
Estimating query rewriting quality over LOD
Ana I. Torre-Bastida a,*, Jesús Bermúdez b and Arantza Illarramendi b

a Optima, Tecnalia Research & Innovation, Pais Vasco, Spain
E-mail: isabel.torre@tecnalia.com
b Computer Languages and Systems, Basque Country University UPV-EHU, Pais Vasco, Spain
E-mails: jesus.bermudez@ehu.es, a.illarramendi@ehu.es

Editors: Dhaval Thakker, University of Bradford, United Kingdom; Daniel Schwabe, Catholic University in Rio de Janeiro (PUC-Rio), Brazil;
Kouji Kozaki, Osaka University, Japan; Roberto García, Universitat de Lleida, Spain; Marco Brambilla, Politecnico di Milano, Italy; Vania
Dimitrova, University of Leeds, United Kingdom
Solicited reviews: Roberto García, Universitat de Lleida, Spain; Luiz André Portes Pais Leme, Universidade Federal Fluminense, Brazil; Kouji
Kozaki, Osaka University, Japan; Martin Rezk, Rakuten Inc.; Jefferson Santos, Federal Institute of Science and Technology (IFRS), Brazil; one
anonymous reviewer

Abstract. Nowadays it is becoming increasingly necessary to query data stored in different datasets of public access, such as
those included in the Linked Data environment, in order to get as much information as possible on distinct topics. However,
users have difficulty to query those datasets with different vocabularies and data structures. For this reason it is interesting to
develop systems that can produce on demand rewritings of queries. Moreover, a semantics preserving rewriting cannot often
be guaranteed by those systems due to heterogeneity of the vocabularies. It is at this point where the quality estimation of the
produced rewriting becomes crucial. In this paper we present a novel framework that, given a query written in the vocabulary
the user is more familiar with, the system rewrites the query in terms of the vocabulary of a target dataset. Moreover, it informs
about the quality of the rewritten query with two scores: a similarity factor which is based on the rewriting process itself, and a
quality score offered by a predictive model. This Machine Learning based model learns from a set of queries and their intended
(gold standard) rewritings. The feasibility of the framework has been validated in a real scenario.
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1. Introduction

The increasing adoption of the Linked Open Data
(LOD) paradigm has generated a distributed space of
globally interlinked data, usually known as the Web of
Data. This new space opens up the possibility of query-
ing over a huge set of updated data. However, many
users find difficulties when formulating queries over it,
due to the fact that they are not familiar with the data,
links and vocabularies of many heterogeneous datasets
that constitute the Web of Data. In this scenario it be-
comes necessary to provide the users with tools and
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mechanisms that help them to exploit the vast amount
of available data.

We can find in the specialized literature different
proposals that have considered the goal of facilitating
the task of querying heterogeneous datasets. We can
highlight three main approaches among those propos-
als: 1) those that generate a kind of centralized repos-
itory that contains all the data of different datasets and
then queries are formulated over that repository (e.g.
[1]); 2) those that follow the federated query process-
ing approach (e.g. [2]) in which a query against a fed-
eration of datasets is split into sub-queries that can be
answered in the individual nodes where datasets are
stored; and 3) those that follow the exploratory query
processing approach (e.g. [3]), which take advantage
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of the dereferenceable IRIs principle promoted by
Linked Data. In this approach, query execution begins
in a source dataset and is intertwined with the traver-
sal of the HTTP dereferenceable IRIs to retrieve more
data, from different nodes, that incorporate additional
data for answering parts of the query and include more
IRIs that can be successively dereferended to augment
the queried dataset until the initial query is sufficiently
answered. The two first approaches require a costly
preparation task and the last one is mainly oriented
to leverage the dereferencing architecture of Linked
Data.

In the centralized and federated approaches, users
pose queries using the vocabulary chosen for the global
schema and can only expect answers from the cen-
tralized repository or from federated datasets. How-
ever, it is very common that several datasets offer
data on the same or overlapped domains. For exam-
ple, GeoData and Geo Linked Data in the geographic
domain, BNE (Biblioteca Nacional de España) and
BNF (Bibliothèque National de France) in the biblio-
graphic domain, MusicBrainz and Jamendo in the mu-
sic domain, or Drugbank and Diseasome in the bio do-
main. Each centralized repository or a datasets feder-
ation only considers a limited collection of datasets
and, therefore, cannot help a user with datasets that are
out of the collection. Moreover, it seems interesting for
the users to pose queries to a preferred dataset whose
schema and vocabulary is sufficiently known by them
and then a system could help those users enriching the
answers to the query with data taken from a domain
sharing dataset although with different vocabulary and
schema. Our approach considers that type of systems.
Notice that a proper rewriting of the query must be
eventually managed by those systems.

In general, those kind of systems can be very use-
ful in different scenarios. For example, an ordinary
user posing a keyword-based query to a question an-
swering system, which constructs a SPARQL query to
be run on a source dataset, and then demanding for
more answers from a dataset with different vocabulary.
Another scenario can be that of scientists formulating
queries over source datasets they are familiar with, and
then, demanding more answers by accessing other dif-
ferent datasets, not requiring strict query equivalence
but giving a chance to serendipity (notice that scientists
need not be aware of the internal structure/vocabulary
of the new target datasets). A third scenario can be that
of an application programmer trying to query the En-
glish DBpedia using terms extracted from the user de-
fined Spanish Wikipedia infoboxes (or whatever lan-

guage Wikipedia), which are not mapped with official
DBpedia terms. Then, in order to get some answers,
a transformation of the source query is needed in or-
der to be adequately expressed for the English DBpe-
dia. The relevant common feature of all these scenar-
ios is the need to cope with the vocabulary and schema
heterogeneity of the stored data. Notice that such het-
erogeneity may reach the conceptual level leading to
different granularity knowledge and to the point that
some notions are conceptualized in one dataset but not
in the others.

Our system deals with a query rewriting process
where the preservation of the semantics is not a strong
requirement and therefore it considers semantics-
preserving and non-semantics-preserving rewritings
in order to increase the opportunities of getting re-
sults. When a non-semantics-preserving scenario is
considered, the definition of a quality estimation of
the rewritten query becomes crucial because the user
needs to be aware of the confidence that can be de-
posited on the results obtained from the new dataset.

As a motivating example, let us imagine a user that
is only familiar with the LinkedMDB vocabulary (a
dataset about movies and their related people). This
user asks for the films and the names of art directors
working on those films directed by Woody Allen and
performed by Sean Penn. The SPARQL query con-
structed by the user could be the following one:

PREFIX mdb: < h t t p : / / d a t a . l inkedmdb . o rg /
r e s o u r c e / movie / >

SELECT DISTINCT ? movie ?name
WHERE {

?woody mdb : d i r e c t o r _ n a m e "Woody A l l e n " .
? movie mdb : d i r e c t o r ?woody ;

mdb : a c t o r ? a c t o r ;
mdb : f i l m _ a r t _ d i r e c t o r ? a r t .

? a c t o r mdb : ac to r_name " Sean Penn " .
? a r t mdb : f i l m _ a r t _ d i r e c t o r _ n a m e ?name . }

Listing 1: Films and names of art directors working on
those films directed by Woody Allen and performed by
Sean Penn.

and the obtained results are listed on table 1:

?movie ?name
db:film/38778 “Tom Warren"

Table 1
Query results from LinkedMDB.

Given the scarcity of the response or its inadequacy,
the user would find useful to execute the same query in



other datasets, perhaps more recognized ones or more
active ones, trying to obtain more results. A good ex-
ample of those datasets may be DBpedia. Using our
system the user could obtain the following reformula-
tion of the query, according to the DBpedia vocabu-
lary:

PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
SELECT DISTINCT ? movie ?name
WHERE {

?woody f o a f : name "Woody A l l e n "@en .
? movie dbo : d i r e c t o r ?woody ;

dbo : s t a r r i n g ? a c t o r .
dbo : c i n e m a t o g r a p h y ? a r t .

? a c t o r f o a f : name " Sean Penn "@en .
? a r t f o a f : name ?name . }

Listing 2: Films and names of cinematographers
working on those films directed by Woody Allen and
performed by Sean Penn.

This reformulation was based on some declared
mapppings. In particular, mdb:director was declared an
equivalent property to dbo:director in a set of RDF
triples published as an Open Linked Data file1, cap-
tured from the web, and incorporated into a local
Open Link Virtuoso RDF Store which allows to ac-
cess them through a local SPARQL endpoint. More-
over, properties mdb:director_name, mdb:actor_name and
mdb:film_art_director_name were declared as subproper-
ties of foaf:name in the form of mappings by the own
LinkedMDB dataset2. Although no declared mapping
for mdb:film_art_director was found, the system pro-
posed the term dbo:cinematography as an approximation
to the original one, the same happened with the prop-
erties: mdb:actor and dbo:starring (in section 4 we will
show how this kind of proposed approximations can
be discovered). The results obtained by the query in
listing 2 are presented on table 2:

?movie ?name
dbr:Sweet_and_Lowdown “Zhao Fei"
dbr:Sweet_and_Lowdown 赵非

Table 2
Query results from DBpedia. dbr:<http://dbpedia.org/resources/>

Notice that new results appeared when querying the
DBpedia dataset, which may be of interest to the user.

1http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/examples/
mappings.ttl

2http://wiki.linkedmdb.org/Main/Interlinking

Moreover, which further enriches the answer is the
provision of some quality estimation of the reformu-
lated query. It is at this point where a main contribu-
tion of this paper plays a relevant role. In this particular
case, our system offered a similarity factor of 0.86 and
a quality score of 0, 79. The meaning of these features
will be explained in subsequent sections.

In general, quality estimation can be defined in
terms of a query similarity measure between the source
and target queries (source query, formulated over the
initial dataset, and target query, formulated over an-
other dataset of the Web of Data indicated as target).
However, when comparing two queries, different sim-
ilarity dimensions can be considered [4]: (1) the query
structure, expressed as a string or a graph structure;
(2) the query content, its triple patterns and ontological
terms and literal values; (3) the language features, such
as query operators and modifiers; and (4) the results set
retrieved by the query. Queries may be assessed with
respect to one or several of that considered dimensions.
And it is widely accepted that the application context
heavily determines the choice for a similarity measure.
We think that the more relevant dimensions to be taken
into account in the scenario considered in this paper
are (2) the content and (4) the result set. After all, struc-
ture and language features of a target query seem to be
of less relevance to inform the user about the intended
similarity spirit to the formulated source query. There-
fore, (1) structure and (3) language dimensions are not
considered in the proposed assessment. Although the
result set is what matters to the user, it is crucial to
notice that the intention of issuing the query to a tar-
get dataset is to look for more or different results than
those obtained by the source query. Therefore, the in-
tended result set of the target query cannot be com-
pared with that of the source query in terms of exact
matching and the query similarity measure must take
into account this distinctive feature.

In summary, a main contribution of this paper is
an approach that estimates the quality of rewritten
queries, including non-semantics-preserving rewrit-
ing, to search the distributed space of globally in-
terlinked data, that is different from the centralized
repository, federated, and exploratory aforementioned
approaches. Terms for the source query can be se-
lected from a preferred schema or vocabulary instead
of that offered by the centralized approach or feder-
ated schema. Moreover, target datasets are not limited
to those comprising the centralized repository or the
federation. Technical contributions to support the pro-
posed approach are: (1) A proposal of a general frame-



work for the deployment and management of a query
rewriting system concerning the scenario previously
explained. And, (2) the validation of the framework in
a real context, including the machine learning and op-
timization techniques used to estimate the quality of
the rewriting outcome.

Proposal of a general Framework. We propose a
new framework that groups the following components:
query rewriting rules, an algorithm to manage the
rules, a set of similarity measures, and a predictive
model. This framework would be oriented to two types
of users:

– End users, who formulate a query over a source
dataset and then the system issues a new query,
which mimics the original one, over a target
dataset (of the Web of Data) whose results further
enrich the answer. The new issued query is anno-
tated with a similarity factor between queries and
a quality score.

– Expert/technical users who, in addition to ben-
efiting from the functionalities provided for end
users, can also include in the framework: new
rewriting rules, algorithms to process them, and
similarity measures to qualify the query rewriting.
The framework would also provide them with fa-
cilities to tune the introduced similarity measures
by means of optimization techniques. The rewrit-
ing rules, similarity measures and training queries
introduced could be stored in the log of the frame-
work with the idea of serving as experimental and
comparison benchmark.

Validation of the Framework. The framework has
been tested in a real context. For that, we have instan-
tiated the framework with the following elements:

– Query rewriting rules. Apart from some rules
dealing with the rewriting of terms by their
specified equivalents, via synonym mappings or
EDOAL (Expressive and Declarative Ontology
Alignment Language) [5] alignment rules, the
framework also deals with some other heuristic
based rules which conform a carefully controlled
set of cases.

– An algorithm to schedule the application of the
rules.

– Similarity measures. The computation of the sim-
ilarity factor takes into account different similar-
ity measures depending on the motif of the rule
being applied. Those motifs range from relational

to ontological structure, and from language based
to context based similarity.

– Queries. 100 queries were formulated over the
previously selected datasets. Three domain ar-
eas were considered for the datasets: media-
domain, bibliographic, and life science. From
the media-domain six datasets were selected,
five datasets from the bibliographic domain, and
five more from the life science domain, respec-
tively. When selecting the queries, our aim was
to get a set that would contain a broad spec-
trum of SPARQL query types [6]. Concerning
provenance we selected queries that appeared in
well known benchmarks such as QALD4 or Fed-
Bench, and we also considered queries that be-
longed to LOD SPARQL endpoints logs from the
selected datasets.

– Predictive model. A model has been created using
a supervised machine learning method applied to
the considered experimental scenario to predict
the F1 score of each rewritten query.

The rest of the paper is organized as follows. Sec-
tion 2 presents some related work in the scope of re-
source matching and query rewriting. Section 3 intro-
duces a description of the main features of the pro-
posed framework. Section 4 shows a framework em-
bodiment. Section 5 describes the framework valida-
tion results. Finally, some conclusions are presented.

2. Related work

The impressive growth of the Web of Data has
pushed the research on Data Linking [7]: “the task
of determining whether two object descriptions can
be linked one to the other to represent the fact that
they refer to the same real-world object in a given
domain or the fact that some kind of relation holds
between them". Those object descriptions can be ex-
pressed with diverse structural relationships, depend-
ing on different contexts, using classes and proper-
ties from different ontologies. Research on object sim-
ilarity and class matching has issued a considerable
amount of techniques and systems in the field of On-
tology Matching [8], although less work has been de-
vised for property alignment [9, 10]. The work in [11]
presents an unsupervised learning process for instance
matching between entities. Queries considered in this
paper involve terms for classes, properties and indi-
viduals. Therefore, techniques for discovering similar-



ity for any of them are relevant. However, the topic of
this paper regards query similarity, which can be rec-
ognized as a different problem. As has been noticed
in [4], the appropriate notion of query similarity de-
pends on the goal of the task. In our case, the task
is to estimate the similarity of the intended semantics
between a query designed for a source dataset and a
rewriting to a different vocabulary, to be evaluated in a
different target dataset.

Some works, for example [12, 13], have approached
a restricted version of the task carried out in our case.
They restrict themselves to produce semantic preserv-
ing translations (i.e. total similarity) and so they as-
sume that enough equivalent correspondences exist
among entities in datasets. Taking into account that
such an assumption is too strong in real scenarios
we consider situations where different types of corre-
spondences exist (not only of equivalence type) and
even more, situations where some correspondences are
missing. This consideration implies that query seman-
tics is sometimes not preserved in the rewriting pro-
cess and therefore the estimation of similarity of the
produced rewriting becomes crucial.

The aim of our considered rewriting is to look for
more answers in a target dataset than those obtained
from the source dataset. Some other works have the
goal of obtaining more answers (including approxi-
mate ones) for an original query; however, all of them
restrict their scope to a single source dataset. In [14]
they propose a logical relaxation of conditions in con-
junctive queries based on RDFS semantics. Those con-
ditions are successively turned more general and a
ranking in the successively obtained answers is gener-
ated. [15, 16] use the same kind of relaxations as [14],
but propose different ranking models. In [15], similar-
ity of relaxed queries is measured with a model based
on the distance between nodes in the ontology hier-
archy. In [16], they use an information content based
model to measure similarity of relaxed queries. The
work in [17] addresses the query relaxation problem
by broadening or reformulating triple patterns of the
queries. Their framework admits replacement of terms
by other terms or by variables and also removal of en-
tire triple patterns. In that work, generation and rank-
ing of relaxed queries is guided by statistical tech-
niques: a distance between the language models asso-
ciated to entity documents is defined. All those works
can be situated under the topic of query relaxation.

With different use cases in mind, the papers [18–
20] present different possibilities for approaching the
querying of Linked Data. In [19] a framework for re-

laxation of star-shaped SPARQL queries is proposed.
They present different matchers (functions that map
pairs of values to a relaxation score) for different
kinds of attributes (numeric, lexical or categorical).
The framework may involve multiple matchers. The
matchers generate a tuple of numeric distances be-
tween a query and an entity (answer for the query). No-
tice that the distance is defined between an entity and
a query, not between two queries as in our approach.
[18] proposes a measure to evaluate the similarity be-
tween a graph representing a query and a graph rep-
resenting the dataset. With a suitable relaxation of the
notion of alignment between query graph paths and
dataset graph paths they generate approximate answers
to queries. In [20] a method for query approximation,
query relaxation, and their combination is proposed
for providing flexible querying capabilities that assist
users in formulating queries. Query answers are ranked
in order of increasing distance from the user’s original
query.

In summary, cited works that transform the query or
reformulate the notion of answer in order to provide
users with more answers from the source dataset, do
not try to reformulate the query in a different dataset
with different vocabulary and data structure; and this
is a distinguishing feature of our use case.

It is worth mentioning another data access paradigm
that uses query rewriting. In the Ontology Based Data
Access (OBDA) paradigm, an ontology provides a
conceptual view of the data and a vocabulary for user
queries [21]. Users pose queries in terms of a conve-
nient conceptualization and familiar vocabulary, with-
out being aware of the details of the structure of data
sources. SPARQL can be considered as a query lan-
guage in this paradigm [22], and the SPARQL query
must be rewritten in an appropriate query language for
the underlying data source which, for instance, could
be SQL for relational databases. Such rewritting is
based on mappings between terms in the ontology and
(in case of relational databases) views of the relational
schema. R2RML [23] is a W3C standard language
for specifying those mappings. A sufficiently complete
set of mappings must be specified in order to rewrite
the query, since OBDA paradigm intends to process
a query, over the underlying data source, which is se-
mantically equivalent to the query posed by the user
with the ontology vocabulary. Notwithstanding the rel-
evance of OBDA paradigm, we point out that it tack-
les with a different problem to the stated one in this
paper. OBDA rewrites a query to adapt it to another
data model. The problem tackled in this paper is to



rewrite a SPARQL query to adapt it to another vocabu-
lary without considering complete mappings between
the respective vocabularies.

3. Abstract framework

An abstract representation of the proposed frame-
work for rewriting a query and estimating the quality
of the rewritten query, can be expressed as a structure
(R, A, Q, P) where

– R is a set of SPARQL query rewriting rules,
– A is the algorithm for applying the rules,
– Q is a rewriting quality estimation system, com-

posed of three elements (M, V , SF) such that

∗ M is a set of similarity measures between frag-
ments of query expressions,

∗ V : R →M is an application that associates a
similarity measure to each rule, and

∗ SF : R∗ → [0, 1] associates each sequence of
applied rewriting rules with a similarity factor
from the [0, 1] real interval,

– P is a predictive model which estimates a quality
score for the target query.

The part of a SPARQL query to be rewritten by rules
in R is the graph pattern in the WHERE clause of the
query. A graph pattern consists of a set of triple pat-
terns. A triple pattern is a triple (s, p, o) where s is
the subject, p is the predicate, and o is the object. The
three of them represent resources and any of them can
be a variable (denoted by prefixing it with a question
mark, for instance ?x). The rule language is a variation
of the CONSTRUCT query form of SPARQL 1.1, as
follows:

REPLACE t empla te
BY t empla te
WHEN {

graph p a t t e r n
}

The REPLACE clause presents a template that
should be matched to a part of the graph pattern in the
query being rewritten. This matching is the trigger of
the rule. A template is a graph pattern including three
kinds of tokens: IRI tokens, variable tokens, and wild
tokens. A IRI token only binds to IRIs in the graph pat-
tern of the query, a variable token only binds to vari-
ables, and a wild token binds to both. IRI tokens are

prefixed by s: or t: meaning that they only bind to IRIs
in the source or target dataset, respectively. Variable
tokens are prefixed with a question mark. Wild tokens
are prefixed with a hash, for instance #u. The matched
part in the graph pattern of the query will be replaced
by the binded template in the BY clause if the graph
pattern in the WHEN clause find matches with the data
graph of the datasets in question (the BY clause resem-
bles the CONSTRUCT clause and the WHEN clause
resembles the WHERE clause in SPARQL queries, but
for replacement of triple patterns in a graph pattern).

For instance, the following rule:

PREFIX s : < s o u r c e d a t a s e t >
PREFIX t : < t a r g e t d a t a s e t >
REPLACE # s s : p #o .
BY # s t : p #o .
WHEN {

s : p owl : sameAs t : p .
}

applied to the query in listing 1, produces the query

PREFIX mdb: < h t t p : / / d a t a . l inkedmdb . o rg /
r e s o u r c e / movie / >

PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
SELECT DISTINCT ? movie ?name
WHERE {

?woody mdb : d i r e c t o r _ n a m e "Woody A l l e n " .
? movie dbo : d i r e c t o r ?woody ;

mdb : a c t o r ? a c t o r ;
mdb : f i l m _ a r t _ d i r e c t o r ? a r t .

? a c t o r mdb : ac to r_name " Sean Penn " .
? a r t mdb : f i l m _ a r t _ d i r e c t o r _ n a m e ?name . }

Listing 3: mdb:director replaced with dbo:director.

by rewriting the triple pattern (?movie mdb:director
?woody) by (?movie dbo:director ?woody) due to the ap-
pearance of (mdb:director owl:sameAs dbo:director) in the
consulted data graph, in this particular case in the local
Virtuoso RDF store.

This rule language is sufficiently expressive since
WHEN clauses can use the full expressivity of graph
patterns in SPARQL 1.1. The core of the implementa-
tion of those rules can be supported by an almost di-
rect generation of SPARQL queries from the rule ex-
pression. For instance, the query supporting the previ-
ous sample rule could be constructed in the following
way: Assume that the template (#s s:p #o) (appearing
in the REPLACE clause) matches a part of the graph
pattern in the query being rewritten and yields a bind-
ing of the IRI token s:p to the IRI s:IRIp in the source



dataset. Then, the triple pattern (s:IRIp owl:sameAs
?t0p) (originated from the WHEN clause) will be the
WHERE clause and ?t0p will be the projected variable
in the SELECT clause due to the BY clause in the rule
(see Listing 4).

SELECT ? t 0 p
WHERE {

s : IRIp owl : sameAs ? t 0 p .
}

Listing 4: Query supporting rule implementation.

Then, the results of that query can be used to form
the corresponding replacements specified in the BY
clause.

Rules in this paper only consider the basic RDF
entailment regime. Nevertheless, if the mediating
SPARQL endpoint managing the query processing im-
plements another entailment regime over the dataset
of interest, the rewriting process leverages on that en-
riched regime without any harm.

A rewriting rule set requires an algorithm to man-
age the rewriting process, this is the role of element A
in the abstract framework. Different algorithms man-
aging the same set of rules may produce different out-
comes.

The rewriting system of the proposed framework
takes a given query Qs (named source query), ex-
pressed with a vocabulary adequate3 for the source
dataset, and transforms it into another query Qt (named
target query), expressed with a vocabulary adequate
for the selected target dataset. In this paper, the pri-
mary problem of a single target dataset is considered,
although the process may be iterated with a different
target dataset each time. Decomposition of the source
query into parts and distribution of each part to a differ-
ent target dataset is devoted to future work. However, it
should be noted that it could be solved by combination
of solutions of the primary problem. The rewriting pro-
cess produces Qt as a semantically equivalent query to
Qs as long as enough equivalence mappings between
the vocabulary of the source dataset and the vocabulary
of the target dataset are found. But the distinguishing
point is that the process produces a mimetic query Qt

even in the case when no equivalent translation for Qs

is found. That is to say, semantic preservation cannot

3We say that a term is adequate for a dataset if its IRI prefix fol-
lows the proprietary format of the dataset or it appears in the dataset
vocabulary.

be guaranteed due to vocabularies heterogeneity and
missing links with terms appearing in the source query.
It is at this point where the definition of a quality es-
timation of the rewriting outcome becomes crucial to
our approach, because the user needs to be aware of the
quality of the produced target query. This is the goal of
the Q element in the abstract framework.

Every application of a rule r is considered as a step
in the progress to the target query, and such steps are
valuated with a factor computed by the associated sim-
ilarity measure V(r) fromM.

The function SF calculates a similarity factor for
a target query in terms of the sequence of rules r̄ that
were applied to construct it and properly combining
the measures V(r) (for each r ∈ r̄). Similarity mea-
sures inM can be defined by simple functions or very
complex ones. Usually they can be defined by combin-
ing similarity measures taken from a state-of-the-art
repository [8].

As previously said in the introduction section, the
intention of issuing a query to the selected target
dataset is to look for more or different results than
those obtained in the source dataset. Therefore, al-
though the target query should try to maintain the spirit
of the source query, the intended result set of the tar-
get query cannot be compared with the source query
retrieved set but with that of an ideal expression of
such source query in terms of the vocabulary accept-
able by the target dataset. Notice that, due to the pre-
viously mentioned heterogeneity reasons, such ideal
expression cannot be trivially constructed. In fact, we
consider that the finding of such ideal expression, in
the considered scenario, should be realized by a human
expert who knows vocabularies of source and target
datasets. And, therefore, the reference query against
which the target query should be compared is a human
designed one, that tries to express the most similar in-
tention to the source query but in the context of the tar-
get dataset. We consider such a query our gold stan-
dard query against which the target query should be
compared.

In the presence of a gold standard query, its re-
sults can be compared with those obtained by the tar-
get query. Statistical measures such as precision, recall
and F1 score can be used to measure the quality of a
target query. Of course, gold standards can only exist
in an experimental scenario but not in the real setting,
and that is the reason to incorporate machine learning
techniques in the framework. The predictive model P
is generated by a supervised machine learning method
applied to a suitable experimental scenario consisting



of a selected benchmark of source queries with their
respective gold standard queries for the target datasets,
and the set of corresponding target queries generated
by the rewriting system with their respective SF value
and with their respective F1 score that will be the goal
for prediction.

Note that this framework establishes, principally, a
scenario for experimentation, where different materi-
alizations of each element of the framework can be as-
sessed and compared.

In particular, it should be taken into account that the
provision of gold standard queries involves a delicate
work: knowledge of different vocabularies is needed
and sometimes different choices can be considered as
appropriate gold standard of a query. Furthermore, the
production of desired quantities of training queries is
a time consuming task. The editors of the gold stan-
dard queries considered in the experiment reported in
this paper were just the authors of the paper. Queries
were grouped by domain and each domain group was
assigned to a different author. Then, the work was re-
viewed jointly. Therefore, the results of our experi-
ments could be considered to be improved if we had a
larger and much more supervised collection of queries.

4. Framework embodiment

This section presents a brief explanation of a spe-
cific embodiment of the abstract framework (R, A,
Q, P) that was partially presented in [24] and which
serves as a proof of concept for our proposal.

The set of rules R was devised from a pragmatic
point of view. The rules set up common sense heuris-
tics to obtain acceptable rewritings even when no se-
mantically equivalent translations are at hand. Precon-
ditions for the application of the rules take into account
a carefully restricted context of the terms occurring
in the graph pattern. Although restricted, the rule set
has shown to be quite effective achieving acceptable
rewritings (see section 5).

Five kinds of rules have been considered, each kind
based on a different motif: Equivalence (E), Hierarchy
(H), Answer-based (A), Profile-based (P), and Feature-
based (F).

Furthermore, a pragmatic scenario has been consid-
ered in which a bridge dataset can be taken into ac-
count in the process of rewriting a query adequate for a
source dataset into another query adequate for a target
dataset. In order to favour the possibilities of finding
alignments between resources, mappings between both

the source (Ds) and target (Dt) datasets and a bridge
(Db) dataset are considered. Such a choice is justified
because that scenario is quite frequent, since in almost
any domain there is a popular dataset that may play
such a reference role. For instance: BabelNet in the lin-
guistic domain, DBLP in the Computer Science Bib-
liographic domain, NCI Thesaurus in the clinical do-
main, New York Times-Linked Open Data in the media
domain, reference.data.gov.uk in government domain,
or Dbpedia in cross domain. There is not a fixed bridge
dataset for each domain, any dataset may play the role
of bridge dataset for each occasion instead. More am-
bitious scenarios may consider bridge concatenations,
but a balance between computational cost and com-
pleteness decided us for restricting to only one bridge
dataset per rule application.

Equivalence rules basically consist in replacing a
query fragment by an equivalent one. They are the
most frequent kind of query rewriting rules in the tech-
nical literature. Of course, their use is the most rea-
sonable decision when such equivalence mappings are
at hand; and can be confident that such rewriting pre-
serves the semantics of the query. In section 3 a simple
equivalence rule regarding the predicate of a triple pat-
tern was applied to the source query in listing 1. Next,
the expression of another of our equivalence rules is
presented, namely one that replaces the subject of a
triple pattern. Notice that a bridge dataset is used and
diverse equivalence mappings are considered (see the
FILTER clauses):

PREFIX s : < s o u r c e d a t a s e t >
PREFIX t : < t a r g e t d a t a s e t >
PREFIX b : < b r i d g e d a t a s e t >
REPLACE s : u #p #o .
BY UNION( t : u #p #o )
WHEN {

s : u ? eq1 b : u .
b : u ? eq2 t : u .
FILTER ( ? eq1 = owl : sameAs | |

? eq1 = owl : e q u i v a l e n t C l a s s | |
? eq1 = owl : e q u i v a l e n t P r o p e r t y | |
? eq1 = skos : exac tMatch )

FILTER ( ? eq2 = owl : sameAs | |
? eq2 = owl : e q u i v a l e n t C l a s s | |
? eq2 = owl : e q u i v a l e n t P r o p e r t y | |
? eq2 = skos : exac tMatch )

}

where UNION(t:u #p #o) represents the UNION pat-
tern of all the triple patterns constructed with the IRIs
binded with t:u.

The similarity measure associated to equivalence
rules (E) is simply the constant function φ(u) = 1, rep-



resenting the semantics preservation after the replace-
ment of the non adequate term u.

Hierarchy rules consist in replacing a term by a se-
mantic generalization or restriction of that term. Such
kind of rules are considered in works that account for
relaxing or narrowing queries. In cases where equiva-
lence is not guaranteed, replacing a term by its most
specific subsumer or its most general subsumee ex-
pression changes the semantics in a ontological biased
way. Next, the expression of one of our hierarchy rules
is presented:

PREFIX s : < s o u r c e d a t a s e t >
PREFIX t : < t a r g e t d a t a s e t >
REPLACE # s s : p #o .
BY AND(# s t : p #o )
WHEN {

s : p ? sub t : p .
FILTER ( ? sub = r d f s : s u b P r o p e r t y O f | |

? sub = skos : n a r r o w e r )
}

where AND(#s t:p #o) represents the conjunction pat-
tern of all the triple patterns constructed with the IRIs
binded with t:p. Three successive applications of this
hierarchy rule to the query in listing 3 rewrites it to the
following query:

PREFIX mdb: < h t t p : / / d a t a . l inkedmdb . o rg /
r e s o u r c e / movie / >

PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
SELECT DISTINCT ? movie ?name
WHERE {

?woody f o a f : name "Woody A l l e n " .
? movie dbo : d i r e c t o r ?woody ;

mdb : a c t o r ? a c t o r ;
mdb : f i l m _ a r t _ d i r e c t o r ? a r t .

? a c t o r f o a f : name " Sean Penn " .
? a r t f o a f : name ?name . }

Listing 5: mdb:director_name, mdb:actor_name and
mdb:film_art_director_name replaced with foaf:name.

by rewriting the properties mdb:director_name, mdb:ac-
tor_name and mdb:film_art_director_name by the prop-
erty foaf:name due to the appearance of (mdb:director_na-
me rdfs:subPropertyOf foaf:name), (mdb:actor_name rdfs:-
subPropertyOf foaf:name) and (mdb:film_art_director_na-
me rdfs:subPropertyOf foaf:name) as mappings provided
by the own LinkedMDB dataset4.

4http://wiki.linkedmdb.org/Main/Interlinking

Similarity estimation of hierarchy related terms is
usually based on a distance measure. It is generally
considered that the depth associated to the compared
terms in the hierarchy influences the conceptual dis-
tance between the terms. Low depth correspond to
more general terms and high depth correspond to more
specific terms. Nearby high depth terms tend to be
more semantic similar than low depth ones. Conse-
quently, the similarity function selected for hierar-
chy rules (H) was an adaptation of a distance pro-
posed in [25] and elsewhere. Each term u in the hi-
erarchy is associated with a milestone value m(u) de-
pending on its depth in the hierarchy. Then, the dis-
tance between two terms u and v in the hierarchy is
d(u, ccp(u, v)) + d(v, ccp(u, v)) where ccp(u,v) is the
closest common parent of u and v in the hierarchy and
d(x, ccp(x, y)) = m(ccp(x, y))− m(x). The milestone
of a term u is defined as:

m(u) =
1

2× kdepth(u)

where k is a predefined factor bigger than 1 that indi-
cates the rate at which the value decreases along the hi-
erarchy, and depth(u) is the length of the longest path
from the node u to the root (depth(root) = 0). In this
case we used k = 2.

However, in the context considered in this paper,
where u and v belong to different vocabularies and,
therefore, different hierarchies, the notion of ccp(u,v)
is not directly applicable. Then, we have adapted such
distance. The intuition behind is that the deepest term
(i.e. that with the least milestone) carries more infor-
mation than the higher term:

distance(u, v) = m(u)× (1− 1

k
)

if m(u) = m(v) ∧ u v v

distance(u, v) = m(v)− m(u)

if m(u) < m(v) ∧ u v v

distance(u, v) = m(u)× (1− 1

k
)

if m(u) < m(v) ∧ v v u

Once the distance is defined, the similarity function S o

between the terms u and v is

S o(u, v) = 1− distance(u, v)



The number of terms involved in the replacement of
a term u and its triple pattern can be more than one,
depending on the particular bindings of the applied
rewriting rule. In such a case, if there are n bindings
(u1, . . . , un), the similarity measure is the average of
the n pairwise similarity values:

φ(u) =

∑n
i=1 S o(u, ui)

n

In the particular case of the current query example,
it resulted φ(mdb : director_name) = 0.6, φ(mdb :
actor_name) = 0.6 and φ(mdb : f ilm_art_director_
name) = 0.6.

Equivalence and hierarchy rules can be applied
when direct mappings for the term to be replaced are
found. But, if the involved datasets are not completely
aligned and those direct mappings are missing, new
kinds of rules trying to leverage mappings of terms
surrounding the focussed term should be considered.
And that is precisely what our proposed Profile-based,
Answer-based, and Feature-based kinds of rules do.

Let us call the profile of a resource x in a dataset D
to the set of resources that are related to x, as subjects
or objects, through triples in D. More specifically:

PD(x) = {v ∈ Terms(D) |

(∃p.(x, p, v) ∈ D ∨ (v, p, x) ∈ D) ∨

(∃a.(a, x, v) ∈ D ∨ (v, x, a) ∈ D)}

The heuristic considered in Profile-based rules is the
following: if a resource v, in the profile of the focused
resource u, is equivalent to a resource t : v in the target
dataset, and there is a resource t : u in the profile of
t : v, sufficiently similar to u, then u could be replaced
by t : u.

For instance, the following triples:

mdb : f i l m /38778 mdb : f i l m _ a r t _ d i r e c t o r
mdb : f i l m _ a r t _ d i r e c t o r /238 .

mdb : f i l m /96785 mdb : f i l m _ a r t _ d i r e c t o r
mdb : f i l m _ a r t _ d i r e c t o r / 1 .

mdb : f i l m /38180 mdb : f i l m _ a r t _ d i r e c t o r
mdb : f i l m _ a r t _ d i r e c t o r / 2 .

mdb : f i l m _ a r t _ d i r e c t o r / 8 4 r d f : t y p e
mdb : f i l m _ a r t _ d i r e c t o r .

mdb : f i l m _ a r t _ d i r e c t o r /363 r d f : t y p e
mdb : f i l m _ a r t _ d i r e c t o r .

are only some of the triples in LinkedMDB that would
determine the profile of mdb:film_art_director. Consid-
ering only such small set, the profile would be the set:

{mdb : f i l m / 3 8 7 7 8 , mdb : f i l m _ a r t _ d i r e c t o r / 2 3 8 ,
mdb : f i l m / 9 6 7 8 5 , mdb : f i l m _ a r t _ d i r e c t o r / 1 ,
mdb : f i l m / 3 8 1 8 0 , mdb : f i l m _ a r t _ d i r e c t o r / 2 ,
mdb : f i l m _ a r t _ d i r e c t o r / 8 4 ,
mdb : f i l m _ a r t _ d i r e c t o r /363}

For the sake of the example, let us consider only
one of those resources in the profile. For instance,
mdb:film/38778. A mapping of equivalence was found
betweeen mdb:film/38778 and the resource dbr:Sweet
_and_Lowdown in DBpedia. And some triples were
found in DBpedia involving dbr:Sweet_and_Lowdown.
For instance:

dbr : Sweet_and_Lowdown dbo : c i n e m a t o g r a p h y
dbr : Zhao_Fei .

dbr : Sweet_and_Lowdown dbo : d i r e c t o r
dbr : Woody_Allen .

dbr : Sweet_and_Lowdown dbo : d i s t r i b u t o r
dbr : S o n y _ P i c t u r e s _ C l a s s i c s .

dbr : Sweet_and_Lowdown dbo : e d i t i n g
dbr : A l i s a _ L e p s e l t e r .

dbr : Sweet_and_Lowdown dbo : g r o s s
4197015 .0 .

dbr : Sweet_and_Lowdown dbo : p r o d u c e r
dbr : Jean_Doumanian .

dbr : Sweet_and_Lowdown dbo : r u n t i m e
5700 .000000^ ( xsd : double ) .

The same process should be done with all the re-
sources of the profile. Next, calculating the similarity
between mdb:film_art_ director and any of the predicates
appearing in the preceding set of triples we found the
following values:

S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : c i n e m a t o g r a p h y )
=0 .72

S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : d i r e c t o r ) =0 .61
S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : d i s t r i b u t o r )

=0 .56
S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : e d i t i n g ) =0 .54
S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : g r o s s ) =0 .31
S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : p r o d u c e r ) =0 .20
S ( mdb : f i l m _ a r t _ d i r e c t o r , dbo : r u n t i m e ) =0 .18

Then, the resource with the maximum similarity
value was selected to replace mdb:film_art_director,
namely dbo:cinematography. And the value of the sim-
ilarity measure was φ(mdb : f ilm_art_director) =
0.72.

Next, the expression of the profile rule responsible
of the previous replacement is presented:

REPLACE # s s : p #o .
BY # s t : p #o .
WHEN {



? s s : p ? o .
? s ? eq ? t s .
? o ? eq ? t o .
{? t s t : p ? t o . }
UNION
{? t o t : p ? t s . }
FILTER ( ? eq = owl : sameAs | |

? eq = skos : exac tMatch )
FILTER ( t : p = maxSim ( s : p , h , p r o f i l e ( s : p ) )

}

Regarding the notion of sufficient similarity, we de-
cided to establish a threshold h to be exceeded by
the value of a similarity function between resources
S (u, v), in order to consider v sufficiently similar to u.
When several resources exceed the threshold, the re-
source with maximum similarity value is selected for
the replacement. Let us denote maxSim(u, h, R) to a
resource w in the set of resources R which is the most
similar to u and whose similarity value is greater than
the threshold value h:

maxSim(u, h,R) = w

such that w ∈ R,

S (u,w) > h, and

∀v ∈ R. S (u,w) > S (u, v)

In the current framework, the similarity function of
two resources is defined as a linear combination of
some other three similarity measures, which are se-
lected to compare a context of the terms.

S (u, v) = αn · S n(u, v) + αd · S d(u, v) + αo · S o(u, v)

αn, αd, αo > 0 ∧ αn + αd + αo = 1

S n and S d are string based methods, and S o is the
similarity measure previously defined. S n is a similar-
ity measure computed as the average of Levenshtein
and Jaccard distances, corresponding to the rdfs:label
property value of the two compared terms. And S d

takes into account the definition contexts of the terms:
for each compared term, u and v, a bag of words is
constructed containing words from their rdfs:comment
and rdfs:label string valued properties. S d is defined as
a cosine similarity of two vectors V(u) and V(v) con-
structed by the frequency of word appearance (i.e. Vec-
tor Space Model technique):

S d(u, v) =
V(u) · V(v)

‖V(u)‖ ‖V(v)‖

Definition of S (u, v) can be considered simple if
compared to functions that involve more sophisticated

linguistic techniques, or use some other Information
Content techniques, or take into account much more
information about the resources. But we think that the
computational cost of those alternatives must be care-
fully considered, given the use case scenario presented
in the introduction of this paper. In spite of its sim-
plicity, results of our experiments are encouraging for
researching along that line (see section 5).

Then, the similarity measure associated to u after the
application of a Profile-based rule is

φ(u) = S (u,maxSim(u, h, profile(u)))

This kind of rule was used to replace mdb:film_art_di-
rector by dbo:cinematography, and also mdb:actor by
dbo:starring, in the working example presented in the
introduction, with a φ(mdb : f ilm_art_director) =
0.72 and φ(mdb : actor) = 0.89. The result is the
query presented in listing 2 which is completely ex-
pressed with the target dataset vocabulary.

However, after the application of some query rewrit-
ing rules, some non adequate terms of the query could
still be unreplaced. The proposal in this paper consid-
ers two more kinds of rules in order to cover some
more interesting circumstances. Answer-based rules
are supported by bindings obtained, during the source
query processing over the source dataset, for the piece
of graph pattern to be replaced. Those binded re-
sources are considered as examples of what the query
is looking for in the target dataset. Triples involving
those resources in the target dataset are used to mimic
the triple pattern to be replaced. The intuition behind
is that triples stated about the answer samples in the
target dataset probably resemble expected answers of
the original query.

For instance, consider the query

PREFIX dbr : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
SELECT DISTINCT ? a ? p ? q
WHERE {

dbr : The_Othe r_S ide_of_ the_Wind ? p ? a .
? a ? q dbo : Agent .

}

Listing 6: Information about The Other Side of the
Wind.

for DBpedia as source dataset and consider Linked-
MDB as the target dataset. Then, dbr:The_Other_Side
_of_the_Wind and dbo:Agent are not adequate for Linked-
MDB.



Consider the following set of triples in the source
dataset (DBpedia):

dbr : The_Othe r_S ide_of_ the_Wind dbo : s t a r r i n g
dbr : John_Houston .

dbr : The_Othe r_S ide_of_ the_Wind dbo : s t a r r i n g
dbr : P e t e r _ B o g d a n o v i c h .

dbr : The_Othe r_S ide_of_ the_Wind dbo : d i r e c t o r
dbr : Orson_Wel ls .

dbr : The_Othe r_S ide_of_ the_Wind
dbo : c i n e m a t o g r a p h y dbr : Gary_Graver .

dbr : The_Othe r_S ide_of_ the_Wind dbo : s t a r r i n g
dbr : S u s a n _ S t r a s b e r g .

Consider the five bindings of variable ?a, in the
first triple pattern of the query, as answer samples to
that triple pattern. And consider also that those answer
samples are mapped as equivalent to corresponding re-
sources in the target dataset (LinkedMDB):

dbr : John_Houston owl : sameAs mdb : a c t o r / 2 9 7 6 9 .
dbr : P e t e r _ B o g d a n o v i c h owl : sameAs

mdb : a c t o r / 2 9 7 6 2 .
dbr : Orson_Wel ls owl : sameAs mdb : p r o d u c e r / 9 7 3 6 .
dbr : Gary_Graver owl : sameAs mdb : a c t o r / 9 6 7 7 .
dbr : S u s a n _ S t r a s b e r g owl : sameAs

mdb : a c t o r / 3 7 4 7 2 .

Then, triples about those answer samples in the target
dataset could probably resemble expected answers of
the original query. For each one of those answer sam-
ples in the target dataset (LinkedMDB), triples as the
following are found in the dataset:

mdb : a c t o r /29769 mdb : a c t o r mdb : f i l m / 1 3 3 ;
mdb : a c t o r mdb : f i l m / 1 0 2 5 ;
mdb : a c t o r mdb : f i l m / 4 6 9 2 1 ;
mdb : a c t o r mdb : f i l m / 2 3 4 8 6 .

mdb : a c t o r /29762 mdb : a c t o r mdb : f i l m / 3 8 3 9 5 ;
mdb : a c t o r mdb : f i l m / 4 6 9 2 1 .

mdb : p r o d u c e r /9736 mdb : a c t o r mdb : f i l m / 3 8 0 7 8 ;
mdb : a c t o r mdb : f i l m / 4 6 9 2 1 ;
mdb : a c t o r mdb : f i l m / 6 6 5 3 0 .

mdb : a c t o r /9677 mdb : a c t o r mdb : f i l m / 8 9 0 0 3 ;
mdb : a c t o r mdb : f i l m / 4 6 9 2 1 .

mdb : a c t o r /37472 mdb : a c t o r mdb : f i l m / 2 7 4 ;
mdb : a c t o r mdb : f i l m / 4 6 9 2 1 .

As a crude approximation, the most frequent resource
appearing in such a context could be considered to re-
place the non adequate term dbr:The_Other_Side_of_the
_Wind in the query. In this case, mdb:film/46921 ap-
peared 11 times in the running experiment and was se-
lected for the replacement. Then, its similarity value
was calculated, yielding φ(dbr : The_Other_S ide_-
o f _the_Wind) = 0.71.

Then, the rewritten query obtained after applying
that answer-based rule would be the following :

PREFIX mdb : < h t t p : / / d a t a . l inkedmdb . o rg /
r e s o u r c e / movie / >

SELECT DISTINCT ? a ? p ? q
WHERE{

mdb : f i l m /46921 ? p ? a .
? a ? q dbo : Agent .

}

Listing 7: Information about movie:46921.

The rule expression capturing the process described
above could be as follows:

PREFIX s : < s o u r c e d a t a s e t >
PREFIX t : < t a r g e t d a t a s e t >
REPLACE s : u ? p ? x
BY t : u ? p ? x
WHEN {

? s as t : u (COUNT( ? s ) a s ?OCCURNUM)
WHERE {

s : u ? p ? x .
? x ? eq t : ? o .
? s t : ? p t t : ? o .
FILTER ( ? eq = owl : sameAs | |

? eq = skos : exac tMatch )
}
GROUP BY ? s ORDER BY DESC ?OCCURNUM
LIMIT 1

}

Only a restricted set of templates is selected for ap-
plying the Answer-based rewriting rules. In particular,
triple patterns where only one term remains non ad-
equate for the target dataset. The other two terms of
the triple pattern are an adequate term for the target
dataset and a variable or else two variables. Namely,
the selected templates are: (?x t:p s:u), (s:u t:p ?x), (?x s:p
t:o), (t:o s:p ?x), (?x ?p s:o), (s:u ?p ?x). The adequate term
may be there from the beginning (i.e. some terms can
be adequate for both source and target dataset) or else
be the result of a previously applied rewriting rule.

As has been previously noted, when the number
of terms involved in the replacement of the term u
is more than one (let us say (t : b1, . . . , t : bk)), every
single measure is replaced by the corresponding aver-
age (S x(u, t : b1) + . . . + S x(u, t : bk))/k. Then, a lin-
ear combination of the same aforementioned similarity
measures is associated to the replaced term u:

φ(u) = αn ·
∑k

i=1 S n(u, t : b1)

k
+



αd ·
∑k

i=1 S d(u, t : b1)

k
+

αo ·
∑k

i=1 S o(u, t : b1)

k
Values for parameter αn, αd, and αo could be de-

termined by an expert taking into account the desired
weighting of the three facets. But it could be prefer-
able to obtain those parameter values as the output of a
specifically designed optimization algorithm. The ex-
planation of the configuration of the optimization al-
gorithm will be presented in section 5, within the ex-
perimental scenario.

The last kind of rules we are considering in the
present embodiment is Feature-based rules. This kind
of rules is the last option if non adequate terms re-
main in the query graph pattern after the aforemen-
tioned kind of rules have already been considered. No-
tice that running a query with a non adequate term for
the considered dataset would yield the empty answer.
In this case, the heuristic behind is to replace the non
adequate term by a new variable (therefore, general-
izing the query) but restricting that variable with fea-
tures of the replaced term (that is to say, triples in the
source dataset which the replaced term is the subject).
The expression for such a rule is the following:

PREFIX s : < s o u r c e d a t a s e t >
PREFIX t : < t a r g e t d a t a s e t >
REPLACE # s #p s : u
BY # s #p ? v .

AND( ? v # f #o )
WHEN {

s : u # f #o }

A summary of the rules considered for this framework
embodiment is presented in tables 11, 12, 13, 14, 15,
in the appendix A .

The algorithm A devised for applying the rewriting
rules consists in applying first those rules that seem to
maintain as much as possible the semantics of the cur-
rent query. The rewriting algorithm applies the rules on
a kind by kind basis. Within a kind of rules the algo-
rithm repeats the application of each rule until no more
application is possible. The rules of a kind are sequen-
tially numbered and they are applied in that numbered
sequence. In particular, the rules are numbered in the
same sequence order that they appear in tables of ap-
pendix A. A rule is applied as long as its preconditions
(described by columns REPLACE and WHEN) are sat-
isfied. When a rule is no longer applicable, the algo-
rithm drives to the following rule. Something specific

takes place when application of a feature-based rule
has finished. If any non adequate IRI remains in the
query, Equivalence and Hierarchy rules are tried again
and after that, any triple pattern presenting a non ade-
quate IRI is deleted from the query. At any moment the
current query being object of rewriting becomes ade-
quate for the target dataset, the algorithm stops and re-
turn such target query. Next, a more explicit descrip-
tion of the algorithm is presented, where Qs and Qt

represent the source and target query, respectively, and
C = Ds ∪ Dt ∪ Db represent the data graph context,
composed of the source, target and bridge datasets,
where the rewriting process takes place. voc(Qt) and
voc(Dt) respectively mean the vocabulary (i.e. set of
terms) of Qt and Dt.

REWRITE(Qs, C)
// C = Ds ∪ Dt ∪ Db

Qt ← Qs

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(EquivalenceRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(HierarchyRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(AnswerBasedRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(ProfileBasedRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(FeatureBasedRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(EquivalenceRules, Qt, C)

if voc(Qt) 6⊆ voc(Dt) then
Qt ←APPLY(HierarchyRules, Qt, C)

Qt ← deleteNonAdequateTriplePatterns(Qt, voc(Dt))
return Qt

APPLY(RuleSet, Q, C)
for each r ∈ RuleSet

while applicable(r,Q, C)
Q← rewriteWith(r,Q, C)

return Q

The similarity factor SF associated to a target
query is an aggregation of the similarity values as-
sociated to each rule applied to reach such a target
query. Among different possibilities, a measure based
on the Euclidean distance on a n-dimensional space
was selected. Given a sequence of rule applications
(ri)

N
i=1 for the rewriting of a source query into a tar-

get query, involving the corresponding non adequate
terms (ui)

N
i=1, the values (φ(ui))

N
i=1 can be considered



the coordinates of a point in a N-dimensional space,
where the point (1, . . . , 1) represents the best and the
point (0, . . . , 0) the worst. Then, the Euclidean dis-
tance between the points (φ(ui))

N
i=1 and (1, . . . , 1) pro-

vides a foundation for a similarity measure. In order
to normalize the similarity value within the real inter-
val [0, 1], with the value 1 representing the best simi-
larity, the Euclidean distance between (φ(ui))

N
i=1 and

(1, . . . , 1) is divided by
√

N, and substracted from the
best similarity 1. Let us use (ui)

N
i=1 in representation

of the sequence of rules (ri)
N
i=1, then

SF((ui)
N
i=1) = 1− 1√

N

√√√√ N∑
i=1

(1− φ(ui))2

Finally, the score selected to inform about the qual-
ity of the obtained target query was the F1 score calcu-
lated by comparing the answers retrieved by the target
query with those retrieved by the corresponding Gold
standard query. We call Relevant answers (Rel) to the
set of answers obtained by running the Gold standard
query, and Retrieved answers (Ret) to the set of an-
swers obtained by running the target query. Then, the
values Precision (P), Recall (R), and F1 score (F1) are
calculated with the following formulae.

P =
|Rel ∩ Ret|
|Ret|

R =
|Rel ∩ Ret|
|Rel|

F1 = 2×
P× R
P + R

The supervised learning model P devised to predict
the F1 score of a target query was generated from the
application of a Random Forest algorithm. Some other
regression algorithms were considered and after an ex-
perimentation process, discussed in section 5, the Ran-
dom Forest was selected because it offered the best re-
sults.

5. Framework validation

This section presents the main results of the pro-
cess carried out to validate the proposed framework.
The following resources are presented: (a) the LOD
datasets selected for querying data, (b) the collection
of training queries, (c) the optimization algorithm used
to determine the proper parameter values for comput-
ing similarity measures and a discussion of its results,
(d) the collection of features gathered from data to
construct the learning datasets used by the machine

learning algorithms and the results obtained by them,
(e) the processing times needed by the framework im-
plementation to get the answers in the corresponding
SPARQL endpoints.

5.1. Datasets and queries

To validate the framework we trusted on well known
datasets of the Linked Open Data environment, with
accessible endpoints that facilitate the assessment of
our experiments. Three domain areas were considered
for the datasets: media-domain, bibliographic, and life
science. For each one, a set of recognized datasets were
selected. With respect to media-domain, the selected
ones were: DBpedia, MusicBrainz, LinkedMDB, Ja-
mendo, New York Times and BBC. With respect to
bibliographic domain, we considered BNE (Biblioteca
Nacional de España), BNF (Bibliothèque National du
France), BNB (British National Bibliography), LIB-
RIS, and Cambridge. And finally for the life science
area: Drugbank, SIDER, CHEBI, DISEASOME, and
KEGG were the selected ones. Moreover, to achieve
greater plurality in the tests, we used the SP2Bench,
which is based on a synthetic dataset. In addition, our
framework implementation also considered DBpedia,
VIAF, Freebase, and GeoNames as bridge datasets.
The available SPARQL endpoint for each mentioned
dataset was used to answer the queries. In summary,
we considered 17 different datasets (16 real + 1 syn-
thetic) along with 4 bridge datasets that assisted us on
the framework implementation. This is a evidence of
the broad coverage of the experiments performed.

The set of experimental queries were selected after
analyzing heterogeneous benchmarks such as QALD5,
FedBench [26], and real SPARQL endpoint logs (like
BNE or DBpedia). A set of 100 queries was created
for experimenting with the framework and providing
data for the learning process. Those queries along with
their corresponding gold standards and the names of
source and target datasets are listed in the appendix
published in [27, 28]. The idea underlying the selec-
tion process was to select queries that could be rep-
resentative of the different SPARQL query types and
that could cover heterogeneous domains in the Linked
Open Data framework. Concerning provenance we se-
lected 25 queries from well known cited benchmarks
that were defined for some of the datasets listed in the
previous paragraphs, and that presented a variety of

5https://qald.sebastianwalter.org/



graph pattern structures. Furthermore, 25 more queries
were selected from the LOD SPARQL endpoints logs
(year 2014 period). To select them, a clustering of the
queries was carried out according to their graph pat-
tern structure, and a random sample of each group
was chosen, previously eliminating those queries that
were malformed or those that exceed a maximum of 15
triple patterns, since they are usually triple pattern rep-
etitions that do not provide structural diversity to the
query set. In this way we got an initial set of 50 queries,
which we doubled by converting their gold standards
into source queries that were the origin of a new rewrit-
ing. In total we obtained a set of 100 queries expressed
in terms of vocabularies of 17 different datasets, acces-
sible via SPARQL endpoints.

Regarding the syntactic structure of the queries,
a variety of the SPARQL operators (UNION, OP-
TIONAL, FILTER) and different patterns for joins of
variables appeared in the queries. The number of triple
patterns of each query ranges from 1 to 7.

A very important source of knowledge that sup-
ports this framework are repositories containing map-
pings between terms from different vocabularies and
interlinkings between different IRIs for the same re-
source. For instance, we can find files with mapping
triples in the DBpedia project6 or data dumps of Free-
base/Wikidata mappings. Some datasets, for instance
Jamendo7, are accompanied by sets of mappings that
interlink their resources with resources in another do-
main sharing dataset, like Geonames and Musicbrainz.
Moreover, some datasets can act as a central point
of interlinking between some different datasets. It is
the case of VIAF8 on the bibliographic domain. A
very useful web service, helping with this problem is
http://sameas.org/, a service that helps to solve the ex-
istence of co-references between different data sets.
But unfortunately there are no many well organized
repositories and services of this kind, For this reason,
to improve our approach we have created our own
mapping repository in a local instance using Virtuoso
Open Source triple store. So we have crawled the web
finding possible mapping files and have incorporated
them into the Virtuoso repository.

6http://wiki.dbpedia.org/services-resources/interlinking
7http://dbtune.org/jamendo/
8http://viaf.org/

5.2. Suitability of the similarity factor

The similarity factor SF in the framework is in-
tended to inform the user about a similarity estimation
of a target query with respect to a source query. Our
approach takes into account the query content and the
query results as dimensions for query similarity, and its
computation is based on a kind of graph-edit distance
associated to each rewriting rule application. Assum-
ing that the ideal for the target query would be to be-
have as similarly as possible to the corresponding gold
standard query, along the query results dimension, it is
natural to design SF in such a way that the similarity
factor associated to a target query be correlated with
the F1 score of that target query. Remember that such
F1 score is computed for the target query with respect
to the predefined gold standard query. Therefore, tun-
ing of the similarity measures used to compute SF is
desirable.

The similarity measure, presented in section 4, is
based on similarity functions φ (associated to each
rule application V(r)) and many of them are defined
as a linear combination of three similarity measures
(S n, S d, S o), involving three parameters αn, αd, and αo.
Instead of trying to determine their appropriate values
by chance it seems preferable to devise a method to
optimize their values towards the goal of moving SF
closer to F1 score. This is the tuning process to which
we refer in the previous paragraph.

We selected a method based on a genetic algorithm,
specifically the Harmony Search (HS) algorithm [29].
Harmonies represent sets of variables to optimize,
whereas the quality of the harmony is given by the fit-
ness function of the optimization problem at hand.

In our case the variables to optimize are the parame-
ters (αn, αd, αo) appearing in the definition of the sim-
ilarity measure. And the established fitness function
was the maximization of the proportion of m queries
whose absolute difference between the value of the
similarity factor SF(qi) and the F1 score for query
number i = 1 . . .m was smaller than a given threshold
β. The fitness function is as follows:



maximize
m∑

i=1

1

m
H(qi))

subject to 0 6 αn, αd, αo, β 6 1

where

H(qi) =

{
1 if |F1(qi)− SF(qi, αn, αd, αo)| < β
0 otherwise

In order to carry out the optimization process the
query set (see 5.1) was considered, and five-fold cross
validation were performed. The sample data (initial
query set) are divided into five subsets. One of the sub-
sets is used as test data and the other four as train-
ing data. The cross-validation process is repeated five
times (folds), with each of the five subsamples used ex-
actly once as the test data. For each iteration (fold), the
first step was to execute the HS algorithm on the set of
training queries (composed by four subsets), in order
to obtain the parameter values that achieve optimal fit-
ness. For this, the algorithm was parametrized with the
number of iterations and initial values for the parame-
ters. The HS optimization process may obtain different
solutions depending on the initial random values cho-
sen for the parameters and the number of iterations al-
lowed. With 100 iterations and an initialization defined
by the HS algorithm itself, we obtained the parameter
values shown in table 3, according to different values
of β (0.4, 0.2, 0.1). Each value shown in the cells of the
table represents the different results obtained for train-
ing subsamples in each iteration (fold).

One example of convergence of the HS optimization
process for the training dataset and β = 0.2 is shown
in figure 1, where abscissas axis represents the number
of algorithm iterations and the ordinate axis represents
the fitness value. It can be observed how the fitness
increases with the number of iterations.

To assess the validity of the parameter values ob-
tained by the algorithm, the similarity factor was com-
puted for each fold over the set of remaining test
queries (in this case using the alphas obtained in the
different scenarios with β = 0.4, 0.2, 0.1, respectively)
and then, the absolute difference between these sim-
ilarity factors and the F1 scores for the correspond-
ing target queries were calculated. Training and Test
Fitness in table 4 display the fitness mean values for
the five different folds calculated over the training
dataset and test dataset respectively, along with the cor-

responding Mean Absolute Error (MAE). The MAE
is the difference between the training dataset fitness
value and the one obtained with the test dataset; it mea-
sures the suitability of the optimization. It can be ob-
served that the MAE never exceeds 0.15, which indi-
cates that the optimization process is valid (values less
than 0.3 are considered valid).

Taking into account that a tighter threshold as β =
0.1 produces worse test fitness values and higher ab-
solute errors, and a looser threshold as β = 0.4 is
too relaxed for similarity considerations, we decided
to implement the computation of SF with the values
αn = 0.130, αd = 0.515, and αo = 0.352, correspond-
ing to the threshold β = 0.2, which offers a reason-
able balance between test fitness values and closeness
of SF and F1.

5.3. Discussion

In the following we discuss the validity of the simi-
larity factor SF obtained by our embodied framework
using the optimized parameter values calculated by the
HS aforementioned method over the set of 100 exper-
imental queries. In order to trust in the quality of the
information conveyed to the user by the similarity fac-
tor, it is relevant to compare such factor with a measure
of the behaviour of the target query. It is evident that
the F1 score is a measure of that kind and therefore we
proceeded with such a comparison.

Figure 2 shows a scatter plot of the 100 points with
coordinates (F1 score, SF) and table 5 shows numbers
for the same points. An analysis of the results revealed
the following considerations: In 59 out of 100 source
queries the target queries provided the same set of re-
sults as the corresponding gold standard queries. From
this set, in 50 of them their F1 score was 1, and in 9
of them (Q11, Q17, Q25, Q26, Q39, Q41, Q52, Q76,
and Q91) the F1 score could not be calculated because
the sets of relevant and retrieved results (see section 4)
were both empty (notice that eventual dataset updates
could change those results). The cases in which the F1
score equals 1 (50% of the whole set) can be divided
into two groups depending on the similarity factor: (1)
Cases whose similarity factor equals F1 score, repre-
sent a 23% of the whole query set. (2) Cases whose
similarity factor is less than F1 score, represent a 27%
of the whole query set. In the other case, there were 41
queries in which the target queries did not provide the
same set of results as the corresponding gold standard
queries. Therefore these queries had a F1 score lower
than 1. From this set, in 14 of them the similarity factor



0.1 0.2 0.4
1-fold 2-fold 3-fold 4-fold 5-fold 1-fold 2-fold 3-fold 4-fold 5-fold 1-fold 2-fold 3-fold 4-fold 5-fold

αn 0.119 0.120 0.118 0.112 0.114 0.130 0.130 0.129 0.129 0.130 0.134 0.130 0.131 0.137 0.134

αd 0.501 0.504 0.500 0.501 0.504 0.517 0.514 0.513 0.519 0.515 0.537 0.529 0.534 0.535 0.538

αo 0.379 0.369 0.379 0.379 0.375 0.351 0.351 0.352 0.354 0.353 0.328 0.327 0.329 0.319 0.321
Table 3

Optimal parameter values for similarity function calculated from training subsamples for each fold.

Fig. 1. Convergence of fitness with the training dataset and β = 0.2.

Training Fitness Test Fitness Mean Absolute Error (MAE)
β = 0.4 0.832 0.761 0.071
β = 0.2 0.809 0.725 0.084
β = 0.1 0.678 0.532 0.146

Table 4
Fitness values for different thresholds.

was lower than the F1 score. We want to highlight that
in cases where SF < F1 score, the rewriting system
is performing better than the offered similarity factor,
since the higher F1 score shows that the target query
performs more similarly to the gold standard than the
offered information.

Finally, in 25 of them the similarity factor was
higher than the F1 score. In those cases the similar-
ity factor was too optimistic because the actual results
provided by the target query were quite different from
those provided by the gold standard query and there
were cases where the F1-measure value was very low.
This circumstance support the idea that would be inter-
esting to complement the information to the user with
a quality score reflecting the F1-score. As long as gold
standard queries are not present in a real scenario, de-
vising a prediction model for such a score is an op-
tion. Next, section 5.4 will explain an implementation

of such a predictive model. There were also 2 queries
where the retrieved results were empty (Q28, Q40).

Concluding this comparison, it can be said that SF
is a cautious information to the user since in the ma-
jority of the cases SF 6 F1, and therefore frequently
indicates a lower bound quality of the behaviour of
the target query with respect to expected answers. It
is interesting to remark that while SF reflects an in-
tensional measure (semantic similarity of the replace-
ment), the F1 score has an extensional character.

As discussed above, three domain areas were con-
sidered for the datasets: media-domain, bibliographic,
and life science. Table 7 presents some statistics about
the queries distribution and their SF and F1 values.
In particular, the number of queries per domain, their
similarity factor and F1 score averages (SF , F1) and
their corresponding standard deviations (σ).



Fig. 2. Scatterplot for F1 score and Similarity factor (using similarity parameter values calculated for training dataset and β = 0.2).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
F1 1 0.002 1 1 0.83 1 0.46 1 0.5 1

SF 0.956 0.405 0.987 0.979 0.71 0.905 0.52 0.984 0.56 0.78

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
F1 - 1 1 1 1 1 - 1 1 1

SF - 0.912 1 1 1 1 - 0.901 1 1

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
F1 1 0.66 0.16 0.05 - - 0.01 - 0.8 1

SF 1 0.61 0.47 0.44 - - 0.405 - 0.775 0.701

Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40
F1 1 1 1 0.57 0.88 1 0.18 1 - -

SF 1 0.79 0.87 0.72 0.72 0.93 0.43 1 - -

Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50
F1 - 1 1 0.31 0.37 0.25 1 1 1 0.45

SF - 0.88 0.41 0.48 0,405 0.52 1 1 0.761 0.711

Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60
F1 1 - 0.666 1 0.018 0.198 0.666 1 1 1

SF 0.96 - 0.57 0.94 1 0.405 0.665 0.919 0.982 0,89

Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70
F1 1 0.371 0.306 0.656 0.666 0.714 1 1 1 1

SF 1 0.422 0.405 0.63 0.62 0.7 1 0.88 1 1

Q71 Q72 Q73 Q74 Q75 Q76 Q77 Q78 Q79 Q80
F1 1 0.666 0.571 0.26 1 - 0.85 1 0.46 1

SF 1 0.57 1 0.99 1 - 1 1 1 1

Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90
F1 1 1 1 0.026 0.644 0.412 0.181 1 1 0.6

SF 1 0.98 0.91 0.4 0.57 0.41 0.405 1 0.96 0.57

Q91 Q92 Q93 Q94 Q95 Q96 Q97 Q98 Q99 Q100
F1 - 1 1 0.524 0.093 0.333 1 1 1 0.16

SF - 0.92 1 0.49 0.405 0.44 1 0.98 0.91 0.42
Table 5

SF (using similarity parameter values calculated for training dataset and β = 0.2) and F1 score for the experimental query set.



Query set composed of
100 queries

59 queries with
Retrieved answers = Relevant answers

41 queries with
Ret6= Rel

50 queries with
F1 = 1

9 queries
with |Ret|=|Rel|=0

F1 cannot
be calculated

25 queries with
SF > F1

14 queries with
SF < F1

2 queries with
|Ret|=023 queries with

SF = F1
27 queries with
SF < F1

Table 6
Summary of the comparison between SF value and F1 score.

In that table 7 we can observe that SF and F1 val-
ues do not vary significantly depending on the do-
main. The greatest distances are, in the case of SF ,
between Media and Life Science domains (0.073) and,
in the case of F1, between Media and Bibliographic
domain (0.07), never exceeding a difference greater
than 0.08. Moreover, Life Science is the domain in
which the values are more dispersed with relation to
the average, which means that the quality of the rewrit-
ing, even within the same domain, has varied signifi-
cantly. The best results are obtained in the Media do-
main, due to a greater number of links among source,
target and bridge datasets belonging to that domain.
Nevertheless, we are aware that the limited number of
queries considered in the testbed may have an impact
in the compared behaviour of the respective domains.
However, the obtained results are quite promising and
therefore they could be considered as a baseline.

Finally, we found interesting to know what was the
correlation between the computed similarity factor and
the F1 score. The Pearson correlation coefficient (usu-
ally named Pearson’s r) is a popular measure of the
strength and direction of the linear relationship be-
tween two variables. Pearson’s correlation coefficient
for continuous data ranges from −1 to +1. A value
equals to 0 indicates no linear relationship between the
variables. Positive correlation indicates that both vari-
ables increase or decrease together, whereas negative
correlation indicates that as one variable increases, so
the other decreases, and vice versa. In our case, the
value was r = 0.724, which can be considered a high
positive correlation, indicating that variables (F1 score,
SF) increase or decrease together providing a coher-
ent metric for informing the user about the outcome of
the rewriting process.

We think that the results in table 5 allow us to say
that the similarity factor defined in section 4 is quite in-
formative about the quality of the target query from an
intensional point of view. Nevertheless, one goal of the

presented framework is to serve as a tool for establish-
ing benchmarks which promote improvement of query
rewriting systems, and the embodiment presented in
this paper could be considered a baseline.

5.4. Predictive model for the F1 score

As we have already mentioned, gold standard queries
are not available in a real scenario, that is the reason
why a predictive modelP was considered in the frame-
work. In the scenario of this paper, P is in charge of
predicting the F1 score. Such predicted value is the
quality score, referred in the example shown in sec-
tion 1, that adds information to the user.

The construction of that predictive model was based
on learning datasets that contain features of data that
represent underlying structure and characteristics of
the data subject of the prediction. In our scenario, fea-
tures related to the structure of the source query such
as number of triple patterns or number of operators,
along with features related to rules that take part during
the rewriting process, and finally features concerning
the involved LOD datasets, were considered to build
the feature datasets.

Following we present the 21 considered features:

1. Similarity and rules features, numbered from 1
to 11: (1) Number of times the equivalence rules
are applied, (2) Similarity measure value asso-
ciated to the equivalence rules application, (3)
Number of times the hierarchy rules are applied,
(4) Similarity measure value associated to the hi-
erarchy rules application, (5) Number of times
the answer-based rules are applied, (6) Simi-
larity measure value associated to the answer-
based rules application, (7) Number of times
the profile-based rules are applied, (8) Simi-
larity measure value associated to the profile-
based rules application, (9) Number of times the



No Queries SF - σ F1 - σ
Media domain 34 0.707 - 0.37 0.729 - 0.31

Bibliographic domain 40 0.649 - 0.4 0.659 - 0.33

Life Science domain 26 0.634 - 0.47 0.72 - 0.38
Table 7

SF and F1 averages with standard deviation

F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8

1 Equivalence rule application times X X
2 Equivalence rule similarity measure value X X X
3 Hierarchy rule application times X X
4 Hierarchy rule similarity measure value X X X
5 Answer rule application times X X
6 Answer rule similarity measure value X X X
7 Profile rule application times X X
8 Profile rule similarity measure value X X X
9 Feature rule application times X X
10 Feature rule similarity measure value X X X
11 Similarity factor X X X X X X X X
12 Number of source triple patterns X X
13 Number of terms in source query X X X X X X X
14 Number of non-adequate terms X X X X X X X
15 Number of union operators X
16 Number of projected variables X
17 Number of optional operators X
18 Number of filter operators X
19 Source Dataset X X X X
20 Target Dataset X X X X
21 Number of mappings between source and target X X X

Table 8
Selected features for the 8 different datasets.

Datasets LR SVM RF
Features1 0.6751 -1.5072 0.8219
Features2 0.5902 -1.0313 0.7132

Features3 0.6045 -0.0437 0.7152

Features4 0.4572 -0.0689 0.7026

Features5 0.7146 0.7731 0.6835

Features6 0.7529 0.6815 0.7797

Features7 0.7511 0.7611 0.7221

Features8 0.7523 0.7146 0.7923
Table 9

R2 metric of the predictive models.



Query TT AT TAT Query TT AT TAT
Q1 8926 214 9140 Q51 7699 307 8006

Q2 8525 652 9177 Q52 7836 672 8508

Q3 2991 108 3099 Q53 2643 121 2764

Q4 2005 364 2369 Q54 2893 408 3301

Q5 3500 405 3905 Q55 2560 396 2956

Q6 2688 210 2898 Q56 2971 221 3192

Q7 4261 573 4834 Q57 4562 475 5037

Q8 1142 847 1989 Q58 797 623 1420

Q9 981 1021 2002 Q59 3400 637 4037

Q10 1802 938 2740 Q60 3111 1002 4113

Q11 0 734 734 Q61 656 429 1085

Q12 2825 208 3033 Q62 2676 198 2874

Q13 167 290 457 Q63 581 335 916

Q14 268 312 580 Q64 671 281 952

Q15 137 205 342 Q65 592 112 704

Q16 330 277 607 Q66 407 392 799

Q17 1144 1482 2626 Q67 2273 752 3025

Q18 11264 523 11787 Q68 9380 503 9883

Q19 1953 109 2062 Q69 1774 122 1896

Q20 536 108 644 Q70 921 173 1094

Q21 1994 574 2568 Q71 2327 696 3023

Q22 5191 613 5804 Q72 6317 384 6701

Q23 2753 409 3162 Q73 3612 493 4105

Q24 3503 102 3605 Q74 3037 251 3288

Q25 5658 689 6347 Q75 7780 782 8562

Q26 3258 314 3572 Q76 3649 373 4022

Q27 1796 125 1921 Q77 2030 109 2139

Q28 2225 852 3077 Q78 2653 974 3627

Q29 1153 901 2054 Q79 1264 670 1934

Q30 1765 782 2547 Q80 1983 593 2576

Q31 1181 213 1394 Q81 1727 201 1928

Q32 5899 1297 7196 Q82 9052 904 9956

Q33 6749 708 7457 Q83 7264 775 8039

Q34 5096 514 5610 Q84 6613 562 7175

Q35 4658 160 4818 Q85 5883 118 6001

Q36 4005 898 4903 Q86 5216 905 6121

Q37 3013 1650 4663 Q87 3840 1284 5124

Q38 571 294 865 Q88 685 394 1079

Q39 4512 1834 6346 Q89 7523 928 8451

Q40 2899 775 3674 Q90 3137 551 3688

Q41 1103 1028 2131 Q91 1022 1005 2027

Q42 4020 383 4403 Q92 4705 462 5167

Q43 1029 469 1498 Q93 1280 392 1672

Q44 3598 493 4091 Q94 4659 347 5006

Q45 0 197 197 Q95 389 144 533

Q46 1779 1328 3107 Q96 1711 1206 2917

Q47 0 122 122 Q97 775 215 990

Q48 461 203 664 Q98 621 193 814

Q49 3613 2751 6364 Q99 5652 1431 7083

Q50 653 272 925 Q100 739 285 1024
Table 10

Processing times in ms



Fig. 3. Answering times plus rewriting times.

feature-based rules are applied, (10) Similarity
measure value associated to the feature-based
rules application, and (11) the similarity factor
calculated for the target query.

2. Query structure features, numbered from 12 to
18: (12) Number of triple patterns of the source
query, (13) number of terms of the source query,
(14) number of non adequate terms for the tar-
get dataset, (15) number of union operators, (16)
number of projected variables, (17) number of
optional operators, and (18) number of filter op-
erators.

3. LOD Datasets features, numbered from 19 to
21: (19) categorical data associated to the source
dataset depending on its size. Three values are
possible: 1, for small datasets with less than 105

triples; 2, for medium size datasets with a num-
ber of triples between 105 and 106; 3 for larger
datasets with more than 106 triples, (20) categor-
ical data associated to the target dataset depend-
ing on its size (the same possible values as in the
case of feature number 20), and (21) number of
mappings between source and target datasets.

In order to select a best fit model, we experimented
with the following off-the-shelf algorithms [30, 31]:
Linear regression (LR), Support Vector Machines
(SVM), and Random Forest; and with 8 different
datasets (F.1 to F.8) corresponding to distinct feature
selection (see table 8).

The values used in the experiment were obtained
from the rewriting of the 100 aforementioned queries.

This set of queries were divided in three fragments:
80% for the training process, 15% for the validation
process, and 5% for the test process, respectively. The
score of each of those models was measured based on
a 20-fold cross-validated average mean squared error-
R2 metric. The results are presented in the table 9,
where each cell of the table represents the coefficient
of determination for each model trained with the fea-
ture dataset indicated by the row.

As can be seen, the model that best fit is that ob-
tained using the Random Forest-RF algorithm with F.1
dataset, with a R2 equals to 0.8219 for validation set.
Moreover, notice that the features datasets F.6, F.7,
and F.8 are the ones that, in general, show a better
behaviour with all the models. Therefore, the similar-
ity factor (11), number of terms (13), and number of
non-adequate terms (14) features can be considered the
most significant ones. And it points out again the valid-
ity of the computed similarity factor. To asses the gen-
eralization error of the final chosen model, the value of
R2 over the test set was computed, yielding a value of
0.8014.

5.5. Processing time

The framework is placed into the Linked Open Data
environment, leveraging datasets SPARQL endpoints.
In order to asses the performance of the framework we
want to show runtimes and the evaluation conditions
in which it was implemented.

The rewriting process (rules and algorithm) has been
implemented with Attributed Graph Grammar System



(AGG)[32]. For similarity computation, we relied on
the libraries Wordnet Similarity for Java (WS4J)9 and
SimMetrics10. The queries run by means of Jena se-
mantic framework11. For performance testing, the sys-
tem consisted of an Intel Core 2 Duo 2.67 GHz pro-
cessor, 8 GB RAM, Windows 7 Professional, and Java
Runtime Environment 1.8. All measurements were ex-
ecuted six times consecutively using the average of the
last five measurements.

Table 10 displays the processing times for each
query in benchmark executed over the corresponding
dataset. The TT column indicates the time needed by
the framework to obtain the rewritten query. In column
AT the time to get the answers of the query over the
SPARQL endpoint is indicated, and finally the column
TAT is the sum of the previous times (TT+AT). The
same information is graphically showed in Figure 3.
The TT times, that really represents the performance
of our system, are between a minimum value of 137ms
(Q15) and a maximum value of 11264ms (Q18), re-
gardless of the values of 0ms (Q45, Q47). And 90% of
queries are executed in a maximum time of 6sec. Tak-
ing into account this significant performance informa-
tion about the framework implementation, we consider
that the processing times are acceptable but amenable
to improvement.

6. Conclusions

The current state of the Web of Data with so many
different datasets of a heterogeneous nature makes it
difficult for users to query those datasets in order to
exploit the vast amount of data they contain. Different
proposals are appearing to overcome that limitation. In
this paper we have detailed the features of a framework
that allows end users to obtain results from different
datasets expressing the query using only the vocabu-
lary which the users are more familiar with, and in-
forms them about the quality of the answer. Moreover,
this framework serves technical users as a tool for es-
tablishing query rewriting benchmarks.

The framework has been embodied with a selected
set of rules, rule scheduling algorithm, similarity mea-
sures, and quality estimation model composed of sim-
ilarity factor function and F1 score predictive model.
Moreover, the framework has been validated in a real

9https://code.google.com/p/ws4j/
10http://sourceforge.net/projects/simmetrics/
11https://jena.apache.org/

scenario and the results obtained are promising, and
they could be considered a baseline to be improved
considering smarter rewriting rules and better shaped
similarity measures.
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Appendix A. Summary of rewriting rules

Rule REPLACE WHEN BY V(r)

E1 ELHS EDOAL : ELHS → t : ERHS t : ERHS
φ(s : u) = 1E2 (s : u,#p,#o) (s : u, eq, t : ui) (i = 1, . . . , k) UNIONi=1,...,k

(t : ui,#p,#o)
E3 (#s, s : u,#o) (s : u, eq, t : ui) (i = 1, . . . , k) UNIONi=1,...,k

(#s, t : ui,#o)
E4 (#s,#p, s : u) (s : u, eq, t : ui) (i = 1, . . . , k) UNIONi=1,...,k

(#s,#p, t : ui)
E5 (s : u,#p,#o) (s : u, eq, b : ui)(b : ui, eq, t : ui)

(i = 1, . . . , k)
UNIONi=1,...,k

(t : ui,#p,#o)
E6 (#s, s : u,#o) (s : u, eq, b : ui)(b : ui, eq, t : ui)

(i = 1, . . . , k)
UNIONi=1,...,k

(#s, t : ui,#o)
E7 (#s,#p, s : u) (s : u, eq, b : ui)(b : ui, eq, t : ui)

(i = 1, . . . , k)
UNIONi=1,...,k

(#s,#p, t : ui)
Table 11

Summary of Equivalence rewriting rules.

Rule REPLACE WHEN BY V(r)

H8 (s : u,#p,#o) (s : u, sub, v) (v, sub, t : ui)
(i = 1, . . . , k)

ANDi=1,...,k

(t : ui,#p,#o) φ(s : u) =∑k
i=1 S o(s:u,t:ui)

k
H9 (#s, s : u,#o) (s : u, sub, v) (v, sub, t : ui)

(i = 1, . . . , k)
ANDi=1,...,k

(#s, t : ui,#o)
H10 (#s,#p, s : u) (s : u, sub, v) (v, sub, t : ui)

(i = 1, . . . , k)
ANDi=1,...,k

(#s,#p, t : ui)
H11 (s : u,#p,#o) (t : ui, sub, v) (v, sub, s : u)

(i = 1, . . . , k)
UNIONi=1,...,k

(t : ui,#p,#o)
H12 (#s, s : u,#o) (t : ui, sub, v) (v, sub, s : u)

(i = 1, . . . , k)
UNIONi=1,...,k

(#s, t : ui,#o)
H13 (#s,#p, s : u) (t : ui, sub, v) (v, sub, s : u)

(i = 1, . . . , k)
UNIONi=1,...,k

(#s,#p, t : ui)
Table 12

Summary of Hierarchy rewriting rules.



Rule REPLACE WHEN BY V(r)

A14 (?x, t : p, s : u) Answers(?x, t : p, s : u)=
(x1, . . . , xn)

(xk , eq, t : xk) (k = 1, . . . , n)
(t : xk , t : p, t : ok j)

( j = 1, . . . ,mk)

UNIONk=1,...,n(
AND j=1,...,mk

(?x, t : p, t : ok j) )
φ(s : u) =

αn ·
∑k

i=1 S n(s:u,t:oi)

k +

αd ·
∑k

i=1 S d(s:u,t:oi)

k +

αo ·
∑k

i=1 S o(s:u,t:oi)

k

A15 (s : u, t : p, ?x) Answers(s : u, t : p, ?x)=
(x1, . . . , xn)

(xk , eq, t : xk) (k = 1, . . . , n)
(t : xk , t : p, t : ok j)

( j = 1, . . . ,mk)

UNIONk=1,...,n(
AND j=1,...,mk

(t : ok j, t : p, ?x) )

A16 (?x, s : u, t : o) Anwers(?x, s : u, t : o)=
(x1, . . . , xn )

(xi, eq, t : xi) (i = 1, . . . , n)
∀ j ∈ {1 . . . k}

(t : xi, t : u j, t : o)

UNION j=1,...,k

(?x, t : u j, t : o)

A17 (t : s, s : u, ?x) Anwers(t : s, s : u, ?x)=
(x1, . . . , xn )

(xi, eq, t : xi) (i = 1, . . . , n)
∀ j ∈ {1 . . . k}

(t : xi, t : u j, t : o)

UNION j=1,...,k

(?x, t : u j, t : o)

A18 (?x, ?p, s : u) Answers(?x, ?p, s : u)=
(x1, . . . , xn)

(xk , eq, t : xk) (k = 1, . . . , n)
(t : xk , t : pki, t : oki)

(i = 1, . . . ,m)
t : oz = mostFrequent(t : oki :

k = 1, . . . , n.i = 1, . . . ,m)

(?x, ?p, t : oz)

φ(s : u) =

αn · S n(s : u, t : oz)

+αd · S d(s : u, t : oz)

+αo · S o(s : u, t : oz)

A19 (s : u, ?p, ?x) Answers(s : u, ?p, ?x)=
(x1, . . . , xn)

(xk , eq, t : xk) (k = 1, . . . , n)
(t : xk , t : pki, t : oki)

(i = 1, . . . ,m)
t : oz = mostFrequent(t : oki :

k = 1, . . . , n.i = 1, . . . ,m)

(t : oz, ?p, ?x)

Table 13
Summary of Answer-based rewriting rules.



Rule REPLACE WHEN BY V(r)

P20 (s : u,#p,#o) (s : u, s : pi, ai) (ai, eq, t : ai)
(t : ai, t : pi, t : oi)

(i = 1, . . . ,m)
(b j, s : q j, s : u) (b j, eq, t : b j)

(t : b j, t : q j, t : o j)
( j = m + 1, . . . , n)

t : oz=
maxSim(s : u, h, t : o1, . . . , t : on)

(t : oz,#p,#o)

φ(s : u) =

S (s : u,maxSim(s : u, h, profile(s : u)))P21 (#s,#p, s : u) (s : u, s : pi, ai) (ai, eq, t : ai)
(t : ai, t : pi, t : oi)

(i = 1, . . . ,m)
(b j, s : q j, s : u) (b j, eq, t : b j)

(t : b j, t : q j, t : o j)
( j = m + 1, . . . , n)

t : oz=
maxSim(s : u, h, t : o1, . . . , t : on)

(#s,#p, t : oz)

P22 (#s, s : u,#o) (s : u, s : pi, ai) (ai, eq, t : ai)
(t : ai, t : pi, t : oi)

(i = 1, . . . ,m)
(b j, s : q j, s : u) (b j, eq, t : b j)

(t : b j, t : q j, t : o j)
( j = m + 1, . . . , n)

t : oz=
maxSim(s : u, h, t : o1, . . . , t : on)

(#s, t : oz,#o)

Table 14
Summary of Profile rewriting rules.

Rule REPLACE WHEN BY V(r)

F23 (s : u,#p,#o) (s : u, s : pk , s : ok) (k = 1, . . . , n) (?v,#p,#o)
ANDk=1,...,n

(?v, s : pk , s : ok)
?v a new variable

φ(s : u) = 0

F24 (#s, s : u,#o) (s : u, s : pk , s : ok) (k = 1, . . . , n) (#s, ?v,#o)
ANDk=1,...,n

(?v, s : pk , s : ok)
?v a new variable

F25 (#s,#p, s : u) (s : u, s : pk , s : ok) (k = 1, . . . , n) (#s,#p, ?v)
ANDk=1,...,n

(?v, s : pk , s : ok)
?v a new variable

Table 15
Summary of Feature-based rewriting rules.
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