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Below lists several significant extensions over our previous work.

• First, we revised and simplified our optimization goal, resulting in a more robust greedy
iterative algorithm with fewer tuning parameters.

• Second, we show how to tune our method with an off-the-shelf standard “learning-to-
rank” approach. We apply this idea using an existing manually-annotated dataset (the
CoNLL dataset widely used in the literature) leading to an algorithm that consistently
outperforms all previous methods, across benchmarks and by a wide margin.

• Third, we report on a deeper experimental evaluation than previous works in the area:
(1) our analysis shows that previous benchmarks are “easy”, in the sense that a simple
baseline can correctly disambiguate most mentions; (2) we introduce two benchmarks from
real Web corpora (Wikipedia and Clueweb 2012) with documents of increasing difficulty,
which are also balanced (i.e., they have the same number of documents in each difficulty
class); finally, (3) we aggregate the per-document accuracy in a more meaningful way.
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1. Introduction

Named entities are the persons, organizations, lo-
cations, etc. that are explicitly mentioned in text us-
ing proper nouns. Named Entity Recognition (NER),
the task of finding named entities in text and assigning
them a semantic type corresponding to the kind of en-
tity, is a key step towards algorithmic understanding of
natural language text, especially in the context of the
Web and social media where facts or properties about
named entities are described in many documents. The
NER task is often performed in conjunction with other
text processing to resolve pronouns and/or abbrevia-
tions in the text to the actual named entities they refer
to, a task called co-reference resolution [17].

Named Entity Disambiguation (NED), also known
as Entity Linking, is the task of linking the named
entities mentioned in the text (explicitly or implicitly
via a pronoun or abbreviation) to pre-existing objects
in a Knowledge Base (KB) of interest, thus ground-
ing them in a surrogate to a real world entity. NED
is key for Information Extraction (IE) and thus has
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many applications, such as: (1) expanding or correct-
ing KBs with facts of entities extracted from text [16];
(2) semantic search [27], the emerging paradigm of
Web search that combines Information Retrieval ap-
proaches over document corpora with KB-style query
answering and reasoning; and (3) in Natural Language
Question Answering [33].

Our work mainly focused on the NED task. This ar-
ticle describes highly effective algorithms for solving
this problem, assuming the input is a KB and a docu-
ment where all mentions to named entities (explicit or
implicit) have been identified.

Challenges The inherent ambiguity of natural lan-
guage makes NED a hard problem, even to humans.
Most real world entities can be referred to in many dif-
ferent ways (e.g., people have nicknames), while the
same textual mention may refer to multiple real-world
entities (e.g., different people have the same name).
The following examples illustrate the issues:

Example 1
Saban, previously a head coach of NFL’s Miami, is
now coaching Crimson Tide. His achievements include
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leading LSU to the BCS National Championship once
and Alabama three times.

Example 2
After his departure from Buffalo, Saban returned to
coach college football teams including Miami, Army
and UCF.

In Example 1, the mentions “Crimson Tide” and
“Alabama” refer to the same football team, the Al-
abama Crimson Tide of the University of Alabama,
while the mention “Saban” refers to two different peo-
ple (both football coaches): Nick Saban in Example 1
and Lou Saban in Example 2. Similarly, “Miami” in
Example 1 refers to the NFL football team Miami Dol-
phins, while in Example 2 it refers to the college foot-
ball team Miami Hurricanes.

1.1. Canonical Solution

The NED task can be cast as an all-against-all
matching problem: given m mentions in a document
and n entities in a KB, perform the m × n compar-
isons and pick the ones with the highest similarity (one
for each mention). This is prohibitively expensive and
unnecessary, however. Most methods, including ours,
solve this issue in two stages: the first stage reduces the
search space by selecting a suitable set of candidate en-
tities for each mention, and the second performs the ac-
tual mention disambiguation. Selecting candidate enti-
ties is done, primarily, by consulting alias dictionaries
(see, e.g., [30]). Candidate selection is meant to be fast,
and thus leads to false positives which must be filtered
out in the actual disambiguation phase. In both exam-
ples above, both coaches Lou Saban and Nick Saban
would be picked as candidates for the mention “Sa-
ban”, as would other kinds of entities, such as the orga-
nizations Saban Capital Group and Saban Entertain-
ment.

As for the disambiguation phase, the methods in the
literature can be divided into two groups: local and
global disambiguation methods, as discussed next.

Local Disambiguation The first group of NED sys-
tems focused mainly on lexical features, and statisti-
cal features, such as contextual words surrounding the
mentions in the document [2,3] or statistical proba-
bility from knowledge bases. Moreover, mentions are
disambiguated independently, typically by ranking the
entities according to the similarity between the context
vector of the mention and the text describing the en-
tities in the KB (e.g., keyphrases). These approaches

work best when the context is rich enough to uniquely
identify the mentions or the linked entities are pop-
ular enough, which is not always the case. For in-
stance, both “Saban” and “Miami” in the examples
above are hard to disambiguate locally because Lou
Saban coached the Miami Hurricanes while Nick Sa-
ban coached the Miami Dolphins and such a depen-
dency cannot be enforced via local methods based on
context similarity. In fact, these kinds of dependencies
are the main motivation for the global disambiguation
methods.

Global Disambiguation Most current approaches
are based on the premise that the disambiguation of
one mention should affect the disambiguation of the
remaining mentions (e.g., disambiguating Saban to
Nick Saban should increase the confidence for Miami
to be linked to the Miami Dolphins). In general, the
idea is to start with a disambiguation graph containing
all mentions in the document and all candidate entities
from the KB. In many global NED systems, the dis-
ambiguation graph also contains the immediate neigh-
bors of the candidates (Fig. 1). The actual disambigua-
tion is done collectively on all mentions at the same
time [7,14,19,28], by finding an embedded forest in
the disambiguation graph in which each mention re-
mains linked to just one of the candidates. The edges
are weighted according to multiple criteria, including
local (context) similarity, priors, and some notion of
semantic similarity, possibly computed from the graph
itself. Finding such an assignment is NP-Hard [19]
under reasonable assumptions, and all methods turn
to approximate algorithms or heuristics. One common
way to cope with the complexity is to use a greedy
search, starting with mentions that are easy to disam-
biguate (e.g., have just one candidate entity) [25].

The choice of semantic similarity determines the ac-
curacy and cost of each method. One successful strat-
egy [13] computes the set-similarity involving (multi-
word) keyphrases about the mentions and the entities,
collected from the KB. This approach works best when
the named entities in the document are mentioned in
similar ways to those in the corpus from which the
knowledge base is built (typically, Wikipedia). An-
other approach [24] computes the set similarity be-
tween the neighbor entities directly connected in the
KB. Doing so, however, ignores entities that are indi-
rectly connected yet semantically related, making lim-
ited use of the KB graph.

In previous work [10], we introduced a method
that used an information-theoretic notion of similarity
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Fig. 1. Example named entity disambiguation scenario.

based on stationary probability distributions resulting
from random walks [31] on the disambiguation graph,
which led to consistently superior accuracy. This paper
presents substantial extensions over that method.

1.2. Our approach

Our WNED (Walking Named Entity Disambigua-
tion) method is a greedy, global NED algorithm based
on a sound information-theoretic notion of semantic
relatedness derived from random walks on carefully
built disambiguation graphs [10]. We build specific
disambiguation graphs for each document, thus adher-
ing to the notion of global coherence assumption—that
coherent entities form a dense subgraph. By virtue of
using random walks, our notion of similarity leverages
indirect connections between nodes in the disambigua-
tion graph, and is thus less susceptible to false positives
incurred by disproportionately high priors of head en-
tities. As confirmed by our experiments, our approach
outperforms the previous state-of-the-art, and excels in
disambiguating mentions of less popular entities.

Contributions This article presents several signifi-
cant extensions over our previous work.

– First, we revised and simplified our optimization
goal, resulting in a more robust greedy iterative
algorithm with fewer tuning parameters.

– Second, we show how to tune our method with
an off-the-shelf standard “learning-to-rank” ap-
proach. We apply this idea using an existing
manually-annotated dataset (the CoNLL dataset
widely used in the literature) leading to an algo-
rithm that consistently outperforms all previous
methods, across benchmarks and by a wide mar-
gin.

– Third, we report on a deeper experimental eval-
uation than previous works in the area: (1) our
analysis shows that previous benchmarks are
“easy”, in the sense that a simple baseline can
correctly disambiguate most mentions; (2) we in-
troduce two benchmarks from real Web corpora
(Wikipedia and Clueweb 2012) with documents
of increasing difficulty, which are also balanced
(i.e., they have the same number of documents
in each difficulty class); finally, (3) we aggregate
the per-document accuracy in a more meaningful
way.

It is also worth noting that our statically hand-tuned
algorithm also outperformed all previous methods and
is quite competitive with the learning approach. These
observations corroborate the superiority and robust-
ness of using random walks for the NED task. In sum-
mary, the algorithm and the evaluation methodology
described in this article significantly push the state-of-
the-art in this task.
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2. NED with Random Walks

This section first describes Named Entity Disam-
biguation as an optimization problem and then gives
an overview of our solution based on using Random
Walks to estimate semantic similarities (Section 3)
and a greedy, iterative approximation algorithm (Sec-
tion 4).

2.1. The NED Problem

Let d be a document with all mentions to named en-
tities marked up through an NER process, and KB =
(E,L) be a knowledge base represented as a graph
whose nodes inE correspond to real world entities and
links in L capture relationships among them. The task
of NED is to assign unique entity identifiers from E to
the mentions in d, whenever appropriate. NIL is used
for mentions outside of the KB.

More precisely:

Definition 1 (Named Entity Disambiguation) Given
a set of mentions M = {m1, . . . ,mm} in a document
d, and a knowledge base KB = (E,L), the NED
problem is to find an assignment A :M → E∪{NIL}.

A good assignment A balances two forces: the lo-
cal similarity between a mention mi and its linked en-
tity ej = A(mi), and the global coherence among all
entities in the assignment.

As usual, we define local(mi, ej) as:

local(mi, ej) = α prior(mi, ej)+(1−α)context(mi, ej)

(1)

where prior(mi, ej) is a corpus prior probability that
ej is the right entity for mi, usually derived from alias
dictionaries built from the KB, and context(mi, ej)
is the similarity between local features extracted from
text (e.g., keywords) surrounding mi in the document
and descriptions associated to ej in the KB.

Conversely, global(A) captures the global coher-
ence assumption that all entities in the assignment
form a semantically coherent unit, as follows:

global(A) =
∑

e∈A[M ]

semantic(e,A) (2)

in which semantic(e,A) measures the semantic simi-
larity between an entity e and all others in the assign-

ment A. Maximizing the sum in Eq. 2 is consistent
with the document coherence assumption, in which
one expects the input document to belong to a single
topic (e.g., sports) under which all entities in the as-
signment A are related. In fact, this maximization is
what allows the collective disambiguation of mentions
(e.g., disambiguating the mention Saban to Nick Sa-
ban in Ex. 2 increases the odds of linking Miami to the
Miami Dolphins).

Our notion of semantic coherence, rooted in Infor-
mation Theory, corresponds to the mutual informa-
tion between probability distributions obtained from
the stationary distributions from two separate random
walk processes on the entity graph: one always restart-
ing from the entity, and the other restarting from all en-
tities used in the assignment. This is accomplished by
appropriately defining random restarting probability to
each entity in the preference vectors used in the walks
accordingly.

Under the reasonable assumption that the local sim-
ilarity is normalized, we can formulate NED as a min-
max optimization where the goal is to maximize the
global coherence while minimizing the loss in local
pairwise similarity by the assignment, which can be
estimated as |M | −

∑
mi∈M local(mi,A(mi)). An

equivalent and simpler formulation of the problem is
to find an assignment A∗ that maximizes:

A∗ = argmax
A

global(A) ·
∑

mi,ej∈A
local(mi, ej)


(3)

Note that both global coherence and local similarity
are normalized among all candidates of each mention.

2.2. Iterative Walking NED

As previously observed (see, e.g., [14]), the NED
problem is intimately connected with a number of NP-
hard optimizations on graphs, including the maximum
m-clique problem [9], from which a polynomial time
reduction is not hard to construct. Thus we resort to an
iterative heuristic solution, which works as follows.

We start with a disambiguation graph G (recall
Fig. 1) containing all candidate entities and their im-
mediate neighbors. We order the mentions by their
number of candidates (i.e., their degree of ambiguity),
and iterate over them in increasing order, incremen-
tally building the approximate assignment one mention
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at a time. In iteration i, we assign to mention mi the
entity e maximizing

A(mi) = argmax
e∈cand(mi)

(semantic(e, Â) · local(mi, e))

(4)

Here, semantic(e, Â) is the mutual information be-
tween the probability distributions generated from ran-
dom walks restarting from e and from all entities in the
partial assignment up to step i− 1. More precisely, let
n be the size ofG. We define the semantic signature of
candidate entity e ∈ G the n-dimensional vector cor-
responding to the stationary probability distribution of
reaching each node in G from e, obtained through a
random walk that always restarts from e. The seman-
tic signature of the partial assignment Â is also an n-
dimensional vector with the stationary probability ob-
tained from a random walk restarting from the entities
corresponding to all mentions disambiguated up until
that point.

To disambiguate n mentions, we re-compute Â and
its corresponding signature n−1 times. In the first step,
we initialize Â with (the entities of) all unambiguous
mentions (inspired by [25]). If all mentions are am-
biguous to start with, we initialize Â with all candidate
entities weighted by their prior probability.

Linking to NIL A mention is linked to NIL in one of
two cases: (1) when the mention has no good candi-
date entities; and (2) when the similarity score of the
entity maximizing Eq. 4 and the document is below a
threshold. Both thresholds are, of course, application-
specific. In future work, we will study their impact on
typical EL tasks.

2.3. Supervised Walking NED

NED is the kind of problem suitable to supervised
machine learning methods, as the assignment of enti-
ties to mentions is very hard to codify algorithmically.
We developed a supervised algorithm that casts NED
as learning to rank the candidate entities for a mention.
The features are the building blocks for computing the
local and semantic similarities used by our iterative
algorithm, including those derived from the random
walks. Our algorithm uses Boosted Regression Trees,
and returns the entity with the highest score among
those predicted as a correct match. Of course, one
drawback of this approach is the limited availability of
training data; however, for the domain of news articles,

we were able to develop a robust method trained on
the CoNLL dataset which proved to be highly effec-
tive across the board in our experimentations on public
benchmarks and the novel benchmarks we develop in
this work.

3. Semantic Similarity

This section explains how we compute the semantic
similarity used in Eq. 4 to incrementally solve the NED
problem. In essence, we compute the mutual infor-
mation between two probability distributions, derived
from random walks, which we call semantic signa-
tures. In Eq. 4 we need signatures from single entities
and from partial assignments consisting of many (pre-
viously disambiguated) entities. Both kinds of signa-
tures are computed using random walks; the only dif-
ference between them is the initialization of the pref-
erence vector used in the walks.

3.1. Disambiguation Graphs

Our KBs, built from Web-scale knowledge re-
sources such as Wikipedia, are graphs whose nodes
correspond to entities and whose edges connect pairs
of entities that are semantically related. More pre-
cisely, we build a graph KB = (E,L) where E con-
sists of all individual articles in Wikipedia and a link
e1→ e2 exists inL if either: (1) the article of e1 has an
explicit hyperlink to e2; or (2) there is an article with
hyperlinks to e1 and e2 within a window [4] of 500
words. In order to compute the local similarity (recall
Eq. 4) we keep the entire article associated with each
entity.

Our KB is both large and dense, rendering the cost
of performing random walks prohibitive. Moreover,
starting from the principle that each document belongs
to a single yet unknown topic, and given that it men-
tions only a small number of entities, it is reasonable
to assume that the space of entities relevant to disam-
biguate any given document is a small subgraph of the
KB. It is on this disambiguation graph G consisting
of all candidate entities and their immediate neighbors
(recall Fig. 1) that we perform the random walks.

Selecting Candidate Entities Given a mention m ∈
M , we query an alias dictionary to find the KB entities
that are known to be referred to as m. This dictionary
is built from various resources in Wikipedia, including
the anchor text in the Wikilinks [7] and redirect and
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disambiguation pages.To keep the computational cost
low, we proceed as follows. First, we rank candidates
separately by: (1) prior(m, e), the probability that the
mention m refers to entity e; and (2) context(m, e),
the context similarity between the text describing e in
the KB and the section of the document containing m.
Next, we take the top-k candidates from each list (we
used k = 10 in the experiments reported here) and
discard candidate entities that are not in the union of
the two lists.

As mentioned, our disambiguation graph contains
not only candidate entities but also their immediate
neighbors. However, because our KB is so dense,
keeping all neighbors would result in a prohibitively
large disambiguation graph. To further reduce the com-
putation costs, we prune all non-candidate entities that
are either (1) connected to a single candidate entity or
(2) have degree below 200. (This threshold was chosen
experimentally.) Candidate entities are never pruned
regardless of their degree. Fig. 3 in the Experimen-
tal Section 5 shows statistics about the disambigua-
tion graphs built in our xperimental evaluation. As one
can see, even after this aggressive pruning, our disam-
biguation graphs have several thousand nodes for each
document.

3.2. Obtaining Semantic Signatures

Let G = (V,E) be a graph such that |V | =
n. A random walk with restart is a stochastic pro-
cess that repeatedly traverses the graph randomly. The
starting point of these traversals is determined by an
n-dimensional preference vector. If repeated a suffi-
cient number of times, this process results in an n-
dimensional vector corresponding to the probability
distribution of reaching each vertex in the graph. We
call such vectors semantic signatures, which we use to
solve the NED problem.

Random Walks Let T be the transition matrix of G,
with Tij being the probability of reaching vertex ej
from vertex ei, computed as follows:

Tij =
wij∑

ek∈Out(ei)
wik

in which Out(ei) is the set of entities directly reach-
able from ei, and wij is the weight of the edge be-
tween ei and ej , defined as the co-occurrence count of
the corresponding entities in the KB (more details see
below).

Algorithm 1 docVecInit
Input: M = {m1,m2, . . . ,mn},KB = (E,L), A :

M → E
Output: Document disambiguation vector d

1: let n be the size of the disambiguation graph
2: d = 0(n)

3: if A 6= ∅ then
4: for m, e ∈ A do
5: de = 1
6: end for
7: else
8: for m ∈M do
9: for e ∈ cand(m) do

10: de = prior(e,m) · tf idf (m)
11: end for
12: end for
13: end if
14: normalize d
15: return d

Let rt be the probability distribution at iteration t,
and rti be the value for vertex ei, then rt+1

i is computed
as follows:

rt+1
i =

∑
ej∈In(ei)

rtj · Tji (5)

in which In(ei) is the set of entities linking to ei.
As customary, we incorporate a random restart prob-

ability in the n-dimensional preference vector. For-
mally, the random walk process can be described as:

rt+1 = β × rt × T + (1− β)× v (6)

where v is the preference vector, and
∑
vi = 1. We

also follow the standard convention and set β = 0.85.

Semantic Signature of an Entity The semantic sig-
nature of an entity e is obtained by setting the prefer-
ence vector v with ve = 1, and ve′ = 0, where e′ 6= e.
The resulting distribution can be interpreted as the se-
mantic relatedness of every node in the disambiguation
graph to e.

Semantic Signature of an Assignment The seman-
tic signature of a (partial) assignment is the result of
a random walk using a preference vector d meant to
contain the entities representing the topic of the doc-
ument. In the iterative NED algorithm, this vector is
computed from the partial assignment Â and updated
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each time a new mention is disambiguated (and thus
added to Â).

This formulation does not work when no mentions
have been disambiguated yet (i.e., Â = ∅), which may
occur at the first step of the algorithm. In this case, we
use all candidate entities of all mentions to represent
the document, weighting them proportionally to their
prominence. The procedure is given in Alg. 1; here,
prior(m, e) is a corpus prior derived from Wikipedia
capturing how often the mention m is used to refer to
entity e, while the tf idf score of each mention is pre-
computed using the entire Wikipedia corpus, consider-
ing all entity aliases.

3.3. Computing the Semantic Similarity

There are several ways one can estimate the similar-
ity of two semantic signatures (i.e., probability distri-
butions) P and Q. One standard way of doing so is to
use The Kullback-Leibler (KL) divergence:

DKL(P ‖ Q) =
∑
i

Pi log
Pi
Qi

(7)

In this work, we use Zero-KL Divergence [15], a
better approximation of the KL divergence that han-
dles the case when Qi is zero.

ZKLγ(P,Q) =
∑
i

Pi

{
log Pi

Qi
Qi 6= 0

γ Qi = 0
(8)

in which γ is a real number coefficient. (Following the
recommendation in [15], we set γ = 20.) The semantic
similarity used in Equation 4:

semantic(e, Â) =
1

ZKLγ(signature(e), signature(d))

(9)

Above, d is a vector computed from the partial assign-
ment Â, as explained in Alg. 1.

4. Disambiguation Algorithms

This section gives the details of our two random-
walk-based NED algorithms.

Algorithm 2 Iterative Mention Disambiguation
Input: M = {m1,m2, . . . ,mn}, KB = (E,L)
Output: Assignment A :M → E ∪ {NIL}

1: Â = ∅
2: for mi ∈M such that |cand(mi)| = 1 do
3: Â(mi) = cand(mi)
4: end for

5: for mi ∈ M sorted by increasing
|ambiguity(mi)| do

6: d = docVecInit(M,KB, Â)
7: max = 0
8: for ej ∈ cand(mi) do
9: P = signature(ej); Q = signature(d)

10: semantic(ej , Â) =
1

ZKLγ(P,Q)
11: score(ej) = local(mi, ej) ×

semantic(ej , Â)
12: if score(ej) > max then
13: e∗ = ej ; max = score(ej)
14: end if
15: end for

16: Â(mi) = e∗

17: end for

18: for m, e ∈ Â do
19: if score(e) < θ then
20: Â(m) = NIL
21: end if
22: end for
23: return Â

4.1. Iterative Disambiguation

Alg. 2 shows our iterative Walking NED (WNED)
algorithm. Intuitively, it builds a partial assignment Â
by disambiguating one mention in each iteration.

It starts (lines 1–4) by assigning all unambiguous
mentions, if any, to their respective entities. The main
loop of the algorithm (lines 5–17) goes through the
mentions sorted by increasing ambiguity, defined as
the number of entities that a mention can refer to1,
computing the preference vector for the signature of
the partial assignment (line 6) and greedily assigning

1Note this number is usually much higher than the number of
candidates our algorithm considers, due to the pruning described in
Sec. 3.1.
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to the current mention the candidate entity with highest
combined score (lines 7–16).

In line 11, local(m, e) is computed as in Eq. 1, with
α = 0.8 (tuned experimentally).

A final step of the algorithm is to assign NIL to
those mentions whose even the best candidate entity
has a low score. The cut-off threshold θ is application-
defined.

4.2. Disambiguation via Learning to Rank

The NED problem can be cast as an entity ranking
problem for which we rank the candidates based on
a score function (e.g. E.q 4), selecting the one with
the highest rank. As is the case in most scenarios, the
ranking is based on multiple criteria (e.g., prior proba-
bility, context similarity, semantic similarity, etc.) that
may apply differently in different situations, making
it hard or impossible to craft a concise algorithm that
performs well in all cases. If training data is available,
one can use sophisticated learning models to arrive at
a more accurate ranking.

This Learning to Rank approach originates from In-
formation Retrieval, where the methods can be divided
into three groups [20]. The pointwise approaches con-
sider query-document pairs as independent instances,
and employ classification or regression to predict the
scores of the documents (given the query) and rank
them accordingly. As such, pointwise methods are not
trained on actual rankings. On the other hand, listwise
approaches are trained on the full ranking of all docu-
ments returned for a query. Since rankings can be hard
to obtain, the pairwise approaches take ordered pairs of
documents in which one document ranks higher than
the other.

Our Learning-to-Rank Walking NED solution
(L2R.WNED) is a pairwise method based on the
LambdaMART method that employs the MART (Mul-
tiple Additive Regression Trees) algorithm to learn
Boosted Regression Trees. It takes advantage of Lamb-
daRank gradients to bypass the difficulty of handling
non-smooth cost function introduced by most IR mea-
sures, and combines the cost function and IR metrics
together to utilize the global ranking structure of docu-
ments. LambdaMART has been proven successful for
solving real world ranking problems 2.

2An ensemble of LambdaMART rankers won Track 1 of the 2010
Yahoo! Learning to Rank Challenge

Features Although there are many useful features for
ranking [36], our main goal is to establish the robust-
ness and utility of the semantic similarity for the NED
task, rather than performing exhaustive feature engi-
neering at the risk of over-fitting. Thus we use four
features, all of which are familiar in this research area:
prior probability, context similarity, semantic related-
ness, and name similarity which is measured by the N-
Gram distance [18] between a mention and the canon-
ical name of the entity.

More precisely, given a mention-entity pair m − e,
we extract the following features: (1) prior probabil-
ity prior(m, e), (2) context similarity context(m, e),
(3) name similarity nameSim(m, e), and (4) semantic
relatedness semantic(e,d) in which d is obtained by
Alg. 1 using the the initial Â, computed as in lines 1–4
in Alg. 2.

Training data Using a pairwise ranking method, for
each mention we need ordered pairs of entities e1, e2
such that e1 is ranked higher than e2. Such pairs are
easy to obtain when gold standard benchmarking data
is available. Given a mention m and its correct entity
e in the gold standard, we obtain several other candi-
date entities for m and use them as the lower ranked
entities.

In our experiments, we verify the system perfor-
mance with two training approaches. First, we used
the standard 10-fold cross-validation in which we use
1/5 of the dataset for training and the rest for test-
ing. Also, we experimented with using one dataset
for training, while testing on other datasets. Both ap-
proaches worked well. In particular, we found that
training on the fairly large CoNLL dataset led to a ro-
bust method that worked well on other benchmarks.

5. Experimental Validation

We now report on a comprehensive experimental
evaluation of both WNED and the L2R.WNED meth-
ods, comparing them to the state-of-the-art. We refer
to previous work [10] for the tuning of the parame-
ters in our approach. All datasets used in this work,
including the new benchmarks introduced below, as
well as the accuracy results obtained with each method
on each document can be downloaded from http:
//bit.ly/1IcfdqS.

We compare WNED and L2R.WNED to the state-
of-the-art systems (Detailed descriptions of these sys-
tems are in the Related Work at Section 6):



Z. Guo and D. Barbosa / Robust Named Entity Disambiguation with Random Walks 9

Table 1
Accuracy results of all methods on the 4 public benchmarks.

Method
MSNBC AQUAINT ACE2004 AIDA-CONLL

Accuracy F1@MI F1@MA Accuracy F1@MI F1@MA Accuracy F1@MI F1@MA Accuracy F1@MI F1@MA

PRIOR 0.86 0.86 0.87 0.84 0.87 0.87 0.85 0.85 0.87 0.75 0.75 0.76

CONTEXT 0.77 0.78 0.72 0.66 0.68 0.68 0.61 0.62 0.57 0.40 0.40 0.35

Cucerzan 0.88 0.88 0.88 0.77 0.79 0.78 0.79 0.79 0.78 0.73 0.74 0.72

M&W 0.68 0.78 0.80 0.80 0.85 0.85 0.75 0.81 0.84 0.60 0.68 0.68

Han11 0.88 0.88 0.88 0.77 0.79 0.79 0.72 0.73 0.67 0.62 0.62 0.58

AIDA 0.77 0.79 0.76 0.53 0.56 0.56 0.77 0.80 0.84 0.78 0.79 0.79

GLOW 0.66 0.75 0.77 0.76 0.83 0.83 0.75 0.82 0.83 0.68 0.76 0.71

RI 0.89 0.90 0.90 0.85 0.88 0.88 0.82 0.87 0.87 0.79 0.81 0.80

WNED 0.89 0.90 0.90 0.88 0.90 0.90 0.83 0.86 0.89 0.84 0.84 0.83

L2R-CONLL 0.91 0.92 0.92 0.85 0.87 0.87 0.85 0.88 0.90
0.89 0.89 0.89

L2R-SELF 0.91 0.92 0.91 0.88 0.90 0.90 0.85 0.88 0.89

Table 2
Breakdown of the public benchmarks by the accuracy of the PRIOR method; #docs and #mentions are, respectively, the number of documents
and the average number of mentions per document in each bracket; the number in parenthesis is the fraction of the entire benchmark covered by
each bracket.

Accuracy
MSNBC AQUAINT ACE2004 AIDA-CONLL

#docs #mentions #docs #mentions #docs #mentions #docs #mentions

0.0 – 0.1 0 (0%) 0 0 (0%) 0 0 (0%) 0 5 (0.4%) 5.0

0.1 – 0.2 0 (0%) 0 0 (0%) 0 0 (0%) 0 35 (2.5%) 40.4

0.2 – 0.3 0 (0%) 0 0 (0%) 0 0 (0%) 0 29 (2.1%) 20.2

0.3 – 0.4 0 (0%) 0 0 (0%) 0 0 (0%) 0 62 (4.5%) 17.4

0.4 – 0.5 2 (10%) 51.5 0 (0%) 0 0 (0%) 0 61 (4.4%) 30.0

0.5 – 0.6 3 (15%) 45.7 0 (0%) 0 0 (0%) 0 100 (7.2%) 22.5

0.6 – 0.7 3 (15%) 37.0 1 (2%) 8.0 5 (14.3%) 10.8 164 (11.8%) 21.7

0.7 – 0.8 4 (20%) 29.8 12 (24%) 15.3 5 (14.3%) 10.8 210 (15.1%) 26.8

0.8 – 0.9 3 (15%) 53.0 16 (32%) 14.4 12 (34.3%) 8.5 267 (19.2%) 28.3

0.9 – 1.0 3 (15%) 25.0 11 (22%) 15.0 2 (5.7%) 12.0 164 (11.8%) 43.5

1.0 2 (10%) 17.5 10 (20%) 13.9 11 (31.4%) 6.4 291 (21.0%) 13.2

– Cucerzan [7]—the first global NED approach,
– M&W [25]—a leading machine learning NED

solution,
– Han11 [12]—a global method that also uses ran-

dom walks (on a disambiguation graph built dif-
ferently than ours),

– AIDA [14]—a global method that formulates
NED as a subgraph optimization problem,

– GLOW [28]—a system combining local and
global, and

– RI [6]—the start-of-the-art NED system using re-
lational inference for mention disambiguation.

We also evaluate two useful baselines: CONTEXT

which chooses the candidate entity with highest textual
similarity to the mention, context(m, e), and PRIOR

which picks the entity with highest prior probability
for each mention, prior(m, e). These baselines are in-
formative as virtually all methods rely on these mea-
sures in one way or another, including ours (recall
Eq. 4). Somewhat surprisingly, as shown next, not ev-
ery method improves on both of them.
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Measures We use the standard accuracy, precision,
recall, and F1:

accuracy =
|truth ∩ result |
|truth ∪ result |

precision =
|truth ∩ result |
|result |

recall =
|truth ∩ result |
|truth|

F1 =
2 ∗ precision ∗ recall
precision + recall

Where truth is a ground truth assignment and result
is the assignment produced by the NED system.

5.1. Results on Public Benchmarks

There are four widely used public benchmarks for
the NED task: (1) MSNBC [7], with 20 news arti-
cles from 10 different topics (two articles per topic)
and 656 linkable mentions in total; (2) AQUAINT,
compiled by Milne and Witten [25], with 50 docu-
ments and 727 linkable mentions from a news cor-
pus from the Xinhua News Service, the New York
Times, and the Associated Press; (3) ACE2004 [28], a
subset of the documents used in the ACE2004 Coref-
erence documents with 35 articles and 257 linkable
mentions, annotated through crowdsourcing; and (4)
AIDA-CONLL [14], a hand-annotated dataset based
on the CoNLL 2003 data, with 13883 Reuters news ar-
ticles and 27817 linkable mentions.

Tab. 1 shows the results of the two baselines and
all NED systems on the four public benchmarks. As
customary, we report F1 aggregated across mentions
(micro-averaged, indicated as F1@MI) and across
documents (macro-averaged, F1@MA). For the learn-
ing to rank approaches, L2R-CONLL refers to the
method where the learning is done on the AIDA-
CONLL dataset, regardless of the test corpus, and
L2R-SELF is the method where the model is trained
on a fraction of the respective benchmark.

Discussion A few observations are worth making
here. Among previous work, RI has the best perfor-
mance across benchmarks. The disambiguation via
textual similarity alone, as done by the CONTEXT
baseline, leads to poor accuracy in general, especially
on the more challenging AIDA-CONLL benchmark.

3The original dataset includes 5 other documents where all men-
tions are linked to NIL, and are therefore removed from our analysis.

The PRIOR baseline, on the other hand, performs well
across the board, outperforming several systems. This
points to limitations in the benchmarks themselves:
since they build on high quality news articles, where
entities are likely to be mentioned at least once by their
full name (which is easy to disambiguate with a prior
alone).

The reader will notice that virtually every method
in the literature is evaluated against a baseline like
PRIOR, and if one looks back to earlier works, the re-
ported accuracy of such baseline is not nearly as high
as what we report. This can be explained by the con-
tinuous cleaning process on Wikipedia—from which
the statistics are derived. As we use a more recent and
cleaner corpus, where the support for good and appro-
priate entity aliases is markedly higher than for spuri-
ous or inappropriate mentions.

With respect to WNED and L2R.WNED, both
outperform all competitors on all benchmarks, with
L2R.WNED performing best overall. Another obser-
vation is that training our L2R.WNED with AIDA-
CONLL data is quite effective on all other bench-
marks, and sometimes superior to training our method
with data from the specific benchmark. While not
surprising (as all benchmarks come from the same
domain—news), these results mean that L2R.WNED
trained on AIDA-CONLL can be seen as an effective
and off-the-shelf NER system. Another general obser-
vation is that there is quite a lot of variability in the rel-
ative ordering of the previous methods across bench-
marks, except for RI and our methods. This some-
what surprising lack of robustness in some systems
may have been caused by over-tuning for the devel-
opment benchmark, resulting in poor generalization
when tested on different benchmarks.

5.2. The Need for New Benchmarks

Although the four benchmarks discussed above are
useful reference points, since they are well-known and
have been used for the evaluation of most NED sys-
tems, they leave a lot to be desired for a deeper and
more systematic accuracy evaluation. As noted in the
previous section, they are clearly biased towards pop-
ular entities, and thus, not representative of all sce-
narios where NED is necessary. To further illustrate
the point, Tab. 2 breaks down the number of docu-
ments in each benchmark at different levels of accu-
racy achieved by PRIOR (i.e., the brackets are deter-
mined by the overall accuracy of all mentions in the
document). As can be seen, the vast majority of docu-
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Fig. 2. Corpus statistics.
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Fig. 3. Disambiguation graph statistics.

ments in all previous benchmarks are not particularly
challenging: In fact, PRIOR produces perfect results
for as many as 20% of all documents of AQUAINT
and AIDA-CONLL and 31% of all documents in the
case of the ACE2004 benchmark. It follows that these
benchmarks are dated and unlikely to lead to further
significant improvements in the area.

A desirable feature of any thorough evaluation that
is not necessarily fulfilled by any of the previous
benchmarks is that of representativeness. Namely, it
would be ideal to have a mix of mentions or documents
with different levels of difficulty in equal proportions

(say on a 10-point scale from “easy” to “hard”). With-
out such equity, the effectiveness metrics reported in
the literature (which aggregate at the mention or doc-
ument level) may not be good predictors of actual per-
formance in real applications. For instance, if a large
fraction of the mentions in the benchmarks are “too
easy” compared to real documents, the metrics will
overestimate the true accuracy.

Of course, in order to fine tune the difficulty of the
mentions and the documents in a benchmark one needs
a reliable indicator of “difficulty” that can be applied to
a large number of documents. Manual annotations are



12 Z. Guo and D. Barbosa / Robust Named Entity Disambiguation with Random Walks

clearly undesirable here, and so is crowdsourcing: the
number of annotations needed might prove prohibitive
and even if resources are not a concern this leads to a
single benchmark (i.e., if more documents are needed,
more annotations would be required).

5.3. New Benchmarks

To obtain new and balanced benchmarks, we con-
sider the PRIOR baseline as a proxy for the true diffi-
culty of a mention, and we obtain documents by sam-
pling from large publicly annotated corpora such as
ClueWeb and Wikipedia. In this way, we can easily
collect large corpora of previously annotated docu-
ments and retain as many as needed while tuning dis-
ambiguation difficulty to the desired proportion.

More precisely, we applied PRIOR to large samples
of Wikipedia and the FACC1 annotated ClueWeb 2012
dataset. We grouped documents by the resulting aver-
age accuracy (of all mentions in the document), keep-
ing 40 documents per bracket. Also, we further re-
stricted the benchmarks to documents in which PRIOR
achieved 0.3 or higher accuracy as we observed that
below that threshold, the quality of the annotations in
the ClueWeb dataset were very low. Finally, we con-
trolled the number of mentions per document: for the
Wikipedia corpus we have the mean at 20.8 (σ = 4.9)
and for the ClueWeb 2012 we have the mean at 35.5
(σ = 8.5).

Fig. 2 shows statistics about our benchmarks: namely,
the average number of mentions per document (Fig. 2a)
and the average number of candidates per mention (Fig. 2b).
For the sake of comparison, we also report the same
statistics from the documents in the AIDA-CONLL
dataset in the respective accuracy brackets. Fig. 3
shows statistics about the disambiguation graphs built
by our method (which, as discussed in Section 4, de-
pend both on the number of candidates per mention
and on how densely connected they are in the entity
graph). Fig. 3a shows the average graph sizes (in terms
of number of nodes) and Fig. 3b shows the average
node degree.

As one can see, the variability in our datasets is con-
siderably smaller compared to AIDA-CONLL, partic-
ularly when it comes to clear outliers (indicated as in-
dividual dots in the charts).

5.4. Results on the New Benchmarks

Fig. 4 shows the accuracy on the new benchmarks.
We plot the accuracy of the best performing methods
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Fig. 4. Average accuracy of the top-5 methods on the Wikipedia,
Clueweb 12, and AIDA-CONLL datasets grouped by the accuracy
of the PriorProb baseline.



Z. Guo and D. Barbosa / Robust Named Entity Disambiguation with Random Walks 13

Table 3
Average per-bracket accuracy on large-scale benchmarks. Brackets
for AIDA-CONLL are as in Tab. 2; only those brackets with PRIOR

accuracy 0.3 or higher were used.

Method AIDA-CONLL Wikipedia ClueWeb 12

PRIOR 0.57 0.56 0.57

CONTEXT 0.39 0.59 0.42

Cucerzan 0.68 0.66 0.60

M&W 0.58 0.83 0.65

Han11 0.57 0.78 0.61

AIDA 0.75 0.63 0.59

GLOW 0.61 0.69 0.57

RI 0.74 0.75 0.68

WNED 0.79 0.84 0.77

L2R.WNED 0.85 0.85 0.78

for each of the difficulty brackets (defined by the ac-
curacy of the PRIOR baseline). For clarity, we plot the
accuracy of the best 5 approaches. For comparison, we
also show the accuracy of each method on the AIDA-
CONLL benchmark. For the Wikipedia and ClueWeb
benchmarks, each bracket corresponds to exactly 40
documents, whereas for the AIDA-CONLL dataset
the brackets are as in Tab. 2. For convenience, a diag-
onal dotted line whose area under the curve (AUC) is
0.5 (loosely corresponding to the PRIOR baseline) is
also shown. Methods consistently above that line are
expected to outperform the PRIOR baseline in practice.
Tab. 3 shows the average accuracy of every method
across brackets, corresponding to the AUC in Fig. 4.

A few observations are worth mentioning here.
First, the two new benchmarks complement the AIDA-
CONLL benchmark: overall, the Wikipedia bench-
mark is easier than AIDA-CONLL, while the ClueWeb
12 is harder. Second, as before, the RI method per-
formed very well, although not as dominantly as in the
four public benchmarks. It also seems that the previ-
ous supervised methods tend to over-perform on their
own development datasets (Wikipedia for M&W and
CoNLL for AIDA).

Our L2R.WNED and WNED systems outperform
all other competitors across all benchmarks, perform-
ing much better on the more “difficult” cases (i.e.,
in lower brackets). In concrete terms, WNED and
L2R.WNED exhibit, on average, 21% and 26% rela-
tive gain in accuracy over the previous methods (ex-
cluding the baselines) on the three benchmarks com-
bined, which is significant. Given that our development
and tuning was done with a subset of the AQUAINT,

0%
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75%

100%

MSNBC ACE2004 AQUAINT AIDA_CoNLL Wikipedia ClueWeb_12

Candidate Generation Mention Disambiguation

Fig. 5. Breakdown of errors by WNED across benchmarks; for
AIDA-CONLL, Wikipedia and ClueWeb 12, the errors are esti-
mated from a sample.

MSNBC and ACE2004, the strong results of WNED
and L2R.WNED demonstrate the robustness and gen-
erality of our approach.

5.5. Qualitative Error Analysis

We now look at the kinds of errors made by our
method. To do so, we manually inspected every er-
ror for the smaller MSNBC, AQUAINT, and ACE2004
datasets, and analyzed 20 errors randomly picked in
each bracket for the larger ones.

The first observation is that in the older benchmarks,
a larger fraction of the errors in our method happen in
the candidate selection phase, as illustrated in Fig. 5.
On average, 54% of the errors in the smaller bench-
marks are due to candidate selection (compared to 18%
in the other ones). This reinforces the hypothesis that
the entities mentioned in these older benchmarks are
easier to disambiguate4.

Below we discuss prototypical errors in each of the
phases.

Errors during Candidate Selection
Incorrect Co-reference Resolution We employ a co-
reference resolution algorithm in our text processing
pipeline to increase recall. Due to the heuristic nature
of the algorithm, it is possible that distinct named enti-

4Note: given that the smaller benchmarks are older, it is unlikely
they mention more out-of-KB entities than the other ones, espe-
cially AIDA-CONLL. Thus, because we use the same standard
NLP pipeline for processing the inputs across all benchmarks, the
discrepancy in Fig. 5 can only mean that our method is successful on
most of the (in-KB) entities in the older benchmarks, making them
“easier” than the other ones.
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ties are incorrectly deemed to be the same. For exam-
ple, in the sentence

“Time Warner stagnated for five years after it
was created in 1990 by the merger of Time and
Warner.”

the entity “Time” at the end of the sentence is incor-
rectly resolved to “Time Warner”, leading to an error.
About 1% of the errors (1.5% in the harder bench-
marks) are due to incorrect resolution of named enti-
ties.

Incomplete Alias Dictionary Currently, we disam-
biguate only those mentions corresponding to an alias
from Wikipedia, leading to problems in sentences like

“Thirteen miners were trapped inside the Sago
Mine near Buckhannon, W. Va.”

In this case we miss the abbreviation “W. Va.” for West
Virginia. This kind of error was noticeably more com-
mon in the easier benchmarks (accounting for 30%
of the errors in the ACE2004 dataset). In the AIDA-
CONLL benchmark only 2% of the errors are due to
this problem.

Aggressive Pruning Another source of error by our
method is pruning the correct entity from the disam-
biguation graph (recall Sec. 3.1). For example, in sen-
tence

“A state coordinator for the Florida Green Party
said she had been ...”

the correct entity (the Green Party of Florida) is
pruned due its low prior but could probably be cor-
rectly resolved given the mention to Florida in the
same sentence. Instead, WNED links the mention to
the US Green Party. Of course, pruning is done to re-
duce the cost of the random walks, and future algorith-
mic improvements can alter this trade-off.

Errors during Mention Disambiguation
These are errors where the correct entities according

to the ground truth were selected as the candidates but
not chosen during the mention disambiguation phase
by our algorithm.

Lack of Application Domain We observed that most
of the errors associated with locations happen because
the documents in most benchmarks are news articles
that start with the location of the news source brak-
ing the news (e.g., New York Times documents always
start with a mention to New York). More often than
not, such locations are totally unrelated to the topic of

the documents and other mentions in the document,
breaking the global coherence assumption. These er-
rors, which can be easily fixed via pre-processing, ac-
counts for 5% of the mistakes of our algorithm in the
MSNBC and AIDA benchmarks and 2% across all
benchmarks.

Need for Deeper Text Analysis There are of course
very hard disambiguation cases where a deeper under-
standing of the text would be needed for a successful
algorithmic approach. One example is the sentence:

“Maj. Gen. William Caldwell, a U.S. military
spokesman, told reporters that ...”

In this case there are two candidates with the same
name and high military rank, thus being semantically
related to the document and confusing the algorithm.
In this case, extraneous facts about the candidates, un-
related to the text itself, could be used for disambiguat-
ing the mention. For instance the candidate incorrectly
chosen by our algorithm died in the 1820s while the
correct candidate was still alive at the time the bench-
mark article was written. Given the document states
the facts as current news, the incorrect candidate could
have been pruned out.

Questionable Errors
We argue that in many cases, our algorithm (as well

as other systems) chose an entity that are considered
erroneous by the ground truth but that would be accept-
able to a human judge. For example, in the sentence:

“Coach Saban said the things Crimson Tide fans
most wanted to hear.”

our system links “Crimson Tide” in the sentence to the
Alabama Crimson Tide football, which is the men’s
varsity football team of the university while the ground
truth refers to Alabama Crimson Tide which corre-
sponds to both the men’s and women’s teams. We
found that about 17% of the errors are in this cate-
gory, with a higher prevalence in the harder bench-
marks (21%). Tab. 4 lists many other similar errors,
where a case can be made that the ground-truth itself
is probably too strict.

Impact of the Greedy Approach
Given the iterative WNED is a greedy algorithm,

it is interesting to see how an erroneous disambigua-
tion decision influences future ones, especially in the
very first round. In all benchmarks, we found one er-
ror in the first round among all the errors in MSNBC,
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Table 4
Questionable disambiguation errors

Mention WNED Suggestion Ground Truth

Iraqi Iraqi people Iraq

Hungarian Hungary Hungarian people

executives Corporate title Chief executive officer

Russian Russian language Russians

Iranian Iranian people Iran

Greek Greek language Ancient Greece

civil war American Civil War Civil war

broadcaster Presenter Broadcasting

AQUAINT and ACE2004 datasets5, and less than eight
errors from the random samples in the other 3 bench-
marks. In all cases, the first error did not prevent the
algorithm from correctly disambiguating other men-
tions.

As for the initialization step, we found that most
documents in our benchmarks do have unambiguous
mentions available, and most of them are correctly
linked to the true entity6. In MSNBC, we have 2 er-
rors from the unambiguous mentions, New york stock
exchange and NYSE, both are linked to New york mer-
cantile exchange. This error barely affects the seman-
tic signature since they are still stock related entities.
There are 5 such errors in AQUAINT, and 1 error in
ACE2004, all of which have little affect on the linking
results of other mentions in the same document.

Finally, we found that most other errors happened
after 5 iterations, when the document disambiguation
vector already captures the topic fairly well. These
errors are for mentions that are not semantically re-
lated to other mentions in the document, or simply due
to the disproportionately high priors favoring (incor-
rectly) head entities.

6. Related Work

Earlier work on Entity Linking disambiguated each
mention in isolation using a compatibility function to
approximate the likelihood of an entity being the ref-
erent entity for a mention, and treated entity linking
as a ranking problem which chose the candidate with
the highest compatibility. In these approaches, men-

5A mention to the USS Cole which should have been linked to
USS Cole (DDG-67), was linked to USS Cole bombing.

6Recall (Sec. 4) we initialize the document disambiguation vector
with unambiguous mentions when available.

tions and entities are represented as feature vectors
and vector similarity measures are used to estimate
their compatibility. The most common local features
include lexical features such as bag-of-words or named
entities from surrounding context and statistical fea-
tures such as the prior probability of entities given
a mention from a knowledge base. Unsupervised ap-
proaches [2,3] commonly use the cosine similarity of
feature vectors to measure the compatibility, while su-
pervised approaches [22,25,35,37,34,8] exploit vari-
ous classifiers trained on labeled datasets (often de-
rived from Wikipedia) to predict the compatibility. By
restricting themselves to local features, these methods
suffer from the data sparsity problem. Moreover, indi-
vidually linking mentions does not take into account
the inherent semantic coherence among them.

More recent EL systems follow the global coher-
ence hypothesis and take into account semantic rela-
tions between mentions and entities, employing vari-
ous measures of semantic relatedness. Most of these
approaches assume that mentions in a document are se-
mantically coherent around the topic of the document,
and thus cast the entity linking as an optimization
problem aiming at finding the assignment with maxi-
mum semantic coherence. Cucerzan [7] measures the
global coherence using Wikipedia categories. Milne
and Witten (M&W) [25] use directly connected en-
tities to represent each entity and measure related-
ness using normalized Google distance. Kulkarni et
al. [19] also use the M&W semantic relatedness mea-
sure and formalize the problem as an integer linear
programming problem to find the assignment collec-
tively. Ratinov et al. [28] add the PMI (Pointwise Mu-
tual Information) of entities into their SVM classifier
for entity linking. To use more fine-grained seman-
tics such as relations between mentions, Cheng and
Roth [6] formalize the EL as an integer linear program-
ming problem with relations as constraints, and find
the assignment to meet the relational constraints. Cai et
al. [4] measure the semantic relatedness using the co-
occurrence of entities from a link-enriched Wikipedia
corpus. AIDA [14] formalizes the EL problem as a
dense subgraph problem, which aims to find a dense
subgraph from a mention-entity graph such that the
subgraph contains all mentions and one mention-entity
edge for each mention according to their definition of
graph density. Han and Sun [11] combine the local
compatibility and global coherence using a generative
entity-topic model to infer the underlying referent en-
tities. Also through a generative graphical model, Li et
al. [21] propose to mine additional information for en-
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tities from external corpus, which can help improve the
effectiveness of entity linking, especially for entities
with rare information available in the knowledge base.

The approach closest to ours is that of Han et. al [12],
which uses a random walk with restart to obtain a vec-
tor of relevance for all candidates of mentions, and
considers the relevance value in the vector to be the
relatedness between a mention and its candidate. Like
other semantic relatedness measures, their measure
can only compute the relatedness between two enti-
ties. Instead, we use a unified semantic representation
for both documents and entities. As a result, we can
measure the coherence between entities and between
entities and documents in a unified way. Also our rep-
resentation can capture the semantics of unpopular en-
tities, which makes our EL approach more robust for
datasets with less popular entities. The idea of using
random walk with restart has been applied on graphs
constructed from the WordNet [23], with the stationary
distribution to represent the semantics of words. It has
been shown to be effective in the word similarity mea-
surement [1,15], and word sense disambiguation [26].
However, we are not aware of any previous work us-
ing the stationary distribution from random walk with
restart to represent entities and documents in entity
linking.

When it comes to learning to rank, Zheng et.al [36]
applied learning to rank approaches on the entity link-
ing task and demonstrated its superior effectiveness
over most state-of-the-art algorithms. Their results
showed that the listwise method ListNet [5] performed
better than the pairwise approach Ranking Percep-
tron [29]. However, we found that the pairwise ap-
proach LambdaMART [32] achieved the best perfor-
mance on our datasets among most learning to rank
algorithms.

7. Conclusion

We described a method for named entity disam-
biguation that combines lexical and statistical features
with semantic signatures derived from random walks
over suitably designed disambiguation graphs. Our se-
mantic representation uses more relevant entities from
the knowledge base, thus reducing the effect of fea-
ture sparsity, and results in substantial accuracy gains.
We described a hand-tuned greedy algorithm as well
as one based on learning-to-rank. Both outperform the
previous state-of-the-art by a wide margin. Moreover,
we showed that our L2R.WNED algorithm trained on

the standard AIDA-CONLL corpus is quite robust
across benchmarks.

Moreover, we demonstrated several shortcomings of
the existing NED benchmarks and described an ef-
fective way for deriving better benchmarks and de-
scribed two new such benchmarks based on web-scale
annotated corpora (ClueWeb12 and Wikipedia). Our
benchmark generation method can be tuned to pro-
duce “harder” or “easier” cases as desired. Overall, the
benchmarks we describe complement the largest cur-
rently available public benchmark. Our experimental
evaluation compared our methods against six leading
competitors and two very strong baselines, revealing
the superiority and robustness of our entity linking sys-
tem in a variety of settings. Our method was particu-
larly robust when disambiguating unpopular entities,
making it a good candidate to address the “long tail”
in Information Extraction.

Future work A number of opportunities for future
work exist. Sec. 5.5 lists several ideas for algorith-
mic improvements that can lead to better NED sys-
tems in the future. Also, while the new benchmarks de-
scribed here can be used for both accuracy and scala-
bility tests (as one can easily obtain large quantities of
documents from ClueWeb12 and Wikipedia), further
work is needed in helping the design and verification
of ground-truths.

Our algorithms require multiple random walk com-
putations, making it time consuming if implemented
naively (as in our current implementation). On a stan-
dard entry-level server, the average time to disam-
biguate a document in our benchmarks (usually with
less than 100 mentions) is in the order of a few min-
utes. Therefore, designing proper system infrastructure
with the appropriate indexes and/or parallel computing
infrastructure to optimize these computations would
be interesting. Moreover, other state-of-the-art systems
perform other expensive operations as well, such as ac-
cessing the Web or querying large relational databases.
Therefore, designing objective and fair benchmarks for
comparing these different approaches in terms of both
accuracy and performance would be of great value to
the community.
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