STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

Enrico Palumboa,b,*, Giuseppe Rizzoa and Raphaël Troncyb

aIstituto Superiore Mario Boella, Turin, Italy
bEURECOM, Sophia Antipolis, France

Abstract. One of the major issues encountered in the generation of knowledge bases is the integration of data coming from a collection of heterogeneous data sources. A key essential task when integrating data instances is the entity matching. Entity matching is based on the definition of a similarity measure among entities and on the classification of the entity pair as a match if the similarity exceeds a certain threshold. This parameter introduces a trade-off between the precision and the recall of the algorithm, as higher values of the threshold lead to higher precision and lower recall, and lower values lead to higher recall and lower precision. In this paper, we propose a stacking approach for threshold-based classifiers. It runs several instances of classifiers corresponding to different thresholds and use their predictions as a feature vector for a supervised learner. We show that this approach is able to break the trade-off between the precision and recall of the algorithm, increasing both at the same time and enhancing the overall performance of the algorithm. We also show that this hybrid approach performs better and is less dependent on the amount of available training data with respect to a supervised learning approach that directly uses properties’ similarity values. In order to test the generality of the claim, we have run experimental tests using two different threshold-based classifiers on two different data sets. Finally, we show a concrete use case describing the implementation of the proposed approach in the generation of the 3cixty knowledge base.

Keywords: knowledge base generation, entity matching, link discovery, stacking, FEIII, DOREMUS, 3cixty, OAEI

1. Introduction

In the last decade, we have witnessed to the generation of several knowledge bases that grant access to an enormous amount of structured data and knowledge. However, the generation of knowledge bases has required a tremendous manual effort to overcome several challenges. One of the typical issues in the generation of knowledge bases that integrate data from a collection of heterogeneous sources is that of automatically detecting duplicate records. Entity matching (also known as instance matching, data reconciliation or record linkage) is the process of finding non-identical records that refer to the same real-world entity among a collection of data sources [1]. Entity matching allows to identify redundant data, remove them (deduplication) and obtain unambiguous entities. Entity matching is rendered troublesome by the different data models used by the data providers, by possible misspellings, errors and omissions in data descriptions, by the use of synonyms, as well as the presence of implicit semantics in the textual descriptions. Consider as an example the case in which one record is named “Black Diamond BGWB14 Inc.” and the second record is named “Black Diamond f.s.b.”. In order to understand whether the two records correspond to the same real world entity, in addition to taking into account other properties such as the address, the state or the geographical position, it is clearly necessary to have expertise in the domain and to be able to understand the meaning of the abbreviations, as well as to rule out evident misspellings or mistakes. Nevertheless, a manual comparison from human experts is in most cases unfeasible, as matching entities requires a quadratic computational time (e.g. matching...
~ 10^3 entities requires ~ 10^9 comparisons). Thus, entity matching systems typically define a metric to measure a similarity between entities. This metric can be defined through knowledge of the domain and a trial-and-error process, in a top-down manner [2,3], or can be learned from annotated examples, in a bottom-up way [4,5]. Then, the similarity is turned into a confidence score, which represents the degree of confidence in asserting that the pair of entities is a match. Finally, a threshold has to be specified, in order to convert the confidence score into a decision, namely classifying the pair as a match or not. This decision threshold introduces a trade-off between the precision, i.e. the capacity of discriminating false positives, and the recall, i.e. the capacity of individuating true positives, of the algorithm. Indeed, higher values of the threshold lead to a more selective classifier, which tends to incur in false negatives, reducing the recall of the algorithm, while lower values of the threshold produce the opposite effect. Thus, the user typically attempts to find a balance between these two measures, either manually or using more sophisticated approaches that are able to learn a configuration from annotated examples. In this paper, we present an approach that is able to break the trade-off between the precision and the recall of the algorithm, increasing both at the same time, and consequently the F-score of the algorithm. The algorithm is based on the principle of Stacking (or Stacked Generalization) [6], which consists in training a meta-learner to combine the predictions of a number of base classifiers. STEM (Stacked Threshold-based Entity matching) creates several instances, corresponding to different values of the final decision threshold, of a base classifier. Then, the classifications of this ensemble of classifiers are used as a binary feature vector for a supervised learner, which is trained on a set of manually annotated data. In order to test the generality of our claim, we run experimental tests using two different unsupervised threshold-based classifiers. The first is a Naive Bayes classifier [7,8], which follows the approach popularized by the Paul Graham’s spam filter1 and is implemented by the open source deduplication framework Duke.2 The second is a linear classifier, implemented by the open source framework Silk.3 [9] which is currently quite widespread in the Semantic Web and Linked Data communities. The dataset used for the experimental evaluation is that released by the organizers of the Financial Entity Identification and Information Integration (FEIII) Challenge. We also test the performance of STEM on the dataset of the DOREMUS project, released by the instance matching track of the Ontology Alignment Edition Initiative (OAEI). In addition to these datasets, we further validate STEM by describing its implementation in a concrete use case, represented by the 3cixty project.4 In this context, STEM is used to match entities and remove duplicates representing places and events coming from a number of heterogeneous local and global data sources in order to create a cleaner and of better quality knowledge base, which is used to support the planning of tourist visits and to offer a digital guide for tourists when exploring the city. The novel contributions of this paper are:

- We design a generic framework based on stacked generalization that is able to improve the performance of threshold-based entity matching systems;
- We provide empirical evidence of this claim by testing it with two different threshold-based entity matching systems, showing that performance gain can be up to 43% of F1 from a base classifier;
- We show that STEM performs better and has a weaker dependence on the amount of manually annotated entity pairs with respect to pure machine learning approaches;
- We describe the implementation of the framework in the generation of the 3cixty knowledge base, providing evidence of its performance on a newly generated gold standard data set.

The remainder of the paper is structured as follows: in Sec. 2 we describe the relevant related work in entity matching, in Sec. 3 we describe the problem of entity matching and of the trade-off between precision and recall, in Sec. 4 we describe the STEM approach and the theoretical background of the base classifiers utilized in the experimental part, in Sec. 5 we describe the experimental setup and the configuration process, in Sec. 6 we show the experimental results, in Sec. 7 we describe the implementation of STEM in the 3cixty project and in Sec. 8 we conclude the paper.

1http://www.paulgraham.com/spam.html
2https://github.com/larsga/Duke
3https://github.com/silk-framework/silk
43cixtyhttps://www.3cixty.com
2. Related Work

Entity matching is a crucial task for data integration [10] and probabilistic approaches able to handle uncertainty have been proposed since the 60s [11]. A survey of frameworks for entity matching is reported by Köpcke in [12], where a classification of several entity matching frameworks is done by analyzing the entity type, i.e. how the entity data is structured, blocking methods, i.e. the strategy employed to reduce the search space and avoiding the comparison of each possible pair of records, the matching method, i.e. the function utilized to determine if a pair of records represents the same real world entity and the training selection, i.e. if and how training data is used. By taking into account the matching method, entity matching frameworks may be divided in frameworks without training, in which the model needs to be manually configured, training-based frameworks, in which several parameters are self-configured through a learning process on an annotated training set, and hybrid frameworks, which allow both manual and automatic configuration.

The authors of the survey thoroughly compare different frameworks on a set of key performance indicators and highlight a research trend towards training-based and hybrid approach, which, in spite of the dependence on the availability, size and quality of training data, significantly reduce the effort of manual configuration of the system. Training can be used for learning matching rules, learning in which orders matchers should be applied, automatically setting critical parameters and/or determining weights to combine matchers similarity values and the most commonly used supervised learners are Decision Trees and SVM [18,13,14,15]. In [16], a comparison among the most common supervised (training-based) learning models is reported together with an experimental evaluation. The authors report a high degree of complementarity among different models which suggests that a combination of different models through ensemble learning approaches might be an effective strategy. The idea of ensemble learning is to build a prediction model by combining the strengths of a collection of simpler base models. Ensemble learning can be broken down into two tasks: developing a population of base learners from the training data, and then combining them to form the composite predictor [17]. In [18] the authors report that an ensemble of base classifiers built through techniques such as bagging, boosting or stacked generalization (also known as stacking) generally improves the performance of entity matching systems. Another evidence of the efficiency of ensemble approaches to entity matching is reported in [19].

In the past years, the Linked Data [20] research community has shown a great deal of interest for Entity Matching. More specifically, Entity Matching (or Instance Matching) can be seen as a part of the process of Link Discovery. Link Discovery has the purpose of interlinking RDF data sets that are published on the Web, following the evidence of recent studies that show that 44% of the Linked Data datasets are not connected to other datasets at all [21]. Link Discovery can be seen as a generalization of Entity Matching, because it can be used to discover other properties than an equivalence relation between instances. Moreover, as remarked in [22], in Link Discovery resources usually abide by an ontology, which describes the properties that resources of a certain type can have as well as the relations between the classes that the resources instantiate. The authors of [22] report a comprehensive survey of Link Discovery frameworks, which shows that modern framework such as Silk [23] and LIMES [24] combine manually defined match rules with supervised learning approaches to automatize the configuration process.

Another recent line of work, which is relevant but not strictly related to the STEM approach, is that of collective entity matching (or resolution) systems, which are not based on pairwise similarity comparison as STEM, but rather on the attempt to capture the dependencies among different matching decisions [25,26,27,28].

3. Problem Formulation

The problem of entity matching can be defined as follows [29]: given two datasets A and B, find the subset of all pairs of entities for which a relation \sim holds:

$$M = \{a \in A, b \in B, (a, b) \in A \times B : a \sim b\} \quad (1)$$

Thus, given a pair of entities $e_1 \in A$ and $e_2 \in B$, a confidence function $f(e_1, e_2)$ has to be defined and a linkage rule is specified by:

$$Match \iff f(e_1, e_2) > t \quad (2)$$

where t is a given threshold. The linkage rule has a very intuitive interpretation. A pair of records is considered to be a match if the degree of confidence f that the pair
The number of true positives is then given by:

\[TP = \int_{0}^{t} P(f|e_1 = e_2) df \]

\[\text{(3)} \]

The number of false negatives \(FN \) is then given by \(FN = p_{fn}N_+ \). On the other hand, the area of \(P(f|e_1 \neq e_2) \) situated to the right of the vertical line (in orange) corresponds to the probability of classifying a true match as a non matching pair, i.e. the probability of producing false positives:

\[p_{fp} = \int_{t}^{1} P(f|e_1 \neq e_2) df \]

\[\text{(4)} \]

Similarly to the previous case, we have that \(FP = N_+ - p_{fp} \). Finally, we also have that the grey area in the graph is the probability of true positives:

\[p_{tp} = \int_{0}^{t} P(f|e_1 = e_2) df \]

\[\text{(5)} \]

The number of true positives is then given by: \(TP = N_+ p_{tp} \). From Fig. 1 we can see that \(p_{fn} \), and conse-

sequently \(FN \), is increasing when the threshold \(t \) increases, and at the same time \(p_{fp} \), and consequently \(FP \), is decreasing when the threshold \(t \) increases. \(p_{fp} \) is also decreasing, but at a slower pace. Now, if we recall the definition of precision and recall [30]:

\[p = \frac{TP}{TP + FP} \]

\[\text{(6)} \]

\[r = \frac{TP}{TP + FN} \]

\[\text{(7)} \]

we can see that, when \(t \) increases, \(FP \to 0 \) faster than \(TP \), and \(p \) increases. At the same time, \(FN \) is grow-

ing and \(r \) decreases. Conversely, when \(t \) decreases \(FP \) grows and \(FN \) decreases, increasing \(r \) and decreasing \(p \). Thus, the threshold \(t \) introduces a trade-off between the precision and the recall of the algorithm (we provide experimental evidence of this heuristic argument in Sec. 6). Note that this trade-off is not limited to Entity Matching and is well known by the Information Retrieval and Statistical Learning community, where precision-recall curves obtained through variations of the decision threshold are often used as a measure of an overall algorithm’s performance [31,30,32].

4. Stacked Threshold-based Entity Matching

In this work, we show that stacking can break this trade-off by raising both precision and recall at the
same time through supervised learning. Stacking [6] (also known as stacked generalization), is based on the idea of creating an ensemble of base classifiers and then combining them by means of a supervised learner, which is trained on a set of labeled examples. Let us call $\hat{f}(e_1, e_2)$ a specific linkage rule, obtained by the confidence function $f(e_1, e_2)$ and the threshold t. Now, the Stacking Threshold-based Entity Matching approach (Fig. 2) works as follows:

- Start from a linkage rule $\hat{f}(e_1, e_2; t)$
- Create a gold standard G containing annotated entity pairs
- Generate an ensemble of N linkage rules $\hat{f}(e_1, e_2; t_i)$ where t_i are linearly spaced values in the interval $[t - \frac{t}{2}, t + \frac{t}{2}]$
- Use the predictions $x_i = \hat{f}(e_1, e_2; t_i)$ as features for a supervised learner $F(x; w)$ where w are parameters that are determined by the learning algorithm
- Train the supervised learner $F(x; w)$ on the gold standard G, determining the parameters w
- Generate the final prediction $F(e_1, e_2; \hat{w})$

4.1. Linear Classifier

One of the simplest models for the confidence function of a pair of entities e_1 and e_2 is that obtained by the linear combination of a set of property-wise confidence scores. Given a set of properties $j = 1..K$ and their respective values $v_j(e_1)$ and $v_j(e_2)$ for both entities, property-wise similarities are functions that yield a vector of similarity scores $s_j = s_j(v_j(e_1), v_j(e_2))$, where typically $s_j \in [0, 1]$ with $s_j = 1 \iff v_j(e_1) \equiv v_j(e_2)$. At this point, similarity scores s_j are normally turned into property-wise confidence scores $c_i = c_i(s_j)$, which are then combined. This is the case of Silk5 [23], which is a popular Link Discovery framework, specifically built to generate RDF links between data items within different Linked Data resources. More specifically, Silk works with distances d_i rather than with similarities s_j and different comparators can be selected to define the distances d_i, such as Levenshtein, Jaro-Winkler, exact comparators, Jaccard [33]. Then, distance scores $d_i > 0$ are turned into confidence scores c_i according to the rule6 (Fig. 3):

$$c_i = c(d_i) = \begin{cases} -\frac{d_i}{\tau_i} + 1 & 0 \leq d_i < 2\tau_i \\ -1 & d_i \geq 2\tau_i \end{cases}$$

where τ_i are property-specific thresholds. Note that c_i is a monotone decreasing function, as it depends on distances d_i rather than on similarities s_j values. In this way, for each property used for the comparison, a confidence score $c_i \in [-1, 1]$ is obtained. Silk allows to combine these confidence scores in multiple ways, among which the linear combination, which is the one that has been utilized in this work:

$$\text{Match} \iff \sum_{i=1}^{K} w_i c_i > t$$

which corresponds to the decision rule Eq. 20 with $f(e_1, e_2) = \sum_{i=1}^{K} w_i c_i$. The final decision threshold t corresponds to the parameter ‘minConfidence’ in Silk configuration file. This parameter, together with all the others such as property-wise thresholds or comparators, can be manually set through a trial-and-error process or they can be learned through an active learning algorithm that is based on the approach of letting users

5http://silkframework.org
annotate matches that produce the utmost information gain [34].

4.2. Naive Bayes Classifier

Naive Bayes is a term used to describe a family of classifiers that are based on the Bayes theorem and on a particular assumption of independence among the components of the evidence vector [7,35]. In this paper, we use the formulation of the Naive Bayes classifier that has been popularized by Paul Graham’s Bayesian spam filter. We now want to show that the Naive Bayes classifier can be considered as a threshold-based classifier, obeying to the decision rule of Eq. 2.

Given a set of classes X_i with $i = 1..N$ and a set of observations s_j with $j = 1..K$, the Naive Bayes classifier aims to estimate the probability of a class given a set of observed data $P(X_i|s_1,s_2...s_K)$ by applying the Bayes theorem:

$$P(X_i|s_1,s_2...s_K) = \frac{P(s_1,s_2...s_K|X_i)P(X_i)}{P(s_1,s_2...s_K)}$$

and the conditional independence condition (from this assumption comes the adjective ‘Naive’):

$$P(X_i|s_1,s_2...s_K) = \frac{P(X_i)\prod_{j=1}^{K}P(s_j|X_i)}{P(s_1,s_2...s_K)}$$

In our case, we have a binary classification problem, where $X_1 = ‘Match’$ and $X_2 = ‘No Match’$. The observations are represented by the property-wise similarity scores s_i. Eq. 10 thus becomes:

$$P(\text{Match}|s_1,s_2...s_K) = \frac{P(\text{Match})\prod_{i=1}^{K}P(s_i|\text{Match})}{P(s_1,s_2...s_K)}$$

Since $P(s_1,s_2...s_K) = P(s_1,s_2...s_K|\text{Match})P(\text{Match}) + P(s_1,s_2...s_K|\text{No Match})P(\text{No Match})$ the denominator can be rewritten as:

$$P(\text{Match}|s_1,s_2...s_K) = \frac{P(\text{Match})\prod_{i=1}^{K}P(s_i|\text{Match})}{P(\text{Match})\prod_{i=1}^{K}P(s_i|\text{Match}) + P(\text{No Match})\prod_{i=1}^{K}P(s_i|\text{No Match})}$$

and then, using again the conditional independence hypothesis, factorized as:

$$P(\text{Match}|s_1,s_2...s_K) = \frac{P(s_1)\prod_{i=2}^{K}P(s_i|\text{Match})}{P(s_1)\prod_{i=2}^{K}P(s_i|\text{Match}) + P(\text{No Match})\prod_{i=2}^{K}P(s_i|\text{No Match})}$$

Now, by applying Bayes theorem $P(s_i|\text{Match}) = \frac{P(\text{Match}|s_i)P(s_i)}{P(\text{Match})}$ and $P(s_i|\text{No Match}) = \frac{P(\text{No Match}|s_i)P(s_i)}{P(\text{No Match})}$, denoting with $x = P(\text{Match})$ and $1-x = P(\text{No Match})$, we have:

$$P(\text{Match}|s_1,s_2...s_K) = \frac{1}{1-x} \prod_{i=1}^{K}P(\text{Match}|s_i) + \frac{1}{x} \prod_{i=1}^{K}P(\text{No Match}|s_i)$$

Finally, assuming that, a priori, $P(\text{Match}) = P(\text{No Match})$ and thus $x = 1-x$, we can remove the coefficients and by denoting with $c_i = P(\text{Match}|s_i)$ we obtain:

$$P(\text{Match}|s_1,s_2...s_K) = \frac{c_1c_2...c_K}{c_1c_2...c_K + (1-c_1)(1-c_2)...(1-c_K)}$$

Details of the derivation can be found in [36]. Note that $c_i = P(\text{Match}|s_i)$ exactly represents the confidence
score derived from the similarity value s_i. At this point, it is necessary to specify a decision rule, that is a rule to turn the probability evaluation into a decision. A common approach is the Maximum a Posteriori (MAP) Estimation [37], namely selecting the class that maximizes the posterior probability:

$$X = \arg \max_{X_i} P(X_i | s_1, s_2..s_K)$$ (16)

which in our binary classification problem is equivalent to:

$$Match \iff P(\text{Match} | s_1, s_2..s_K) > P(\text{No Match} | s_1, s_2..s_K)$$ (17)

which can easily be rewritten as:

$$Match \iff \frac{P(\text{Match} | s_1, s_2..s_K)}{P(\text{No Match} | s_1, s_2..s_K)} > 1$$ (18)

Now, by adopting a decision-theoretic notion of cost, we can turn Eq. 18 into [38]:

$$Match \iff \frac{P(\text{Match} | s_1, s_2..s_K)}{P(\text{No Match} | s_1, s_2..s_K)} > \lambda$$ (19)

where λ is a value that indicates how many times false positives are more costly than false negatives. From Eq. 19, it is clear that if $\lambda > 1$, we require that $P(\text{Match} | s_1, s_2..s_K)$ is λ times greater than $P(\text{No Match} | s_1, s_2..s_K)$ in order to consider the pair to be a match, and thus we are more keen to accept false negatives than false positives. Vice versa, if $\lambda < 1$, the algorithm will tend to have more false positives than false negatives. Finally, by considering that $P(\text{No Match} | s_1, s_2..s_K) = 1 - P(\text{Match} | s_1, s_2..s_K)$ and by using Eq. 15 we obtain the decision rule:

$$Match \iff \frac{c_1c_2..c_k}{c_1c_2..c_k + (1 - c_1)(1 - c_2)..(1 - c_k)} > t$$ (20)

where $t = \frac{1}{\lambda + 1}$. It is now easy to see that the form of Eq. 20 is the same of that of Eq. 2, where the combination of confidence scores c_i has the role of the global ‘confidence function’ $f(e_1, e_2)$. The Naive Bayes decision rule has a very intuitive interpretation. A pair of records is considered to be a match if the probability that it is a match given the set of observed similarity scores is above a certain threshold. As we have argued in Sec. 3, the threshold t rules the trade-off between the rate of false positives and false negatives that the algorithm will accept. This is evident by its relation with λ:

$$\lambda \to \infty \Rightarrow t \to 1$$ (21)

$$\lambda \to 0 \Rightarrow t \to 0$$ (22)

Thus, the higher the value of t, the higher needs to be the probability that the pair is a match for the algorithm to consider it a match. Thus, we are less likely to have false positives and more likely to have false negatives.

In the past years, Naive Bayes classifiers have been utilized in a large number of fields, such as spam filtering [8], document and text classification [39], information retrieval [7], entity matching [40] and so on. Duke is a popular open-source deduplication engine, which implements Naive Bayes classification. Duke is a flexible tool, which accepts different formats of input data, and is easy to configure through a simple XML file. For each field of each data source, the user can choose a number of string cleaners, such as functions that remove abbreviations or normalize lower/upper cases. For each property, Duke allows to select a comparator among popular string similarity measures such as Levenshtein, Jaro-Winkler, exact comparators and so on [33]. The comparators thus compute, for each property, a normalized similarity score s_i. Then, in order to turn similarity scores into a confidence score c_i, Duke uses the heuristic function:

$$c_i = P(\text{Match} | s_i) = \left\{ \begin{array}{ll}
\text{low}, & s_i \leq 0.5 \\
\text{high}, & s_i > 0.5
\end{array} \right.$$

where low, and high, are parameters that the user can configure for each property. The rationale behind this formula of $P(\text{Match} | s_i)$ is that $P(\text{Match} | 0) = \text{low}$ and $P(\text{Match} | 1) = \text{high}$, and, as Duke’s users were finding the algorithm to be too strict, a quadratic instead of a linear trend has been chosen when s_i is larger than 0.5. After that c_i is computed for each property, the overall $P(\text{Match} | s_1, s_2..s_K)$ is calculated through Eq. 15 and the decision is taken through Eq. 20. Similarly to the case of Silk, the final decision threshold t is a parameter that can be configured in a XML file. Duke also includes a genetic algorithm that automatizes the config-

https://github.com/larsga/Duke
uration process and in general represents a valid alternative to the manual configuration. Through an active learning approach, Duke asks to the user in an interactive way if a pair of entities should be a match or not, selecting the most informative pairs, i.e. the ones with utmost disagreement among the population of configurations [5].

5. Experimental setup

As we have explained in Sec. 4, the STEM approach is general and can be utilized on top of any threshold-based entity matching system. In this paper, we have implemented it and evaluated through two different open source frameworks, Duke and Silk, which are based respectively on a Naive Bayes and on a linear classifier. In Sec. 5.3 and in Sec. 5.4, we describe the configuration process of these frameworks inside STEM. The software implementation of STEM, the configuration files and the data used for the experiments are publicly available on github.

5.1. Datasets

The main dataset utilized for the evaluation of the proposed approach is that released by the organizers of the Financial Entity Identification and Information Integration challenge of 2016 (FEIII2016). The purpose of the challenge is that of creating a reference financial-entity identifier knowledge base linking heterogeneous collections of entity identifiers. Three datasets have been released:

- FFIEC: from the Federal Financial Institution Examination Council, provides information about banks and other financial institutions that are regulated by agencies affiliated with the Council.
- LEI: contains Legal Entity Identifiers (LEI) for a wide range of institutions.
- SEC: from the Securities and Exchange Commission and contains entity information for entities registered with the SEC.

In this paper, we focus on the Entity Matching of entities of the FFIEC database and the SEC database, as it proved to be the most challenging one. The gold standard, which can be seen as a benchmark for the evaluation of the systems as well as a set of annotations to create a supervised system, has been created by a panel of experts of the field. The gold standard contains 1428 entity pairs, with 496 positive and 932 negative examples. The dataset is available online. A second evaluation of the STEM approach is performed on the dataset released by the DOREMUS project in the context of the instance matching track of the Ontology Alignment Evaluation Initiative 2016 (OAEI2016). The Instance Matching Track of the OAEI 2016 aims at evaluating the performance of matching tools when the goal is to detect the degree of similarity between pairs of items/instances expressed in the form of OWL Aboxes. The DOREMUS datasets contain real world data coming from two major French cultural institutions: the French National Library (BnF) and the Philharmonie de Paris (PP). The data is about classical music works and is described by a number of properties such as the name of the composer, the title(s) of the work, its genre and instruments and the like. We focused our evaluation on two tasks:

- Nine heterogeneities: This task consists in aligning two small datasets, BnF-1 and PP-1, containing about 40 instances each, by discovering 1:1 equivalence relations between them. There are 9 types of heterogeneities that data manifest, that have been identified by the music library experts, such as multilingualism, differences in catalogs, differences in spelling, different degrees of description.
- Four heterogeneities: This task consists in aligning two bigger datasets, BnF-2 and PP-2, containing about 200 instances each, by discovering 1:1 equivalence relations between the instances that they contain. There are 4 types of heterogeneities that these data manifest, that we have selected from the nine in task 1 and that appear to be the most problematic: 1) Orthographical differences, 2) Multilingual titles, 3) Missing properties, 4) Missing titles.

Data is accessible online.

9 https://github.com/enricopal/STEM
10 https://ir.nist.gov/dsfin/index.html
12 http://www.doremus.org/
13 http://islab.di.unimi.it/im_oaei_2016/
14 http://islab.di.unimi.it/im_oaei_2016/data/Doremus.zip
5.2. Scoring

To evaluate the performance of the algorithm we have used the standard precision p, recall r and f measures [30]. These measures, if not specified otherwise, have been evaluated through a 4-fold cross validation score process. Given the ambiguity of the definition of p, r and f when performing cross validation [41], we hereby specify that we have used:

$$p = \frac{1}{4} \sum_{i=1}^{4} p_i$$ \hspace{1cm} (23)

$$r = \frac{1}{4} \sum_{i=1}^{4} r_i$$ \hspace{1cm} (24)

$$f = \frac{1}{4} \sum_{i=1}^{4} f_i$$ \hspace{1cm} (25)

where $i = 1..4$ are the four folds.

5.3. Duke

Entity format: Duke is able to handle different formats for input data, such as .csv (comma separated value) or .nt (n-triples). In the first case, an entity is represented by a record in a table. In the second case, an entity is a node in a Knowledge Base.

Blocking method: we reduce the search space for the entity matching process from the space of all possible pairs of entities $A \times B$ using an inverted index, in which property values are the indexes and the tuples are the documents referred by the indexes. The lookup of a tuple given a value has, therefore, a unitary cost. We extend the search space to a small subset of the most likely matching entity pairs that satisfy a given Damerau-Levenshtein distance [42] for each value pair of the tuples, and we considered the first m candidates.\(^{15}\)

Configuration: the first step of the implementation consists in configuring Duke. Duke is built by default on top of a Lucene Database,\(^{16}\) which indexes the records through an inverted index and does full-text queries to find candidates, implementing the blocking strategy. The Lucene Database can be configured in Duke by setting a number of parameters such as the max-search-hits, that is the maximum number of candidate records to return or min-relevance, namely a threshold for Lucene’s relevance ranking under which candidates are not considered. Duke then allows to select a number of properties to be taken into account to establish if a pair of entities match, such as name, address, zip code. Duke requires to specify a mapping between the fields of the data sources and those on which the comparison has to be performed, e.g. “LegalName → NAME, LegalEntityAddress → ADDRESS, LegalEntityCode → ZIPCODE”. In this case, we have manually configured Duke during the participation to the FEIII2016 challenge and the choice of cleaners, comparators is reported in [43].

5.4. Silk

Entity format: Silk is specifically built to deal with RDF formats, such as .ttl (turtle) or .nt (n-triples), where entities are represented as nodes in a Knowledge Graph. However, it allows to convert data from a variety of formats, such as .csv (comma separated values).

Blocking method: Silk implements a multidimensional blocking system, called MultiBlock [44], which is able to not lose recall performance. Differently from most blocking system that operates on one dimension, MultiBlock works by mapping entities into a multidimensional index, preserving the distances between entities.

Configuration: Silk can easily be configured through an XML file. To configure the blocking algorithm, it is sufficient to specify the number of blocks, which we have empirically set to 100. A set of properties $i = 1..K$ onto which the matching is based needs to be specified and then, for each of them, the user can select among a large number of ‘transformators’ (comparable to Duke’s cleaners) to pre-process and normalize strings. The choice of transformators and comparators has been based on the result obtained with Duke in the participation to the FEIII challenge and a similar configuration file has been produced for Silk. A manual configuration to optimize the f score has been used also for the DOREMUS data in the context of the OAEI challenge [45].

\(^{15}\)We empirically set the distance to 2 and the number of potentially retrievable candidates to 1,000,000 (conservative boundary).

\(^{16}\)https://lucene.apache.org
5.5. Stacking

Differently from the previous steps, which are mainly based on low-level string similarity measures, the supervised learner can implicitly learn semantic similarities from the human annotations of the gold standard. The stacking process is implemented through a Python script that executes Duke or Silk a number of times, editing the threshold \(t \) through uniform perturbations of amplitude \(a \), automatically modifying Duke’s or Silk’s configuration file. Then, the script saves Duke’s or Silk’s outputs and turns them into a training set for a supervised learner with \(id1, id2 \) pairs on the rows and \(N \) features on the columns.

The user may choose different supervised learners for the stacking layer. What we have experimentally found to work better, given the small number of features, is an SVM with a RBF kernel [17], which is the default. In many cases, such as the default one, the learning algorithm leaves a number of parameters (so-called “hyper parameters”) to be determined. Let \(F(x; \hat{w}, \theta) \) be a supervised learner where \(\theta \) is the vector of hyper parameters (\(C \) and \(\gamma \) in the case of SVM with RBF kernel). In order to optimize the performance of the algorithm with respect to these hyper parameters, we have trained the algorithm on an array of possible values of \(\theta \) and selected \(\hat{\theta} \) as the vector that optimized 4-fold cross validation score (grid search cross validation [46]).

For what concerns the number of features \(N \), it is reasonable to expect that higher values tend to increase the performance of the algorithm up to a saturation point, where no further predicting power is added by an additional instance of the base classifier. Actually, we observe that increasing the number of features can also lead to performance decrease, as a typical overfitting problem. This saturation point will typically depend on the amplitude \(a \) of perturbation, as with small intervals \(-a/2, a/2\) we expect it to occur earlier. This will also depend on the size of the datasets and its complexity, so no one-fits-all solution has been individuated. As we will see in the experiments though, \(a = 0.25 \) and \(N = 5 \) appears to be a good rule of thumb.

![Precision−Recall curves](image)

Fig. 4. Precision and recall curves as functions of the threshold \(t \) for Duke on the FEIII dataset. It clearly shows the trade-off between \(p(t) \) and \(r(t) \) introduced by the Naive Bayes classifier decision rule Eq. 20

6. Results

6.1. STEM vs threshold-based classifiers

In this section, we first provide evidence of the trade-off between precision and recall introduced by the decision threshold and then we show that STEM is able to increase the precision and the recall of the base classifiers at the same time. In the following, we refer to the STEM approach implemented on top of Duke as STEM-NB and to that implemented on top of Silk as STEM-LIN.

The premise of this work is that the threshold \(t \) in decision rule Eq. 2 introduces a trade-off between precision and recall. In Sec. 3 we have provided a heuristic argument of why this should be the case and now we provide experimental results. In Fig. 4, we report the precision and recall obtained by running Duke on the FFIEC-SEC dataset for a set of 20 equally spaced threshold values \(t \in [0.05, 0.9] \). The graph clearly shows the trade-off between precision and recall of the algorithm ruled by the threshold \(t \) and that the trend for both curves is non-linear, with moderate changes in the central part and sudden variations at the sides.

The typical configuration process of a threshold-based classifier would attempt to find a balance between the two metrics, in order to maximize the F-score of the algorithm. With STEM, both metrics can be increased at the same time using stacking.

In Tab. 1, we report the results obtained by STEM-NB.
Table 1
Results of STEM-NB vs Duke on the FFIEC-SEC dataset for \(a = 0.25 \) and different values of \(N \).

<table>
<thead>
<tr>
<th>Base classifier</th>
<th>N</th>
<th>p</th>
<th>r</th>
<th>f</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke</td>
<td>n/a</td>
<td>0.88</td>
<td>0.77</td>
<td>0.82</td>
<td>0</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>5</td>
<td>0.90</td>
<td>0.98</td>
<td>0.94</td>
<td>12%</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>10</td>
<td>0.93</td>
<td>0.97</td>
<td>0.95</td>
<td>13%</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>20</td>
<td>0.94</td>
<td>0.97</td>
<td>0.95</td>
<td>13%</td>
</tr>
</tbody>
</table>

Table 2
Results of STEM-LIN vs Silk on the FFIEC-SEC dataset for \(a = 0.25 \) and different values of \(N \).

<table>
<thead>
<tr>
<th>Base classifier</th>
<th>N</th>
<th>p</th>
<th>r</th>
<th>f</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk</td>
<td>n/a</td>
<td>0.57</td>
<td>0.67</td>
<td>0.59</td>
<td>0</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>5</td>
<td>0.77</td>
<td>0.81</td>
<td>0.79</td>
<td>20%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>10</td>
<td>0.78</td>
<td>0.83</td>
<td>0.80</td>
<td>21%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>20</td>
<td>0.77</td>
<td>0.84</td>
<td>0.81</td>
<td>22%</td>
</tr>
</tbody>
</table>

Table 3
Results of STEM-LIN vs Silk on the DOREMUS 4-heterogeneities dataset for \(a = 0.25 \) and different values of \(N \).

<table>
<thead>
<tr>
<th>Base classifier</th>
<th>N</th>
<th>p</th>
<th>r</th>
<th>f</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk</td>
<td>n/a</td>
<td>0.45</td>
<td>0.43</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>5</td>
<td>0.82</td>
<td>0.93</td>
<td>0.86</td>
<td>43%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>10</td>
<td>0.75</td>
<td>0.66</td>
<td>0.69</td>
<td>28%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>20</td>
<td>0.75</td>
<td>0.60</td>
<td>0.64</td>
<td>21%</td>
</tr>
</tbody>
</table>

Table 4
Results of STEM-LIN vs Silk on the DOREMUS 9-heterogeneities dataset for \(a = 0.25 \) and different values of \(N \).

<table>
<thead>
<tr>
<th>Base classifier</th>
<th>N</th>
<th>p</th>
<th>r</th>
<th>f</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk</td>
<td>n/a</td>
<td>0.46</td>
<td>0.81</td>
<td>0.58</td>
<td>0</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>5</td>
<td>0.89</td>
<td>1.0</td>
<td>0.94</td>
<td>36%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>10</td>
<td>0.89</td>
<td>1.0</td>
<td>0.94</td>
<td>36%</td>
</tr>
<tr>
<td>STEM-LIN</td>
<td>20</td>
<td>0.87</td>
<td>1.0</td>
<td>0.93</td>
<td>35%</td>
</tr>
</tbody>
</table>

for different values of the number of features \(N \), with a fixed amplitude \(a = 0.25 \), with respect to the baseline, corresponding to a single run of Duke. What we can see is that, even with a small number of features \(N = 5 \), stacking leads to a significant increase of the \(f \) score of the algorithm (12%), obtained by increasing both precision and recall at the same time. Increasing the number of features \(N \) tends to increase the performance, with a saturation effect as the number gets larger. Indeed, going from \(N = 5 \) to \(N = 10 \) only grants a 1% gain and no difference of performance is observed from \(N = 10 \) to \(N = 20 \). The value of the perturbation amplitude \(a \) has been fixed to \(a = 0.25 \) following the analysis reported in Fig. 5, which shows that this value allows to reach \(f = 0.95 \) with only 10 configurations and limits the dependence on the value of \(N \). The plot also shows that the saturation effect tends to occur sooner when \(a \) is small, as this corresponds to a denser and therefore less informative sampling of the interval.

To show that the increase of performance is not dependent on the particular threshold-based classifier, we have run the same experiments using STEM-LIN and reported the results in Tab. 2. In this case, we can observe that, although absolute values are lower, the increase in performance given by the stacking layer is more important, achieving a +20% on the \(f \) score with only \(N = 5 \). Also in this case, both precision and recall are increased at the same time and a saturation effect can be detected as \(N \) grows. Now, in order to generalize the claim to more than one dataset, we show the results of STEM-LIN on both the 4-heterogeneities and 9-heterogeneities DOREMUS datasets. In both cases, we keep \(a = 0.25 \) and vary \(N \). We can see that also in this case both precision and recall are improved, with significant improvements on the \(f \) scores. The saturation effect occurs earlier, as with \(N = 5 \) we already reach the peak performance. This is probably due to the fact that DOREMUS datasets are smaller and thus a model with too many features tend to overfit the data.
6.2. STEM vs supervised learning on similarity values

In this section, we discuss the second claim of the paper, namely the comparison of a hybrid approach such as STEM with a system that performs machine learning ‘from scratch’. More in detail, we have compared STEM to a number of commonly used machine learning algorithms, using similarity values s_i as features. In addition to verifying whether STEM performs better than the other systems in absolute, the intent is also to see whether it is less dependent on the amount of annotated training data. Indeed, given the quadratic nature of the entity matching problem, in most real usage scenarios, annotating a comprehensive gold standard (such as those of FEIII and DOREMUS) is an extremely time consuming endeavour and the user is able to annotate just a small fraction of all possible entity pairs. Therefore, it is interesting to see how an entity matching system performs with a small amount of annotated training pairs. To this end, we have studied how STEM performs at the variation of the amount of training data with respect to an SVM classifier with a RBF kernel, a random forest and a logistic classifier.

In order to avoid possible size effects on the scores, we have split the FEIII data in two halves, according to the stratified sampling technique, i.e. keeping constant the proportion of matching and non matching pairs in the two parts. The first half is used as training data and the second half is used as test data. Then, we randomly extract a fraction z of training data from 0.1 to 0.9, train the systems and score them on the test set, which remains the same. For each value of z, we repeat the extraction 50 times and we compute the average value. Using the FEIII datasets and the STEM-NB implementation, values of s_i have been computed using the same comparators with the same configuration of STEM-NB. The configuration procedure of the machine learning classifiers is the same as that described in Sec. 5.5, namely a grid search hyper parameters optimization has been used to maximize 4-fold cross validation scores, setting C and γ for SVM, ‘n_estimators’ for the random forest and the regularization constant C for logistic regression.\footnote{http://scikit-learn.org/stable/user_guide.html} The result of the experiment is depicted in Fig. 6. We can see that STEM-NB performs better than any other classifier in absolute terms, reaching a peak of 0.931 when 90% of the training data is used. Moreover, it shows little dependency on the amount of training data, producing 0.914 with only 10% of the training data. SVM performs better than the other pure machine learning approaches when 90% of training data is used, but decreases fast when annotated examples are reduced. In Tab. 5, we report, for each classifier, the quantitative estimation of the dependency of f from the fraction of training data z, obtained through the statistical estimation of the angular coefficient m of a linear fit of the points (i.e. the straight lines of Fig. 6). What we can observe is that more complex models such as SVM and Random Forest tend to depend more on the amount of training data, while a simple linear model such as logistic regression is performing well even with a small amount of training data. The logistic model is even less dependent on the training data than a hybrid approach such as STEM, but it is not comparable in terms of absolute performance. STEM thus represents a model that is complex enough to achieve good performance in absolute terms and it is also able to maintain it with a little amount of training data.

![Fig. 6. F score at the variation of the percentage of training data used. STEM-NB is compared to an SVM classifier, a Random Forest and a logistic classifier](image)

<table>
<thead>
<tr>
<th>Classifier</th>
<th>min</th>
<th>max</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM-NB</td>
<td>0.91</td>
<td>0.93</td>
<td>0.015 ± 0.008</td>
</tr>
<tr>
<td>SVM</td>
<td>0.74</td>
<td>0.84</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.74</td>
<td>0.83</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.78</td>
<td>0.82</td>
<td>0.002 ± 0.006</td>
</tr>
</tbody>
</table>

Table 5 Dependency on the amount of training data. ‘Min’ and ‘Max’ represent respectively the minimum and maximum F score and ‘m’ represents the angular coefficient of a straight line interpolating the points of Fig. 6.
7. 3cixty Knowledge Base Generation

In this section, we describe the implementation of STEM in the generation of the 3cixty knowledge bases, introducing first the key components of the 3cixty data chain.

OVERVIEW 3cixty is a semantic web platform that enables to build real-world and comprehensive knowledge bases in the domain of culture and tourism for cities. The entire approach has been tested first for the occasion of the Expo Milano 2015 [47], where a specific knowledge base for the city of Milan was developed, and is now refined with the development of knowledge bases for the cities of Nice and London. They contain descriptions of events, places (sights and businesses), transportation facilities and social activities, collected from numerous static, near- and real-time local and global data providers, including Expo Milano 2015 official services in the case of Milan, and numerous social media platforms. The generation of the each city-driven 3cixty KB follows a strict data integration pipeline, that ranges from the definition of the data model, the selection of the primary sources used to populate the knowledge base, till the data reconciliation used for generating the final stream of cleaned data that is then presented to the users via multi-platform user interfaces. The quality of the data is then enforced through a continuous integration system that verifies the integrity of the data semantics [49], thus validating the knowledge base. In the remainder of this section we introduce the data model and the data sources used in 3cixty. We then detail the data reconciliation process, which is performed using STEM, describing the experimental setup, gold standard, and results.

DATA MODEL The 3cixty ontology design principle has focused on optimizing the coverage of the terminology in the context of city exploration. For each entity to model, we looked for existing knowledge resources (keyword search) in LOV, Swoogle, Watson, and the Smart City catalogue while the selection criteria are the popularity of properties based on usage data and favoring schema.org when suitable. We established a rigid search mechanism where two domain experts analyzed the knowledge resources that resulted from the search. Once consensus was reached, ontologies were taken and added to the 3cixty data model, which therefore consists in a constellation of existing ontologies. We re-used some concepts and properties from the following ontologies: dul, schema, lode, geo, transit and topo. A few additional classes and properties have been created to describe travel distances: we defined origin, distance, travel time, the nearest metro station and bike station. Details are available in [48].

DATA SOURCES The 3cixty KBs contain information about events, artists, places, transportation, and user-generated content such as media and reviews. The KBs are built using three types of data sources: local sources usually offered by city open portals, global sources such as social media platforms, editorial data generated by experts of the domain. The selection of the sources follows a strict protocol that involves two teams of investigators who analyze and rank the data sources at disposal to decide which ones were important to be selected for being included in the knowledge base. The experts are asked to maximize a 3-objective function: data semantics, instance coverage, and real-time update. The output of such an investigation leads to a survey, which has is cross-validated by two domain experts who decide by consensus and iterate in checking existing and new data sources according to the aforementioned objectives, updating the list continuously.

DATA RECONCILIATION The data reconciliation problem is addressed via both category reconciliation and instance reconciliation. The rationale of having both types of reconciliation is to improve the data consumer perceived data quality by removing both category and instance duplicates. In both cases, the reconciliation processes have been applied to the two main topical types of entities in the knowledge base: Events and Places. Such a stage is at the core of the knowledge base creation, since the consumption of the data from the KB is highly polarized by a clean feed of data where no duplicates or near-duplicates are shown.
Reconciling categories has the objective to reduce sparsity in the use of different labels for the same category groups. We addressed the process by using two category thesauri (implemented in skos) as pivots: the Foursquare taxonomy29 for Places, and the taxonomy used in [50] for Events. The alignment, led by two experts of the domain, has established a set of links from the gathered categories, using skos:closeMatch and skos:broadMatch. An automatic process is then used to identify links according to the exact match of the found categories with the alignment defined by the experts.

Given two data sources, namely \(A \) and \(B \), an instance reconciliation process looks at identifying data instances that are similar according to their semantics and thus linking them with sameAs links. In 3cixty, we have implemented the instance reconciliation task using STEM. To do so, we have first generated a gold standard for training the STEM stacked machine learning (Sec. 7.1), and then validated its performance (Sec. 7.2).

Using the findings reported in [50] we have listed the instance fields used for the entity matching process, in detail: for Place-type instances the set \(P = \langle \text{label, geo, address} \rangle \), where \(\text{label} \) is the place name, \(\text{geo} \) are the geographic coordinates according to a fixed bounding box, and \(\text{address} \) in plain text. For Event-type instances the set \(E = \langle \text{label, geo, time} \rangle \), where \(\text{label} \) is the place name, \(\text{geo} \) are the geographic coordinates according to a fixed bounding box, and \(\text{time} \) when the event starts and ends.

7.1. Gold Standard Creation

Given the generality of the STEM approach and the data model of the different 3cixty knowledge bases, we have generated a gold standard from the 3cixty Nice KB, i.e. the knowledge base built for the Nice area, to be used to benchmarking the performance of STEM and to be utilized as training set for the other city knowledge bases.

The gold standard has gone through a process of identifying, with a random sampling, a small portion of Place-type pairs30 to match, totaling 756 pairs. This accounts to a tiny fraction of the entire set of possible pairs (order of \(10^9 \) possible pairs); then, two human experts rated each as a match or as no-match. The annotation process was divided in two steps: i) individual annotation, i.e. each expert performed annotations separately; ii) adjudication phase, i.e. the two experts compared the annotations and resolved eventual conflicts.

This has prompted the creation of a gold standard that accounts 228 match and 528 no-match pairs.31

7.2. Experimental Results

Similarly to what has been done in Sec. 6.1, we compared STEM with Duke. In order to put Duke in the best conditions, we let it learning the best configurations using the active learning built-in function, just giving as input the instance fields to be utilized in the matching task and the gold standard created by the two experts.

The built-in active learning function works as follows: it iterates multiple times changing the configurations of the comparators aiming to minimize the matching error rate. Such a process prompts the creation of a configuration file summarizing the best Duke settings for the dataset used.

Having observed that it performs better than STEM-LIN (Sec. 6), we have then deployed STEM-NB using Duke configured as above and we conducted a 4-fold cross validation. Table 6 shows the results of the experiments. We can observe how STEM with five classifiers holds better results than a single run of Duke with a \(\delta \) of 20\%. We can also observe how the boost STEM introduces is slightly reduced with an increasing number of Duke instances \(N \), similarly to what observed for DOREMUS data. As we mentioned earlier in the paper, this is the typical overfitting problem, where introducing additional complexity in the model does not provide better learning. As a general suggestion, \(N = 5 \) seems to be enough to obtain a consistent increment of performance with respect to the baseline without overfitting the data.

8. Conclusion

In this paper, we have proposed a framework for stacking threshold-based entity matching algorithms. We have argued and then shown empirically that the final decision threshold, which converts the confidence

29https://developer.foursquare.com/categorytree
30For the sake of brevity we report the entity matching process of the Place-type entities
31We aim to share the Gold Standard once the paper is published to foster the reuse and experimental reproducibility.
score of a matching algorithm into a decision, introduces a trade-off between the precision and the recall of the algorithm. Using stacking, we have demonstrated that this trade-off can be broken, as the combination of the predictions of an ensemble of classifiers with different threshold values can raise both metrics at the same time, resulting in a significant enhancement of the matching process. This enhancement is not bound to the type of classifier nor to the dataset used, as we observe consistent results for both a linear and a Naive Bayes classifier on three different datasets. Generally, using five classifiers is enough to obtain a consistent increase in performance and increasing the number of classifiers N can easily lead to overfitting, providing small improvements or even decreasing the accuracy of the predictions.

STEM is independent from the configuration process of the threshold-based classifier. Indeed, we have provided three experimental evaluations and in two of them we have manually configured the system, whereas in the third we have used an active learning approach. A further advantage of the STEM approach is the little dependency on the amount of training data, as we have shown that it can reach high levels of performance even with a small fraction of annotated data. STEM has allowed to greatly improve the data reconciliation process of the generation of the 3cixty knowledge base, proving to be accurate, reliable and scalable. As a future work, we plan to extend the ensemble process to other relevant parameters and to other threshold-based entity matching systems, as well as to improve the computing time of the software using parallel and distributed computing to allow the simultaneous execution of processes.

Acknowledgments

This work was partially supported by the innovation activity 3cixty (14523) of EIT Digital.

References

<table>
<thead>
<tr>
<th>Base classifier</th>
<th>N</th>
<th>p</th>
<th>r</th>
<th>f</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke</td>
<td>n/a</td>
<td>0.76</td>
<td>0.65</td>
<td>0.70</td>
<td>0</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>5</td>
<td>0.90</td>
<td>0.92</td>
<td>0.90</td>
<td>20%</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>10</td>
<td>0.76</td>
<td>0.81</td>
<td>0.78</td>
<td>8%</td>
</tr>
<tr>
<td>STEM-NB</td>
<td>20</td>
<td>0.79</td>
<td>0.81</td>
<td>0.79</td>
<td>9%</td>
</tr>
</tbody>
</table>

Table 6

Results of STEM-NB vs Duke on the 3cixty Nice dataset for $\alpha = 0.25$ and different values of N.

Acknowledgments

This work was partially supported by the innovation activity 3cixty (14523) of EIT Digital.
Adoption of current Link Discovery frameworks, Semantic Web Journal, pp. 1-18, 2015

C.D. Manning and H. Schütze, Foundations of statistical natural language processing, vol.999, 1999

I. Androutsopoulos, J. Koutsias, K.V. Chandrimos, and C.D. Spyropoulos, An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages, 23rd International Conference on Research and development in Information Retrieval (SIGIR), 160-167, 2000

S. Sarawagi, A. Bhamidipaty, Interactive deduplication using active learning, 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), vol.3, pp. 269-278, 2003

O.V. Bard, Spelling-error Tolerant, Order-independent Pass- phrases via the Damerau-levenshtein String-edit Distance Metric, 5th Australasian Symposium on ACSW Frontiers, 2007

