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Abstract. Linked Open Data has been recognized as a valuable source for background information in many data mining and
information retrieval tasks. However, most of the existing tools require features in propositional form, i.e., a vector of nominal or
numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present
RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words,
and adapts them to RDF graphs. We generate sequences by leveraging local information from graph sub-structures, harvested by
Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF
graphs. We evaluate our approach on three different tasks: (i) standard machine learning tasks, (ii) entity and document modeling,
and (iii) content-based recommender systems. The evaluation shows that the proposed entity embeddings outperform existing
techniques, and that pre-computed feature vector representations of general knowledge graphs such as DBpedia and Wikidata
can be easily reused for different tasks.

Keywords: Graph Embeddings, Linked Open Data, Data Mining, Document Semantic Similarity, Entity Relatedness,
Recommender Systems

1. Introduction

Since its introduction, the Linked Open Data (LOD)

[79] initiative has played a leading role in the rise of

a new breed of open and interlinked knowledge bases

freely accessible on the Web, each of them being part

of a huge decentralized data space, the LOD cloud.

This latter is implemented as an open, interlinked col-

lection of datasets provided in machine-interpretable

form, mainly built on top of World Wide Web Consor-

tium (W3C) standards, such as RDF1 and SPARQL2.
Currently, the LOD cloud consists of about 1, 000 in-
terlinked datasets covering multiple domains from life
science to government data [79]. The LOD cloud has
been recognized as a valuable source of background
knowledge in data mining and knowledge discovery
in general [74], as well as for information retrieval
and recommender systems [17]. Augmenting a dataset
with background knowledge from Linked Open Data

1http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/, 2004.

2http://www.w3.org/TR/rdf-sparql-query/, 2008

0000-0000/18/$00.00 c© 2018 – IOS Press and the authors. All rights reserved



2 RDF2Vec: RDF Graph Embeddings and Their Applications

can, in many cases, improve the results of the prob-
lem at hand, while externalizing the cost of maintain-
ing that background knowledge [61].

Most data mining algorithms work with a proposi-
tional feature vector representation of the data, which
means that each instance is represented as a vector
of features 〈f1, f2, ..., fn〉, where the features are ei-
ther binary (i.e., fi ∈ {true, false}), numerical (i.e.,
fi ∈ R), or nominal (i.e., fi ∈ S, where S is a finite set
of symbols). Linked Open Data, however, comes in the
form of graphs, connecting resources with types and
relations, backed by a schema or ontology. Therefore,
in order to make LOD accessible to existing data min-
ing tools, an initial propositionalization [34] of the cor-
responding graph is required. Even though the new set
of propositional features do not encode all the knowl-
edge available in the original ontological data, they can
be effectively used to train a model via machine learn-
ing techniques and algorithms. Usually, binary features
(e.g., true if a type or relation exists, false other-
wise) or numerical features (e.g., counting the number
of relations of a certain type) are used [63,72]. Other
variants, e.g., counting different graph sub-structures,
have also been proposed and used [91].

Typically, those strategies led to high-dimensional,
sparse datasets, which cause problems for many data
mining algorithms [1]. Therefore, dense, lower-dimensional
representations are usually preferred, but less straight
forward to generate.

In language modeling, vector space word embed-
dings have been proposed in 2013 by Mikolov et al.
[41,42]. They train neural networks for creating a low-
dimensional, dense representation of words, which
show two essential properties: (a) similar words are
close in the vector space, and (b) relations between
pairs of words can be represented as vectors as well,
allowing for arithmetic operations in the vector space.
In this work, we adapt those language modeling ap-
proaches for creating a latent representation of entities
in RDF graphs.

Since language modeling techniques work on sen-
tences, we first convert the graph into a set of se-
quences of entities using two different approaches,
i.e., graph walks and Weisfeiler-Lehman Subtree RDF
graph kernels. In the second step, we use those se-
quences to train a neural language model, which esti-
mates the likelihood of a sequence of entities appear-
ing in a graph. Once the training is finished, each en-
tity in the graph is represented as a vector of latent nu-
merical features. We show that the properties of word

embeddings also hold for RDF entity embeddings, and
that they can be exploited for various tasks.

We use several RDF graphs to show that such latent
representation of entities have high relevance for dif-
ferent data mining and information retrieval tasks. The
generation of the entities’ vectors is task and dataset in-
dependent, i.e., we show that once the vectors are gen-
erated, they can be reused for machine learning tasks,
like classification and regression, entity and document
modeling, and to estimate the proximity of items for
content-based or hybrid recommender systems. Fur-
thermore, since all entities are represented in a low di-
mensional feature space, building the learning models
and algorithms becomes more efficient. To foster the
reuse of the created feature sets, we provide the vec-
tor representations of DBpedia and Wikidata entities
as ready-to-use files for download.

This paper considerably extends [73], in which we
introduced RDF2Vec for the first time. In particular,
we demonstrate the versatility of RDF embeddings by
extending the experiments to a larger variety of tasks:
we show that the vector embeddings not only can be
used in machine learning tasks, but also for document
modeling and recommender systems, without a need
to retrain the embedding models. In addition, we ex-
tend the evaluation section for the machine learning
tasks by comparing our proposed approach to some
of the state-of-the-art graph embeddings, which have
not been used for the specified tasks before. In further
sets of experiments, we compare our approach to the
state-of-the-art entity relatedness and document mod-
eling approaches, as well to the state-of-the-art graph
embedding approaches.

Preliminary results for the recommender task have
already been published in [76]. In this paper, we fur-
ther extend the evaluation in recommendation scenar-
ios by considering a new dataset (Last.FM) and by
implementing a hybrid approach based on Factoriza-
tion Machines. Both contributions highlight the effec-
tiveness of RDF2Vec in building recommendation en-
gines that overcame state of the art hybrid approaches
in terms of accuracy also when dealing with very
sparse datasets (as is the case of Last.FM).

The rest of this paper is structured as follows. In
Section 2, we give an overview of related work. In
Section 3, we introduce our approach. In Section 4
through Section 7, we describe the evaluation setup
and evaluate our approach on three different sets of
tasks, i.e., machine learning, document modeling, and
recommender systems. We conclude with a summary
and an outlook on future work.
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2. Related Work

While the representation of RDF as vectors in an
embedding space itself is a considerably new area of
research, there is a larger body of related work in the
three application areas discussed in this paper, i.e., the
use of LOD in data mining, in document modeling, and
in content-based recommender systems.

Generally, our work is closely related to the ap-
proaches DeepWalk [65] and Deep Graph Kernels
[95]. DeepWalk uses language modeling approaches
to learn social representations of vertices of graphs by
modeling short random-walks on large social graphs,
like BlogCatalog, Flickr, and YouTube. The Deep
Graph Kernel approach extends the DeepWalk ap-
proach by modeling graph substructures, like graphlets,
instead of random walks. Node2vec [22] is another ap-
proach very similar to DeepWalk, which uses second
order random walks to preserve the network neighbor-
hood of the nodes. The approach we propose in this
paper differs from these approaches in several aspects.
First, we adapt the language modeling approaches on
directed labeled RDF graphs, unlike the approaches
mentioned above, which work on undirected graphs.
Second, we show that task-independent entity vectors
can be generated on large-scale knowledge graphs,
which later can be reused on a variety of machine
learning tasks on different datasets.

2.1. LOD in Machine Learning

In the recent past, a few approaches for generat-
ing data mining features from Linked Open Data have
been proposed. Many of those approaches assume a
manual design of the procedure for feature selection
and, in most cases, this procedure results in the formu-
lation of a SPARQL query by the user. LiDDM [48] al-
lows the users to declare SPARQL queries for retriev-
ing features from LOD that can be used in different
machine learning techniques. Similarly, Cheng et al.
[10] proposes an approach for automated feature gen-
eration after the user has specified the type of features
in the form of custom SPARQL queries.

A similar approach has been used in the Rapid-
Miner3 semweb plugin [31], which preprocesses RDF
data in a way that can be further handled directly in
RapidMiner. Mynarz et al. [47] have considered using
user specified SPARQL queries in combination with

3http://www.rapidminer.com/

SPARQL aggregates. FeGeLOD [63] and its succes-
sor, the RapidMiner Linked Open Data Extension [70],
have been the first fully automatic unsupervised ap-
proach for enriching data with features that are derived
from LOD. The approach uses six different unsuper-
vised feature generation strategies, exploring specific
or generic relations. It has been shown that such fea-
ture generation strategies can be used in many data
mining tasks [64,70].

When dealing with Kernel Functions for graph-
based data, we face similar problems as in feature gen-
eration and selection. Usually, the basic idea behind
their computation is to evaluate the distance between
two data instances by counting common substructures
in the graphs of the instances, i.e., walks, paths and
trees. In the past, many graph kernels have been pro-
posed that are tailored towards specific applications
[29,57], or towards specific semantic representations
[13]. However, only a few approaches are general
enough to be applied on any given RDF data, regard-
less the data mining task. Lösch et al. [39] introduce
two general RDF graph kernels, based on intersec-
tion graphs and intersection trees. Later, the intersec-
tion tree path kernel was simplified by de Vries et al.
[14]. In another work, de Vries et al. [90,91] introduce
an approximation of the state-of-the-art Weisfeiler-
Lehman graph kernel algorithm aimed at improving
the computation time of the kernel when applied to
RDF. Furthermore, the kernel implementation allows
for explicit calculation of the instances’ feature vec-
tors, instead of pairwise similarities.

Furthermore, multiple approaches for knowledge
graph embeddings for the task of link prediction have
been proposed [49], which could also be considered
as approaches for generating propositional features
from graphs. RESCAL [51] is one of the earliest ap-
proaches, which is based on factorization of a three-
way tensor. The approach is later extended into Neural
Tensor Networks (NTN) [83] which can be used for the
same purpose. One of the most successful approaches
is the model based on translating embeddings, TransE
[6]. This model builds entity and relation embeddings
by regarding a relation as translation from head entity
to tail entity. This approach assumes that some rela-
tionships between words could be computed by their
vector difference in the embedding space. However,
this approach cannot deal with reflexive, one-to-many,
many-to-one, and many-to-many relations. This prob-
lem was resolved in the TransH model [92], which
models a relation as a hyperplane together with a trans-
lation operation on it. More precisely, each relation is
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characterized by two vectors, the norm vector of the
hyperplane, and the translation vector on the hyper-
plane. While both TransE and TransH, embed the re-
lations and the entities in the same semantic space,
the TransR model [38] builds entity and relation em-
beddings in separate entity space and multiple rela-
tion spaces. This approach is able to model entities that
have multiple aspects, and various relations that focus
on different aspects of entities.

2.2. Entity and Document Modeling

Both for entity and document ranking, as well as
for the subtask of computing the similarity or related-
ness of entities and documents, different methods us-
ing LOD have been proposed.

2.2.1. Entity Relatedness
Semantic relatedness of entities has been heavily re-

searched over the past couple of decades. There are
two main direction of studies. The first are approaches
based on word distributions, which model entities as
multi-dimensional vectors that are computed based on
distributional semantics techniques [2,18,27]. The sec-
ond are graph-based approaches relying on a graph
structured knowledge base, or knowledge graph, which
are the focus of this paper.

Schuhmacher et al. [80] proposed one of the first ap-
proaches for entity ranking using the DBpedia knowl-
edge graph. They use several path and graph based
approaches for weighting the relations between enti-
ties, which are later used to calculate the entity re-
latedness. A similar approach is developed by Hulpus
et al. [30], which uses local graph measures, targeted
to the specific pair, while the previous approach uses
global measures. More precisely, the authors propose
the exclusivity-based relatedness measure that gives
higher weights to relations that are less used in the
graph. In [54] the authors propose a hybrid approach
that exploits both textual and RDF data to rank re-
sources in DBpedia related to the IT domain.

2.2.2. Entity and Document Similarity
As for the entity relatedness approaches, there are

two main directions of research in the field of se-
mantic document similarity, i.e., approaches based on
word distributions, and graph-based approaches. Some
of the earliest approaches of the first category make
use of standard techniques like bag-of-words models,
but also more sophisticated approaches. Explicit Se-
mantic Analysis (ESA) [18] represents text as a vec-
tor of relevant concepts. Each concept corresponds to a

Wikipedia article mapped into a vector space using the
TF-IDF measure on the article’s text. Similarly, Salient
Semantic Analysis (SSA) [25] uses hyperlinks within
Wikipedia articles to other articles as vector features,
instead of using the full body of text.

Nunes et al. [56] present a DBpedia based document
similarity approach, in which they compute a docu-
ment connectivity score based on document annota-
tions, using measures from social network theory. Thi-
agarajan et al. [86] present a general framework show-
ing how spreading activation can be used on seman-
tic networks to determine similarity of groups of enti-
ties. They experiment with Wordnet and the Wikipedia
Ontology as knowledge bases and determine similar-
ity of generated user profiles based on a 1-1 annotation
matching.

Schuhmacher et al. [80] use the same measure used
for entity ranking (see above) to calculate semantic
document similarity. Similarly, Paul et al. [60] present
an approach for efficient semantic similarity computa-
tion that exploits hierarchical and transverse relations
in the graph.

One approach that does not belong to these two
main directions of research is the machine-learning ap-
proach by Huang et al. [28]. The approach proposes
a measure that assesses similarity at both the lexical
and semantic levels, and learns from human judgments
how to combine them by using machine-learning tech-
niques.

Our work is, to the best of our knowledge, the first to
exploit the graph structure using neural language mod-
eling for the purpose of entity relatedness and similar-
ity.

2.3. Recommender Systems

Providing accurate suggestions, tailored to user’s
needs and interests, is the main target of Recommender
Systems (RS) [68], information filtering techniques
commonly used to suggest items that are likely to be
of use to a user. These techniques have proven to be
very effective to face the information overload prob-
lem, that is the huge amount of information available
on the Web, which risks to overwhelm user’s experi-
ence while retrieving items of interest. The numerous
approaches facilitate the access to information in a per-
sonalized way, building a user profile and keeping it
up-to-date.

RS address the information overload issue in two
different ways, often combined into hybrid systems
[8]: the collaborative approach [68] exploits informa-



RDF2Vec: RDF Graph Embeddings and Their Applications 5

tion about the past behaviour and opinions of an ex-
isting user community to predict which item the cur-
rent user will be more interested in, while the content-
based approach [68] relies on the items’ “content”, that
is the description of their characteristics. In a collabo-
rative setting, a profile of the user is built by estimating
her choice pattern through the behaviour of the over-
all user community. The content-based approach, in-
stead, represents items by means of a set of features
and defines a user profile as an assignment of impor-
tance to such features, exploiting the past interaction
with the system. To overcome the limitations of tra-
ditional approaches, which define the content based
on partial metadata or on textual information option-
ally associated to an item, a process of “knowledge
infusion” [81] has been performed for the last years,
giving rise to the class of semantics-aware content-
based recommender systems [20]. Many content-based
RS have incorporated ontological knowledge [40], un-
structured or semi-structured knowledge sources (e.g.,
Wikipedia) [81], or the wealth of the LOD cloud, and
recently the interest in unsupervised techniques where
the human intervention is reduced or even withdrawn,
has significantly increased.

LOD datasets, e.g., DBpedia [37], have been used
in content-based recommender systems, e.g., in [16]
and [17]. The former performs a semantic expansion of
the item content based on ontological information ex-
tracted from DBpedia and LinkedMDB [26], an open
semantic web database for movies, and tries to derive
implicit relations between items. The latter involves
both DBpedia and LinkedMDB and adapts the Vec-
tor Space Model to Linked Open Data: it represents
the RDF graph as a three-dimensional tensor, where
each slice is an ontological property (e.g. starring, di-
rector,...) and represents its adjacency matrix.

It has been proved that leveraging LOD datasets is
also effective for hybrid recommender systems [8],
that is in those approaches that boost the collabora-
tive information with additional knowledge about the
items. In [55], the authors propose SPRank, a hy-
brid recommendation algorithm that extracts seman-
tic path-based features from DBpedia and uses them
to compute top-N recommendations in a learning to
rank approach and in multiple domains, movies, books
and musical artists. SPRank is compared with nu-
merous collaborative approaches based on matrix fac-
torization [33,67] and with other hybrid RS, such as
BPR-SSLIM [53], and exhibits good performance es-
pecially in those contexts characterized by high spar-
sity, where the contribution of the content becomes

essential. Another hybrid approach is proposed in
[71], which builds on training individual base recom-
menders and using global popularity scores as generic
recommenders. The results of the individual recom-
menders are combined using stacking regression and
rank aggregation.

Most of these approaches can be referred to as top-
down approaches [20], since they rely on the integra-
tion of external knowledge and cannot work without
human intervention. On the other side, bottom-up ap-
proaches ground on the distributional hypothesis [24]
for language modeling, according to which the mean-
ing of words depends on the context in which they
occur, in some textual content. The resulting strategy
is therefore unsupervised, requiring a corpus of tex-
tual documents for training as large as possible. Ap-
proaches based on the distributional hypothesis, re-
ferred to as discriminative models, behave as word em-
bedding techniques where each term (and document)
becomes a point in the vector space. They substi-
tute the term-document matrix typical of Vector Space
Model with a term-context matrix, on which they ap-
ply dimensionality reduction techniques such as La-
tent Semantic Indexing (LSI) [15] and the more scal-
able and incremental Random Indexing (RI) [77]. The
latter has been involved in [45] and [46] to define the
so called enhanced Vector Space Model (eVSM) for
content-based RS, where user’s profile is incremen-
tally built summing the features vectors representing
documents liked by the user and a negation operator
is introduced to take into account also negative prefer-
ences, inspired by [94], that is according to the princi-
ples of Quantum Logic.

Word embedding techniques are not limited to LSI
and RI. The word2vec strategy has been recently pre-
sented in [41] and [42], and to the best of our knowl-
dge, has been applied to item recommendations in a
few works [44,59]. In particular, [44] is an empirical
evaluation of LSI, RI and word2vec to make content-
based movie recommendation exploiting textual infor-
mation from Wikipedia, while [59] deals with check-
in venue (location) recommendations and adds a non-
textual feature, the past check-ins of the user. They
both draw the conclusion that word2vec techniques are
promising for the recommendation task. Finally, there
is a single example of product embedding [21], namely
prod2vec, which operates on the artificial graph of pur-
chases, treating a purchase sequence as a “sentence”
and products within the sequence as words.
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3. Approach

In our approach, we adapt neural language models
for RDF graph embeddings. Such approaches take ad-
vantage of the word order in text documents, explic-
itly modeling the assumption that closer words in a
sequence are statistically more dependent. In the case
of RDF graphs, we consider entities and relations be-
tween entities instead of word sequences. Thus, in or-
der to apply such approaches on RDF graph data, we
first have to transform the graph data into sequences of
entities, which can be considered as sentences. Using
those sentences, we can train the same neural language
models to represent each entity in the RDF graph as a
vector of numerical values in a latent feature space.

3.1. RDF Graph Sub-Structures Extraction

We propose two general approaches for converting
graphs into a set of sequences of entities, i.e, graph
walks and Weisfeiler-Lehman Subtree RDF Graph
Kernels.

Definition 1 An RDF graph is a labeled, directed
graph G = (V, E), where V is a set of vertices, and E
is a set of directed edges, where each vertex v ∈ V is
identified by a unique identifier, and each edge e ∈ E
is labeled with a label from a finite set of edge labels.

The objective of the conversion functions is for each
vertex v ∈ V to generate a set of sequences Sv , where
the first token of each sequence s ∈ Sv is the vertex
v followed by a sequence of tokens, which might be
edge labels, vertex identifiers, or any substructure ex-
tracted from the RDF graph, in an order that reflects
the relations between the vertex v and the rest of the
tokens, as well as among those tokens.

3.1.1. Graph Walks
In this approach, given a graph G = (V,E), for each

vertex v ∈ V , we generate all graph walks Pv of depth
d rooted in vertex v. To generate the walks, we use the
breadth-first algorithm. In the first iteration, the algo-
rithm generates paths by exploring the direct outgoing
edges of the root node vr. The paths generated after
the first iteration will have the following pattern vr →
ei, where ei ∈ Evr , and Evr is the set of all outgoing
edges from the root node vr. In the second iteration,
for each of the previously explored edges the algorithm
visits the connected vertices. The paths generated after
the second iteration will follow the following pattern
vr → ei → vi. The algorithm continues until d iter-

Algorithm 1: Algorithm for generating RDF
graph walks
Data: G = (V,E): RDF Graph, d: walk depth
Result: PG: Set of sequences

1 PG = ∅
2 foreach vertex v ∈ V do
3 Q = initialize queue
4 w = initialize walk
5 add v to w
6 add Entry(v, w) to Q
7 while Q is nonempty do
8 entry = deq(Q)
9 currentV ertex = entry.key

10 currentWalk = entry.value
11 if currentWalk.length == d then
12 add currentWalk to PG

13 continue
14 end
15 Ec = currentV ertex.outEdges()
16 foreach vertex e ∈ Ec do
17 w = currentWalk
18 add e to w
19 if w.length == d then
20 add w to PG

21 continue
22 end
23 ve = e.endV ertex()
24 add ve to w
25 add Entry(ve, w) to Q

26 end
27 end
28 end

ations are reached. The final set of sequences for the
given graph G is the union of the sequences of all the
vertices PG =

⋃
v∈V Pv . The algorithm is shown in

Algorithm 1.
In the case of large RDF graphs, generating all pos-

sible walks for all vertices results in a large number
of walks, which makes the training of the neural lan-
guage model highly inefficient. To avoid this problem,
we suggest for each vertex in the graph to generate
only a subset, with size n, of all possible walks. To
generate the walks, the outgoing edge to follow from
the currently observed vertex vc is selected based on
the edge weight, i.e., the probability for selecting an
edge ei is Pr[ei] = weight(ei)∑|Evc|

j=1 weight(ej)
, where ei ∈ Evc ,

and Evc is the set of all outgoing edges from the cur-
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Algorithm 2: Algorithm for generating
weighted RDF graph walks

Data: G = (V,E): RDF Graph, d: walk depth,
n: number of walks

Result: PG: Set of sequences
1 PG := ∅
2 foreach vertex v ∈ V do
3 nv = n
4 while nv > 0 do
5 w = initialize walk
6 add v to w
7 currentV ertex = v
8 dv = d
9 while dv > 0 do

10 Ec = currentV ertex.outEdges()
11 e = selectEdge(Ec)
12 dv = dv - 1
13 add e to w
14 if dv > 0 then
15 ve = e.endV ertex()
16 add ve to w
17 currentV ertex = ve
18 dv = dv - 1
19 end
20 end
21 add w to PG

22 nv = nv - 1
23 end
24 end

rent node vc. While there are many possibilities to set
the weight of the edges, in this work we only con-
sider equal weights, i.e., random selection of outgo-
ing edges where an edge ei is selected with probability
Pr[ei] = 1

|E(vc)| , where ei ∈ Evc , and Evc is the set of
all outgoing edges from the current node vc. The algo-
rithm is shown in Algorithm 2. Other weighting strate-
gies can be integrated into the algorithm by replacing
the function selectEdge in line 11, e.g., weighting the
edge based on the frequency, based on the frequency
of the edge’s end node, or based on global weight-
ing metrics, like PageRank [7]. The impact of different
weighting strategies on the resulting embeddings has
been discussed in [11].

3.1.2. Weisfeiler-Lehman Subtree RDF Graph
Kernels

As an alternative to graph walks, we also use the
subtree RDF adaptation of the Weisfeiler-Lehman al-

gorithm presented in [90,91] to convert an RDF graph
into a set of sequences. The Weisfeiler-Lehman Sub-
tree graph kernel is a state-of-the-art, efficient kernel
for graph comparison [82]. The kernel computes the
number of sub-trees shared between two (or more)
graphs by using the Weisfeiler-Lehman test of graph
isomorphism. This algorithm creates labels represent-
ing subtrees in h iterations, i.e., after each iteration
there is a set of subtrees, where each of the subtrees
is identified with a unique label. The rewriting proce-
dure of Weisfeiler-Lehman goes as follows: (i) the al-
gorithm creates a multiset label for each vertex based
on the labels of the neighbors of that vertex; (ii) this
multiset is sorted and together with the original label
concatenated into a string, which is the new label; (iii)
for each unique string a new (shorter) label replaces the
original vertex label; (iv) at the end of each iteration,
each label represents a unique full subtree.

There are two main modifications of the original
Weisfeiler-Lehman graph kernel algorithm in order to
be applicable on RDF graphs [90,91]. First, the RDF
graphs have directed edges, which is reflected in the
fact that the neighborhood of a vertex v contains only
the vertices reachable via outgoing edges. Second, as
mentioned in the original algorithm, labels from two
iterations can potentially be different while still repre-
senting the same subtree. To make sure that this does
not happen, the authors in [90,91] have added tracking
of the neighboring labels in the previous iteration, via
the multiset of the previous iteration. If the multiset of
the current iteration is identical to that of the previous
iteration, the label of the previous iteration is reused.

The Weisfeiler-Lehman relabeling algorithm for an
RDF graph is given in Algorithm 3, which is the same
relabeling algorithm proposed in [90]. The algorithm
takes as input the RDF graph G = (V,E), a labeling
function l, which returns a label of a vertex or edge in
the graph based on an index, the subraph depth d and
the number of iterations h. The algorithm returns the
labeling functions for each iteration l0 to lh, and a label
dictionary f . Furthermore, the neighborhood N(v) =
(v′, v) ∈ E of a vertex is the set of edges going to the
vertex v and the neighborhood N((v, v′)) = v of an
edge is the vertex that the edge comes from.

The procedure of converting the RDF graph to a set
of sequences of tokens goes as follows: (i) for a given
graph G = (V,E), we define the Weisfeiler-Lehman
algorithm parameters, i.e., the number of iterations h
and the vertex subgraph depth d, which defines the
subgraph in which the subtrees will be counted for the
given vertex; (ii) after each iteration, for each vertex
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Algorithm 3: Weisfeiler-Lehman Relabeling
for RDF

Data: G = (V,E): RDF Graph, l: labeling
function for G = (V, E), d: subgraph
depth, h: number of iterations

Result: l0 to lh: label functions, f label
dictionary

1 for n = 0; n < h; i++ do
2 # 1. Multiset-label determination
3 foreach v ∈ V and e ∈ E and j = 0 to d

do
4 if n = 0 and l(v, j) is defined then
5 set Mn(v, j) = l0(v, j) = l(v, j)
6 end
7 if n = 0 and l(e, j) is defined then
8 set Mn(e, j) = l0(e, j) = l(e, j)
9 end

10 if n > 0 and l(v, j) is defined then
11 set Mn(v, j) = {ln−1(u, j)|u ∈

N(v)}
12 end
13 if n > 0 and l(e, j) is defined then
14 set Mn(e, j) = {ln−1(u, j + 1)|u ∈

N(e)}
15 end
16 end
17 # 2. Sorting each multiset
18 foreach Mn(v, j) and Mn(e, j) do
19 sort the elements in Mn(v, j), resp.

Mn(e, j), in ascending order and
concatenate them into a string
sn(v, j), resp. sn(e, j)

20 end
21 foreach sn(v, j) and sn(e, j) do
22 if n > 0 then
23 add ln1(v, j), resp. ln1(e, j), as a

prefix to sn(v, j) , resp. sn(e, j)
24 end
25 end
26 # 3. Label compression
27 foreach sn(v, j) and sn(e, j) do
28 map sn(v, j), resp. sn(e, j), to a new

compressed label, using a function
f :

∑∗ →∑
, such that

f(sn(v, j)) = f(sn(v′, j)) iff
sn(v, j) = sn(v′, j), resp.
f(sn(e, j)) = f(sn(e′, j)) iff
sn(e, j) = sn(e′, j)

29 end
30 # 4. Relabeling
31 foreach sn(v, j) and sn(e, j) do
32 set ln(v, j) = f(sn(v, j)) and

ln(e, j) = f(sn(e, j))
33 end
34 end

v ∈ V of the original graph G, we extract all the paths
of depth d within the subgraph of the vertex v on the
relabeled graph using Algorithm 1. We set the original
label of the vertex v as the starting token of each path,
which is then considered as a sequence of tokens. The
sequences after each iteration will have the following
pattern vr → ln(ei, j) → ln(vi, j), where ln returns
the label of the edges and the vertices in the nth itera-
tion. The sequences could also be seen as vr → T1 →
T1 ... Td, where Td is a subtree that appears on depth
d in the vertex’s subgraph; (iii) we repeat step (ii) until
the maximum iterations h are reached. (iv) The final
set of sequences is the union of the sequences of all the
vertices in each iteration PG =

⋃h
i=1

⋃
v∈V Pv .

3.2. Neural Language Models – word2vec

Neural language models have been developed in the
NLP field as an alternative to represent texts as a bag
of words, and hence, a binary feature vector, where
each vector index represents one word. While such ap-
proaches are simple and robust, they suffer from sev-
eral drawbacks, e.g., high dimensionality and severe
data sparsity, which limits their performance. To over-
come such limitations, neural language models have
been proposed, inducing low-dimensional, distributed
embeddings of words by means of neural networks.
The goal of such approaches is to estimate the likeli-
hood of a specific sequence of words appearing in a
corpus, explicitly modeling the assumption that closer
words in the word sequence are statistically more de-
pendent.

While some of the initially proposed approaches
suffered from inefficient training of the neural net-
work models, like Feedforward Neural Net Language
Model (NNLM) [4,12,88], with the recent advances
in the field several efficient approaches have been
proposed. One of the most popular and widely used
approaches is the word2vec neural language model
[41,42]. Word2vec is a particularly computationally-
efficient two-layer neural net model for learning word
embeddings from raw text. There are two differ-
ent algorithms, the Continuous Bag-of-Words model
(CBOW) and the Skip-gram model. The efficiency of
the models comes as a result from the simplicity of the
models by avoiding dense matrix multiplication, i.e.,
the non-linear hidden layer is removed from the neu-
ral network and the projection layer is shared for all
words. Furthermore, the Skip-gram model has been ex-
tended to make the training even more efficient, i.e., (i)
sub-sampling of frequent words, which significantly
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improves the model training efficiency, and improves
the vector quality of the less frequent words; (ii) us-
ing simplified variant of Noise Contrastive Estimation
[23], called negative sampling.

3.2.1. Continuous Bag-of-Words Model
The CBOW model predicts target words from con-

text words within a given window. The model architec-
ture is shown in Fig. 1a. The input layer is comprised
of all the surrounding words for which the input vec-
tors are retrieved from the input weight matrix, aver-
aged, and projected in the projection layer. Then, using
the weights from the output weight matrix, a score for
each word in the vocabulary is computed, which is the
probability of the word being a target word. Formally,
given a sequence of training words w1, w2, w3, ..., wT ,
and a context window c, the objective of the CBOW
model is to maximize the average log probability:

1

T

T∑
t=1

log p(wt|wt−c...wt+c), (1)

where the probability p(wt|wt−c...wt+c) is calculated
using the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt

)∑V
w=1 exp(v̄T v′w)

, (2)

where v′w is the output vector of the word w, V is the
complete vocabulary of words, and v̄ is the averaged
input vector of all the context words:

v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j
(3)

3.2.2. Skip-Gram Model
The skip-gram model does the inverse of the CBOW

model and tries to predict the context words from the
target words (Fig. 1b). More formally, given a se-
quence of training words w1, w2, w3, ..., wT , and a
context window of size c, the objective of the skip-
gram model is to maximize the following average log
probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using
the softmax function:

p(wt+c|wt) =
exp(v′Twt+c

vwt
)∑V

v=1 exp(v′Twv
vwt)

, (5)

where vw and v′w are the input and the output vector
of the word w, and V is the complete vocabulary of
words.

In both cases, calculating the softmax function is
computationally inefficient, as the cost for computing
is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e.,
hierarchical softmax and negative sampling [42]. The
empirical studies in the original paper [42] have shown
that in most cases negative sampling leads to a better
performance than hierarchical softmax, which depends
on the selected negative samples, but it has higher run-
time.

Once the training is finished, all words (or, in our
case, entities) are projected into a lower-dimensional
feature space, and semantically similar words (or enti-
ties) are positioned close to each other.

4. Evaluation

We evaluate our approach on three different tasks:
(i) standard machine-learning classification and re-
gression; (ii) document similarity and entity related-
ness; (iii) top-N recommendation both with content-
based and hybrid RSs. For all three tasks, we utilize
two of the most prominent RDF knowledge graphs
[62], i.e., DBpedia [37] and Wikidata [89]. DBpedia is
a knowledge graph which is extracted from structured
data in Wikipedia. The main source for this extrac-
tion are the key-value pairs in the Wikipedia infoboxes.
Wikidata is a collaboratively edited knowledge graph,
operated by the Wikimedia foundation4 which also
hosts various language editions of Wikipedia.

We use the English version of the 2015-10 DBpe-
dia dataset, which contains 4, 641, 890 instances and
1, 369 mapping-based object properties.5 In our eval-
uation, we only consider object properties, and ignore
datatype properties and literals.

4http://wikimediafoundation.org/
5http://wiki.dbpedia.org/

services-resources/datasets/dbpedia-datasets
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a) CBOW architecture b) Skip-gram architecture

Fig. 1. Architecture of the CBOW and Skip-gram model.

For the Wikidata dataset, we use the simplified and
derived RDF dumps from 2016-03-28.6 The dataset
contains 17, 340, 659 entities in total. As for the DB-
pedia dataset, we only consider object properties, and
ignore the data properties and literals.

The first step of our approach is to convert the
RDF graphs into a set of sequences. As the number of
generated walks increases exponentially [91] with the
graph traversal depth, calculating Weisfeiler-Lehman
subtrees RDF kernels, or all graph walks with a given
depth d for all of the entities in the large RDF graph
quickly becomes unmanageable. Therefore, to extract
the entities embeddings for the large RDF datasets, we
use only random graph walks entity sequences, gener-
ated using Algorithm 2. For both DBpedia and Wiki-
data, we first experiment with 200 random walks per
entity with depth of 4, and 200 dimensions for the en-
tities’ vectors. Additionally, for DBpedia we experi-
ment with 500 random walks per entity with depth of
4 and 8, with 200 and 500 dimensions for the entities’
vectors. For Wikidata, we were unable to build models
with more than 200 walks per entity, because of mem-
ory constrains, therefore we only experiment with the
dimensions of the entities’ vectors, i.e., 200 and 500.

We use the corpora of sequences to build both
CBOW and Skip-Gram models with the following pa-
rameters: window size = 5; number of iterations = 5;
negative sampling for optimization; negative samples
= 25; with average input vector for CBOW. The pa-
rameter values are selected based on recommendations
from the literature [41]. To prevent sharing the con-
text between entities in different sequences, each se-

6http://tools.wmflabs.org/wikidata-exports/
rdf/index.php?content=dump\_download.php\
&dump=20160328

quence is considered as a separate input in the model,
i.e., the sliding window restarts for each new sequence.
We used the gensim implementation7 for training the
models. All the models, as well as the code, are pub-
licly available.8

In the evaluation section we use the following no-
tation for the models: KB2Vec model #walks #dimen-
sions depth, e.g. DB2vec SG 200w 200v 4d, refers to
a model built on DBpedia using the skip-gram model,
with 200 walks per entity, 200 dimensional vectors and
all the walks are of depth 4.

5. Machine Learning with Background
Knowledge from LOD

Linking entities in a machine learning task to those
in the LOD cloud helps generating additional features,
which may help improving the overall learning out-
come. For example, when learning a predictive model
for the success of a movie, adding knowledge from
the LOD cloud (such as the movie’s budget, director,
genre, Oscars won by the starring actors, etc.) can lead
to a more accurate model.

5.1. Experimental Setup

For evaluating the performance of our RDF embed-
dings in machine learning tasks, we perform an evalu-
ation on a set of benchmark datasets. The dataset con-
tains four smaller-scale RDF datasets (i.e., AIFB, MU-
TAG, BGS, and AM), where the classification target is

7https://radimrehurek.com/gensim/
8http://data.dws.informatik.uni-mannheim.

de/rdf2vec/
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Table 1
Datasets overview. For each dataset, we depict the number of in-
stances, the machine learning tasks in which the dataset is used (C
stands for classification, and R stands for regression) and the source
of the dataset. In case of classification, c indicates the number of
classes.

Dataset #Instances ML Task Original Source

Cities 212 R/C (c=3) Mercer

Metacritic Albums 1600 R/C (c=2) Metacritic

Metacritic Movies 2000 R/C (c=2) Metacritic

AAUP 960 R/C (c=3) JSE

Forbes 1585 R/C (c=3) Forbes

AIFB 176 C (c=4) AIFB

MUTAG 340 C (c=2) MUTAG

BGS 146 C (c=2) BGS

AM 1000 C (c=11) AM

the value of a selected property within the dataset, and
five larger datasets linked to DBpedia and Wikidata,
where the target is an external variable (e.g., the meta-
critic score of an album or a movie). The latter datasets
are used both for classification and regression. Details
on the datasets can be found in [75].

For each of the small RDF datasets, we first build
two corpora of sequences, i.e., the set of sequences
generated from graph walks with depth 8 (marked as
W2V), and set of sequences generated from Weisfeiler-
Lehman subtree kernels (marked as K2V). For the
Weisfeiler-Lehman algorithm, we use 3 iterations and
depth of 4, and after each iteration we extract all walks
for each entity with the same depth. We use the cor-
pora of sequences to build both CBOW and Skip-Gram
models with the following parameters: window size =
5; number of iterations = 10; negative sampling for op-
timization; negative samples = 25; with average input
vector for CBOW. We experiment with 200 and 500
dimensions for the entities’ vectors.

We use the RDF embeddings of DBpedia and Wiki-
data (see Section 4) on the five larger datasets, which
provide classification/regression targets for DBpe-
dia/Wikidata entities (see Table 1).

We compare our approach to several baselines. For
generating the data mining features, we use three
strategies that take into account the direct relations to
other resources in the graph [63,72], and two strategies
for features derived from graph sub-structures [91]:

– Features derived from specific relations. In the
experiments we use the relations rdf:type (types),
and dcterms:subject (categories) for datasets linked
to DBpedia.

– Features derived from generic relations, i.e., we
generate a feature for each incoming (rel in) or
outgoing relation (rel out) of an entity, ignoring

the value or target entity of the relation. Further-
more, we combine both incoming and outgoing
relations (rel in & out).

– Features derived from generic relations-values,
i.e., we generate a feature for each incoming (rel-
vals in) or outgoing relation (rel-vals out) of an
entity including the value of the relation. Further-
more, we combine both incoming and outgoing
relations with the values (rel-vals in & out).

– Kernels that count substructures in the RDF graph
around the instance node. These substructures
are explicitly generated and represented as sparse
feature vectors.

∗ The Weisfeiler-Lehman (WL) graph kernel
for RDF [91] counts full subtrees in the sub-
graph around the instance node. This ker-
nel has two parameters, the subgraph depth
d and the number of iterations h (which de-
termines the depth of the subtrees). Follow-
ing the settings in [90], we use two pairs
of settings, d = 2, h = 2 (WL_2_2) and
d = 4, h = 3 (WL_4_3).
∗ The Intersection Tree Path kernel for RDF [91]

counts the walks in the subtree that spans
from the instance node. Only the walks that
go through the instance node are considered.
We will therefore refer to it as the root Walk
Count (WC) kernel. The root WC kernel has
one parameter: the length of the paths l, for
which we test 4 (WC_4) and 6 (WC_6), fol-
lowing the settings in [90].

Furthermore, we compare the results to the state-of-
the art graph embeddings approaches: TransE, TransH
and TransR. These approaches have shown compa-
rable results with the rest of the graph embeddings
approaches on the task of link predictions. But most
importantly, while there are many graph embeddings
approaches, like RESCAL [51], Neural Tensor Net-
works (NTN) [83], ComplEx [87], HolE [50] and oth-
ers, the approaches based on translating embeddings
approaches scale to large knowledge-graphs as DB-
pedia.9 We use an existing implementation and build
models on the small RDF datasets and the the whole
DBpedia data with the default parameters.10 For all the
models we train 1, 000 epochs and build vectors with
size 100. We have to note that the primary goal of such

9Because of high processing requirements we were not able to
build the models for the Wikidata dataset.

10https://github.com/thunlp/KB2E/
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Table 2
Classification results on the small RDF datasets. The best results are
marked in bold. Experiments marked with “\” did not finish within
ten days, or have run out of memory.

Strategy/Dataset AIFB MUTAG BGS AM

NB KNN SVM C4.5 NB KNN SVM C4.5 NB KNN SVM C4.5 NB KNN SVM C4.5

rel in 16.99 47.19 50.70 50.62 \ \ \ \ 61.76 54.67 63.76 63.76 12.0 36.62 37.54 37.37

rel out 45.07 45.56 50.70 51.76 41.18 54.41 62.94 62.06 54.76 69.05 72.70 69.33 18.57 63.46 63.84 63.66

rel in & out 25.59 51.24 50.80 51.80 \ \ \ \ 54.76 67.00 72.00 70.00 18.42 63.00 64.38 63.96

rel-vals in 73.24 54.54 81.86 80.75 \ \ \ \ 79.48 83.52 86.50 68.57 13.36 38.55 41.74 34.72

rel-vals out 86.86 55.69 82.39 71.73 62.35 62.06 73.53 62.94 84.95 65.29 83.10 73.38 82.17 53.17 85.75 84.66

rel-vals in&out 87.42 57.91 88.57 85.82 \ \ \ \ 84.95 70.81 85.80 72.67 82.17 52.56 86.55 86.53

WL_2_2 85.69 53.30 92.68 71.08 91.12 62.06 92.59 93.29 85.48 63.62 82.14 75.29 83.80 63.49 87.97 87.12

WL_4_3 85.65 65.95 83.43 89.25 70.59 62.06 94.29 93.47 90.33 85.57 91.05 87.67 87.00 54.65 86.42 87.32

WC_4 86.24 60.27 75.03 71.05 90.94 62.06 91.76 93.82 84.81 69.00 83.57 76.90 82.81 70.43 87.73 88.12

WC_6 86.83 64.18 82.97 71.05 92.00 72.56 86.47 93.82 85.00 67.00 78.71 76.90 81.50 67.50 86.97 87.23

TransE 82.29 90.85 89.74 62.94 72.65 47.65 72.65 65.29 61.52 70.67 65.71 63.57 56.66 71.23 75.48 75.04

TransH 80.65 88.10 84.67 59.74 70.59 43.24 70.29 57.06 58.81 69.95 69.38 58.95 58.43 71.24 76.69 76.02

TransR 80.03 90.26 89.74 58.53 72.35 46.76 72.94 59.12 61.33 61.76 64.43 57.48 52.45 73.40 77.40 76.60

W2V CBOW 200 70.00 69.97 79.48 65.33 74.71 72.35 80.29 74.41 56.14 74.00 74.71 67.38 74.95 76.67 81.76 79.36

W2V CBOW 500 69.97 69.44 82.88 73.40 75.59 70.59 82.06 72.06 55.43 73.95 74.05 65.86 82.48 83.84 86.67 77.17

W2V SG 200 76.76 71.67 87.39 65.36 70.00 71.76 77.94 68.53 66.95 69.10 75.29 71.24 81.17 82.18 87.23 83.74

W2V SG 500 76.67 76.18 89.55 71.05 72.35 72.65 78.24 68.24 68.38 71.19 78.10 63.00 82.48 81.43 88.21 86.24

K2V CBOW 200 85.16 84.48 87.48 76.08 78.82 69.41 86.47 68.53 93.14 95.57 94.71 88.19 80.35 81.74 86.37 82.17

K2V CBOW 500 90.98 88.17 86.83 76.18 80.59 70.88 90.88 66.76 93.48 95.67 94.82 87.26 80.01 80.55 86.09 81.19

K2V SG 200 85.65 87.96 90.82 75.26 78.53 69.29 95.88 66.00 91.19 93.24 95.95 87.05 83.04 81.87 88.35 87.22

K2V SG 500 88.73 88.66 93.41 69.90 82.06 70.29 96.18 66.18 91.81 93.19 96.33 80.76 83.32 82.12 88.83 86.72

embeddings is the link prediction task, not standard
machine learning tasks.

We perform no feature selection in any of the exper-
iments, i.e., we use all the features generated with the
given feature generation strategy. For the baseline fea-
ture generation strategies, we use binary feature vec-
tors, i.e., 1 if the feature exists for the instance, 0 oth-
erwise.

We perform two learning tasks, i.e., classification
and regression. For classification tasks, we use Naive
Bayes, k-Nearest Neighbors (k=3), C4.5 decision tree,
and Support Vector Machines (SVMs). For the SVM
classifier we optimize the complexity constant C11 in
the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For re-
gression, we use Linear Regression, M5Rules, and
k-Nearest Neighbors (k=3). We measure accuracy
for classification tasks, and root mean squared error
(RMSE) for regression tasks. The results are calculated
using stratified 10-fold cross validation.

The strategies for creating propositional features
from Linked Open Data are implemented in the Rapid-

11The complexity constant sets the tolerance for misclassification,
where higher C values allow for “softer” boundaries and lower val-
ues create “harder” boundaries.

Miner LOD extension12 [64,70]. The experiments, in-
cluding the feature generation and the evaluation, were
performed using the RapidMiner data analytics plat-
form.13 The RapidMiner processes and the complete
results can be found online.14. The experiments were
run using a Linux machine with 20GB RAM and 4 In-
tel Xeon 2.60GHz CPUs.

5.2. Results

The results for the task of classification on the small
RDF datasets are shown in Table 2.15 Experiments
marked with “\” did not finish within ten days, or have
run out of memory. The reason for that is the high num-
ber of generated features for some of the strategies, as
explained in Section 5.4. From the results, we can ob-
serve that the K2V approach outperforms all the other
approaches. More precisely, using the skip-gram fea-

12http://dws.informatik.uni-mannheim.de/en/
research/rapidminer-lod-extension

13https://rapidminer.com/
14http://data.dws.informatik.uni-mannheim.

de/rmlod/LOD\_ML\_Datasets/
15We do not consider the strategies for features derived from spe-

cific relations, i.e., types and categories, because the datasets do not
contain categories, and all the instances are of the same type
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ture vectors of size 500 in an SVM model provides the
best results on all three datasets. The W2V approach
on all three datasets performs closely to the standard
graph substructure feature generation strategies, but it
does not outperform them. K2V outperforms W2V be-
cause it is able to capture more complex substructures
in the graph, like sub-trees, while W2V focuses only
on graph paths. Furthermore, the related approaches,
perform rather well on the AIFB dataset, and achieve
comparable results to the K2V approach, however, on
the other two dataset K2V significantly outperforms all
three of them.

The results for the task of classification and re-
gression on the five datasets using the DBpedia and
Wikidata entities’ vectors are shown in Tables 3 and
4. We can observe that the latent vectors extracted
from DBpedia and Wikidata outperform all of the stan-
dard feature generation approaches. Furthermore, the
RDF2vec approaches built on the DBpedia dataset
continuously outperform the related approaches, i.e.,
TransE, TransH, and TransR, on both tasks for all the
datasets, except on the Forbes dataset for the task of
classification. In this case, all the related approaches
outperform the baseline approaches as well as the
RDF2vec approach. The difference is most significant
when using the C4.5 classifier. In general, the DBpedia
vectors work better than the Wikidata vectors, where
the skip-gram vectors with size 200 or 500 built on
graph walks of depth 8 on most of the datasets lead
to the best performance. An exception is the AAUP
dataset, where the Wikidata skip-gram 500 vectors out-
perform the other approaches. Furthermore, in Table
we can notice that the SVM model achieves very low
accuracy on the AAUP dataset. The explanation for
such poor performance might be that the instances in
the dataset are not linearly separable, therefore the
SVM is unable to correctly classify the instances.

On both tasks, we can observe that the skip-gram
vectors perform better than the CBOW vectors. Fur-
thermore, the vectors with higher dimensionality and
longer walks lead to a better representation of the en-
tities and better performance on most of the datasets.
However, for the variety of tasks at hand, there is no
universal approach, i.e., a combination of an embed-
ding model and a machine learning method, that con-
sistently outperforms the others.

The structure and quality of the underlying knowl-
edge graph may influence the results of the algorithms.
For example, there are quite a few differences in the
average degree of resources in different knowledge
graphs [69], which influence the walks and ultimately

Table 5
Average outgoing degree for selected classes.

Clsas DBpedia Wikidata

City 129.74 84.47

Movie 64.28 57.08

Album 64.13 22.86

University 60.01 34.55

Company 50.40 19.03

Book 45.70 23.54

Music Artist 80.86 34.19

the embeddings. For the datasets at hand, the entities
are cities, movies, albums, universities, and compa-
nies. Table 5 shows the average outgoing degrees for
the entities in those classes, in the respective knowl-
edge graphs. This means that for most of the cases, the
entities at hand are, on average, described at more de-
tail in DBpedia, i.e., we can expect that also the em-
beddings for DBpedia will be of higher quality. It is
further remarkable that the biggest discrepancy for the
classification task between the best DBpedia and the
best Wikidata embeddings occurs for the Metacritic
albums dataset (with 15 percentage points), which is
also the class with the highest difference in the degree
distribution. On the other hand, for universities, which
have a high level of detail in both knowledge graphs,
the difference is not that severe (and Wikidata embed-
dings are even superior on the regression task). How-
ever, the number of datasets is still too small to make a
quantitative statement about the relation between level
of detail in the knowledge graph and performance of
the embeddings. Similar observation holds in the en-
tity and document modeling evaluation (see Section 6),
and the recommender systems evaluation (see Section
7).

5.3. Semantics of Vector Representations

To analyze the semantics of the vector represen-
tations, we employ Principal Component Analysis
(PCA) to project the entities’ feature vectors into a two
dimensional feature space. We selected seven coun-
tries and their capital cities, and visualized their vec-
tors as points in a two-dimensional space. Figure 2a
shows the corresponding DBpedia vectors, and Fig-
ure 2b shows the corresponding Wikidata vectors. The
figure illustrates the ability of the model to automati-
cally organize entities of different types, and preserve
the relationships between different entities. For exam-
ple, we can see that there is a clear separation between
the countries and the cities, and the relation “capital”
between each pair of country and the corresponding
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a) DBpedia vectors

b) Wikidata vectors

Fig. 2. Two-dimensional PCA projection of the 500-dimensional
Skip-gram vectors of countries and their capital cities.

capital city is preserved. Furthermore, we can observe
that more similar entities are positioned closer to each
other, e.g., we can see that the countries that are part of
the EU are closer to each other, and the same applies
for the Asian countries.

5.4. Features Increase Rate

Finally, we conduct a scalability experiment, where
we examine how the number of instances affects the
number of generated features by each feature genera-

tion strategy. For this purpose we use the Metacritic
Movies dataset. We start with a random sample of 100
instances, and in each next step we add 200 (or 300)
unused instances, until the complete dataset is used,
i.e., 2, 000 instances. The number of generated features
for each sub-sample of the dataset using each of the
feature generation strategies is shown in Figure 3.

From the chart, we can observe that the number
of generated features sharply increases when adding
more samples in the datasets, especially for the strate-
gies based on graph substructures.

In contrast, the number of features remains constant
when using the RDF2Vec approach, as it is fixed to 200
or 500, respectively, independently of the number of
samples in the data. Thus, by design, it scales to larger
datasets without increasing the dimensionality of the
dataset.

6. Entity and Document Modeling

Calculating entity relatedness and similarity are fun-
damental problems in numerous tasks in information
retrieval, natural language processing, and Web-based
knowledge extraction. While similarity only considers
subsumption relations to assess how two objects are
alike, relatedness takes into account a broader range
of relations, i.e., the notion of relatedness is wider
than that of similarity. For example, “Facebook” and
“Google” are both entities of the class company, and
they have high similarity and relatedness score. On
the other hand, “Facebook” and “Mark Zuckerberg”
are not similar at all, but are highly related, while
“Google” and “Mark Zuckerberg” are not similar at all,
and have lower relatedness value compared to the first
pair of entities.

6.1. Approach

In this section, we introduce several approaches for
entity and document modeling based on the previously
built latent feature vectors for entities.

6.1.1. Entity Similarity
As previously mentioned, in the RDF2Vec feature

embedding space (see Section 3), semantically similar
entities appear close to each other in the feature space.
Therefore, the problem of calculating the similarity be-
tween two instances is a matter of calculating the dis-
tance between two instances in the given feature space.
To do so, we use the standard cosine similarity mea-
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Fig. 3. Features increase rate per strategy (log scale).

sure, which is applied on the vectors of the entities.
Formally, the similarity between two entities e1 and
e2, with vectors V1 and V2, is calculated as the cosine
similarity between the vectors V1 and V2:

sim(e1, e2) =
V1 · V2

||V1|| · ||V2||
(6)

6.1.2. Document Similarity
We use those entity similarity scores in the task of

calculating semantic document similarity. We follow a
similar approach as the one presented in [60], where
two documents are considered to be similar if many
entities of the one document are similar to at least one
entity in the other document. More precisely, we try to
identify the most similar pairs of entities in both docu-
ments, ignoring the similarity of all other pairs.

Given two documents d1 and d2, the similarity be-
tween the documents sim(d1, d2) is calculated as fol-
lows:

1. Extract the sets of entities E1 and E2 in the doc-
uments d1 and d2.

2. Calculate the similarity score sim(e1i, e2j) for
each pair of entities in document d1 and d2, where
e1i ∈ E1 and e2j ∈ E2

3. For each entity e1i in d1 identify the maximum
similarity to an entity in d2 max_sim(e1i, e2j ∈
E2), and vice versa.

4. Calculate the similarity score between the docu-
ments d1 and d2 as:

sim(d1, d2) =
∑|E1|

i=1 max_sim(e1i,e2j∈E2)+
∑|E2|

j=1 max_sim(e2j ,e1i∈E1)

|E1|+|E2|

(7)

6.1.3. Entity Relatedness
In this approach we assume that two entities are re-

lated if they often appear in the same context. For ex-
ample, “Facebook” and “Mark Zuckerberg”, which are
highly related, are often used in the same context in
many sentences. To calculate the probability of two en-
tities being in the same context, we make use of the
RDF2Vec models and the set of sequences of entities
generated as described in Section 3. Given a RDF2vec
model and a set of sequences of entities, we calculate
the relatedness between two entities e1 and e2, as the
probability p(e1|e2) calculated using the softmax func-
tion. In the case of a CBOW model, the probability is
calculated as:

p(e1|e2) =
exp(vTe2v

′
e1)∑V

e=1 exp(vTe2v
′
e)
, (8)

where v′e is the output vector of the entity e, and V is
the complete vocabulary of entities.

In the case of a skip-gram model, the probability is
calculated as:

p(e1|e2) =
exp(v′Te1 ve2)∑V
e=1 exp(v′Te ve2)

, (9)

where ve and v′e are the input and the output vector
of the entity e, and V is the complete vocabulary of
entities.
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6.2. Evaluation

For both tasks of determining entity relatedness
and document similarity, we use existing benchmark
datasets to compare the use of RDF2Vec models
against state of the art approaches.

6.2.1. Entity Relatedness
For evaluating the entity relatedness approach, we

use the KORE dataset [27]. The dataset consists of 21
main entities, whose relatedness to the other 20 entities
each has been manually assessed, leading to 420 rated
entity pairs. We use the Spearman’s rank correlation as
an evaluation metric.

We use two approaches for calculating the related-
ness rank between the entities, i.e. (i) the entity simi-
larity approach described in section 6.1.1; (ii) the en-
tity relatedness approach described in section 6.1.3.

We evaluate each of the RDF2Vec models sepa-
rately. Furthermore, we also compare to the Wiki2vec
model,16 which is built on the complete Wikipedia cor-
pus, and provides vectors for each DBpedia entity.

Table 6 shows the Spearman’s rank correlation re-
sults when using the entity similarity approach. Table
7 shows the results for the relatedness approach. The
results show that the DBpedia models outperform the
Wikidata models. Increasing the number of walks per
entity improves the results. Also, the skip-gram models
outperform the CBOW models continuously. We can
observe that the relatedness approach outperforms the
similarity approach.

Furthermore, we compare our approaches to sev-
eral state-of-the-art graph-based entity relatedness ap-
proaches:

– baseline: computes entity relatedness as a func-
tion of distance between the entities in the net-
work, as described in [80].

– KORE: calculates keyphrase overlap relatedness,
as described in the original KORE paper [27].

– CombIC: semantic similarity using a Graph Edit
Distance based measure [80].

– ER: Exclusivity-based relatedness [30].

The comparison, shown in Table 8, shows that our
entity relatedness approach outperforms all the rest for
each category of entities. Interestingly enough, the en-
tity similarity approach, although addressing a differ-
ent task, also outperforms the majority of state of the
art approaches.

16https://github.com/idio/wiki2vec

6.3. Document Similarity

To evaluate the document similarity approach, we
use the LP50 dataset [35], namely a collection of 50
news articles from the Australian Broadcasting Cor-
poration (ABC), which were pairwise annotated with
similarity rating on a Likert scale from 1 (very differ-
ent) to 5 (very similar) by 8 to 12 different human an-
notators. To obtain the final similarity judgments, the
scores of all annotators are averaged. As a evaluation
metrics we use Pearson’s linear correlation coefficient
and Spearman’s rank correlation plus their harmonic
mean.

Again, we first evaluate each of the RDF2Vec mod-
els separately. Table 9 shows document similarity re-
sults. As for the entity relatedness, the results show that
the skip-gram models built on DBpedia with 8 hops
lead to the best performances.

Furthermore, we compare our approach to several
state-of-the-art graph-based document similarity ap-
proaches:

– TF-IDF: Distributional baseline algorithm.
– AnnOv: Similarity score based on annotation

overlap that corresponds to traversal entity simi-
larity with radius 0, as described in [60].

– Explicit Semantic Analysis (ESA) [18].
– GED: semantic similarity using a Graph Edit Dis-

tance based measure [80].
– Salient Semantic Analysis (SSA), Latent Seman-

tic Analysis (LSA) [25].
– Graph-based Semantic Similarity (GBSS) [60].

The results for the related approaches were copied
from the respective papers, except for ESA, which was
copied from [60], where it is calculated via public
ESA REST endpoint.17 The results, shown in Table 10,
show that our document similarity approach outper-
forms all of the related approaches for both Pearson’s
linear correlation coefficient and Spearman’s rank cor-
relation, as well as their harmonic mean.

We do not compare our approach to the machine-
learning approach proposed by Huang et al. [28], be-
cause that approach is a supervised one, which is tai-
lored towards the dataset, whereas ours (as well as the
others we compare to) are unsupervised.

17http://vmdeb20.deri.ie:8890/esaservice



RDF2Vec: RDF Graph Embeddings and Their Applications 19

Table 6
Similarity-based relatedness Spearman’s rank correlation results

Model IT companies Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

DB2vec SG 200w 200v 4d 0.525 0.505 0.532 0.571 0.439 0.529

DB2vec CBOW 200w 200v 0.330 0.294 0.462 0.399 0.179 0.362

DB2vec CBOW 500w 200v 4d 0.538 0.560 0.572 0.596 0.500 0.564

DB2vec CBOW 500w 500v 4d 0.546 0.544 0.564 0.606 0.496 0.562

DB2vec SG 500w 200v 4d 0.508 0.546 0.497 0.634 0.570 0.547

DB2vec SG 500w 500v 4d 0.507 0.538 0.505 0.611 0.588 0.542

DB2vec CBOW 500w 200v 8d 0.611 0.495 0.315 0.443 0.365 0.461

DB2vec CBOW 500w 500v 8w 0.486 0.507 0.285 0.440 0.470 0.432

DB2vec SG 500w 200v 8w 0.739 0.723 0.526 0.659 0.625 0.660

DB2vec SG 500w 500v 8w 0.743 0.734 0.635 0.669 0.628 0.692

WD2vec CBOW 200w 200v 4d 0.246 0.418 0.156 0.374 0.409 0.304

WD2vec CBOW 200w 500v 4d 0.190 0.403 0.103 0.106 0.150 0.198

WD2vec SG 200w 200v 4d 0.502 0.604 0.405 0.578 0.279 0.510

WD2vec SG 200w 500v 4d 0.464 0.562 0.313 0.465 0.168 0.437

Wiki2vec 0.613 0.544 0.334 0.618 0.436 0.523

Table 7
Context-based relatedness Spearman’s rank correlation results

Model IT companies Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

DB2vec SG 200w 200v 4d 0.643 0.547 0.583 0.428 0.591 0.552

DB2vec CBOW 200w 200v 0.361 0.326 0.467 0.426 0.208 0.386

DB2vec CBOW 500w 200v 4d 0.671 0.566 0.591 0.434 0.609 0.568

DB2vec CBOW 500w 500v 4d 0.672 0.622 0.578 0.440 0.581 0.578

DB2vec SG 500w 200v 4d 0.666 0.449 0.611 0.360 0.630 0.526

DB2vec SG 500w 500v 4d 0.667 0.444 0.609 0.389 0.668 0.534

DB2vec CBOW 500w 200v 8d 0.579 0.484 0.368 0.460 0.412 0.470

DB2vec CBOW 500w 500v 8d 0.552 0.522 0.302 0.487 0.665 0.475

DB2vec SG 500w 200v 8d 0.811 0.778 0.711 0.658 0.670 0.736
DB2vec SG 500w 500v 8d 0.748 0.729 0.689 0.537 0.625 0.673

WD2vec CBOW 200w 200v 4d 0.287 0.241 -0.025 0.311 0.226 0.205

WD2vec CBOW 200w 500v 4d 0.166 0.215 0.233 0.335 0.344 0.243

WD2vec SG 200w 200v 4d 0.574 0.671 0.504 0.410 0.079 0.518

WD2vec SG 200w 500v 4d 0.661 0.639 0.537 0.395 0.474 0.554

Wiki2vec 0.291 0.296 0.406 0.353 0.175 0.329

7. Recommender Systems

As discussed in Section 2.3, the Linked Open Data
(LOD) initiative [5] has opened new interesting possi-
bilities to realize better recommendation approaches.
Given that the items to be recommended are linked
to a LOD dataset, information from LOD can be ex-
ploited to determine which items are considered to be
similar to the ones that the user has consumed in the
past, allowing to discover hidden information and im-

plicit relations between objects. While LOD is rich in
high quality data, it is still challenging to find an effec-
tive and efficient way of exploiting the knowledge for
content-based recommendations. So far, most of the
proposed approaches in the literature are supervised
or semi-supervised, which means they cannot work
without human interaction. New challenges, and at the
same time new opportunities, arise from unsupervised
approaches for feature learning.
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Table 8
Spearman’s rank correlation results comparison to related work

Approach
IT
companies

Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

baseline 0.559 0.639 0.529 0.451 0.458 0.541

KORE 0.759 0.715 0.599 0.760 0.498 0.698

CombIC 0.644 0.690 0.643 0.532 0.558 0.624

ER 0.727 0.643 0.633 0.519 0.477 0.630

DB_TransE -0.023 0.120 -0.084 0.353 -0.347 0.070

DB_TransH -0.134 0.185 -0.097 0.204 -0.044 0.035

DB_TransR -0.217 0.062 0.002 -0.126 0.166 0.058

DB2Vec Similarity 0.743 0.734 0.635 0.669 0.628 0.692

DB2Vec Relatedness 0.811 0.778 0.711 0.658 0.670 0.736

Table 9
Document similarity results - Pearson’s linear correlation coefficient (r)
Spearman’s rank correlation (ρ) and their harmonic mean µ

Model r ρ µ

DB2vec SG 200w 200v 4d 0.608 0.448 0.516

DB2vec CBOW 200w 200v 4d 0.562 0.480 0.518

DB2vec CBOW 500w 200v 4d 0.681 0.535 0.599

DB2vec CBOW 500w 500v 4d 0.677 0.530 0.594

DB2vec SG 500w 200v 4d 0.639 0.520 0.573

DB2vec SG 500w 500v 4d 0.641 0.516 0.572

DB2vec CBOW 500w 200v 8d 0.658 0.491 0.562

DB2vec CBOW 500w 500v 8d 0.683 0.512 0.586

DB2vec SG 500w 200v 8d 0.708 0.556 0.623
DB2vec SG 500w 500v 8d 0.686 0.527 0.596

WD2vec CBOW 200w 200v 4d 0.568 0.383 0.458

WD2vec CBOW 200w 500v 4d 0.593 0.386 0.467

WD2vec SG 200w 200v 4d 0.606 0.385 0.471

WD2vec SG 200w 500v 4d 0.613 0.343 0.440

Wiki2vec 0.662 0.513 0.578

DB_TransE 0.565 0.432 0.490

DB_TransH 0.570 0.452 0.504

DB_TransR 0.578 0.461 0.513

Table 10
Comparison of the document similarity approach to the related work

Approach r ρ µ

TF-IDF 0.398 0.224 0.287

AnnOv 0.590 0.460 0.517

LSA 0.696 0.463 0.556

SSA 0.684 0.488 0.570

GED 0.630 \ \

ESA 0.656 0.510 0.574

GBSS 0.704 0.519 0.598

DB2Vec 0.708 0.556 0.623

RDF graph embeddings are a promising way to ap-
proach those challenges and build content-based rec-
ommender systems. As for entity similarity in the pre-
vious section, the cosine similarity between the latent
vectors representing the items can be interpreted as a
measure of reciprocal proximity and then exploited to
produce recommendations.

In this section, we explore the development of a hy-
brid RS, leveraging the latent features extracted with
RDF2Vec. The hybrid system takes advantage of both
RDF graph embeddings and Factorization Machines
(FMs) [66], an effective method combining Support
Vector Machines with factorization models.

7.1. Factorization Machines

Factorization Machines (FMs) [66] are a general
predictor model which rely on the advantages of Sup-
port Vector Machines (SVMs) and factorization mod-
els. SVMs have been successfully applied in many
classification and regression problems but they have
been proved to be not effective in those settings like
collaborative filtering which are characterized by huge
sparsity. This happens since in sparse settings there
is not enough data to estimate a “dense” factorization
as SVMs would do. FM use a factorized parametriza-
tion, breaking the independence of the interaction pa-
rameters by factorizing them. The difference clearly
emerges when the model equations of degree 2 for a
factorization machine and for a SVM are directly com-
pared. Being aware that in a prediction task the general
goal is to estimate a function y : Rn → T , from a real
valued feature vector x ∈ Rn to a target domain T , the
model equation [66] for a FM of degree 2 is given by:
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ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

(vTi vj)xixj (10)

where ŷ represents the estimate of function y. In (10)
the parameters to be estimated are the global bias
w0 ∈ R, the vector w = [w1, ..., wn] ∈ Rn whose
component wi models the strength of the ith variable
and a matrix V ∈ Rn×k, which describes the ith vari-
able with its ith row vi, i.e., with a vector of size k,
where k is a hyperparameter defining the factorization
dimensionality. On the other hand the model equation
for a SVM of the same degree 2 is defined as:

ŷ(x) = w0 +
√

2

n∑
i=1

wixi +

n∑
i=1

w
(2)
i,i x

2
i +

√
2

n∑
i=1

n∑
j=i+1

w
(2)
i,j xixj (11)

with model parameters w0 ∈ R, w ∈ Rn and the sym-
metric matrix W (2) ∈ Rn×n. From the comparison of
equations (10) and (11) we can realize that both model
all nested interactions up to degree 2 but with a fun-
damental difference: the estimation of the interactions
between variables in the SVM model is done directly
and independently with wi,j whereas it is parametrized
in the FM model. In other words, parameters wi,j and
wi,l will be completely independent in the SVM case
while parameters vTi vj and vTi vl overlap thanks to the
shared parameter vi.

The strength of FMs models is also due to linear
complexity [66] and due to the fact that they can be
optimized in the primal and they do not rely on support
vectors like SVMs. Finally, [66] shows that many of
the most successful approaches for the task of collab-
orative filtering are de facto subsumed by FMs, e.g.,
Matrix Factorization [84,78] and SVD++ [32].

7.2. Experiments

We evaluate different variants of our approach on
three datasets, and compare them to common ap-
proaches for creating content-based item representa-
tions from LOD, as well as to state of the art collabo-
rative and hybrid approaches. Furthermore, we inves-
tigate the use of two different LOD datasets as back-
ground knowledge, i.e., DBpedia and Wikidata.

7.2.1. Datasets
In order to test the effectiveness of vector space em-

beddings for the recommendation task, we have per-
formed an extensive evaluation in terms of ranking
accuracy on three datasets belonging to different do-
mains, i.e., Movielens18 for movies, LibraryThing19

for books, and Last.fm20 for music. The first dataset,
Movielens 1M, contains 1 million 1-5 stars rat-
ings from 6,040 users on 3,952 movies. The dataset
LibraryThing contains more than 2 millions rat-
ings from 7,279 users on 37,232 books. As there
are many duplicated ratings in the dataset, which oc-
cur when a user has rated the same item more than
once, her last rating is selected. The unique ratings are
749,401, in the range from 1 to 10. Both Movielens
and LibraryThing datasets contain explicit ratings,
and to test the approach also on implicit feedbacks,
a third dataset built on the top of the Last.fm mu-
sic system is considered. Last.fm contains 92,834
interactions between 1,892 users and 17,632 musical
artists. Each interaction is annotated with the corre-
sponding listening count.

The original datasets are enriched with background
information using the item mapping and linking to
DBpedia technique described in [58], whose dump
is available publicly.21 Since not all the items have
a corresponding resource in DBpedia, after the map-
ping, the versions of Movielens, LibraryThing and
Last.fm datasets contain 3,883 movies, 11,695 books,
and 11,180 musical artists, respectively.

The datasets are finally preprocessed to guarantee
a fair comparison with the state of the art approaches
described in [55]. Here, the authors propose to (i) re-
move popularity biases from the evaluation not con-
sidering the top 1% most popular items, (ii) reduce
the sparsity of Movielens dataset in order to have
at least a sparser test dataset and (iii) remove from
LibraryThing and Last.fm users with less than
five ratings and items rated less than five times. The fi-
nal statistics on the three datasets are reported in Table
11.

7.2.2. Evaluation Protocol
The ranking setting for the recommendation task

consists of producing a ranked list of items to suggest
to the user and in practical situations turns into the so-

18http://grouplens.org/datasets/movielens/
19https://www.librarything.com/
20http://www.lastfm.com
21https://github.com/sisinflab/

LODrecsys-datasets
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Table 11
Statistics about the three datasets

Movielens LibraryThing Last.fm
Number of users 4,186 7,149 1,875

Number of items 3,196 4,541 2,432

Number of ratings 822,597 352,123 44,981

Data sparsity 93.85% 98.90% 99.01%

called top-N recommendation task, where just a cut-
off of the ranked list of size N is provided to the user.
This setting has recently replaced the rating prediction,
because of the increasing awareness that the user is
not interested in an accurate prediction of the item rat-
ing, but is looking for a (limited) list of items extracted
from the pool of available ones.

As evaluation ranking protocol for our comparison,
we adopted the all unrated items methodology pre-
sented in [85] and already used in [55]. This method-
ology asks to predict a score for each item not rated by
a user, irrespective of the existence of an actual rating,
and to compare the recommendation list with the test
set.

The metrics involved in the experimental compari-
son are three well-known ranking measures for recom-
mendation accuracy, i.e., precision, recall, F-score (F1)
and nDCG.

– precision@N [68] represents the fraction of rele-
vant items in the top-N recommendations.

– recall@N [68] indicates the fraction of relevant
items, in the user test set, occurring in the top-
N list. As relevance threshold, we set 4 for
Movielens and 8 for LibraryThing, as pre-
viously done in [55].

– The F1 score [68], i.e., the harmonic mean of pre-
cision and recall, is also pointed out to be thor-
ough. Although precision and recall are good in-
dicators to evaluate the accuracy of a recommen-
dation engine, they are not rank-sensitive.

– The normalized Discounted Cumulative Gain
nDCG@N [3] instead takes into account also the
position in the recommendation list, being de-
fined as

nDCG@N =
1

iDCG
·

N∑
i=1

2rel(u,i) − 1

log2(1 + i)
(12)

where rel(u, i) is a boolean function representing
the relevance of item i for user u and iDCG is a
normalization factor that sets nDCG@N value to
1 when an ideal ranking is returned [3].

As suggested in [85] and set up in [55], in the compu-
tation of nDCG@N we fixed a default “neutral” value
for those items with no ratings, i.e., 3 for Movielens
and 5 for LibraryThing.

All the results have been computed @10, i.e., con-
sidering the top-10 list recommended to each user and
then averaging across all users.

7.2.3. Experimental Setup
The target of this experimental section is two-fold.

On the one hand, we show that the proposed graph
embeddings technique outperforms other strategies for
feature creation. On the other hand, we combine it with
a hybrid RS and compare the resulting system’s rel-
ative performances with state of the art approaches.
The first goal is pursued by implementing an item-
based K-Nearest Neighbor method, hereafter denoted
as ItemKNN, with cosine similarity among features
vectors. As data mining features, the approaches based
on direct relations and graph substructures, as detailed
in Section 5.1, are considered.

For what concerns the comparison against some
of the most promising collaborative and hybrid ap-
proaches currently available, we consider the results
recently published in [55]. There, the authors show that
the best effectivenesses in terms of ranking accuracy is
reached by the following algorithms:

– SLIM [52] is a Sparse LInear Method for top-N
recommendation that learns a sparse coefficient
matrix for the items involved in the system by
only relying on the users purchase/ratings profile
and by solving a L1-norm and L2-norm regular-
ized optimization problem.

– BPR-SSLIM is a Sparse LInear Method using
item Side information (SSLIM) [53] and the
Bayesian Personalized Ranking (BPR) optimiza-
tion criterion [67].

– SPRank [55] is a novel hybrid recommender sys-
tem that solves the top-N recommendation prob-
lem in a learning to rank fashion, exploiting the
freely available knowledge in the Linked Open
Data to build semantic path-based features.

In [55], it has been proved that SPRank is able to
outperform SLIM and BPR-SSLIM (at least accord-
ing to Precision and nDCG) in those context charac-
terized by higher sparsity, where reasonably the con-
tribution of the content is more essential. For the sake
of completeness, it is necessary to remind that in [55]
the aforementioned approaches are tested against well
established collaborative algorithms for rating predic-
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Table 12
Results of the ItemKNN approach on Movielens dataset with ref-
erence to different computation of features.

Strategy Precision Recall F1 nDCG
types 0.00313 0.00145 0.00198 0.28864

categories 0.0305 0.02093 0.02482 0.30444
rel in 0.01122 0.00589 0.0077 0.29183

rel out 0.02844 0.01607 0.02053 0.30274
rel in & out 0.02852 0.01566 0.02021 0.3006
rel-vals in 0.03883 0.02293 0.02882 0.29411
rel-vals out 0.01279 0.00971 0.011 0.29378

rel-vals in & out 0.01174 0.00913 0.01027 0.29333

WC_4 0.00684 0.00343 0.0045 0.29032
WL_2_2 0.00601 0.00288 0.00389 0.28977

DB_TransE 0.03047 0.01411 0.01928 0.30385
DB_TransH 0.02649 0.01187 0.01639 0.30016
DB_TransR 0.00941 0.0043 0.0059 0.29216

DB2vec SG 200w 200v 4d 0.05423 0.02693 0.03598 0.31676
DB2vec CBOW 200w 200v 4d 0.03475 0.01637 0.02225 0.30426

DB2vec CBOW 500w 200v 4d 0.03893 0.02167 0.02784 0.30782
DB2vec CBOW 500w 500v 4d 0.03663 0.02088 0.02659 0.30557

DB2vec SG 500w 200v 4d 0.05681 0.03119 0.04027 0.31828
DB2vec SG 500w 500v 4d 0.05786 0.0304 0.03985 0.31726

DB2vec CBOW 500w 200v 8d 0.01064 0.00548 0.00723 0.29245
DB2vec CBOW 500w 500v 8d 0.01137 0.00567 0.00756 0.29289

DB2vec SG 500w 200v 8d 0.04424 0.02693 0.03347 0.30997
DB2vec SG 500w 500v 8d 0.02191 0.01478 0.01765 0.29863

WD2vec CBOW 200w 200v 4d 0.01217 0.00596 0.00800 0.29362
WD2vec CBOW 200w 500v 4d 0.01027 0.00427 0.0060 0.29211

WD2vec SG 200w 200v 4d 0.02902 0.01479 0.01959 0.30189
WD2vec SG 200w 500v 4d 0.02644 0.01246 0.01693 0.29967

tion, e.g., Biased Matrix Factorization [33], and for
items ranking, such as Bayesian Personalized Rank-
ing [67] and Soft Margin Ranking Matrix Factorization
[93]. Furthermore, two algorithms that work on hetero-
geneous information networks are also involved in the
comparison, i.e., PathRank [36], an extension of Per-
sonalized PageRank for heterogeneous networks, and
HeteRec [96], which represents the connectivity be-
tween users and items through a matrix factorization
algorithm that uses meta-path based latent features.

7.3. Results

We present the results by a purely content-based RS
and a hybrid RS using RDF2Vec.

7.3.1. Content-based Approach

The first experiment aims to point out the validity of
the proposed graph embeddings technique for feature
generation in the context of content-based RS, and re-
lies on a relatively simple recommendation algorithm,
i.e., the item-based K-Nearest Neighbor approach [68]
with cosine similarity. Formally, this method evaluates
the closeness of items through cosine similarity be-
tween the corresponding features vectors and then se-
lects a subset of those – the neighbors – for each item,
that will be used to estimate the rating of user u for a
new item i as follows:
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Table 13
Results of the ItemKNN approach on LibraryThing dataset with reference to different computation of features.

Strategy Precision Recall F1 nDCG
types 0.01854 0.04535 0.02631 0.16064

categories 0.06662 0.15258 0.09274 0.23733
rel in 0.04577 0.10219 0.06322 0.20196

rel out 0.04118 0.09055 0.05661 0.19449
rel in & out 0.04531 0.10165 0.06268 0.20115
rel-vals in 0.06176 0.14101 0.08589 0.22574
rel-vals out 0.06163 0.13763 0.08513 0.22826

rel-vals in & out 0.06087 0.13662 0.08421 0.22615

WC_4 0.00159 0.00306 0.00209 0.12858
WL_2_2 0.00155 0.00389 0.00221 0.12937

DB_TransE 0.01819 0.04705 0.02623 0.1585
DB_TransH 0.01466 0.03997 0.02145 0.15331
DB_TransR 0.00162 0.00341 0.00219 0.12947

DB2vec SG 200w 200v 4d 0.00442 0.00942 0.00601 0.13502
DB2vec CBOW 200w 200v 4d 0.00466 0.00933 0.00621 0.13595

DB2vec CBOW 500w 200v 4d 0.05127 0.11777 0.07143 0.21244
DB2vec CBOW 500w 500v 4d 0.05065 0.11557 0.07043 0.21039

DB2vec SG 500w 200v 4d 0.05719 0.12763 0.07898 0.2205
DB2vec SG 500w 500v 4d 0.05811 0.12864 0.08005 0.22116

DB2vec CBOW 500w 200v 8d 0.00836 0.02334 0.01231 0.14147
DB2vec CBOW 500w 500v 8d 0.00813 0.02335 0.01206 0.14257

DB2vec SG 500w 200v 8d 0.07681 0.17769 0.10725 0.25234
DB2vec SG 500w 500v 8d 0.07446 0.1743 0.10434 0.24809

WD2vec CBOW 200w 200v 4d 0.00537 0.01084 0.00718 0.13524
WD2vec CBOW 200w 500v 4d 0.00444 0.00984 0.00611 0.13428

WD2vec SG 200w 200v 4d 0.06416 0.14565 0.08907 0.23309
WD2vec SG 200w 500v 4d 0.06031 0.14194 0.08465 0.22752

r∗(u, i) =

∑
j∈ratedItems(u) cosineSim(j, i) · ru,j∑

j∈ratedItems(u) |cosineSim(j, i)|

(13)

where ratedItems(u) is the set of items already eval-
uated by user u, ru,j indicates the rating for item j
by user u and cosineSim(j, i) is the cosine similarity
score between items j and i. In our experiments, the
size of the considered neighbourhood is limited to 5.

The vector representation of items made of la-
tent features, output of the RDF graph embeddings
with graph walks, is evaluated against all the other
data mining features listed in Section 5.1. Tables 12,
13 and 14 contain the values of precision, recall, F-
score (F1) and nDCG, respectively for Movielens,

LibraryThing and Last.fm. The computation
of recommendations has been done with the publicly
available library RankSys.22

The first conclusion that can be drawn from Tables
12, 13 and 14 is that the best approach for all datasets
is retrieved with a skip-gram model, 500 walks per
entity and with a size of 200 for vectors built upon
DBpedia. Altough on Movielens, the highest value
of precision is achived using vector size of 500, the
size 200 is prevalent according to the F1 measure. A
substantial difference concerns the exploratory depth
of the random walks, since for Movielens the re-
sults related to a depth of 4 outperform those computed

22http://ranksys.org/
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Table 14
Results of the ItemKNN approach on Last.fm with reference to different computation of features.

Strategy Precision Recall F1 nDCG
types 0.00525 0.03256 0.009 0.01826

categories 0.01762 0.09889 0.02991 0.06023
rel in 0.00625 0.03625 0.01066 0.02042

rel out 0.00519 0.02757 0.00873 0.01733
rel in & out 0.00718 0.04205 0.01226 0.02567
rel-vals in 0.0185 0.10502 0.03145 0.06733
rel-vals out 0.00805 0.04585 0.01369 0.0248

rel-vals in & out 0.00339 0.01774 0.00569 0.00982

WC_4 0.00086 0.00401 0.00141 0.00241
WL_2_2 0.00086 0.00344 0.00137 0.00215

DB_TransE 0.01117 0.06078 0.01887 0.03953
DB_TransH 0.01409 0.07928 0.02392 0.04881
DB_TransR 0.0011 0.00523 0.00181 0.00381

DB2vec SG 200w 200v 4d 0.01 0.05498 0.01692 0.02911
DB2vec CBOW 200w 200v 4d 0.00929 0.05227 0.01577 0.03288

DB2vec CBOW 500w 200v 4d 0.01749 0.09915 0.02973 0.06435
DB2vec CBOW 500w 500v 4d 0.01769 0.10016 0.03006 0.06404

DB2vec SG 500w 200v 4d 0.02015 0.11109 0.03411 0.07232
DB2vec SG 500w 500v 4d 0.02001 0.10978 0.03385 0.07448

DB2vec CBOW 500w 200v 8d 0.00944 0.05349 0.01604 0.03311
DB2vec CBOW 500w 500v 8d 0.00964 0.0563 0.01646 0.03166

DB2vec SG 500w 200v 8d 0.0234 0.1359 0.03992 0.08719
DB2vec SG 500w 500v 8d 0.02088 0.12248 0.03567 0.07789

WD2vec CBOW 200w 200v 4d 0.00133 0.00785 0.00227 0.00382
WD2vec CBOW 200w 500v 4d 0.001 0.00532 0.00168 0.00408

WD2vec SG 200w 200v 4d 0.00612 0.03388 0.01036 0.02157
WD2vec SG 200w 500v 4d 0.00658 0.03932 0.01127 0.02382

with a depth of 8, while the tendency is reversed for
both LibraryThing and Last.fm. Secondly, the
advantage of the Skip-Gram model over CBOW is a
constant both on DBpedia and Wikidata and is partic-
ularly evident when the model involves longer random
walks, i.e., with depth 8.

Comparing the LOD datasets, it clearly emerges
that DBpedia lets to gain higher values than Wikidata
for each metric involved, but it turns out that Wiki-
data is quite effective on LibraryThing, where the
skip-gram vectors with depth of 4 exceed the corre-
sponding DBpedia vectors. Again, for the domains at
hand – books, movies, and musical works and artists
– DBpedia has a better level of detail (the average in
Table 5 is caused by the larger number of books in

Wikidata, where the long tail may be described at a
lower level of detail [69], but the head entities in the
LibraryThing dataset are described very well).

Moving to the features extracted from direct re-
lations, the contribution of the “categories” stands
clearly out, together with relations-values “rel-vals”,
especially when just incoming relations are consid-
ered: these features allow to achieve better results than
the approaches based on translating embeddings, i.e.,
DB_TransE, DB_TransH and DB_TransR. The use of
methods based on kernels for features extraction, i.e.,
WC_4 and WL_2_2 approaches, seems not to pro-
vide significant advantages to the recommendation al-
gorithm.
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Table 15
Examples of K-Nearest Neighbor sets on Movielens.

Query Movie K Nearest Neighbours
Batman Batman Forever, Batman Returns,

Batman & Robin, Superman IV:
The Quest for Peace, Dick Tracy

Bambi Cinderella, Dumbo, 101 Dalma-
tians , Pinocchio, Lady and the
Tramp

Star Trek: Generations Star Trek VI: The Undiscovered
Country, Star Trek: Insurrection,
Star Trek III: The Search for Spock,
Star Trek V: The Final Frontier, Star
Trek: First Contact

Fig. 4. Two-dimensional PCA projection of the 200-dimensional
Skip-Gram vectors of movies in Table 15.

To point out that the latent features built upon
RDF graph are able to capture its structure, placing
closely semantically similar items, some examples of
the neighbouring sets retrieved using the graph embed-
dings technique are provided. These sets are directly
exploited by the ItemKNN algorithm to produce rec-
ommendations. Table 15 is related to movies and to
the strategy “DB2vec SG 500w 200v 4d”, and displays
that neighboring items are highly relevant and close to
the query item, i.e., the item for which neighbors are
searched for. Figure 4 depicts the 2D PCA projection
of the movies in that table, showing that similar movies
are actually projected closely to each other.

7.3.2. Hybrid Approach
To second goal of our experiments is to show that a

hybrid recommender system, leveraging the item con-
tent built with the graph embeddings technique, can

compete against some of the most promising state of
the art approaches for recommendation. A hybrid RS
based on Factorization Machines is utilized, namely
the ranking factorization machine algorithm available
in the Graphlab recommender toolkit.23 This algo-
rithm allows to define both users and items side data.
Grounding on the capability to automatically cluster
semantically similar items pointed out by the exper-
iments of the previous section, the additional infor-
mation added to each item, as side data, is the list
of its 5 nearest neighbors. The tuning of the hyper-
parameters (specifically the numbers of latent factors
and the maximum number of iterations) has been car-
ried out through cross-validation on a validation set
obtained selecting the 15% of the ratings of each user
from the training set. The same choice for cross vali-
dation has been adopted for the competing recommen-
dations algorithms, as already done in [55].

Tables 16, 17, and 18 report, respectively for Movie-
lens, LibraryThing and Last.fm, the most
promising approach according to the analysis con-
ducted with the ItemKNN algorithm in Section 7.3.1
(Tables from 12 to 14) and the competing approaches
SPRank, SLIM and BPR-SSLIM.24 For BPR-SSLIM,
the resources directly connected to the items are used
as item side data, as in [55]. The prefix “H-” is used as
a notation for the hybrid RS grounding on the relative
feature vectors. SLIM and BPR-SSLIM are imple-
mented through the publicly available software library
MyMediaLite25 [19], while for SPRank, the imple-
mentation provided by its authors, available publicly,26

is used. We repeated the experiments three times for
each datasets and then averaged the results across the
three runs (reporting also the standard deviation).

Looking at Tables 16, 17 and 18, we can observe
performance improvements on all datasets and accord-
ing to each of the metrics involved, with the only ex-
ception of the precision on the Last.fm dataset. In
particular, on Movielens, the hybrid SPRank can-
not compete with the collaborative method SLIM and
to its extended version with side data, BPR-SSLIM,
probably because of the key contribution of collabora-
tive information on this dataset. In fact, Movielens

23https://dato.com/products/create/docs/
graphlab.toolkits.recommender.html

24The complete version of these tables and the code for
implementing the hybrid system are available at http:
//sisinflab.poliba.it/recommender-systems/
hybridSystemRDF2Vec.html

25http://www.mymedialite.net
26https://github.com/sisinflab/lodreclib
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Table 16
Comparative results on Movielens dataset. The differences be-
tween “H-DB2vec SG 500w 200v 4d” and the other methods are
statistically significant according to the Wilcoxon signed rank with
p < 0.001 (*) or p < 0.05 (**), with the only exception of SLIM
in terms of recall. The scores for “H-DB2vec SG 500w 200v 4d”,
averaged over three runs, are reported with the standard deviation.

Strategy Precision Recall F1 nDCG
H-DB2vec SG 500w 200v 4d 0.2698 ± 0.0012 0.1480 ± 0.0013 0.1911 ± 0.0013 0.4782 ± 0.0007

SPRank 0.1613* 0.0785* 0.1056 0.4056*

SLIM 0.2631* 0.1469 0.1885 0.4597*

BPR-SSLIM 0.2636* 0.1439** 0.1861 0.4674*

Table 17
Comparative results on LibraryThing dataset. The differences between “H-DB2vec SG 500w 200v 8d” and the other methods are statistically
significant according to the Wilcoxon signed rank with p < 0.001. The scores for “H-DB2vec SG 500w 200v 8d”, averaged over three runs,
are reported with the standard deviation.

Strategy Precision Recall F1 nDCG
H-DB2vec SG 500w 200v 8d 0.1061 ± 0.0016 0.241 ± 0.0036 0.1473 ±0.0022 0.3127 ± 0.005

SPRank 0.1019 0.2232 0.1399 0.3068

SLIM 0.0543 0.0988 0.07 0.2317

BPR-SSLIM 0.0962 0.2328 0.1361 0.3051

Table 18
Comparative results on Last.fm dataset. The differences between “H-DB2vec SG 500w 200v 8d” and the other methods are statistically
significant according to the Wilcoxon signed rank with p < 0.001. The scores for “H-DB2vec SG 500w 200v 8d”, averaged over three runs,
are reported with the standard deviation.

Strategy Precision Recall F1 nDCG
H-DB2vec SG 500w 200v 8d 0.0607 ± 0.0021 0.3408 ± 0.0143 0.103±0.003 0.2266 ± 0.01

SPRank 0.0841 0.2043 0.1191 0.1918

SLIM 0.0723 0.1548 0.0985 0.1395

BPR-SSLIM 0.0465 0.2649 0.0791 0.1759

is the denser dataset in the comparison, containing
only experienced users with more than fifty ratings.
Nevertheless, the approach “H-DB2vec SG 500w
200v 4d” outperforms the competing ones, reasonably
with the key contribution of factorization models in
FM. On the other datasets, whose sparsity better re-
produces real-world scenarios, the contribution of con-
tent appears more determinant. This emerges in par-
ticular on LibraryThing, where BPR-SSLIM and
SPRank overtake SLIM and “H-DB2vec SG 500w
200v 8d” improves the results even further. On the
third dataset, i.e., Last.fm, the hybrid approaches
generally perform better than SLIM (except on pre-
cision for BPR-SSLIM) and the approach based on
graph embeddings reports a further enhancement in
recall and nDCG. The results are statistically sig-
nificant according to the Wilcoxon signed rank with
p < 0.001, for less than a different specification.

In conclusion, the choice of using Factorization Ma-
chines and of building item side data by means of the
RDF graph embeddings technique, turns out to be fa-
vorable for fostering accuracy in general and getting
improvements, on every dataset, on the rank-sensitive
metric nDCG. We remind that the importance of pro-
viding to the user an opportunely ranked list of recom-
mendations is nowadays recognized as fundamental in
the RS research community.

8. Conclusion and Outlook

In this paper, we have presented RDF2Vec, an ap-
proach for learning latent numerical representations
of entities in RDF graphs. In this approach, we first
convert the RDF graphs in a set of sequences using
two strategies, Weisfeiler-Lehman Subtree RDF Graph
Kernels and graph walks, which are then used to build
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neural language models. The evaluation shows that
such entity representations could be used in three dif-
ferent tasks. In each of those tasks, they were capa-
ble of outperforming standard feature generation ap-
proaches, i.e., approaches that turn (subsets of) RDF
graphs into propositional models.

We have explored different variants of building em-
bedding models. While there is no universally best per-
forming approach, we can observe some trends. With
respect to the first step of the transformation, i.e., the
construction of sequences, kernel transformations lead
to better results than (random) walks. However, they
do not scale well to large-scale knowledge graphs,
such as DBpedia or Wikidata. With respect to the sec-
ond step, i.e., the actual computation of the embed-
dings, we have observed that Skip-Gram (SG) models
in most cases outperform Continuous-Bag-of-Words
(CBOW) models. The other characteristics of the mod-
els (e.g., the dimensionality of the embedding space)
show less clear trends towards an optimal setting.

While constructing a vector space embedding for
a large-scale knowledge graph, such as DBpedia or
Wikidata, can be computationally expensive, we have
shown that this step has to be taken only once, as the
embeddings can be reused on various tasks. This is par-
ticularly interesting for such cross-domain knowledge
graphs, which can be used in a variety of scenarios and
applications.

For the moment, we have defined some constraints
for the construction of the embeddings. We do not use
literal values, and we do not particularly distinguish
between the schema and the data level of a graph. The
former constraint has some limitations, e.g., when it
comes to the tasks of determining entity similarity: for
example, the similarity of two movies in terms of re-
lease date and budget or the similarity of two cities in
terms of area and population is currently not captured
by the models. Schema level and data level similar-
ity are currently implicitly interwoven, but in partic-
ular for knowledge graphs with richer schemas (e.g.,
YAGO with its type hierarchy of several hundred thou-
sand types), distinguishing embeddings of the schema
and data level might become beneficial.

Apart from using vector space embeddings when ex-
ploiting LOD data sources, they may also become an
interesting technique for improving those sources as
such, for example knowledge base completion [38].
Among others, the proposed approach could also be
used for link prediction, entity typing, or error detec-
tion in knowledge graphs [62], as shown in [43,49].
Similarly to the entity and document modeling, the

approach can be extended for entity summarization,
which is also an important task when consuming and
visualizing large quantities of data [9].

Summarizing, we have shown that it is possible
to adapt the technique of word embeddings to RDF
graphs, and that those embeddings lead to compact
vector representations of entities. We have shown that
those vector representations help building approaches
which outperform many state of the art tools on various
tasks, e.g., data mining with background knowledge
or recommender systems. Furthermore, the proposed
vector space representations are universal in the sense
that they are not task specific, i.e., a vector space em-
bedding for a general graph like DBpedia or Wikidata
can be built once and reused for several tasks. As the
embeddings used in this paper are publicly available,
they are a versatile asset which can be exploited for
various knowledge-intensive tasks in future research.
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[34] Kramer, S., Lavrač, N., Flach, P.: Propositionalization ap-
proaches to relational data mining. In: Relational Data Mining,
pp. 262–291. Springer Berlin Heidelberg (2001)

[35] Lee, M.D., Pincombe, B., Welsh, M.: An empirical evalua-
tion of models of text document similarity. In: Proceedings of
the Annual Meeting of the Cognitive Science Society. vol. 27
(2005)

[36] Lee, S., Park, S., Kahng, M., Lee, S.g.: Pathrank: A novel
node ranking measure on a heterogeneous graph for rec-
ommender systems. In: Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge Man-
agement. pp. 1637–1641. CIKM ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/
2396761.2398488

[37] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas,
D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P.,
Auer, S., Bizer, C.: DBpedia – A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia. Semantic Web
6(2), 167–195 (2015)

[38] Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning en-
tity and relation embeddings for knowledge graph comple-
tion. In: Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence. pp. 2181–2187. AAAI’15,
AAAI Press (2015), http://dl.acm.org/citation.
cfm?id=2886521.2886624

[39] Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for rdf
data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Pre-
sutti, V. (eds.) The Semantic Web: Research and Applications,
pp. 134–148. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[40] Middleton, S.E., Roure, D.D., Shadbolt, N.R.: Ontology-Based
Recommender Systems, pp. 779–796. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2009), http://dx.doi.org/
10.1007/978-3-540-92673-3_35

[41] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Effi-
cient estimation of word representations in vector space.
Computing Research Repository abs/1301.3781 (2013),
http://dblp.uni-trier.de/db/journals/
corr/corr1301.html#abs-1301-3781

[42] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean,
J.: Distributed representations of words and phrases and their
compositionality. In: Advances in neural information process-
ing systems. pp. 3111–3119 (2013)

[43] Minervini, P., Fanizzi, N., d’Amato, C., Esposito, F.: Scal-
able learning of entity and predicate embeddings for knowl-
edge graph completion. In: 2015 IEEE 14th International Con-
ference on Machine Learning and Applications (ICMLA). pp.
162–167. IEEE (2015)

[44] Musto, C., Semeraro, G., De Gemmis, M., Lops, P.: Word em-
bedding techniques for content-based recommender systems:
an empirical evaluation. In: RecSys Posters, ser. CEUR Work-
shop Proceedings, P. Castells, Ed. vol. 1441

[45] Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Random In-
dexing and Negative User Preferences for Enhancing Content-
Based Recommender Systems, pp. 270–281. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011), http://dx.doi.
org/10.1007/978-3-642-23014-1_23

[46] Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Contextual
eVSM: A Content-Based Context-Aware Recommendation
Framework Based on Distributional Semantics, pp. 125–136.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-39878-0_12

[47] Mynarz, J., Svátek, V.: Towards a benchmark for LOD-
enhanced knowledge discovery from structured data. In: The
Second International Workshop on Knowledge Discovery and
Data Mining Meets Linked Open Data (2013)

[48] Narasimha, V., Kappara, P., Ichise, R., Vyas, O.: Liddm: A data
mining system for linked data. In: Workshop on Linked Data
on the Web. CEUR Workshop Proceedings. vol. 813, p. 108
(2011)

[49] Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of
relational machine learning for knowledge graphs. Proceedings
of the IEEE 104(1), 11–33 (2016)

[50] Nickel, M., Rosasco, L., Poggio, T.: Holographic embed-
dings of knowledge graphs. In: Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence. pp. 1955–
1961. AAAI’16, AAAI Press (2016), http://dl.acm.
org/citation.cfm?id=3016100.3016172

[51] Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for
collective learning on multi-relational data. In: Proceedings of
the 28th international conference on machine learning (ICML-
11). pp. 809–816 (2011)

[52] Ning, X., Karypis, G.: SLIM: sparse linear methods for top-
n recommender systems. In: 11th IEEE International Confer-
ence on Data Mining, ICDM 2011, Vancouver, BC, Canada,
December 11-14, 2011. pp. 497–506 (2011), http://dx.
doi.org/10.1109/ICDM.2011.134

[53] Ning, X., Karypis, G.: Sparse linear methods with side in-
formation for top-n recommendations. In: Proceedings of the
Sixth ACM Conference on Recommender Systems. pp. 155–
162. RecSys ’12, ACM, New York, NY, USA (2012), http:
//doi.acm.org/10.1145/2365952.2365983

[54] Noia, T.D., Ostuni, V.C., Rosati, J., Tomeo, P., Scias-
cio, E.D., Mirizzi, R., Bartolini, C.: Building a relat-
edness graph from linked open data: A case study in
the it domain. Expert Systems with Applications 44,
354 – 366 (2016), http://www.sciencedirect.com/
science/article/pii/S0957417415005941

[55] Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: Sprank:
Semantic path-based ranking for top-n recommendations us-
ing linked open data. ACM Trans. Intell. Syst. Technol. 8(1),
9:1–9:34 (Sep 2016), http://doi.acm.org/10.1145/
2899005

[56] Nunes, B.P., Fetahu, B., Kawase, R., Dietze, S., Casanova,
M.A., Maynard, D.: Interlinking Documents Based on Seman-
tic Graphs with an Application, pp. 139–155. Springer Interna-
tional Publishing, Cham (2015), https://doi.org/10.
1007/978-3-319-13545-8_9

[57] Oramas, S., Ostuni, V.C., Noia, T.D., Serra, X., Sciascio, E.D.:



RDF2Vec: RDF Graph Embeddings and Their Applications 31

Sound and music recommendation with knowledge graphs.
ACM Trans. Intell. Syst. Technol. 8(2), 21:1–21:21 (Oct 2016),
http://doi.acm.org/10.1145/2926718

[58] Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-
n recommendations from implicit feedback leveraging linked
open data. In: Proceedings of the 7th ACM Conference
on Recommender Systems. pp. 85–92. RecSys ’13, ACM,
New York, NY, USA (2013), http://doi.acm.org/10.
1145/2507157.2507172

[59] Ozsoy, M.G.: From word embeddings to item recommenda-
tion. arXiv preprint arXiv:1601.01356 (2016)

[60] Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A.,
Szekely, P.: Efficient graph-based document similarity.
In: Proceedings of the 13th International Conference on
The Semantic Web. Latest Advances and New Domains
- Volume 9678. pp. 334–349. Springer-Verlag, Berlin,
Heidelberg (2016), https://doi.org/10.1007/
978-3-319-34129-3_21

[61] Paulheim, H.: Exploiting linked open data as background
knowledge in data mining. In: Proceedings of the 2013
International Conference on Data Mining on Linked Data
- Volume 1082. pp. 1–10. DMoLD’13, CEUR-WS.org,
Aachen, Germany, Germany (2013), http://dl.acm.
org/citation.cfm?id=3053776.3053778

[62] Paulheim, H.: Knowledge graph refinement: A survey of ap-
proaches and evaluation methods. Semantic Web (Preprint), 1–
20 (2016)

[63] Paulheim, H., Fümkranz, J.: Unsupervised generation of data
mining features from linked open data. In: Proceedings of the
2nd international conference on web intelligence, mining and
semantics. p. 31. ACM (2012)

[64] Paulheim, H., Ristoski, P., Mitichkin, E., Bizer, C.: Data min-
ing with background knowledge from the web. RapidMiner
World pp. 1–14 (2014)

[65] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining. pp. 701–710. ACM (2014)

[66] Rendle, S.: Factorization machines with libfm. ACM Trans-
actions Intelligent Systems and Technology 3(3), 57:1–
57:22 (May 2012), http://doi.acm.org/10.1145/
2168752.2168771

[67] Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme,
L.: Bpr: Bayesian personalized ranking from implicit feed-
back. In: Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence. pp. 452–461. UAI ’09, Ar-
lington, Virginia, United States (2009), http://dl.acm.
org/citation.cfm?id=1795114.1795167

[68] Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender
Systems Handbook. Springer-Verlag New York, Inc., New
York, NY, USA, 2nd edn. (2015)

[69] Ringler, D., Paulheim, H.: One knowledge graph to rule them
all? analyzing the differences between dbpedia, yago, wikidata
and co. In: 40th German Conference on Artificial Intelligence
(2017)

[70] Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked
data with rapidminer. Web Semantics: Science, Services and
Agents on the World Wide Web 35, 142–151 (2015)

[71] Ristoski, P., Mencía, E.L., Paulheim, H.: A hybrid multi-
strategy recommender system using linked open data. In:
Semantic Web Evaluation Challenge, pp. 150–156. Springer

(2014)
[72] Ristoski, P., Paulheim, H.: A comparison of proposition-

alization strategies for creating features from linked open
data. In: Proceedings of the 1st International Conference on
Linked Data for Knowledge Discovery - Volume 1232. pp.
1–11. LD4KD’14, CEUR-WS.org, Aachen, Germany, Ger-
many (2014), http://dl.acm.org/citation.cfm?
id=3053827.3053828

[73] Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for
data mining. In: International Semantic Web Conference. pp.
498–514. Springer (2016)

[74] Ristoski, P., Paulheim, H.: Semantic web in data mining and
knowledge discovery. Web Semant. 36(C), 1–22 (Jan 2016),
http://dx.doi.org/10.1016/j.websem.2016.
01.001

[75] Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection
of benchmark datasets for systematic evaluations of machine
learning on the semantic web. In: Groth, P., Simperl, E., Gray,
A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.)
The Semantic Web – ISWC 2016. pp. 186–194. Springer Inter-
national Publishing, Cham (2016)

[76] Rosati, J., Ristoski, P., Noia, T.D., Leone, R.D., Paulheim, H.:
Rdf graph embeddings for content-based recommender sys-
tems. In: Proceedings of the 3rd Workshop on New Trends
in Content-based Recommender Systems (CBRecSys 2016)
(September 2016)

[77] Sahlgren, M.: An introduction to random indexing. In: In
Methods and Applications of Semantic Indexing Workshop at
the 7th International Conference on Terminology and Knowl-
edge Engineering, TKE 2005 (2005)

[78] Salakhutdinov, R., Mnih, A.: Bayesian probabilistic ma-
trix factorization using markov chain monte carlo. In: Pro-
ceedings of the 25th International Conference on Ma-
chine Learning. pp. 880–887. ICML ’08, ACM, New York,
NY, USA (2008), http://doi.acm.org/10.1145/
1390156.1390267

[79] Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of
the linked data best practices in different topical domains. In:
Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock,
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