deviation from the stan-
dard, we do not permit blank nodes in PP patterns (i.e.,
α, β /∈ B). However, standard PP patterns with blank
nodes can be simulated using fresh variables.

Example 1. As an example of a PP pattern con-
sider 〈Tim, (knows)∗/name, ?n〉 where ?n ∈ V and
Tim, knows, name ∈ I. This pattern retrieves the names
of persons that can be reached from Tim by an ar-
bitrarily long path of knows relationships (which in-
cludes Tim). Another example are the two PP patterns
〈?p, knows,Tim〉 and 〈Tim, ∧knows, ?p〉, both of which
retrieve persons that know Tim. For further examples
we refer to the SPARQL specification [15, Section 9.2].

In addition to a syntax for the queries of interest,
we have to introduce the standard semantics of these
queries. The SPARQL specification defines this se-
mantics by an evaluation function (see below) that re-
turns multisets of so called solution mappings; such a
mapping is a partial function µ : V → (I ∪ B ∪ L).

To refer to the domain of a solution mapping µ (i.e.,
the set of variables for which µ is defined) we write

dom(µ). If, for two solution mappings, say µ1 and
µ2, we have µ1(?v) = µ2(?v) for every variable
?v ∈

(
dom(µ1) ∩ dom(µ2)

)
, then we say that µ1 and

µ2 are compatible (µ1∼µ2). In this case, µ1 and µ2

can be combined into a solution mapping µ = µ1 ∪µ2

such that dom(µ) =
(
dom(µ1) ∪ dom(µ2)

)
, µ ∼ µ1,

and µ ∼ µ2. Given a solution mapping µ and a PP pat-
tern P , we write µ[P] to denote the PP pattern obtained
by replacing the variables in P according to µ (where
variables for which µ is not defined are not replaced).

We represent a multiset of solution mappings by a
pair M = 〈Ω, card〉 where Ω is the underlying set (of
solution mappings) and card is the corresponding car-
dinality function; i.e., card : Ω → {1, 2, ... }. By
abusing notation slightly, we write µ ∈ M for every
µ ∈ Ω. Furthermore, to simplify the following defini-
tions we introduce a family of special, parameterized
cardinality functions for multisets in which every solu-
tion mapping has a cardinality of 1. That is, for any set
of solution mappings Ω, let card1(Ω) : Ω → {1, 2, ...}
be the constant-1 cardinality function that is defined
by card1(Ω)(µ) = 1 for all µ ∈ Ω.

To define the aforementioned evaluation function
we also need to introduce several operators of the
SPARQL algebra, which is defined over multisets of
solution mappings. That is, for two such multisets,
M1 = 〈Ω1, card1〉 and M2 = 〈Ω2, card2〉, we define
the join (on), the difference (\), the multiset union (t),
and projection (πV , where V ⊆ V is a finite set of vari-
ables) as given in Figure 1. In addition to these alge-
bra operators, the SPARQL standard introduces aux-
iliary functions to define the semantics of PP patterns
of the form 〈α,path∗, β〉. Figure 2 provides these
functions—which we call ALP1 and ALP2—adapted to
our formalism (we need a variable ?x in line 6 since
PP patterns in our formalism do not have blank nodes).

We are now ready to define the evaluation function
that formalizes the standard semantics of PP patterns.

SPARQL with Property Paths on the Web 5

Function ALP1
(
γ,path, G

)
Input: γ ∈ (I ∪ B ∪ L),

path is a PP expression,
G is an RDF graph.

1: Visited := ∅
2: ALP2

(
γ,path,Visited , G

)
3: return Visited

Function ALP2
(
γ,path,Visited , G

)
Input: γ ∈ (I ∪ B ∪ L), path is a PP expression,

Visited ⊆ (I ∪ B ∪ L), G is an RDF graph.
4: if γ /∈ Visited then
5: add γ to Visited
6: for all µ ∈ [[〈?x,path, ?y〉]]G such that µ(?x) = γ and ?x, ?y ∈ V do
7: ALP2

(
µ(?y),path,Visited , G

)
Fig. 2. Auxiliary functions used for defining the semantics of PP expressions of the form path∗.

[[〈α, u, β〉]]G =
〈{
µ |dom(µ) = ({α, β} ∩ V) and µ[〈α, u, β〉] ∈ G

}
, card1(Ω)

〉
[[〈α, !(u1 | . . . |un), β〉]]G =

〈{
µ |dom(µ) =

(
{α, β} ∩ V

)
and there exists an IRI

u ∈ I such that u /∈ {u1, . . . , un} and µ[〈α, u, β〉] ∈ G
}

, card1(Ω)
〉

[[〈α, ∧path, β〉]]G = [[〈β,path, α〉]]G

[[〈α,path1/path2, β〉]]G = π{α,β}∩V

(
[[〈α,path1, ?v〉]]G on [[〈?v,path2, β〉]]G

)
[[〈α, (path1|path2), β〉]]G = [[〈α,path1, β〉]]G t [[〈α,path2, β〉]]G

[[〈xL, (path)∗, ?vR〉]]G =
〈{
µ |dom(µ) = {?vR} and µ(?vR) ∈ ALP1(xL,path, G)

}
, card1(Ω)

〉
[[〈?vL, (path)∗, ?vR〉]]G =

〈{
µ |dom(µ) = {?vL, ?vR} and µ(?vL) ∈ terms(G)

and µ(?vR) ∈ ALP1(µ(?vL),path, G)
}

, card1(Ω)
〉

[[〈?vL, (path)∗, xR〉]]G = [[〈xR, (
∧path)∗, ?vL〉]]G

[[〈xL, (path)∗, xR〉]]G =
〈{{µ∅} if ∃ µ ∈ [[〈xL, (path)∗, ?v〉]]G : µ(?v) = xR,

∅ else
, card1(Ω)

〉

Fig. 3. Standard query semantics of SPARQL Property Paths, where α, β ∈ (I∪L∪V); u, u1, ..., un∈ I; xL, xR ∈ (I∪L); ?vL, ?vR ∈ V;
?v ∈ V is a fresh variable; and µ∅ is the empty solution mapping with dom(µ∅) = ∅.

Definition 2. Let P be a PP pattern and let G be an
RDF graph. The evaluation of P over G, denoted by
[[P]]G, is a multiset of solution mappings 〈Ω, card〉 that
is defined recursively as given in Figure 3.

Example 3. Consider the following RDF graph:

Gex = {〈Suzi, knows, Eve〉, 〈Eve, knows, Charlie〉,
〈Suzi, knows,Alice〉, 〈Alice, knows, Charlie〉,

〈Alice, knows, Eve〉}.

Then, for the PP pattern Pa = 〈Suzi, knows/knows, ?x〉
we have [[Pa]]Gex =〈Ωa, carda〉 with Ωa = {µa1, µa2},

µa1(?x) = Charlie where carda(µa1) = 2, and

µa2(?x) = Eve where carda(µa2) = 1.

Note that the result contains the solution mapping
µa1 twice because Charlie can be reached from Suzi

by two different paths that match the PP expression
knows/knows (namely, one via Eve, the other via Alice).

Example 4. As another example, consider PP pattern
Pb = 〈Suzi, (knows)∗, ?x〉, for which we have:

[[Pb]]Gex = 〈{µb1, µb2, µb3, µb4}, cardb〉, where

µb1(?x) = Suzi, µb2(?x) = Eve,

µb3(?x) = Alice, µb4(?x) = Charlie,

and cardb(µbi) = 1 for all i ∈ {1, 2, 3, 4}. The latter
may be surprising at first. However, for the PP pattern
Pb, as for every PP pattern whose PP expression is of
the form (path)∗, the SPARQL specification digresses
from the standard bag semantics of other PP patterns

6 SPARQL with Property Paths on the Web

to an existential semantics where every solution map-
ping is counted only once, even if there exist multiple
matching paths with the same target node (the proce-
dural definition represented by function ALP2 achieves
this effect by ignoring already visited elements; cf.
line 4 in Figure 2).

3.2. Data Model

The standard query semantics of PP patterns—as in-
troduced in the SPARQL specification and presented in
the previous section—defines the result expected from
evaluating such a pattern over a (single) RDF graph.
Since the WWW is not an RDF graph, this standard
definition is insufficient as a formal foundation for
evaluating PP patterns over Linked Data on the WWW.
As a basis for providing a suitable definition we need a
data model that captures the notion of a Web of Linked
Data. To this end, we adopt the data model introduced
in our earlier work [18].

For this model we assume an infinite set D that
is disjoint from the aforementioned sets I (IRIs),
B (blank nodes), L (literals), and V (variables). Ele-
ments in this setD represent the concept of Web docu-
ments from which Linked Data can be extracted; here-
after, we call each d ∈ D a Linked Data document, or
document for short. Moreover, we assume a function
data : D → 2T that maps every document d ∈ D
to a finite set of triples data(d) ⊆ T . As prescribed
by the RDF data model [8], we require that the triples
of each document use a unique set of blank nodes;
i.e., for any pair of distinct documents d, d′ ∈ D,
there does not exist two triples t = 〈s, p, o〉 and
t′ = 〈s′, p′, o′〉 such that t ∈ data(d), t′ ∈ data(d′),
and {s, p, o}∩{s′, p′, o′}∩B 6= ∅. Given these prelim-
inaries, we define a Web of Linked Data as follows.

Definition 5. Assume a special symbol ⊥ such that
⊥ /∈ (D∪I∪B∪L∪V). A Web of Linked Data is a tu-
ple W = 〈D, adoc〉 with the following two elements:

– D ⊆ D is a set of documents; and
– adoc is a function that maps every IRI u ∈ I ei-

ther to a document in D or to the symbol ⊥ (i.e.,
adoc : I → D ∪ {⊥}) such that for every d ∈ D,
there exists an IRI u ∈ I with adoc(u) = d.

Observe that the function adoc captures the concept
of obtaining documents by looking up (HTTP) IRIs on
the WWW (also referred to as dereferencing). IRIs that
cannot be looked up, or whose look up does not result
in retrieving a document (even after following HTTP-

based redirection pointers) are mapped to the special
symbol ⊥. In this paper we assume that in any Web of
Linked Data W = 〈D, adoc〉 the set of documents D
is finite, in which case we say W is finite (for a discus-
sion of infiniteness refer to our earlier work [18]).

For the subsequent discussion we introduce a few
additional concepts: Given a Web of Linked Data
W = 〈D, adoc〉, we write dom6⊥(adoc) to denote the
set of IRIs that function adocmaps to a document; i.e.,
dom 6⊥(adoc) = {u ∈ I | adoc(u) 6=⊥} (hence, this
set corresponds to what is also referred to as “deref-
erencable IRIs”). Moreover, for any two documents
d, d′ ∈ D in W, we say that document d has a data
link to d′ if there exists some triple t = 〈s, p, o〉 in the
data of d (i.e., t ∈ data(d)) such that t contains an
IRI that can be used to obtain d′, i.e., adoc(u) = d′

for some u ∈ {s, p, o}. Such data links establish the
link graph of the Web of Linked Data W, that is, a di-
rected graph 〈D,E〉 in which the edges E are all pairs
〈d, d′〉 ∈ D ×D for which d has a data link to d′. We
emphasize that the link graph of W is a different type
of graph than the RDF “graph” whose triples are dis-
tributed over the documents in W.

Example 6. As a running example for the remainder
of this paper, we assume a small Web of Linked Data
Wex = 〈Dex, adocex〉 consisting of seven documents,
Dex = {dA, dB, dC, dD, dE, dS, dP}, with data that de-
scribes a project, denoted by IRI PrjX ∈ I, and people,
denoted by Alice,Bob, Charlie,Dody, Eve, Suzi ∈ I. Fig-
ure 4 presents this data and illustrates the link graph
of Wex, assuming function adocex is given as follows:

adocex(Alice) = dA, adocex(Eve) = dE,

adocex(Bob) = dB, adocex(Suzi) = dS,

adocex(Charlie) = dC, adocex(PrjX) = dP,

adocex(Dody) = dD, and adocex(u) =⊥
for every other IRI u.

We emphasize that the link graph, as well as the
two elements D and adoc, typically are not available
directly to systems that aim to compute queries over
the Web of Linked Data captured by W = 〈D, adoc〉.
In particular, the set dom6⊥(adoc)—i.e., all IRIs that
can be used to retrieve some document—is unknown
to such systems and can only be disclosed partially (by
trying to look up IRIs). This inherent lack of complete
information about a queried Web of Linked Data has
an impact on the feasibility of answering specific types
of queries completely as we shall see in Section 6.

SPARQL with Property Paths on the Web 7

Fig. 4. The link graph of our example Web of Linked Data Wex (self-edges are omitted).

We are now ready to formalize query semantics that
define PP patterns as queries over a Web of Linked
Data (and, thus, over Linked Data on the WWW).

4. Web-aware Semantics of Property Paths

This section introduces three alternative query se-
mantics, each of which defines an expected query re-
sult for any PP pattern over any Web of Linked Data.

4.1. Full-Web Query Semantics

As a first approach we may assume a semantics that
is based on the standard evaluation function for PP pat-
terns (cf. Definition 2) and defines expected query re-
sults in terms of all data in a queried Web of Linked
Data. The following definition captures this approach,
which we call a “full-Web query semantics” [18].

Definition 7. Let P be a PP pattern, W = 〈D, adoc〉
be a Web of Linked Data, and Gall be the RDF graph
for which it holds thatGall =

⋃
d∈D data(d). The eval-

uation of P overW under full-Web semantics, denoted
by JP KfwW , is defined by JP KfwW = [[P]]Gall

.

Example 8. Recall our example Web Wex (cf. Exam-
ple 6 and Figure 4). The expected result of evaluating
PP pattern Pa = 〈Suzi, knows/knows, ?x〉 over Wex un-
der full-Web semantics is the multiset of solution map-
pings JPaKfwWex

= 〈{µa1, µa2, µa3, µa4, µa5}, cardfwa 〉
for which the following properties hold:

– µa1(?x) = Charlie and cardfwa (µa1) = 1 (because
Suzi has a “knows/knows connection” to Charlie via
Alice by using triples from documents dS and dA);

– µa2(?x) = Eve and cardfwa (µa2) = 1
(connection via Alice with triples from dS and dE);

– µa3(?x) = Alice and cardfwa (µa3) = 1
(via Dody by using only triples from dD);

– µa4(?x) = Suzi and cardfwa (µa4) = 2
(connections via Dody, see dD, and Bob, see dB);

– µa5(?x) = Dody and cardfwa (µa5) = 1 (via Bob).

We emphasize that the full-Web query semantics is
mostly of theoretical interest. In practice, that is, for
a Web of Linked Data W ∗ = 〈D∗, adoc∗〉 that repre-
sents the “real” WWW (as deployed on the Internet),
there cannot exist any system that guarantees to com-
pute the given evaluation function J·Kfw· over W ∗ us-
ing an algorithm that both terminates and returns com-
plete query results. Our earlier work provides a formal
proof of such a limitation of a full-Web query seman-
tics for other types of SPARQL graph patterns, includ-
ing triple patterns [18]. It is trivial to carry this result
over to the full-Web semantics of PP patterns (i.e., Def-
inition 7) because any PP pattern P = 〈α,path, β〉
with PP expression path being an IRI u ∈ I is a triple
pattern 〈α, u, β〉. Informally, we explain this negative
result by the fact that the two structures D∗ and adoc∗

that capture the queried Web formally, are not avail-
able for the WWW. Consequently, to enumerate the
set of all triples in W ∗ (denoted by Gall in Defini-
tion 7), a query execution system would have to dis-
cover all documents of the set D∗; given that mapping
adoc∗ is not available to such a system (in particular,
dom6⊥(adoc∗)—the set of all IRIs whose lookup re-
trieves a document—is, at best, partially known), the
only guarantee to discover all documents is to look
up any possible (HTTP) IRI. Since these are infinitely
many [9], the enumeration process cannot terminate.

4.2. Reachability-Based Query Semantics

Given the limited practical applicability of the full-
Web semantics, our earlier work introduces reachabil-
ity-based semantics that restrict the scope of queries
and expected results to “reachable” documents [18].
In the following, we adapt this idea for PP patterns.

8 SPARQL with Property Paths on the Web

Informally, a set of reachable documents of a Web of
Linked Data W contains all the documents that can be
reached by traversing recursively a well-defined set of
data links in the link graph of W. To specify what data
links belong to such a set, we introduce the notion of
a reachability criterion [18], which we define formally
as a function c : T × I × P → {true, false} where P
denotes the infinite set of all PP patterns (and, as intro-
duced before, T and I are the sets of all triples and all
IRIs, respectively). Then, given such a reachability cri-
terion, we define reachability of documents as follows.

Definition 9. Let P be a PP pattern, let S ⊆ I be a fi-
nite set of IRIs (which serve as a seed), let c be a reach-
ability criterion, and let W = 〈D, adoc〉 be a Web of
Linked Data. A document d ∈ D is (S, c, P)-reachable
in W if any of the following two conditions holds:

1. There exists an IRI u ∈ S such that adoc(u) = d
(in which case we call d a “seed document”); or

2. there exist (another) document d′ ∈ D, a triple t,
and an IRI u such that

(a) d′ is (S, c, P)-reachable in W,
(b) t ∈ data(d′),
(c) u ∈ iris(t),
(d) c(t, u, P) = true, and
(e) adoc(u) = d.

Notice how the second condition restricts the notion
of reachability by ignoring any data link that does not
satisfy the given reachability criterion. In earlier work
we define several concrete reachability criteria [18], in-
cluding cAll that, for each tuple 〈t, u, P 〉 ∈ T ×I ×P ,
is defined by cAll(t, u, P) = true; hence, cAll does not
place any restrictions on data links.

Another, more restrictive criterion that is commonly
used in practice [19,38], is cMatch [18]; this criterion ig-
nores all data links that do not match any triple pattern
contained in the given SPARQL query. While our ear-
lier formal definition of cMatch assumes that SPARQL
queries are constructed from triple patterns [18], we
may adapt the idea of this criterion for the PP-based
patterns in this paper and define a corresponding reach-
ability criterion that we call cPPMatch.

Definition 10. For any triple t = 〈s, p, o〉, IRI u, and
PP pattern P , cPPMatch(t, u, P) = true if and only if
p is an IRI that is mentioned in the PP expression of
PP pattern P except for those IRIs that appear only in
subexpressions of the forms !(u1 | . . . |un).

Example 11. By using our previous example pattern
Pa = 〈Suzi, knows/knows, ?x〉 and Sex = {Suzi}, the fol-

lowing documents are (Sex, cPPMatch, Pa)-reachable in
our example Web Wex (cf. Example 6 and Figure 4):
dS, dA, dC, and dE. If we consider the less restrictive
reachability criterion cAll instead, then we have these
four documents and, additionally, dP and dD as being
(Sex, cAll, Pa)-reachable in Wex (i.e., all but dB).

Given the notion of reachability criteria, we define a
family of reachability-based semantics for PP patterns:

Definition 12. Let P be a PP pattern, let S ⊆ I be
a finite set of IRIs, and let c be a reachability crite-
rion. Furthermore, let W be a Web of Linked Data,
let DR be the set of all documents that are (S, c, P)-
reachable in W, and let GR be the RDF graph for
which it holds thatGR =

⋃
d∈DR

data(d). Then, the S-
seeded evaluation of P over W under c-semantics, de-
noted by JP Krw(c,S)

W , is defined by JP Krw(c,S)
W = [[P]]GR

where [[P]]GR
uses the standard evaluation function for

PP patterns (cf. Definition 2).

Example 13. Consider Pa = 〈Suzi, knows/knows, ?x〉
and Sex = {Suzi}, then, under cAll-semantics, we have
JPaK

rw(cAll,Sex)
Wex

=〈{µa1, µa2, µa3, µa4}, cardrw(cAll,Sex)
a 〉

with the solution mappings µa1–µa4 as in Example 8
and cardrw(cAll,Sex)

a (µai) = 1 for all i ∈ {1, 2, 3, 4}.
Note that solution mapping µa5 (cf. Example 8) is not
a solution in this case because computing it requires
triples from document dB, but dB is not (Sex, cAll, Pa)-
reachable in Wex (cf. Example 11); due to the same
reason we have cardrw(cAll,Sex)

a (µa4) = 1 (under full-
Web semantics it is cardfwa (µa4) = 2; cf. Example 8).

Example 14. Under cPPMatch-semantics, we only ex-
pect the following result for Pa (and Sex) over Wex:
JPaK

rw(cPPMatch,Sex)
Wex

= 〈{µa1, µa2}, cardrw(cPPMatch,Sex)
a 〉.

As mentioned in Example 8, solution mapping µa3 re-
quires document dD, which is is not (Sex, cPPMatch, Pa)-
reachable in Wex (cf. Example 11); similarly, for µa4.

4.3. Context-Based Query Semantics

Reachability-based query semantics as introduced
in the previous section impose a clear conceptual
separation between navigation over the link graph
of a queried Web of Linked Data—which serves
the purpose of discovering and retrieving reachable
documents—and standard PP-based navigation over
the data obtained from all reachable documents. That
is, there exists no correlation between paths of triples
that match PP expressions and paths of data links that
connect reachable documents to seed documents.

SPARQL with Property Paths on the Web 9

At this point it is interesting to also explore an alter-
native approach in which navigation on the link graph
correlates with PP patterns in queries. To this end, we
introduce another semantics that interprets PP patterns
as a language for navigation over Linked Data on the
WWW (i.e., along the lines of earlier navigational lan-
guages for Linked Data such as NautiLOD [10]). We
refer to this semantics as context-based.

The main idea of this query semantics is to restrict
the scope of searching for any next triple of a poten-
tially matching path to specific data within specific
documents on the queried Web of Linked Data.

To formalize these restrictions we introduce the no-
tion of a context selector. Informally, for each IRI that
can be used to retrieve a document, the context se-
lector returns a specific subset of the data within that
document; this subset contains only those triples that
have the given IRI as their subject (such a subset of
triples resembles Harth and Speiser’s notion of “sub-
ject authoritative triples” [16]). Formally, for any Web
of Linked Data W = 〈D, adoc〉, the context selector
ofW is a function CW : (I∪B∪L∪V)→ 2T that, for
every IRI u ∈ I with u ∈ dom 6⊥(adoc), is defined by

CW(u) =
{
〈s, p, o〉 ∈ data

(
adoc(u)

) ∣∣u = s
}
,

and for any other γ ∈ (I∪B∪L∪V)\dom6⊥(adoc) we
have CW(γ) = ∅ (by extending the definition of CW

to handle any such γ, we can simplify the following
formalization of the context-based query semantics).

Informally, the context-based semantics uses the no-
tion of a context selector to restrict the scope of PP pat-
terns over a Web of Linked Data as follows. Assume
a sequence of triples 〈s1, p1, o1〉, ... , 〈sk, pk, ok〉 that
presents a path that already matches a sub-expression
of a given PP expression. Under the previously defined
reachability-based query semantics, the next triple for
such a path can be searched for in any reachable doc-
ument in the queried Web of Linked Data W. By con-
trast, under the context-based query semantics that we
formalize in the following Definition 15, the next triple
has to be searched for only in CW(ok).

Definition 15. Given a PP pattern P and a Web of
Linked Data W = 〈D, adoc〉, the evaluation of P over
W under context-based semantics, denoted by JP KctxW ,
is a multiset of solution mappings 〈Ω, card〉 that is de-
fined recursively as given in Figure 5.

Note how Definition 15 uses the context selector to
restrict the data that has to be searched to find matching
triples (e.g., consider the first line in Figure 5).

Example 16. Coming back to the example PP pattern
Pa = 〈Suzi, knows/knows, ?x〉, and Wex (cf. Example 6
and Figure 4), under the context-based semantics we
obtain JPaKctxWex

= 〈{µa1}, cardctxa 〉 with µa1 as be-
fore (cf. Example 8) and cardctxa (µa1) = 1.

There are two points worth emphasizing regarding
Definition 15: First, we define the context-based se-
mantics such that it resembles the standard semantics
of PP patterns in Section 3.1 as close as possible. To
this end, the part of our definition that covers PP pat-
terns of the form 〈α,path∗, β〉 also uses auxiliary
functions, namely, ALPW1 and ALPW2 (cf. Figure 6).
These functions evaluate the sub-expression path re-
cursively over the queried Web of Linked Data (instead
of using a fixed RDF graph as done in the standard se-
mantics in Figure 2). Second, the two base cases with
a variable in the subject position (i.e., the third and the
sixth case in Figure 5) require an enumeration of all
IRIs. Such a requirement is necessary to both, remain
consistent with the standard semantics and preserve
commutativity of operators that can be defined on top
of PP patterns (such as the AND operator in SPARQL;
cf. Section 5).

However, due to this requirement, there exist PP
patterns whose (complete) evaluation under context-
based semantics is infeasible when querying the WWW.
The following example describes such a case.

Example 17. Consider the following PP pattern PE17,
which retrieves the IRIs of people that know Tim:

PE17 = 〈?v, knows,Tim〉.

Under context-based semantics, any IRI u′ can be used
to generate a correct solution mapping for the pat-
tern as long as a lookup of that IRI results in re-
trieving a document whose data contains the triple
〈u′, knows,Tim〉. While, for any Web of Linked Data
that is finite, there exists only a finite number of such
IRIs, determining these IRIs and guaranteeing com-
pleteness requires enumerating the infinite set of all
possible IRIs and checking each of them—unless one
knows the complete (and finite) subset of all IRIs that
can be used to retrieve some document, which, due to
the infiniteness of possible HTTP-scheme IRIs, cannot
be achieved for the WWW.

It is not difficult to see that the issue illustrated in
the example exists for any triple pattern that has a vari-
able in the subject position. On the other hand, triple
patterns whose subject is an IRI do not have this is-
sue. However, having an IRI in the subject position is

10 SPARQL with Property Paths on the Web

J〈uL, p, β〉KctxW =
〈 {

µ |dom(µ) = ({β} ∩ V) and µ[〈uL, p, β〉] ∈ CW(uL)
}

, card1(Ω)
〉

J〈lL, p, β〉KctxW =
〈
∅ , card1(∅) 〉

J〈?vL, p, β〉KctxW =
〈 {

µ |dom(µ) = ({?vL, β} ∩ V)

and µ[〈?vL, p, β〉] ∈
⋃
u∈I

CW(u)
}

, card1(Ω)
〉

J〈uL, !(u1 | · · · | un), β〉KctxW =
〈 {

µ |dom(µ) = ({β} ∩ V) and there exists an IRI p ∈ I
s.t. p /∈ {u1, . . . , un} and µ[〈uL, p, β〉] ∈ CW(uL)

}
, card1(Ω)

〉
J〈lL, !(u1 | · · · | un), β〉KctxW =

〈
∅ , card1(∅) 〉

J〈?vL, !(u1 | · · · | un), β〉KctxW =
〈 {

µ |dom(µ) = ({?vL, β} ∩ V) and there exists an IRI p ∈ I
s.t. p 6∈ {u1, . . . , un} and µ[〈?vL, p, β〉] ∈

⋃
u∈I

CW(u)
}

, card1(Ω)
〉

J〈α, ∧path, β〉KctxW = J〈β,path, α〉KctxW

J〈α,path1/path2, β〉KctxW = π{α,β}∩V

(
J〈α,path1, ?v〉KctxW on J〈?v,path2, β〉KctxW

)
J〈α,path1 |path2, β〉KctxW = J〈α,path1, β〉KctxW t J〈α,path2, β〉KctxW

J〈xL, (path)∗, ?vR〉KctxW =
〈 {

µ |dom(µ) = {?vR} and µ(?vR)∈ALPW1(xL,path,W)
}

, card1(Ω)
〉

J〈?vL, (path)∗, ?vR〉KctxW =
〈 {

µ |dom(µ) = {?vL, ?vR} and µ(?vL) ∈ terms(W)

and µ(?vR) ∈ ALWP1(µ(?vL),path,W)
}

, card1(Ω)
〉

J〈?vL, (path)∗, xR〉KctxW = J〈xR, (
∧path)∗, ?vL〉KctxW

J〈xL, (path)∗, xR〉KctxW =
〈 {{µ∅} if ∃ µ ∈ J〈xL, (path)∗, ?v〉KctxW : µ(?v) = xR,

∅ else
, card1(Ω)

〉

Fig. 5. Context-based semantics of property paths over a Web of Linked Data; α, β ∈ (I∪L∪V); uL, p, u1, ... , un ∈ I; xL, xR ∈ (I∪L);
?vL, ?vR ∈ V; ?v ∈ V is a fresh variable; µ∅ is the empty solution mapping with dom(µ∅) = ∅; and function ALPW1 is given in Figure 6.

Function ALPW1
(
γ,path,W

)
Input: γ ∈ (I ∪ B ∪ L),

path is a PP expression,
W is a Web of Linked Data.

1: Visited := ∅
2: ALPW2

(
γ,path,Visited ,W

)
3: return Visited

Function ALPW2
(
γ,path,Visited ,W

)
Input: γ ∈ (I ∪ B ∪ L), path is a PP expression,

Visited ⊆ (I ∪ B ∪ L), W is a Web of Linked Data.
4: if γ /∈ Visited then
5: add γ to Visited
6: for all µ ∈ J〈?x,path, ?y〉KctxW s.t. µ(?x) = γ and ?x, ?y ∈ V do
7: ALPW2

(
µ(?y),path,Visited ,W

)
Fig. 6. Auxiliary functions used for defining context-based query semantics.

not a sufficient condition in general. For instance, the
PP pattern 〈Tim, ∧knows, ?v〉 has the same issue as the
pattern in Example 17 (in fact, both patterns are se-
mantically equivalent under context-based semantics
as can be observed from the seventh case in Figure 5).

A question that arises is whether there exists a (de-
cidable) property of PP patterns that can be used to
distinguish between patterns that do not have this is-
sue (i.e., evaluating them over any Web of Linked
Data is feasible under the context-based semantics)

SPARQL with Property Paths on the Web 11

and those that do. Another question is whether any of
the aforementioned reachability-based semantics has a
similar problem, and, more generally, how do these se-
mantics compare to the context-based semantics?

We come back to these questions in Sections 6
and 7, after introducing the more general case of PP-
based SPARQL queries in the next section.

5. PP-based SPARQL Queries for the Web

After considering PP patterns in isolation, we now
turn to a more expressive fragment of SPARQL that
embeds PP patterns as the basic building block and
uses additional operators on top. In this section, we de-
fine the resulting PP-based SPARQL queries; we spec-
ify their syntax and formalize Web-aware semantics
that extend the above defined semantics of PP patterns.

By using the algebraic syntax of SPARQL [30], we
define a graph pattern recursively as follows:1

– Any PP pattern 〈α,path, β〉 is a graph pattern.
– If P1 and P2 are graph patterns, then so are

(P1 ANDP2), (P1 UNIONP2), and (P1 OPTP2).

For any graph pattern P , we write vars(P) to denote
the set of all variables in P ; that is, if P is a PP pat-
tern 〈α,path, β〉, we have vars(P) = {α, β} ∩ V ,
and if P is of the form (P1 ANDP2), (P1 UNIONP2), or
(P1 OPTP2), we have vars(P) = vars(P1)∪vars(P2).

Example 18. An example of a graph pattern that com-
bines two PP patterns using the OPT operator is given
as follows:

(
〈Tim, knows/knows, ?p〉 OPT 〈?p, name, ?n〉

)
This pattern retrieves persons known by acquaintances
of Tim and, if available, the names of these persons.

By using PP patterns as the basic building block of
graph patterns, we can readily carry over any of the
above defined query semantics to graph patterns. To
this end, let S be a set of symbols that denote these se-
mantics; in particular, we have fw ∈ S that denotes the
full-Web semantics (cf. Section 4.1), rw(c, S) ∈ S de-
notes the (reachability-based) c-semantics with a set S
of seed IRIs (cf. Section 4.2), and ctx ∈ S denotes the
context-based semantics (cf. Section 4.3). We extend
these semantics to cover graph patterns as follows.

1For this paper we leave out other types of SPARQL graph pat-
terns such as filters, subqueries, assignments (BIND), aggregation.
Adding them is an exercise that would not have any significant im-
plication on the results in this paper.

Definition 19. Let P be a graph pattern and let W be
a Web of Linked Data. For any ϕ ∈ S, the evaluation
of P over W under the semantics denoted by ϕ is a
multiset of solution mappings, denoted by JP KϕW , that
is defined recursively as follows:2

– If P is a PP pattern 〈α,path, β〉, then JP KϕW is
defined in the ϕ-specific subsection of Section 4.

– If P is of the form (P1 ANDP2), then
JP KϕW = JP1K

ϕ
W onJP2K

ϕ
W .

– If P is of the form (P1 UNIONP2), then
JP KϕW = JP1K

ϕ
W t JP2K

ϕ
W .

– If P is of the form (P1 OPTP2), then
JP KϕW =

(
JP1K

ϕ
W onJP2K

ϕ
W

)
t
(
JP1K

ϕ
W \ JP2K

ϕ
W

)
.

6. Web-Safeness

Given the different semantics for evaluating (PP-
based) graph patterns over a Web of Linked Data, we
now study formally whether such evaluations are pos-
sible in practice over Linked Data on the WWW.

To this end, we first recall from Section 4.1 that,
under full-Web semantics, evaluating PP patterns over
the WWW is not possible in practice because, for
the tuple W = 〈D, adoc〉 with which we formalize
the notion of Linked Data on the WWW, the sets D
and dom 6⊥(adoc) cannot be assumed to be available
completely to any algorithm [18]. Without complete
knowledge of these two sets, an algorithm designed to
answer PP patterns completely under full-Web seman-
tics would have to enumerate the infinite set of all pos-
sible (HTTP-scheme) IRIs and look up each of them.

Based on this observation, we define a notion of
Web-safeness of graph patterns; with this notion we
capture whether it is possible for a graph pattern to be
evaluated completely over Linked Data on the WWW
under a given semantics.

Definition 20. For any ϕ ∈ S , a graph pattern P un-
der the semantics denoted by ϕ is Web-safe if there
exists an algorithm that, for any finite Web of Linked
Data W = 〈D, adoc〉, has the following properties:

1. The algorithm computes JP KϕW .
2. During its execution, the algorithm looks up only

a finite number of IRIs (that is, conceptually,
the algorithm invokes function adoc only a finite
number of times).

2Note that the definition uses the algebra defined in Figure 1.

12 SPARQL with Property Paths on the Web

3. Neither the set D nor the set dom 6⊥(adoc) is re-
quired as input for the algorithm (hence, the al-
gorithm does not require any a priori informa-
tion about W).

Unsurprisingly, as already discussed in Section 4.1,
it follows from the results in our earlier work [18] that,
under full-Web semantics, none of the graph patterns
considered in this paper is Web-safe.

In the following, we study Web-safeness of graph
patterns under the other Web-aware query semantics.

6.1. Web-Safeness of Reachability-Based Semantics

Independent of what reachability criterion (and seed
IRIs) one chooses, for every reachability-based seman-
tics we can show the following positive result.

Theorem 21. Given an arbitrary reachability crite-
rion c and any finite set S ⊆ I of IRIs, every graph pat-
tern is Web-safe under c-semantics with S as seed IRIs.

As a basis to prove Theorem 21, we first focus on
PP patterns, for which we show the following lemma.

Lemma 22. Given an arbitrary reachability criterion
c and any finite set S ⊆ I of IRIs, every PP pattern is
Web-safe under c-semantics with S as seed IRIs.

Proof (Lemma 22). We prove the lemma by provid-
ing Algorithm 1. It is easily verified that this algo-
rithm has the desired properties (as listed in Defini-
tion 20). Note that the execution of this algorithm
consists of two consecutive phases: a data retrieval
phase (lines 1 to 12) and a standard result computa-
tion phase (line 13). During the data retrieval phase the
algorithm incrementally discovers all documents that
are (S, c, P)-reachable in the queried Web, and col-
lects their data in RDF graph GR. The second condi-
tion in line 11 ensures that any other document is ig-
nored during the data retrieval phase. Hence, when the
execution of the algorithm reaches line 13, we have
GR =

⋃
d∈DR

data(d) where DR is the set of all
(S, c, P)-reachable documents. Due to the finiteness
of the queried Web of Linked Data, both DR and GR

are finite. Therefore, there exists a finite upper bound
on the number of different IRIs that the algorithm has
to look up; in the worst case this upper bound is the
number of all IRIs in the final version of GR (in prac-
tice, the upper bound may be smaller depending on the
reachability criterion c). The existence of this upper
bound and the first condition in line 11 ensure that the
data retrieval phase terminates.

Given Lemma 22, it is trivial to prove Theorem 21.

Algorithm 1 Computation of the S-seeded evaluation
of a PP pattern P over any Web of Linked Data under
c-semantics (where S ⊆ I is a finite set of IRIs and c
is a reachability criterion).

1: GR:= ∅ // an initially empty RDF graph
2: Visited := ∅ // an initially empty set of IRIs
3: Create a list of IRIs called Open and add every IRI u ∈ S

to this list (in an arbitrary order)
4: while Open is not empty do
5: Remove the first IRI, say u, from Open, add this IRI

to Visited, and look up this IRI
6: if the lookup of IRI u results in retrieving a document,

say d, and d contains triples then
7: G := the set of triples in d (use a fresh set of blank

node identifiers when parsing d)
8: Add G to GR (i.e., GR:= GR ∪G)
9: for all t ∈ G do

10: for all u′ ∈ iris(t) do
11: if u′ /∈ Visited and c(t, u′, P) = true then
12: Add u′ to Open
13: Compute the query result [[P]]GR (by using an arbitrary

algorithm that implements the standard SPARQL evalu-
ation function for PP patterns)

14: return [[P]]GR

Proof (Theorem 21). Theorem 21 is a direct conse-
quence of Definition 19 and Lemma 22. That is, given
multisets of solution mappings computed for PP pat-
terns, combining such multisets as per the algebra op-
erators does not require any more URI lookups (or
any other kind of access to the queried Web of Linked
Data) and can be done by any algorithm that imple-
ments these algebra operators.

We emphasize that, while Algorithm 1 is sufficient
for proving Lemma 22 and, thus, Theorem 21, it is per-
haps not a very efficient algorithm to use in practice.
Systems might instead implement traversal-based exe-
cution approaches to evaluate PP patterns under reach-
ability-based semantics [19,38]; the processing of IRIs
from the Open list (used in the algorithm) can be par-
allelized by a multi-threaded implementation; addi-
tionally, assuming a suitable invalidation policy, docu-
ments may be cached and reused for later queries [17].

6.2. Web-Safeness of Context-Based Semantics

After finding that under any reachability-based se-
mantics all graph patterns are Web-safe, we now come
back to the context-based semantics for which we
know from Example 17 that Web-safeness cannot be
assumed in general. We begin our analysis by provid-
ing the following example, which extends Example 17.

SPARQL with Property Paths on the Web 13

Example 23. Consider the following graph pattern:

PE23 =
(
〈Bob, knows, ?v〉 AND 〈?v, knows,Tim〉

)
.

The right sub-pattern PE17 = 〈?v, knows,Tim〉 is not
Web-safe because evaluating it completely over the
WWW is not possible under context-based seman-
tics (cf. Example 17). However, the larger pattern PE23

is Web-safe under context-based semantics: A possi-
ble algorithm may first evaluate the left sub-pattern,
〈Bob, knows, ?v〉, which is possible because it requires
the lookup of a single IRI only (the IRI Bob). There-
after, the evaluation of the right sub-pattern PE17 can
be reduced to looking up a finite number of IRIs only,
namely the IRIs bound to variable ?v in solution map-
pings obtained in the first step for the left sub-pattern.
Although any other IRI, say u∗, might also be used
to discover triples for PE17, each of these triples has
IRI u∗ as its subject (which is a consequence of re-
stricting retrieved data based on the context selector
introduced in Section 4.3). Therefore, possible solution
mappings resulting from such triples cannot be com-
patible with any solution for the left sub-pattern and,
thus, do not satisfy the join condition established by
the semantics of AND in pattern PE23.

The example illustrates that some graph patterns are
Web-safe under context-based semantics even if some
of their sub-patterns are not. Consequently, we are in-
terested in a decidable property that enables us to iden-
tify Web-safe patterns under context-based semantics,
including those whose sub-patterns are not Web-safe.

Buil-Aranda et al. study a similar problem in the
context of SPARQL federation where graph patterns
of the form (SERVICE ?v P) are allowed [7]. For such a
pattern PS = (SERVICE ?v P), variable ?v ranges over
a possibly large set of IRIs, each of which represents
the address of a (remote) SPARQL service that needs
to be called to assemble the complete result of PS .
However, many service calls may be avoided if PS
is embedded in a larger graph pattern that allows for
an evaluation during which ?v can be bound before
evaluating PS . To identify such cases, Buil-Aranda et
al. introduce a notion of strong boundedness of vari-
ables in graph patterns and use it to show a notion of
safeness for the evaluation of patterns like PS within
larger graph patterns. The idea behind the notion of
strongly bound variables has already been used in ear-
lier work (e.g., “certain variables” [34], “output vari-
ables” [37]), and it is tempting to adopt it for our prob-
lem. To this end, we first define the notion of strongly
bound variables for our PP-based graph patterns:

Definition 24. The set of strongly bound variables in
a graph pattern P , denoted by sbvars(P), is defined
recursively as follows (recall that vars(P) is the set of
all variables in P):

– If P is a PP pattern, then
sbvars(P) = vars(P).

– If P is of the form (P1 ANDP2), then
sbvars(P) = sbvars(P1) ∪ sbvars(P2).

– If P is of the form (P1 UNIONP2), then
sbvars(P) = sbvars(P1) ∩ sbvars(P2).

– If P is of the form (P1 OPTP2), then
sbvars(P) = sbvars(P1).

Given the definition of strongly bound variables, we
observe that one cannot identify Web-safe graph pat-
terns by using only this notion of strong boundedness.

Example 25. Consider graph pattern PE23 from Ex-
ample 23. We know that (i) PE23 is Web-safe and that
(ii) vars(PE23) = {?v} and also sbvars(PE23) = {?v}.
Then, one might hypothesize that a graph pattern P is
Web-safe if sbvars(P) = vars(P). However, the PP
pattern PE17 = 〈?v, knows,Tim〉 disproves such a hy-
pothesis because, even if sbvars(PE17) = vars(PE17),
pattern PE17 is not Web-safe (cf. Example 17). Alterna-
tively, one might also hypothesize that if a graph pat-
tern P is Web-safe, then sbvars(P) = vars(P). How-
ever, this hypothesis can be disproved by using pattern
PE25 =

(
〈Bob, knows, ?x〉 OPT 〈?x, knows, ?y〉

)
. It can

easily be verified that PE25 is Web-safe (e.g., it is not
difficult to adjust the algorithm for pattern PE23 in Ex-
ample 23 accordingly). However, in contradiction to
the hypothesis we have sbvars(PE25) 6= vars(PE25).

We conjecture the following reason why strong
boundedness cannot be used directly for our prob-
lem. Consider the types of graph patterns that combine
two sub-patterns (by using operators such as AND). For
such a pattern, the sets of strongly bound variables
of its sub-patterns are defined independent from each
other, whereas the algorithm outlined in Example 23
leverages a specific relationship between sub-patterns.
More precisely, the algorithm leverages the fact that
the same variable that is the subject of the right sub-
pattern is also the object of the left sub-pattern.

Based on this observation, we introduce the notion
of conditionally bound variables, which is based on
particular relationships between sub-patterns due to
which the result of one sub-pattern may be used to
evaluate another sub-pattern in a more well-behaved

14 SPARQL with Property Paths on the Web

manner (along the lines of Example 23). This notion
shall turn out to be suitable for our case.

Definition 26. Let X ⊆ V be a set of variables. The
conditionally bound variables in a graph pattern P
w.r.t. X , denoted by cbvars(P |X), is a subset of the
variables in P (i.e., cbvars(P |X) ⊆ vars(P)) that is
defined recursively as given in Table 1.

Example 27. The conditionally bound variables in the
PP pattern PE17 = 〈?v, knows,Tim〉 w.r.t. the empty set
of variables can be determined based on line 2 in Ta-
ble 1, and we obtain: cbvars(PE17 | ∅) = ∅. However,
if we use the set {?v} instead, then, by line 1 in Table 1,
we obtain: cbvars

(
PE17

∣∣ {?v}) = {?v}.

Example 28. As another example consider the graph
pattern PE23 =

(
〈Bob, knows, ?v〉 AND 〈?v, knows,Tim〉

)
for which we obtain cbvars(PE23 | ∅) = {?v} by using
line 10 in Table 1 and the following facts:

1. cbvars
(
〈Bob, knows, ?v〉

∣∣ ∅) = {?v},
2. sbvars(〈Bob, knows, ?v〉) = {?v},
3. cbvars

(
〈?v, knows,Tim〉

∣∣ {?v}) = {?v}.

We note that for the pattern PE17, which is not Web-
safe under context-based semantics (as discussed in
Example 17), we have cbvars(PE17 | ∅) 6= vars(PE17),
whereas for the pattern PE23, which is Web-safe un-
der context-based semantics (cf. Example 23), we have
cbvars(PE23 | ∅) = vars(PE23). This example seems to
suggest that, if all variables of a graph pattern are con-
ditionally bound w.r.t. the empty set of variables, then
the graph pattern is Web-safe under context-based se-
mantics. The following result verifies this hypothesis.

Theorem 29. A graph pattern P is Web-safe under
context-based semantics if cbvars(P | ∅) = vars(P).

Before proving Theorem 29 in the remainder of this
section, we emphasize the following observation.

Note 30. Due to the recursive nature of Definition 26,
the condition cbvars(P | ∅)=vars(P) (as used in The-
orem 29) is decidable for any graph pattern P .

To prove Theorem 29 we aim to provide an algo-
rithm that evaluates graph patterns recursively by pass-
ing (intermediate) solution mappings to recursive calls.
To capture the desired results of each recursive call for-
mally, we introduce a special evaluation function for
a graph pattern P over a Web of Linked Data W that
takes a solution mapping µ as input and returns only
the solutions of P over W that are compatible with µ
(recall from Section 3.1 that the compatibility of two
solution mappings, µ1 and µ2, is denoted by µ1 ∼ µ2).

Definition 31. Let P be a graph pattern, let W be
a Web of Linked Data, and let 〈Ω, card〉 = JP KctxW .
Given a solution mapping µ, the µ-restricted evalua-
tion of P over W under context-based semantics, de-
noted by JP |µ KctxW , is the multiset of solution map-
pings 〈Ω′, card ′〉 with Ω′ =

{
µ′ ∈ Ω

∣∣µ′ ∼ µ
}

and
card ′ is the restriction of card to Ω′, i.e., for every solu-
tion mapping µ′∈ Ω′ we have card ′(µ′) = card(µ′).

The following lemma shows the existence of the
aforementioned recursive algorithm.

Lemma 32. Let P be a graph pattern and µin be a
solution mapping. If cbvars

(
P
∣∣ dom(µin)

)
=vars(P),

then there exists an algorithm that, for any finite Web of
Linked Data W = 〈D, adoc〉, has the following three
properties:

1. The algorithm computes JP |µin KctxW .
2. During its execution, the algorithm looks up only

a finite number of IRIs (that is, conceptually,
the algorithm invokes function adoc only a finite
number of times).

3. Neither the set D nor the set dom 6⊥(adoc) is re-
quired as input for the algorithm (hence, the al-
gorithm does not require any a priori informa-
tion about W).

Before proving the lemma (and Theorem 29), we
point out two important properties of Definition 31.
First, it is easily seen that, for any graph pattern P and
Web of Linked Data W, JP |µ∅ KctxW = JP KctxW , where
µ∅ is the empty solution mapping with dom(µ∅) = ∅.
Consequently, given an algorithm, say A, that, for P
and µ∅, has the properties of the algorithm described
by Lemma 32, a trivial algorithm that can be used to
prove Theorem 29 may simply call algorithm A and
return the result of this call (a more detailed discussion
of this approach follows in the proof of Theorem 29
below). Second, for any PP pattern 〈α,path, β〉 and
Web of Linked Data W, if α is a variable and path
is a PP expression that corresponds to one of the first
two cases in the grammar in Section 3.1 (i.e., the two
base cases), then JP |µ KctxW is empty for every solu-
tion mapping µ that binds (variable) α to a literal or a
blank node. Formally, we show the latter as follows.

Lemma 33. Let ?v ∈ V be a variable, P be a PP pat-
tern of the form 〈?v, u, β〉 or 〈?v, !(u1 | . . . |un), β〉
with u, u1, . . . , un ∈ I, and µ be a solution mapping.
If ?v ∈ dom(µ) and µ(?v) ∈ (B ∪ L), then, for any
Web of Linked Data W, JP |µ KctxW is the empty multi-
set (of solution mappings).

SPARQL with Property Paths on the Web 15

If P is: then cbvars(P |X) is:

1) 〈α, u, β〉 or 〈α, !(u1 | ... |un), β〉 such that α ∈ (I ∪ L) or α ∈ X vars(P)

2) 〈α, u, β〉 or 〈α, !(u1 | ... |un), β〉 such that α /∈ (I ∪ L) and α /∈ X ∅
3) 〈α, (path)∗, β〉 such that α ∈ V and β /∈ V cbvars

(
〈β, (∧path)∗, α〉 |X

)
4) 〈α, (path)∗, β〉 such that α /∈ V or β ∈ V , and for any two variables ?x, ?y ∈ V it holds that cbvars

(
〈α,path, β〉 |X

)
cbvars

(
〈?x,path, ?y〉 | {?x}

)
= {?x, ?y}

5) 〈α, (path)∗, β〉 such that none of the above ∅
6) 〈α,∧path, β〉 with P ′ = 〈β,path, α〉 cbvars(P ′ |X)

7) 〈α, (path1|path2), β〉 with P ′ =
(
〈α,path1, β〉 UNION 〈α,path2, β〉

)
cbvars(P ′ |X)

8) 〈α,path1/path2, β〉 such that for any ?v ∈ V \(X ∪ {α, β}) we have ?v ∈ cbvars(P ′|X) cbvars(P ′ |X) \ {?v}
where P ′ =

(
〈α,path1, ?v〉 AND 〈?v,path2, β〉

)
9) 〈α,path1/path2, β〉 such that none of the above ∅

10) (P1 AND P2) s.t. cbvars(P1 |X) = vars(P1) and cbvars(P2 |X ∪ sbvars(P1)) = vars(P2) vars(P)

11) (P1 AND P2) s.t. cbvars(P2 |X) = vars(P2) and cbvars(P1 |X ∪ sbvars(P2)) = vars(P1) vars(P)

12) (P1 AND P2) such that none of the above ∅
13) (P1 UNION P2) cbvars(P1 |X)∩cbvars(P2 |X)

14) (P1 OPT P2) s.t. cbvars(P1 |X) = vars(P1) and cbvars(P2 |X ∪ sbvars(P1)) = vars(P2) vars(P)

15) (P1 OPT P2) such that none of the above ∅

Table 1

Cases of the recursive definition of the conditionally bound variables
of a graph pattern P w.r.t. a set of variables X ⊆ V .

Proof (Lemma 33). Recall that for any IRI u and any
Web of Linked Data W, every triple in the context
CW(u) has IRI u as its subject. As a consequence,
for any Web of Linked Data W, every solution map-
ping in JP KctxW binds variable ?v to some IRI (and not
to a literal or a blank node); that is, formally, for ev-
ery µ′ ∈ JP KctxW we have µ′(?v) ∈ I. Therefore, if
?v ∈ dom(µ) and µ(?v) ∈ (B ∪ L), then none of
the solution mappings in JP KctxW is compatible with µ,
and, thus, JP |µ KctxW is empty.

We use Lemma 33 to prove Lemma 32 as follows.

Proof idea (Lemma 32). We prove Lemma 32 by in-
duction on the possible structure of graph pattern P .
To this end, we provide Algorithm 2 and show that
this (recursive) algorithm has the desired properties for
any possible graph pattern (i.e., any case of the induc-
tion, including the base case). In this paper we focus
on a fragment of the algorithm and highlight essen-
tial properties thereof. This fragment covers the base
case (lines 1-11) and one pivotal case of the induction
step, namely, graph patterns of the form (P1 ANDP2).
The complete version of the algorithm and the full
proof can be found in our technical report [22].

For the base case (i.e., PP patterns of the form
〈α, u, β〉 or 〈α, !(u1 | . . . |un), β〉), Algorithm 2 looks
up at most one IRI (cf. lines 2-5). The crux of show-

ing that the returned result is sound and complete is
Lemma 33 and the fact that a triple 〈s, p, o〉 with s ∈ I
can be found only in the context CW(s).

For PP patterns of the form (P1 ANDP2) consider
lines 57-72. For sub-patterns Pi and Pj as used in this
part of the algorithm, we may use Definition 26 to
show that (i) cbvars

(
Pi |dom(µin)

)
= vars(Pi) and

(ii) cbvars
(
Pj
∣∣dom(µin) ∪ dom(µ)

)
= vars(Pj) for

all µ ∈ ΩPi. Therefore, by induction, any recursive call
of the algorithm in line 61 and line 63 looks up a finite
number of IRIs and returns the expected (sound and
complete) result; that is, 〈ΩPi , cardPi〉 = JPi |µin KctxW

and 〈Ωµ, cardµ〉 = JPj |µin ∪ µ KctxW for all µ ∈ ΩPi.
Then, since every µ ∈ ΩPi is compatible with every
µ′ ∈ Ωµ and all processed solution mappings are com-
patible with µin, it is easily verified that the computed
result is J(P1 ANDP2) |µin KctxW .

We are now ready to prove Theorem 29.

Proof (Theorem 29). Suppose P is a graph pattern
such that cbvars(P | ∅) = vars(P). Then, by using
the empty solution mapping µ∅ with dom(µ∅) = ∅,
we have cbvars

(
P
∣∣ dom(µ∅)

)
= vars(P). Therefore,

by Lemma 32, there exists an algorithm, say A, that,
for any finite Web of Linked Data W = 〈D, adoc〉,
computes JP |µ∅ KctxW by looking up a finite num-
ber of IRIs only without using the set D or the set

16 SPARQL with Property Paths on the Web

Algorithm 2 EvalCtxBased(P, µin), which computes
JP |µinKctxW for a Web of Linked Data W.

1: if P is 〈α, u, β〉 or 〈α, !(u1 | . . . |un), β〉 then
2: if α ∈ I then u′ := α
3: else if α∈dom(µin) and µin(α)∈I then u′ := µin(α)
4: else u′ := null

5: if u′ is an IRI and looking it up results in retrieving a
document, say d then

6: G := the set of triples in d (use a fresh set of blank
node identifiers when
parsing d)

7: G′ :=
{
〈s, p, o〉 ∈ G

∣∣ s = u′
}

8: 〈Ω, card〉 := [[P]]G′ ([[P]]G′ can be computed by
using any algorithm that
implements the standard
SPARQL evaluation
function)

9: return a new multiset 〈Ω′, card ′〉 with
Ω′ =

{
µ′∈ Ω

∣∣µ′ ∼ µin

}
and

card ′(µ′) = card(µ′) for all µ′∈ Ω′

10: else
11: return a new empty multiset 〈Ω, card〉 with

Ω = ∅ and dom(card) = ∅

12: else if P is . . .
. . .

57: else if P is of the form (P1 ANDP2) then
58: if cbvars

(
P1|dom(µin)

)
=vars(P1) then i:=1; j:=2

59: else i:=2; j:=1

60: Create a new empty multiset M = 〈Ω, card〉
61: 〈ΩPi , cardPi〉 := EvalCtxBased(Pi, µin)
62: for all µ ∈ ΩPi do
63: 〈Ωµ, cardµ〉 := EvalCtxBased(Pj , µin ∪ µ)
64: for all µ′ ∈ Ωµ do
65: µ∗ := µ ∪ µ′
66: k := cardPi(µ) · cardµ(µ′)
67: if µ∗∈ Ω then
68: old := card(µ∗)
69: Set card(µ∗) = k + old
70: else
71: Set card(µ∗) = k, and add µ∗ to Ω
72: return M

73: else if P is . . .

dom6⊥(adoc) as input. We also know that the empty
solution mapping µ∅ is compatible with any solution
mapping. Consequently, by Definition 31, we have
JP |µ∅ KctxW = JP KctxW for any Web of Linked Data W.
Hence, algorithmA can be used to compute JP KctxW for
any finite Web of Linked DataW (and during this com-
putation the algorithm looks up a finite number of IRIs
only without using D or dom6⊥(adoc) as input).

While the condition given in Theorem 29 is suffi-
cient to identify graph patterns that are Web-safe under
context-based semantics, the question that remains is
whether it is a necessary condition (i.e., whether it can
be used to decide Web-safeness of all graph patterns
under context-based semantics). Unfortunately, the an-
swer is no as the following example shows.

Example 34. For the graph pattern P =(P1 UNIONP2)
with P1 = 〈u1, p1, ?x〉 and P2 = 〈u2, p2, ?y〉 we note
that cbvars(P1 | ∅) ={?x} and cbvars(P2 | ∅) ={?y},
and, thus, cbvars(P | ∅) = ∅. Hence, the pattern does
not satisfy the condition in Theorem 29. Nonetheless,
it is easy to see that there exists a (sound and com-
plete) algorithm that, for any finite Web of Linked
Data W, computes JP KctxW by looking up a finite num-
ber of IRIs only. For instance, such an algorithm, say
A, may first use two other algorithms that compute
JP1KctxW and JP2KctxW by looking up a finite number
of IRIs, respectively. Such algorithms exist by The-
orem 29, because cbvars(P1 | ∅) = vars(P1) and
cbvars(P2 | ∅) = vars(P2). Finally, algorithm A can
generate the (sound and complete) query result JP KctxW

by computing the multiset union JP1KctxW t JP2KctxW ,
which requires no additional IRI lookups.

The example illustrates that “only if” cannot be
shown in Theorem 29. It remains an open question
whether there exists an alternative condition for Web-
safeness that is both sufficient and necessary (and de-
cidable) and, thus, can be used to decide Web-safeness
of all graph patterns under context-based semantics.

7. Experimental Comparison

In the previous section we have shown that, when
querying Linked Data on the WWW, it is possible for
PP-based graph patterns to be evaluated completely
under any reachability-based semantics, and, similarly,
under the context-based semantics (assuming, for the
latter, we use only patterns that have been identified to
be Web-safe). Hence, we have shown that—based on
these semantics—one can build a system that answers
PP-based SPARQL queries over the WWW in a well-
defined manner. At this point, a natural question that
arises is:

How do these query semantics compare when actu-
ally used in practice?

To achieve empirical insights related to this ques-
tion we conducted an experimental comparison of the

SPARQL with Property Paths on the Web 17

1	
4	

31	 60	 88	 96	

5012	 5055	 4999	 5036	 5072	 5053	

1	
10	

100	
1000	

10000	
100000	

1000000	

dist1	 dist2	 dist3	 dist4	 dist5	 dist6	

Context	 Reachability	

(a) # Dereferencing Operations (logscale)

10	

170	 159	 276	 282	 263	

10	

862	
2350	 4653	 5761	 6826	

1	

10	

100	

1000	

10000	

100000	

dist1	 dist2	 dist3	 dist4	 dist5	 dist6	

Context	 Reachability	

(b) # Solutions (logscale)

Fig. 7. Comparison between context-based semantics and (reachability-based) cPPMatch-semantics on D1.

context-based semantics and a reachability-based se-
mantics. For this comparison we selected cPPMatch-se-
mantics as an exemplar of the family of reachabili-
ty-based semantics; as argued in Section 4.2, cPPMatch

is very close in nature to the reachability criterion
cMatch [18] which is commonly used in the literature on
Linked Data query execution approaches [19,38] (note
that cMatch is defined for SPARQL queries constructed
from triple patterns, instead of PP patterns).

In the remainder of this section, we specify the ex-
perimental setup, describe the experiments, present the
measurements, and discuss the experimental results.

7.1. Metrics and Experimental Setup

The objective of the experimental comparison is to
identify the differences between the studied seman-
tics in terms of (i) number of dereferencing operations
performed to evaluate a query and (ii) number of so-
lutions in the respective query results, including du-
plicates (which are possible in our bag semantics as
Example 13 illustrates). Hereafter, we refer to these
metrics as (i) nderef and (ii) ressize, respectively.
Since this paper focuses on possible query semantics
rather than on efficient techniques to implement such
semantics, performance-related metrics such as query
execution time are out of scope of our study.

For the experiments, which we conducted during the
days of November 16–28, 2015, we used a prototypi-
cal implementation of the studied semantics to execute
PP-based SPARQL queries directly on the WWW. To
avoid overloading Web servers we introduced a delay
of 3 seconds between dereferencing operations. While
we did not use any client-side caching of retrieved
documents, there may have been Web caches (proxy
servers) between our prototypical query clients and the
Web servers that host the data discovered and retrieved
during the execution of our test queries. Measurements
reported in the following are the average of five execu-
tions with rounding to the next integer.

7.2. Experiments and Measurements

We conducted two different experiments consid-
ering two different topical domains of Linked Data
on the WWW, namely, distributed social network
data (D1) and encyclopedic data about influence rela-
tionships between people (D2). Within these domains
we focus on navigational queries that we express using
PP patterns. The particular queries used for the exper-
iments can be found in Appendix A. In the following,
we describe the experiments and the queries in more
detail, and we present the measurements.

7.2.1. Experiment on D1
In our first experiment we considered the distributed

social network of FOAF profiles [14]. Such FOAF pro-
files typically are RDF documents that people make
available online to provide Linked Data that describes
themselves in terms of their interests, their works, and,
most important for our experiment, references to other
people they know. Such references are expressed using
triples with the IRI3 foaf:knows as predicate and the
persons’ IRIs as subject and object (i.e., along the lines
of our example Web in Figure 4). Hence, such triples
establish data links between different people’s FOAF
profiles. The resulting network of such “foaf:knows
links” is thus a part of the Web of Linked Data, and it is
the focus of our first experiment. We point out that this
experiment is particularly significant due to the truly
distributed nature of the FOAF profiles, which typi-
cally reside (and get updated) on different servers. In-
deed, there is no SPARQL endpoint to query (the live
version of) this kind of distributed social network.

In this experiment we use the IRI of Nuno Lopes4 in
his FOAF profile as a starting point for six queries that

3For the compact representation of IRIs in this section we use
the following two prefixes. foaf: <http://xmlns.com/foaf/> and dbo:
<http://dbpedia.org/ontology/>

4http://nunolopes.org/foaf.rdf#me

http://nunolopes.org/foaf.rdf#me

18 SPARQL with Property Paths on the Web

10	
30	

75	
198	 235	

18300	18288	18306	18339	
18336	

18349	

10	

100	

1000	

10000	

100000	

1000000	

dist1	 dist2	 dist3	 dist4	 dist5	 dist6	

Context	 Reachability	

(a) # Dereferencing Operations (logscale)

12	 18	

81	 121	
205	 238	

12	 18	
81	 121	

205	 238	

1	

10	

100	

1000	

10000	

dist1	 dist2	 dist3	 dist4	 dist5	 dist6	

Context	 Reachability	

(b) # Solutions (logscale)

Fig. 8. Comparison between context-based semantics and (reachability-based) cPPMatch-semantics on D2.

retrieve Lopes’ acquaintances from distances 1 to 6,
respectively. The measurements obtained by executing
these queries under both the context-based semantics
and the (reachability-based) cPPMatch-semantics are re-
ported in the charts in Figure 7; the x-axes list the six
queries and the y-axes represent our metrics, nderef
and ressize, respectively (reported in log-scale).

By looking at Figure 7 (a), we notice that, un-
der the context-based semantics, nderef is increas-
ing steadily with the (increasing) distance selected
in the queries. In contrast, under cPPMatch-semantics,
nderef is almost the same for all six queries, and
it is significantly higher than under the context-based
semantics, even for the distance-6 query. Considering
the definition of the reachability criterion cPPMatch (cf.
Definition 10), this observation is not unexpected:
While the PP patterns of the six queries differ, they all
mention the same IRI in their PP expressions, namely,
foaf:knows. Consequently, in all six cases, the same
set of documents is reachable by applying cPPMatch as
reachability criterion (and using the same seed IRI).
Essentially, this set of documents represents the com-
plete strongly connected component of FOAF pro-
files that contains the profile of the seed IRI. Recall
that the data of all these documents must be retrieved
to compute query results that are guaranteed to be
complete under cPPMatch-semantics; this explains the
comparable high number of dereferencing operations.
The slight variations of these numbers across the six
queries are due to occasional timeouts of dereferenc-
ing operations and Web servers that did not always re-
spond during each query execution.

The effect of taking into account more data can be
observed by looking at our ressize measurements in
Figure 7 (b). Clearly, under cPPMatch-semantics we ob-
tain query results that have a much greater size than the
results under the context-based semantics, in particu-
lar, for the higher distance queries. This effect, again, is
not unexpected. Instead, it can also be seen, on a much

smaller scale, in the examples in Section 4 (compare
in particular Examples 14 and 16). However, we note
that the greater ressize per query under cPPMatch-se-
mantics is due not only to finding paths to additional
persons in the data retrieved under cPPMatch-semantics,
but also to a greater number of duplicates, which result
from finding a greater number of alternative paths to
some persons (cf. Example 3).

The only exception, where the query result under
both semantics is the same, is the distance-1 query.
This query consists only of a single triple pattern with
the seed IRI as subject, foaf:knows as predicate, and
a variable as object. In the given case of using Nuno
Lopes’ IRI as seed, all triples that match this pattern
happen to be in the same document (Lopes’ FOAF
profile) and, thus, all other documents retrieved un-
der cPPMatch-semantics turn out to not contribute to the
query result (which may be different for other seeds).

7.2.2. Experiment on D2
For our second experiment we considered influence

relationships between people described in Linked Data
that is made available by the DBpedia project [4]. In
particular, we focused on the relationships expressed
by triples with the IRI dbo:influencedBy as predi-
cate, and we used the IRI of Veno Taufer5 as starting
point for six queries that obtain influences of Taufer
at distance 1 to 6, respectively. These queries are of
the same form as the queries used in the first experi-
ment. However, the main difference w.r.t. the first ex-
periment is that the “dbo:influencedBy links” point
only to data in DBpedia. In other words, every doc-
ument that is reachable according to the reachability
criterion cPPMatch (and, thus, has to be retrieved under
cPPMatch-semantics) comes from the DBpedia Linked
Data server. Hence, with this second experiment we
wanted to capture a more dataset-centric scenario,

5http://dbpedia.org/resource/Veno_Taufer

http://dbpedia.org/resource/Veno_Taufer

SPARQL with Property Paths on the Web 19

while the first experiment has captured a scenario in
which the data to be discovered during query execu-
tion is truly distributed all over the WWW. Another
important difference is that the dbo:influencedBy

links are bidirectional; that is, any triple with predicate
dbo:influencedBy can be found in both the docu-
ment for the subject IRI of the triple and the document
for the object IRI.

Due to the availability of these bidirectional data
links, the query results under both semantics are the
same for each of the six queries (cf. Figure 8). In
contrast, the nderefmeasurements differ significantly
and present the same pattern as observed in the first
experiment. In fact, the number of dereferencing op-
erations necessary to guarantee complete results un-
der cPPMatch-semantics is even higher in the second ex-
periment. We explain this observation by the fact that
the strongly connected component established by the
dbo:influencedBy links is bigger than the compo-
nent of FOAF profiles in the first experiment. Appar-
ently, this “fact” is known only after the corresponding
traversal processes have been performed.

7.3. Discussion of the Experimental Results

Our experiments indicate that choosing one of the
two tested query semantics over the other may have
a significant impact in practice. Considering the size
of query results first, our experiments show that there
are cases in which the query result computed un-
der the context-based semantics is smaller than under
the (reachability-based) cPPMatch-semantics. We ex-
plain this finding by two important properties that dis-
tinguish the context-based semantics from reachabili-
ty-based semantics such as the cPPMatch-semantics.

First, since it is based on the context selector (cf.
Section 4.3), the context-based semantics ignores all
the triples from any given document that have a sub-
ject IRI different from the IRI whose lookup resulted in
retrieving the document. Ignoring such triples signif-
icantly decreases the number of paths (of triples) that
can be found to match a given PP expression.

Second, the context-based semantics is designed to
be very selective in the way the queried Web of Linked
Data has to be traversed. More precisely, every traver-
sal step is the result of first discovering a triple in the
data of the current context document such that this
triple can be used as a next step along a path that even-
tually may match the given PP expression. As a conse-
quence of enforcing such a behavior, the traversal may
not reach some documents that are reached under the

cPPMatch-semantics, and some of these documents may
happen to contain triples that can be used to compute
additional solutions under the cPPMatch-semantics.

Our first experiment shows that this may happen in
particular if the region of the Web that a query fo-
cuses on has a very heterogeneous link structure with
many unidirectional links. On the other hand, if the
link structure is more homogeneous, with mostly bidi-
rectional links, then the query results under both se-
mantics are more likely to coincide. Our second exper-
iment presents an extreme case of such a scenario.

The downside of potentially larger query results that
may be expected under cPPMatch-semantics is a greater
number of dereferencing operations, which implies
longer execution times and more network traffic gen-
erated. Our experiments provide remarkable evidence
that this problem is not negligible. That is, for every
query in our experiments the difference w.r.t. the cor-
responding number of dereferencing operations under
the context-based semantics is substantial (up to two
orders of magnitude). The fact that we made this ob-
servation in both experiments also shows that a greater
number of dereferencing operations under cPPMatch-se-
mantics is not a peculiarity of traversing an either more
homogeneous or more heterogeneous link structure.

The significantly smaller number of dereferencing
operations may be seen as a crucial advantage of the
context-based semantics over the cPPMatch-semantics.
The flip side of course is that users of systems that im-
plement the context-based semantics may see query re-
sults with less solutions. Hence, choosing among the
two semantics is a question of whether a user is willing
to accept the price of possibly having to retrieve many
more documents (and, thus, longer execution times)
for the chance of seeing a greater number of solutions.

8. Concluding Remarks

This paper studies the problem of extending the
scope of the Property Paths feature in SPARQL to
query Linked Data that is distributed on the WWW.
We have investigated reachability-based query seman-
tics, which decouple navigation from querying. Ad-
ditionally, we have proposed a different interpretation
for PPs over the Web via the context-based query se-
mantics. An interesting finding regarding this latter se-
mantics is that there exist queries whose evaluation
over the WWW is not possible in practice. We stud-
ied this aspect using a notion of Web-safeness and in-
troduced a decidable syntactic property for identifying

20 SPARQL with Property Paths on the Web

queries that are Web-safe under the context-based se-
mantics. Moreover, we have presented an experimental
evaluation that compares the two semantics on differ-
ent datasets showing that the context-based semantics
incurs in a lower number of dereferencing operations
that will have an impact on the running time.

We believe that the presented work provides valu-
able input to a wider discussion about defining how the
SPARQL language can be used for accessing Linked
Data on the WWW. There are several directions for fu-
ture research including an investigation of the relation-
ships between navigational queries and SPARQL fed-
eration, as well as an exploration of techniques based
on which query execution systems may implement ef-
ficiently the machinery developed in this paper.

Acknowledgements

We thank the ESWC reviewers and the SWJ re-
viewers for their valuable feedback. Olaf Hartig’s work
has been funded by the German Government, Federal
Ministry of Education and Research under the project
number 03WKCJ4D. Giuseppe Pirrò’s work has been
funded by the Cyber Security Technological District
financed by the Italian MIUR.

References

[1] S. Abiteboul and V. Vianu. Queries and computation
on the web. Theor. Comput. Sci., 239(2):231–255, 2000.
doi:10.1016/S0304-3975(99)00221-2.

[2] F. Alkhateeb, J. Baget, and J. Euzenat. Extending SPARQL
with regular expression patterns (for querying RDF). J. Web
Sem., 7(2):57–73, 2009. doi:10.1016/j.websem.2009.02.002.

[3] M. Arenas, S. Conca, and J. Pérez. Counting beyond a yot-
tabyte, or how SPARQL 1.1 property paths will prevent adop-
tion of the standard. In A. Mille, F. L. Gandon, J. Mis-
selis, M. Rabinovich, and S. Staab, editors, Proceedings of
the 21st World Wide Web Conference 2012, WWW 2012,
Lyon, France, April 16-20, 2012, pages 629–638. ACM, 2012.
doi:10.1145/2187836.2187922.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. DBpedia: A nucleus for a web of open
data. In K. Aberer, K. Choi, N. F. Noy, D. Allemang, K. Lee,
L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, and P. Cudré-Mauroux, editors, The Semantic
Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Bu-
san, Korea, November 11-15, 2007., volume 4825 of Lecture
Notes in Computer Science, pages 722–735. Springer, 2007.
doi:10.1007/978-3-540-76298-0_52.

[5] T. Berners-Lee. Design Issues: Linked Data. Online at
http://www.w3.org/DesignIssues/LinkedData.html, July 2006.

[6] P. Bouquet, C. Ghidini, and L. Serafini. Querying the Web
of Data: A formal approach. In A. Gómez-Pérez, Y. Yu,
and Y. Ding, editors, The Semantic Web, Fourth Asian Con-
ference, ASWC 2009, Shanghai, China, December 6-9, 2009.
Proceedings, volume 5926 of Lecture Notes in Computer Sci-
ence, pages 291–305. Springer, 2009. doi:10.1007/978-3-642-
10871-6_20.

[7] C. Buil-Aranda, M. Arenas, Ó. Corcho, and A. Polleres.
Federating queries in SPARQL 1.1: Syntax, seman-
tics and evaluation. J. Web Sem., 18(1):1–17, 2013.
doi:10.1016/j.websem.2012.10.001.

[8] R. Cyganiak, D. Wood, and M. Lanthaler, editors. RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation, 25
February 2014. https://www.w3.org/TR/rdf11-concepts/.

[9] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter,
P. J. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1. RFC 2616, RFC Editor, June 1999. http://www.
rfc-editor.org/rfc/rfc2616.txt.

[10] V. Fionda, C. Gutierrez, and G. Pirrò. Semantic naviga-
tion on the Web of Data: Specification of routes, web frag-
ments and actions. In A. Mille, F. L. Gandon, J. Mis-
selis, M. Rabinovich, and S. Staab, editors, Proceedings of
the 21st World Wide Web Conference 2012, WWW 2012,
Lyon, France, April 16-20, 2012, pages 281–290. ACM, 2012.
doi:10.1145/2187836.2187875.

[11] V. Fionda, G. Pirrò, and M. P. Consens. Extended prop-
erty paths: Writing more SPARQL queries in a succinct
way. In B. Bonet and S. Koenig, editors, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., pages 102–108.
AAAI Press, 2015. http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9661.

[12] V. Fionda, G. Pirrò, and C. Gutierrez. NautiLOD: A formal
language for the Web of Data graph. TWEB, 9(1):5:1–5:43,
2015. doi:10.1145/2697393.

[13] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database tech-
niques for the World-Wide Web: A survey. SIGMOD Record,
27(3):59–74, 1998. doi:10.1145/290593.290605.

[14] J. Golbeck and M. Rothstein. Linking social networks on the
web with FOAF: A Semantic Web case study. In D. Fox and
C. P. Gomes, editors, Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illi-
nois, USA, July 13-17, 2008, pages 1138–1143. AAAI Press,
2008. http://www.aaai.org/Library/AAAI/2008/aaai08-180.
php.

[15] S. Harris and A. Seaborne, editors. SPARQL 1.1 Query Lan-
guage. W3C Recommendation, 21 March 2013. https://www.
w3.org/TR/sparql11-query/.

[16] A. Harth and S. Speiser. On completeness classes for query
evaluation on linked data. In J. Hoffmann and B. Selman,
editors, Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada. AAAI Press, 2012. http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5114.

[17] O. Hartig. How caching improves efficiency and result com-
pleteness for querying linked data. In C. Bizer, T. Heath,
T. Berners-Lee, and M. Hausenblas, editors, WWW2011 Work-
shop on Linked Data on the Web, Hyderabad, India, March 29,
2011, volume 813 of CEUR Workshop Proceedings. CEUR-
WS.org, 2011. http://ceur-ws.org/Vol-813/ldow2011-paper05.
pdf.

https://www.w3.org/TR/rdf11-concepts/
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9661
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9661
http://www.aaai.org/Library/AAAI/2008/aaai08-180.php
http://www.aaai.org/Library/AAAI/2008/aaai08-180.php
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5114
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5114
http://ceur-ws.org/Vol-813/ldow2011-paper05.pdf
http://ceur-ws.org/Vol-813/ldow2011-paper05.pdf

SPARQL with Property Paths on the Web 21

[18] O. Hartig. SPARQL for a web of linked data: Semantics
and computability. In E. Simperl, P. Cimiano, A. Polleres,
Ó. Corcho, and V. Presutti, editors, The Semantic Web: Re-
search and Applications - 9th Extended Semantic Web Con-
ference, ESWC 2012, Heraklion, Crete, Greece, May 27-31,
2012. Proceedings, volume 7295 of Lecture Notes in Computer
Science, pages 8–23. Springer, 2012. doi:10.1007/978-3-642-
30284-8_8.

[19] O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL
queries over the web of linked data. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, The Semantic Web - ISWC 2009, 8th
International Semantic Web Conference, ISWC 2009, Chan-
tilly, VA, USA, October 25-29, 2009. Proceedings, volume
5823 of Lecture Notes in Computer Science, pages 293–309.
Springer, 2009. doi:10.1007/978-3-642-04930-9_19.

[20] O. Hartig and J. Pérez. LDQL: A query language for the
web of linked data. In M. Arenas, Ó. Corcho, E. Simperl,
M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth, M. Du-
montier, J. Heflin, K. Thirunarayan, and S. Staab, editors, The
Semantic Web - ISWC 2015 - 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15, 2015, Pro-
ceedings, Part I, volume 9366 of Lecture Notes in Computer
Science, pages 73–91. Springer, 2015. doi:10.1007/978-3-319-
25007-6_5.

[21] O. Hartig and G. Pirrò. A context-based semantics for
SPARQL property paths over the web. In F. Gandon, M. Sabou,
H. Sack, C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann,
editors, The Semantic Web. Latest Advances and New Domains
- 12th European Semantic Web Conference, ESWC 2015, Por-
toroz, Slovenia, May 31 - June 4, 2015. Proceedings, volume
9088 of Lecture Notes in Computer Science, pages 71–87.
Springer, 2015. doi:10.1007/978-3-319-18818-8_5.

[22] O. Hartig and G. Pirrò. A context-based semantics for
SPARQL property paths over the web (extended version).
CoRR, abs/1503.04831, 2015. http://arxiv.org/abs/1503.04831.

[23] K. Kochut and M. Janik. SPARQLeR: Extended SPARQL
for semantic association discovery. In E. Franconi, M. Kifer,
and W. May, editors, The Semantic Web: Research and Ap-
plications, 4th European Semantic Web Conference, ESWC
2007, Innsbruck, Austria, June 3-7, 2007, Proceedings, volume
4519 of Lecture Notes in Computer Science, pages 145–159.
Springer, 2007. doi:10.1007/978-3-540-72667-8_12.

[24] D. Konopnicki and O. Shmueli. Information gathering in the
world-wide web: The W3QL query language and the W3QS
system. ACM Trans. Database Syst., 23(4):369–410, 1998.
doi:10.1145/296854.277639.

[25] E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoc.
SPARQL with property paths. In M. Arenas, Ó. Corcho,
E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T.
Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and S. Staab,
editors, The Semantic Web - ISWC 2015 - 14th Interna-
tional Semantic Web Conference, Bethlehem, PA, USA, Octo-
ber 11-15, 2015, Proceedings, Part I, volume 9366 of Lec-
ture Notes in Computer Science, pages 3–18. Springer, 2015.
doi:10.1007/978-3-319-25007-6_1.

[26] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static anal-
ysis and optimization of Semantic Web queries. ACM Trans.
Database Syst., 38(4):25, 2013. doi:10.1145/2500130.

[27] K. Losemann and W. Martens. The complexity of eval-
uating path expressions in SPARQL. In M. Benedikt,

M. Krötzsch, and M. Lenzerini, editors, Proceedings of
the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, Scottsdale,
AZ, USA, May 20-24, 2012, pages 101–112. ACM, 2012.
doi:10.1145/2213556.2213573.

[28] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the
World Wide Web. Int. J. on Digital Libraries, 1(1):54–67,
1997. doi:10.1007/s007990050004.

[29] R. Meusel, P. Mika, and R. Blanco. Focused crawling for
structured data. In J. Li, X. S. Wang, M. N. Garofalakis,
I. Soboroff, T. Suel, and M. Wang, editors, Proceedings of the
23rd ACM International Conference on Conference on Infor-
mation and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 1039–1048. ACM, 2014.
doi:10.1145/2661829.2661902.

[30] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.
doi:10.1145/1567274.1567278.

[31] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A naviga-
tional language for RDF. J. Web Sem., 8(4):255–270, 2010.
doi:10.1016/j.websem.2010.01.002.

[32] J. L. Reutter, A. Soto, and D. Vrgoc. Recursion in SPARQL.
In M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. T. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, and S. Staab, editors, The Semantic Web -
ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part
I, volume 9366 of Lecture Notes in Computer Science, pages
19–35. Springer, 2015. doi:10.1007/978-3-319-25007-6_2.

[33] S. Schaffert, C. Bauer, T. Kurz, F. Dorschel, D. Glachs, and
M. Fernandez. The Linked Media Framework: Integrating and
interlinking enterprise media content and data. In V. Presutti
and H. S. Pinto, editors, I-SEMANTICS 2012 - 8th Interna-
tional Conference on Semantic Systems, I-SEMANTICS ’12,
Graz, Austria, September 5-7, 2012, pages 25–32. ACM, 2012.
doi:10.1145/2362499.2362504.

[34] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In L. Segoufin, editor, Database
Theory - ICDT 2010, 13th International Conference, Lau-
sanne, Switzerland, March 23-25, 2010, Proceedings, ACM In-
ternational Conference Proceeding Series, pages 4–33. ACM,
2010. doi:10.1145/1804669.1804675.

[35] P. A. Szekely, C. A. Knoblock, J. Slepicka, A. Philpot,
A. Singh, C. Yin, D. Kapoor, P. Natarajan, D. Marcu,
K. Knight, D. Stallard, S. S. Karunamoorthy, R. Bojanapalli,
S. Minton, B. Amanatullah, T. Hughes, M. Tamayo, D. Flynt,
R. Artiss, S. Chang, T. Chen, G. Hiebel, and L. Ferreira. Build-
ing and using a knowledge graph to combat human traffick-
ing. In M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. T. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, and S. Staab, editors, The Semantic Web -
ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part
II, volume 9367 of Lecture Notes in Computer Science, pages
205–221. Springer, 2015. doi:10.1007/978-3-319-25010-6_12.

[36] T. T. Tang, D. Hawking, N. Craswell, and K. Griffiths. Focused
crawling for both topical relevance and quality of medical in-
formation. In O. Herzog, H. Schek, N. Fuhr, A. Chowdhury,
and W. Teiken, editors, Proceedings of the 2005 ACM CIKM
International Conference on Information and Knowledge Man-
agement, Bremen, Germany, October 31 - November 5, 2005,

http://arxiv.org/abs/1503.04831

22 SPARQL with Property Paths on the Web

pages 147–154. ACM, 2005. doi:10.1145/1099554.1099583.
[37] D. Toman and G. E. Weddell. Fundamentals of Physi-

cal Design and Query Compilation. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, 2011.
doi:10.2200/S00363ED1V01Y201105DTM018.

[38] J. Umbrich, A. Hogan, A. Polleres, and S. Decker. Link
traversal querying for a diverse web of data. Semantic Web,
6(6):585–624, 2015. doi:10.3233/SW-140164.

[39] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De
Vocht, M. Vander Sande, R. Cyganiak, P. Colpaert, E. Man-
nens, and R. Van de Walle. Querying datasets on the Web
with high availability. In P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, N. F.

Noy, K. Janowicz, and C. A. Goble, editors, The Semantic Web
- ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part
I, volume 8796 of Lecture Notes in Computer Science, pages
180–196. Springer, 2014. doi:10.1007/978-3-319-11964-9_12.

[40] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen,
L. De Vocht, B. De Meester, G. Haesendonck, and P. Col-
paert. Triple pattern fragments: A low-cost knowledge graph
interface for the web. J. Web Sem., 37–38:184–206, 2016.
doi:10.1016/j.websem.2016.03.003.

[41] P. T. Wood. Query languages for graph databases. SIGMOD
Record, 41(1):50–60, 2012. doi:10.1145/2206869.2206879.

SPARQL with Property Paths on the Web 23

Appendix A: Queries used in the Evaluation

This appendix provides the queries used in our experiment. These queries use the following prefixes:
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/>

8.1. Distance 1 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me> foaf:knows ?end

}

8.2. Distance 2 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me> foaf:knows/foaf:knows ?end

}

8.3. Distance 3 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me>

foaf:knows/foaf:knows/foaf:knows ?end
}

8.4. Distance 4 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me>

foaf:knows/foaf:knows/foaf:knows/foaf:knows ?end
}

8.5. Distance 5 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me>

foaf:knows/foaf:knows/foaf:knows/foaf:knows/foaf:knows ?end
}

8.6. Distance 6 Query for the Experiment on D1

SELECT ?end WHERE {
<http://nunolopes.org/foaf.rdf\#me>

foaf:knows/foaf:knows/foaf:knows/foaf:knows/foaf:knows/foaf:knows ?end
}

8.7. Distance 1 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer> dbo:influencedBy ?end

}

8.8. Distance 2 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer> dbo:influencedBy/dbo:influencedBy ?end

}

24 SPARQL with Property Paths on the Web

8.9. Distance 3 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer>

dbo:influencedBy/dbo:influencedBy/dbo:influencedBy ?end
}

8.10. Distance 4 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer>

dbo:influencedBy/dbo:influencedBy/dbo:influencedBy/dbo:influencedBy ?end
}

8.11. Distance 5 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer>

dbo:influencedBy/dbo:influencedBy/dbo:influencedBy/
dbo:influencedBy/dbo:influencedBy ?end

}

8.12. Distance 6 Query for the Experiment on D2

SELECT ?end WHERE {
<http://dbpedia.org/resource/Veno_Taufer>

dbo:influencedBy/dbo:influencedBy/dbo:influencedBy/
dbo:influencedBy/dbo:influencedBy/dbo:influencedBy ?end

}

	Introduction
	Related Work
	Formal Framework
	Preliminaries
	Data Model

	Web-aware Semantics of Property Paths
	Full-Web Query Semantics
	Reachability-Based Query Semantics
	Context-Based Query Semantics

	PP-based SPARQL Queries for the Web
	Web-Safeness
	Web-Safeness of Reachability-Based Semantics
	Web-Safeness of Context-Based Semantics

	Experimental Comparison
	Metrics and Experimental Setup
	Experiments and Measurements
	Discussion of the Experimental Results

	Concluding Remarks
	Distance 1 Query for the Experiment on D1
	Distance 2 Query for the Experiment on D1
	Distance 3 Query for the Experiment on D1
	Distance 4 Query for the Experiment on D1
	Distance 5 Query for the Experiment on D1
	Distance 6 Query for the Experiment on D1
	Distance 1 Query for the Experiment on D2
	Distance 2 Query for the Experiment on D2
	Distance 3 Query for the Experiment on D2
	Distance 4 Query for the Experiment on D2
	Distance 5 Query for the Experiment on D2
	Distance 6 Query for the Experiment on D2

