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Abstract. In this paper we describe VIG, a data scaler for Ontology-Based Data Access (OBDA) benchmarks. Data scaling is a
relatively recent approach, proposed in the database community, that allows for quickly scaling an input data instance to s times
its size, while preserving certain application-specific characteristics. The advantages of the scaling approach are that the same
generator is general, in the sense that it can be re-used on different database schemas, and that users are not required to manually
input the data characteristics. In the VIG system, we lift the scaling approach from the pure database level to the OBDA level,
where the domain information of ontologies and mappings has to be taken into account as well. VIG is efficient and notably
each tuple is generated in constant time. To evaluate VIG, we have carried out an extensive set of experiments with three datasets
(BSBM, DBLP, and NPD), using two OBDA systems (Ontop and D2RQ), backed by two relational database engines (MySQL
and PostgreSQL), and compared with real-world data, ad-hoc data generators, and random data generators. The encouraging
results show that the data scaling performed by VIG is efficient and that the scaled data are suitable for benchmarking OBDA
systems.
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1. Introduction

An important research problem in Big Data is how
to provide end-users with transparent access to the
data, abstracting from storage details. The paradigm of
Ontology-based Data Access (OBDA) [7,27] provides
an answer to this problem that is very close to the spirit
of the Semantic Web. In OBDA, the data stored in a
relational database is presented to the end-users as a
virtual RDF graph, whose vocabulary is provided by
the classes and properties of an ontology, over which
SPARQL queries can be posed. This solution is real-
ized through mappings that establish a link between
the ontology and the database, by specifying how to in-
stantiate the classes and properties in the ontology by
means of queries over the database.

*Corresponding Author

A lot of research on optimization techniques for
OBDA has been carried out recently, with the aim of
making this paradigm effective in practice [11,24,4,15,
19,5,28]. In order to evaluate the effectiveness of opti-
mizations, some benchmarks have been proposed and
applied to the OBDA setting1. However, proper bench-
marking of OBDA systems requires scalability anal-
yses taking into account data instances of increasing
volume. Such instances are often provided by gener-
ators of synthetic data. However, such generators are
either complex ad-hoc implementations working for
a specific schema, or require considerable manual in-
put by the end-user. The latter problem is exacerbated
in the OBDA setting, where database schemas tend
to be particularly big and complex (e.g., 70 tables,
some with more than 80 columns in the NPD bench-

1http://dl.kr.org/omqbench/
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mark [17]). This contributes to the slow creation of
new benchmarks, and the same old benchmarks be-
come more and more misused over a long period of
time. For instance, evaluations on OBDA systems are
usually performed on benchmarks originally designed
for triple stores, although these two types of systems
are substantially different and present different chal-
lenges [17].

Data scaling [26] is a recent approach that tries to
overcome this problem by automatically tuning the
generation parameters through statistics collected over
an initial data instance. Hence, the same generator can
be reused in different contexts, as long as an initial data
instance is available. A measure of quality for the pro-
duced data is defined in terms of results for the avail-
able queries, which should be similar to the ones ob-
served for real data of comparable volume.

In the context of OBDA, however, taking as the only
parameter for generation an initial data instance does
not produce data of acceptable quality, since the gener-
ated data has to comply with constraints deriving from
the structure of the mappings and the ontology, which
in turn derive from the application domain.

In this work we present the VIG system, a data scaler
for OBDA benchmarks that addresses these issues. In
VIG, the scaling approach is lifted from the instance
level to the OBDA level, where the domain informa-
tion of ontologies and mappings has to be taken into
account as well. VIG is very efficient and suitable to
generate huge amounts of data, as tuples are generated
in constant time without disk accesses or need to re-
trieve previously generated values. Furthermore, dif-
ferent instances of VIG can be delegated to different
machines, and parallelization can scale up to the num-
ber of columns in the schema, without communication
overhead. Finally, VIG produces data in the form of
csv files that can be imported easily by any relational
database system.

To evaluate VIG, we have carried out an extensive set
of experiments with three datasets (BSBM, DBLP, and
NPD) resembling information needs in real-world use
cases, using two OBDA systems (Ontop and D2RQ),
backed by two relational database engines (MySQL
and PostgreSQL), and compared with real-world data,
ad-hoc data generators, and random data generators.
In numbers, we ran in total 8042 queries over 49
database instances, among which 4 (DBLP and NPD
under MySQL and PostgreSQL) are real-world data, 3
are original synthetic data (MySQL and PostgreSQL)
from BSBM, and the rest are generated by VIG in dif-
ferent modes. The results over the three datasets are

encouraging and show that the data scaling performed
by VIG is efficient and that the scaled data are suitable
for benchmarking OBDA systems. Moreover, the re-
sults obtained over the NPD dataset demonstrate the
benefits of taking into account mappings in the gener-
ation of data.

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce the basic notions and notation to
understand this paper. In Section 3, we define the scal-
ing problem and discuss important measures on the
produced data that define the quality of instances in a
given OBDA setting. In Section 4, we discuss the VIG

algorithm, and how it ensures that data conforming
to the identified measures is produced. In Section 5,
we provide an empirical evaluation of VIG, in terms
of both resource consumption and quality of produced
data, and in Section 6.1 we discuss the impact of multi-
attribute foreign keys on the generation process. Sec-
tions 7 and 8 contain related work and conclusions, re-
spectively.

This paper is a revised and significantly extended
version of an article containing preliminary results
that was presented at the Workshop on Benchmarking
Linked Data (BLINK) 2016 [18]2.

2. Basic Notions and Notation

We assume that the reader has moderate knowledge
of OBDA, and refer for it to the abundant literature on
the subject, like [6]. Moreover, we assume familiarity
with basic notions from probability calculus and statis-
tics.

The W3C standard ontology language for OBDA
is OWL 2 QL [20]. For the sake of conciseness,
we consider here its mathematical underpinning DL-
LiteR [8]. Table 1 shows a portion of the DL-LiteR on-
tology from the NPD benchmark, which is the founda-
tion block of our running example.

The W3C standard query language in OBDA is
SPARQL [14], with queries evaluated under the
OWL 2 QL entailment regime [16]. Intuitively, under
these semantics each basic graph pattern (BGP) can
be seen as a single conjunctive query (CQ) without

2With respect to [18], apart from providing many more details on
the VIG algorithm, we have also carried out more extensive exper-
iments, by including DBLP as a third dataset (cf. Section 5.3), by
using as OBDA system also D2RQ, in addition to Ontop, and by re-
lying on PostgreSQL, in addition to MySQL, as relational database
engine (cf. Section 5.1).
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Table 1
Portion of the ontology for the NPD benchmark. The first three
axioms (left to right) state that the classes Exploration Well-
bore (ExpWellbore), Shallow Wellbore (ShWellbore), and Suspended
Wellbore (SuspWellbore) are subclasses of the class Wellbore. The
fourth axiom states that the classes ExpWellbore and ShWellbore are
disjoint.

ExpWellbore v Wellbore

ShWellbore v Wellbore

SuspWellbore v Wellbore

ExpWellbore u ShWellbore v ⊥

existentially quantified variables. As in our examples
we only refer to SPARQL queries containing exactly
one BGP, we use the more concise syntax for CQs
rather than the SPARQL syntax. Table 2 shows the two
queries used in our running example.

The mapping component links predicates in the
ontology to queries over the underlying relational
database. To present our techniques, we need to intro-
duce this component in a formal way. The standard
W3C language for mappings is R2RML [10], however
here we use a more concise syntax that is common in
the OBDA literature. Formally, a mapping assertion m

is an expression of the form X( ~f , ~x)  conj(~y), con-
sisting of a source part conj(~y), which is a CQ whose
output variables are ~y, and a target part X( ~f , ~x), which
is an atom whose predicate is X over terms (also called
templates) built using function symbols ~f and vari-

Table 2
Queries for our running example.

q1(y) ← Wellbore(y), shWellboreForField(x, y)

q2(x, n, y)← Wellbore(x), name(x, n), complYear(x, y)

ables ~x ⊆ ~y. We say that such a mapping m defines
the predicate X. A basic mapping is a mapping whose
source part is a query containing exactly one atom. Ta-
ble 3 shows the mappings for our running example, and
provides a short description of how these mappings are
used in order to create a (virtual) set of assertions.

For the rest of the paper we fix an OBDA instance
(T ,M,Σ,D), where T is an OWL 2 QL ontology, Σ
is a database schema with foreign and primary key
dependencies, M is a set of mappings linking predi-
cates in T to queries over Σ, and D is a database in-
stance that satisfies the dependencies in Σ and such
that the assertions created from D via mappings M
do not violate the disjointness axioms in T . We de-
note by col(Σ) the set of all columns in Σ. Given
a column C ∈ col(Σ), we denote by CD the set of
values for C in D. Finally, given a term f (~x), where
~x = (x1, . . . , xp, . . . , xn), we denote the argument xp at
position p by f (~x)|p.

3. Data Scaling for OBDA Benchmarks: The VIG
Approach

The data scaling problem introduced in [26] is for-
mulated as follows:

Definition 3.1 (Data Scaling Problem). Given a
database instance D for a schema Σ, and a scale factor
s, produce a database instance D′ for Σ which is
similar to D but s times its size.

The notion of similarity is application-based. Being
our goal benchmarking, we define similarity in terms
of execution times for the evaluation of the queries in

Table 3
Mappings from the NPD benchmark.

ExpWellbore(w(id))  exploration_wellbores(id,active,name,year)

ShWellbore(w(id))  shallow_wellbores(id,name,year,fid)

SuspWellbore(w(id))  exploration_wellbores(id,active,name,year), active=’false’

Field( f (fid))  fields(fid,name)

complYear(w(id),year)  exploration_wellbores(id,active,name,year)

complYear(w(id),year)  shallow_wellbores(id,name,year,fid)

name(w(id),name)  exploration_wellbores(id,active,name,year)

name(w(id),name)  shallow_wellbores(id,name,year,fid)

shWellboreForField(w(id), f (fid))  shallow_wellbores(id,name,year,fid), fields(fid,fname)

Results from the evaluation of the queries on the source part build assertions in the ontology. For example, each tuple (a, b, c, d) in a relation
for shallow_wellbores generates an object w(a) and an assertion ShWellbore(w(a)) in the ontology. In the R2RML mappings for the
original NPD benchmark the term w(id) corresponds to the URI template npd:wellbore/{id}. Columns named id are primary keys, and
the column fid in shallow_wellbores is a foreign key for the primary key fid of the table fields.



4 Davide Lanti et al. / VIG: Data Scaling for OBDA Benchmarks

the benchmark. More precisely, consider a (real world)
database instanceD0 and a larger (real world) instance
D1 into whichD0 has evolved over time. Consider also
an instance D′0 scaled from D0 up to a size compara-
ble to that of D1. Then, the measured execution times
for the evaluation of the benchmark queries over D′0
should be close to the measured execution times for
the evaluation of the same queries over D1. In [26],
the authors do not consider benchmark queries to be
available to the generator, since their goal is broader
than benchmarking over a pre-defined set of queries.
In OBDA benchmarking, however, the (SQL) work-
load for the database can be estimated from the map-
ping component. Therefore, VIG includes the map-
pings in the analysis, so as to obtain a more realistic
and OBDA-tuned generation.

Concerning the size, similarly to other approaches,
VIG scales each table in D by a factor of s.

3.1. Similarity Measures for OBDA and Their
Rationale

Our notion of similarity is an ideal one, but also an
abstract one, as it does not provide any guideline on
how the data should be generated. In this section we
overview the concrete similarity measures which are
used by VIG to guide the generation process. Our idea
is that generating instances similar to the initial one
with respect to these concrete measures can be a suit-
able way to produce instances that are similar also with
respect to our ideal abstract similarity measure.

Schema Dependencies. The scaled instance D′
should be a valid instance for Σ. VIG is, to the best
of our knowledge, the only data scaler able to gener-
ate in constant time tuples that satisfy multi-attribute
primary keys for weakly-identified entities3. The cur-
rent algorithm of VIG supports single-attribute foreign
keys, but not yet multi-attribute foreign keys. We refer
to Section 6.1 for a discussion on the impact of multi-
attribute foreign keys on the generation process.

Column-based Duplicates and NULL Ratios. These
two parameters, which respectively measure the ra-
tio of duplicates and of NULLs in a given col-
umn, are commonly used for the cost estimation per-
formed by query planners in databases. By default,
VIG maintains them in D′ to preserve the cost of
a number of algebra operations, such as projections

3In a relational database, a weak entity is an entity that cannot be
uniquely identified by its attributes alone.

or joins between columns in a key-foreign key re-
lationship (e.g., the join from the last mapping in
our running example). This default behavior, how-
ever, is not applied with fixed-domain columns, which
are columns whose content does not depend on the
size of the database instance. An example of fixed-
domain column is the column active in the table
exploration_wellbore, because depending on
the value of active, the elements of id are parti-
tioned into a fixed number of types, corresponding to
classes in the ontology4. VIG analyzes the mappings
to detect such cases of fixed-domain columns, and ad-
ditional fixed-domain columns can be manually speci-
fied by the user. To generate values for a fixed-domain
column, VIG reuses the values found in D so as to pre-
vent empty answers for the SQL queries in the map-
pings. For instance, a value ‘false’ must be gener-
ated for the column active in order to produce ob-
jects for the class SuspWellbore.

VIG generates values in columns according to a uni-
form distribution, that is, all values in a column have
the same probability of being repeated. Replication of
the distributions from D will be included in a future
release of VIG.

Size of Columns Clusters, and Disjointness. Query
q1 from our running example returns an empty set of
answers, regardless of the considered data instance.
This is because q1 performs a join between wellbores
and fields, but the function w used to build objects for
the class Wellbore does not match with the function f
used to build objects for the class Field. Indeed, fields
and wellbores are two different entities and a join be-
tween them is meaningless.

On the other hand, a standard OBDA transla-
tion of q2 into SQL produces a union of CQs,
in which several of these CQs contain joins
between the tables exploration_wellbores
and shallow_wellbores. This is possible only
because the mappings for Wellbore, name, and
complYear all use the same unary function sym-
bol w to define wellbores. Intuitively, every pair of
terms over the same function symbol and appearing
in the target of two distinct basic mappings identi-
fies sets of columns for which the join operation is
semantically meaningful5. Generating data that guar-

4The number of classes in the ontology does not depend on the
size of the data instance.

5Therefore, between such identified sets of columns a join could
occur during the evaluation of a user query.
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function VIG((T ,M,Σ), D)
initAllColumns(Σ,D) . Initialization and Satisfaction of Primary Keys
establishColumnsBounds(Σ,D)
updateIntervalsWRTFkeys(Σ) . Satisfaction of Foreign Keys
D′ = generate() . Generation Phase
return D′

end function

function establishColumnsBounds((T ,M,Σ), D)
fillFirstInterval(Σ,D) . Creation of Intervals
CCs← extractColumnsClusters(Σ,M) . Columns Cluster Analysis
for C in Σ do

updateIntervals(C,CCs) . Columns Cluster Analysis
end for

end function

Fig. 1. The VIG Algorithm.

antees the correct cost for these joins is crucial in
order to deliver a realistic evaluation. In our exam-
ple, a join between exploration_wellbores
and shallow_wellbores over the attribute id is
empty under D (in fact, ExpWellbore and ShWellbore
are disjoint classes, and by assumption D respects the
disjointness constraints of the ontology). VIG is able to
replicate this fact inD′. This implies that VIG can gen-
erate data satisfying disjointness constraints declared
over classes whose individuals are constructed from a
unary template in a basic mapping, if D satisfies those
constraints.

4. The VIG Algorithm

In this section we show how VIG realizes the mea-
sures described in the previous section. To allow the
reader to concentrate on the important aspects, and
considering that different database systems use differ-
ent names for datatypes, we do not discuss low-level
details, e.g., which domains for attributes are accept-
able. We provide such details in the online resource6

where the generator is made available.
Algorithm 1 shows a high-level view of VIG. Each

comment in the code refers to a specific paragraph
name in this section, where the respective code is
explained and discussed. The function names in the
pseudo-code recall the actual method names of the VIG

6https://ontop.github.io/vig/

implementation, which is freely available on GitHub7

and open to contributions.
At the high-level, the VIG algorithm consists of two

phases: the analysis phase, and the generation phase.
In the analysis phase, the input data instance D is an-
alyzed to collect statistics and create a set ints(C) of
intervals associated to each column C in the database
schema. Each interval I ∈ ints(C) for a column C
is a structure [min,max] keeping track of a minimum
and maximum integer index. In the generation phase, a
pseudo random number generator is used to randomly
choose indexes from each of these intervals. Then, for
each column C, an injective function gC is applied to
transform each chosen index i ∈ I, I ∈ ints(C), into a
database value according to the datatype of C.

From now on, let s be a scale factor, and let
dist(C,D) denote the number of distinct non-NULL
values in a column C in the database instance D. Let
size(T,D) denote the number of tuples occurring in
the table T in the database instance D. To illustrate the
algorithm, we consider a source instance D that con-
tains values as shown in Figure 2, and a scaling factor
s = 2.

4.1. Analysis Phase

The goal of this phase is to create intervals of in-
dexes for each column that will be used as an input
to the generation phase. These intervals are created
while satisfying certain constraints over the database

7https://github.com/ontop/vig
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id active ...

2 true ...

4 false ...

6 true ...

8 false ...

10 false ...

exploration wellbores (abbr. ew)

id ...

1 ...

3 ...

5 ...

7 ...

9 ...

shallow wellbores (abbr. sw)

id ...

1 ...

. ...

. ...

. ...

10 ...

wellbores overview (abbr. wo)

Fig. 2. Input data instanceD. Columns id from tables exploration_wellbores and shallow_wellbores are foreign keys of column
id from table wellbores_overview.

schema, mappings, and statistical information on the
source database. The analysis phase consists of the fol-
lowing 5 stages:

1. initialization: reading of the database schema and
statistics over the source database;

2. creation of intervals: creation, starting from the
statistics, of initial intervals of indexes to asso-
ciate to each column;

3. satisfaction of primary keys: ensuring that pri-
mary key constraints are satisfied in the scaled in-
stance by adapting the intervals boundaries;

4. columns cluster analysis: identification of seman-
tically related columns through schema and map-
pings analysis, and adaptation of the intervals
boundaries;

5. satisfaction of foreign keys: ensuring that foreign
key constraints are satisfied in the scaled instance
by adapting the intervals boundaries.

We now detail each of these stages.

Initialization. For each table T , VIG sets the number
size(T,D′) of tuples to generate to s·size(T,D). Then,
VIG calculates the number of distinct non-NULL val-
ues that need to be generated for each column, given
s and D. That is, for each column C, if C is not fixed-
domain then VIG sets dist(C,D′) := s · dist(C,D).
Otherwise, dist(C,D′) is set to dist(C,D). To deter-
mine whether a column is fixed-domain, VIG searches
inM for mappings of shape

A( f (~a))  T (~b), b1 = c1, . . . , bn = cn

where A is a class, T is a table, c1, . . . , cn are con-
stants, and b1, . . . , bn are columns in ~b. For each such
mapping, VIG marks the columns b1, . . . , bn as fixed-
domain.

Example 4.1. For the tables in Figure 2, VIG sets
size(ew,D′) = size(sw,D′) = 2 · 5 = 10, and

size(wo,D′) = 2 · 10 = 20. Values for statistics
dist(T.id,D′), where T is one of {ew,sw,wo}, are
set in the same way, because the id columns do not
contain duplicate values. The column ew.active is
marked as fixed-domain, because of the third mapping
in Table 3. Therefore, VIG sets dist(ew.active) =
2.

Creation of Intervals. When C is a numerical col-
umn, VIG initializes ints(C) to the interval IC :=
[min(C,D),min(C,D) + dist(C,D′) − 1] of distinct
values to be generated, where min(C,D) denotes the
minimum value occurring in CD. Otherwise, if C is
non-numerical, ints(C) is initialized to the interval
IC := [1,dist(C,D′)]. We recall that the elements in
the intervals in ints(C) are transformed into values of
the desired datatype by a suitable injective function in
the final generation step.

Example 4.2. Following on our running example, VIG
creates in this phase the intervals Iew.id = [2, 11],
Iew.active = [1, 2], Isw.id = [1, 10], and Iwo.id =
[1, 20]. Then, the intervals are associated to the respec-
tive columns. Namely, ints(ew.id) = {Iew.id}, . . .,
ints(wo.id) = {Iwo.id}.

Satisfaction of Primary Keys. The generation of dis-
tinct tuples depends on the pseudo-random number
generator adopted. Formally, a pseudo-random num-
ber generator is a sequence of integers (si)i∈N de-
fined through a transition function sk := f (sk−1).
VIG adopts a particular class of pseudo-random gen-
erators, introduced in [13], and based on multiplica-
tive groups modulo a prime number. Such generators
are able to generate a permutation of the indexes in an
interval. In formal terms, let n be the number of dis-
tinct values to generate, and let g be a generator for the
multiplicative group modulo a prime number p, with
p > n. Consider the sequence S := 〈gi mod p | i =
1, . . . , p and (gi mod p) ≤ n〉. Then S is a permutation
of values in the interval [1, . . . , n].
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We now explain how such number generator can be
used to generate tuples of values satisfying the primary
key constraints in the schema. Let K = {C1, . . . ,Cn}
be the primary key of a table T . In order to ensure that
values generated for each column through our pseudo-
random generator do not lead to tuples with duplicate
values for the key K, it suffices that the least com-
mon multiple lcm(dist(C1,D′), . . . , dist(Cn,D′)) of
the number of distinct values to generate in each col-
umn is greater than the number tuples(T,D′) of tu-
ples to generate for the table T . While this condition
is not satisfied, VIG increases by 1 dist(Ci,D′) for a
suitably chosen column Ci in K. Observe that the only
side effect of this is a small deviation on the number
of distinct values to generate for a column. Once the
condition holds, data can be generated independently
for each column without risk of generating duplicate
tuples for K.

Columns Cluster Analysis. In this phase, VIG ana-
lyzes M in order to identify columns that could be
joined in a translation to SQL, and groups them to-
gether into pre-clusters. Formally, let X1(~f1, ~x1), . . . ,

Xm( ~fm, ~xm) be the atoms defined by basic mappings
in M, where variables correspond to qualified col-
umn names8. Consider the set F =

⋃
i=1...m

{
f (~x) |

f (~x) is a term in Xi(~fi, ~xi)
}

of all the terms occurring
in such atoms. For each function f and valid position p
in f , we define a pre-cluster pc f |p as the set of columns
pc f |p = { f (~x)|p | f (~x) ∈ F}.

Example 4.3. For our running example, we have

F = {w(ew.id),w(sw.id), f (fields.fid)} .

There are two pre-clusters, namely pcw|1 = {ew.id,
sw.id} and pc f |1 = {fields.fid}.

VIG evaluates on D all combinations of joins be-
tween columns in a pre-cluster pc, and produces val-
ues in D′ so that the selectivities for these joins are
maintained. In order to do so, the intervals for the
columns in pc are modified. This modification must
be propagated to all the columns related via a for-
eign key relationship to some column in pc. In par-
ticular, the modification might propagate to columns
belonging to different pre-clusters, inducing a clash.
VIG groups together such pre-clusters in order to
avoid this issue. Formally, let PC denote the set of

8A qualified column name is a string of the form T.C, where T is
a table name and C a column name.

pre-clusters for M. For a pre-cluster pc ∈ PC, let
C(pc) = {D ∈ col(Σ) | there is a C ∈ pc : D ∗↔ C},

where ∗↔ is the reflexive, symmetric, and transitive clo-
sure of the single column foreign key relation between
pairs of columns9. Two pre-clusters pc1, pc2 ∈ PC
are in merge relation, denoted as pc1 ! pc2, iff
C(pc1) ∩ C(pc2) 6= ∅. Given a pre-cluster pc, the set
{c ∈ col(Σ) | c ∈ pc′ for some pc′ with pc′

∗
! pc}

of columns is called a columns cluster, where ∗
! is

the transitive closure of !. Columns clusters group
together those pre-clusters for which columns cannot
be generated independently.

Example 4.4. In our example we have that pcw|1 6
∗
!

pc f |1 . In fact, C(pcw|1) = pcw|1 ∪ {wo.id} and
C(pc f |1) = pc f |1 , hence C(pcw|1) ∩ C(pc f |1) = ∅.
Therefore, the pre-clusters pcw|1 and pc f |1 are also
columns clusters.

After identifying columns clusters, VIG analyzes the
number of shared elements between the columns in
a cluster, and creates new intervals accordingly. For-
mally, consider a columns cluster cc. Let H ⊆ cc be
a set of columns, and let KH := {K | H ⊂ K ⊆ cc}
be the set of strict super-sets of H. For each such
H, VIG creates an interval IH of indexes such that
|IH| := s · |

⋂
C∈H CD \ (

⋃
K∈KH

⋂
C∈K CD)|, and adds

IH to ints(C) for all C ∈ H. Boundaries for all inter-
vals IH are set in a way that they do not overlap.

Example 4.5. Consider the columns cluster pcw|1 .
There are three non-empty subsets of pcw|1 , namely
E = {ew.id} , S = {sw.id}, and ES = {ew.id,
sw.id}. Accordingly, we identify the sets KE =
KS = {ES } and KES = ∅.

Thus, VIG needs to create three disjoint intervals IE ,
IS , and IES such that

– |IE | = 2 · |ew.idD \ ∅| = 2 · 5 = 10,
– |IS | = 2 · |sw.idD \ ∅| = 2 · 5 = 10,
– |IES | = 2 · |(ew.idD ∩ sw.idD) \ ∅| = 0.

Without loss of generality, we assume that the inter-
vals generated by VIG satisfying the constraints above
are IE = [2, 11] and IS = [12, 21]. These intervals
are assigned to columns ew.id and sw.id, respec-
tively. Intervals assigned in the initialization phase to
the same columns are deleted.

9We recall that VIG does not allow for multi-attribute foreign keys.
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Satisfaction of Foreign Keys. At this point, foreign
key columns D for which there is no columns cluster
cc such that D ∈ C(cc), have a single interval whose
boundaries have to be aligned to the (single) interval
of the parent. Foreign keys relating pairs of columns in
a cluster, instead, are already satisfied by construction
of the intervals in the columns cluster. More work, in-
stead, is necessary for columns belonging to C(cc)\ cc,
for some columns cluster cc. These are columns that
will never appear in a join condition, given the input
mappings, but that still are directly or indirectly related
through a foreign key. We need to assign intervals for
such columns such that the foreign keys are satisfied,
in addition to all other constraints relative to dupli-
cates ratio, primary keys, and already found intervals
in columns clusters.

VIG encodes the problem of finding the right inter-
vals for these columns into a constraint satisfaction
problem (CSP) [1], which can be solved by any off-
the-shelf constraint solver. In VIG, we use Choco [21].

Table 4 shows the CSP program that encodes the
problem of establishing the intervals for the columns
in C(cc)\cc. The first constraint declares a pair of vari-
ables for each column C ∈ C(cc) and interval I in the
set S of intervals for the columns cluster cc. The vari-
able X〈C, I〉, encodes the lower bound for I in column
C, and the variable Y〈C, I〉 the upper bound. The sec-
ond constraint fixes the values of variables X and Y
for all those columns belonging to the columns cluster
C(cc), as their intervals were found during the columns
cluster analysis and do not need to be recomputed.
The third constraint states that intervals that do not be-
long to a column should be set to empty for that col-
umn, and the fourth constraint states that lower-bounds
should be at most as large as upper bounds. The fifth
constraint states that if two columns are in a foreign-
key relation C1 ⊆ C2 and belong to C(cc) \ cc, then
any lower bound X〈C1, I〉 (resp., upper bound Y〈C1, I〉)
must be greater (resp., smaller) or equal than the lower
bound X〈C2, I〉 (resp., upper bound Y〈C2, I〉). Intuitively,
this constraint will lead to the creation of an interval
IC1,C2 shared between C1 and C2. The last constraint
states that the sum of the differences between upper
and lower bounds variables for a column C should be
equal to the number of distinct elements that we want
to generate for C.

Example 4.6. At this point, the intervals found by VIG
(w.r.t. the portion of D we are considering) are:

– Iwo.id = [1, 20] and Iew.active = [1, 2], found in
the initialization phase;

Table 4
CSP Program for foreign keys satisfaction.

Create Program Variables:
∀I ∈ S . ∀C ∈ C(cc). X〈C, I〉, Y〈C, I〉 ∈ [I.min, I.max]

Set Boundaries for Known Intervals:
∀I ∈ S . ∀C ∈ C(cc). I ∈ ints(C)⇒ X〈C, I〉 = I.min, Y〈C, I〉 = I.max

Set Boundaries for Known Empty Intervals:
∀I ∈ S . ∀C ∈ cc. I /∈ ints(C)⇒ X〈C, I〉 = Y〈C, I〉

The X’s should be at most as large as the Y’s:
∀I ∈ S . ∀C ∈ C(cc). X〈C, I〉 ≤ Y〈C, I〉

Foreign Keys (denoted by⊆):
∀I ∈ S . ∀C1 ∈ (C(cc) \ cc). ∀C1 ⊆ C2. X〈C1 , I〉 ≥ X〈C2 , I〉
∀I ∈ S . ∀C1 ∈ (C(cc) \ cc). ∀C1 ⊆ C2. Y〈C1 , I〉 ≤ Y〈C2 , I〉
∀I ∈ S . ∀C1 ∈ (C(cc) \ cc). ∀C2 ⊆ C1. X〈C2 , I〉 ≥ X〈C1 , I〉
∀I ∈ S . ∀C1 ∈ (C(cc) \ cc). ∀C2 ⊆ C1. Y〈C2 , I〉 ≤ Y〈C1 , I〉

Width of the Intervals:
∀C ∈ (C(cc) \ cc).

∑
I∈S Y〈C, I〉 − X〈C, I〉 = |C|

In this program, S is the set of intervals for the columns in the
columns cluster cc, plus one extra disjoint interval. Each interval I in
a column C is encoded as a pair of variables X〈C, I〉, Y〈C, I〉, keeping
respectively the lower and upper limit for the interval.

– IE = [2, 11] and IS = [12, 21], found during the
columns cluster analysis.

Observe that these intervals violate the foreign key
sw.id ⊆ wo.id, because the index 21 belongs
to I{sw.id} but not to Iwo.id. Moreover, wo.id ∈
C(pcw|1) \ pcw|1 . Therefore, VIG encodes the prob-
lem of finding the right boundaries for Iwo.id into
the CSP in Table 5. Any solution for this CSP pro-
gram sets X〈ew.id, Iew.id〉 = 2, Y〈ew.id, Iew.id〉 = 11,
X〈sw.id, Isw.id〉 = 12, and Y〈sw.id, Isw.id〉 = 21. The
last four constraint imply also that, for any solution,
X〈C, Iaux〉 = Y〈C, Iaux〉, for any column C. A solution for
the program is:

X〈ew.id, Iew.id〉 = 2 Y〈ew.id, Iew.id〉 = 11
X〈sw.id, Isw.id〉 = 12 Y〈sw.id, Isw.id〉 = 21
X〈wo.id, Iew.id〉 = 2 Y〈wo.id, Iew.id〉 = 11
X〈wo.id, Isw.id〉 = 12 Y〈wo.id, Iew.id〉 = 21

and arbitrary values for the other variables so that
X〈C, I〉 = Y〈C, I〉.

From this solution, VIG creates two new intervals
I{wo.id, ew.id} = [2, 11] and I{wo.id, sw.id} = [12, 21]
and sets them as intervals for column wo.id.

4.1.1. Complexity of the Analysis Phase
We analyze the complexity of the 5 stages of the

analysis phase.

1. Initialization: The gathering of each statistic is
performed by issuing | col(Σ)| SQL queries to the
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Table 5
CSP instance for the running example.

Create Program Variables:
X〈ew.id, Iew.id〉, Y〈ew.id, Iew.id〉, X〈sw.id, Iew.id〉, Y〈sw.id, Iew.id〉, X〈wo.id, Iew.id〉, Y〈wo.id, Iew.id〉 ∈ [2, 11]

X〈ew.id, Isw.id〉, Y〈ew.id, Isw.id〉, X〈sw.id, Isw.id〉, Y〈sw.id, Isw.id〉, X〈wo.id, Isw.id〉, Y〈wo.id, Isw.id〉 ∈ [12, 21]

X〈ew.id, Iaux〉, Y〈ew.id, Iaux〉, X〈sw.id, Iaux〉, Y〈sw.id, Iaux〉, X〈wo.id, Iaux〉, Y〈wo.id, Iaux〉 ∈ [22, 41]

Set Boundaries for Known Intervals:
X〈ew.id, Iew.id〉 = 2 Y〈ew.id, Iew.id〉 = 11

X〈sw.id, Isw.id〉 = 12 Y〈sw.id, Isw.id〉 = 21

Set Boundaries for Known Empty Intervals:
X〈ew.id, Isw.id〉 = Y〈ew.id, Isw.id〉 X〈ew.id, Iaux〉 = Y〈ew.id, Iaux〉

X〈sw.id, Iew.id〉 = Y〈sw.id, Iew.id〉 X〈sw.id, Iaux〉 = Y〈sw.id, Iaux〉

The X’s should be at most as large as the Y’s:
X〈ew.id, Iew.id〉 ≤ Y〈ew.id, Iew.id〉 X〈sw.id, Iew.id〉 ≤ Y〈sw.id, Iew.id〉 X〈wo.id, Iew.id〉 ≤ Y〈wo.id, Iew.id〉

X〈ew.id, Isw.id〉 ≤ Y〈ew.id, Isw.id〉 X〈sw.id, Isw.id〉 ≤ Y〈sw.id, Isw.id〉 X〈wo.id, Isw.id〉 ≤ Y〈wo.id, Isw.id〉

X〈ew.id, Iaux〉 ≤ Y〈ew.id, Iaux〉 X〈sw.id, Iaux〉 ≤ Y〈sw.id, Iaux〉 X〈wo.id, Iaux〉 ≤ Y〈wo.id, Iaux〉

Foreign Keys:
X〈ew.id, Iew.id〉 ≥ X〈wo.id, Iew.id〉 · · · X〈sw.id, Isw.id〉 ≥ X〈wo.id, Isw.id〉

Y〈ew.id, Iew.id〉 ≤ Y〈wo.id, Iew.id〉 · · · Y〈sw.id, Isw.id〉 ≤ Y〈wo.id, Isw.id〉

Width of the Intervals:
Y〈wo.id, Iew.id〉 − X〈wo.id, Iew.id〉 + Y〈wo.id, Isw.id〉 − X〈wo.id, Isw.id〉 + Y〈wo.id, Iaux〉 − X〈wo.id, Iaux〉 = 20

source data instance, and evaluating each of them
is AC0 in data complexity.

2. Creation of intervals: We need to create | col(Σ)|
intervals, and the creation of each of these is done
in constant time using the gathered statistics.

3. Satisfaction of primary keys: This requires a re-
peated computation of the least common multiple
of numbers of distinct values for the columns par-
ticipating in a primary key. The number of such
repetitions is expected to be very small.

4. Columns cluster analysis: The complexity of this
stage depends on the number and size of the
columns clusters. The number of (non-singleton)
columns clusters can range from a single columns
cluster containing all the columns in col(Σ) to
| col(Σ)|/2 columns clusters, each of size exactly
2. The complexity of the analysis for a columns
cluster cc grows with the number of columns in
C(cc). Let cc be the columns cluster with the
largest number n of columns in C(cc). In the worst
case, VIG issues to the database O(2n) queries, so
as to compute for each H ⊆ C(cc) the cardinal-
ity |IH| of the interval IH to be created. Hence,
in the worst case where all columns of Σ are in
C(cc), O(2| col(Σ)) intervals will be created in this
stage. One has to notice, however, that a columns
cluster cc groups together in C(cc) those columns

in the database that are semantically related (e.g.,
columns in a key-foreign key relationship). In
practice we expect such groups to contain only a
few columns10.

5. Satisfaction of foreign keys: From Table 4, it is
immediate to see that for each columns cluster cc,
the CSP can contain a number of variables that is
at most O(N · n), and a number of rules that is at
most O(fk · N · n), where fk is the number of for-
eign keys, and N is the size of the set S contain-
ing all the intervals in C(cc) (which are at most
2n). We observe that both the number of rules and
the number of variables do not depend on the size
of the initial or scaled data. Hence, the complex-
ity of the CSP program does not depend on the
data, but only on the complexity of the schema
and mappings.

4.2. Generation Phase

At this point, each column in col(Σ) is associated to
a set of intervals. The elements in the intervals are as-
sociated to values in the column datatype, and to val-
ues from CD in case C is fixed-domain. VIG uses the

10For NPD, we have 17 columns clusters mostly of size 2 or 3,
and there is a single largest group of size 11.
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id active ...

2 true ...

3 false ...

... false ...

10 true ...

11 false ...

exploration wellbores (abbr. ew)

id ...

12 ...

13 ...

... ...

20 ...

21 ...

shallow wellbores (abbr. sw)

id ...

2 ...

... ...

11 ...

12 ...

... ...

21 ...

wellbores overview (abbr. wo)

Fig. 3. Scaled instance D′.

pseudo-random number generator to randomly pick el-
ements from the intervals that are then transformed
into database values. NULL values are generated ac-
cording to the detected NULL ratio. Observe that the
generation of a value in a column takes constant time
and can happen independently for each column, thanks
to the previous phases in which intervals were calcu-
lated.

Example 4.7. At this stage, VIG has available all the
information necessary to proceed with the generation.
In our running example, such information is:

– Association of columns to intervals. The columns
in the considered tables are associated to intervals
in the following way:

ints(ew.id) = {[2, 11]}
ints(sw.id) = {[12, 21]}
ints(wo.id) = {[2, 11], [12, 21]}

ints(ew.active) = {[1, 2]}

– Number of tuples to generate for each table. From
Example 4.1, we know that size(ew,D′) = 10,
size(sw,D′) = 10, and size(wo,D′) = 20.

– Association of indexes to database values. With-
out loss of generality, we assume that the injec-
tive function used by VIG to associate elements
in the intervals to database values is the iden-
tity function for all non fixed-domain columns.
For the column ew.active, we use the function
g : {1, 2} → {’true’, ’false’} such that
g(1) = ’true’ and g(2) = ’false’.

Figure 3 shows the generated data instance D′. Ob-
serve that D′ satisfies all the constraints discussed in
the previous paragraphs. For clarity, the generated tu-
ples are sorted on the primary key, however in a real
execution the values would be randomly generated by
means of the multiplicative group modulo a prime
number.

4.2.1. Complexity of the Generation Phase
In VIG, the complexity of the generation phase

depends only on the complexity of the underly-
ing pseudo-random number generator. The pseudo-
random number generator underlying VIG requires
constant time and space to produce each value [13].
Hence, the overall running time is linear in the size of
the generated data.

5. VIG in Action

The data generation techniques presented in the pre-
vious sections have been implemented in the VIG sys-
tem, which is available on GitHub11 as a Java Maven
project, and comes with documentation in form of wiki
pages. Initially, VIG was implement as part of the NPD
benchmark [17]. Now it has become a mature imple-
mentation delivered since two years. The system is li-
censed under Apache 2.0, and maintained at the Free
University of Bozen-Bolzano.

In this section we present an extensive evaluation
of VIG. The goal of the evaluation is to demonstrate
the quality of the data scaled by VIG, by comparing
the scaled data with the original data. We define qual-
ity in terms of how well the observed performance
for query answering over the scaled data approxi-
mates the observed performance for query answering
over the original data. To perform the comparisons,
we use two OBDA systems (Ontop [5] and D2RQ12),
backed by different relational engines (MySQL and
PostgreSQL). Moreover, we compare VIG scaled data
to randomly generated data.

In Section 5.1 we describe the design of our ex-
periments, in Sections 5.2 to 5.4 we present three ex-
periments of VIG using the BSBM, DBLP, and NPD
datasets respectively, and finally in Section 6 we dis-
cuss the results of the experiments.

11https://github.com/ontop/vig
12http://d2rq.org/
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Table 6
Overview of the data and design of the experiments.

Data Set
Data characteristic Experiment design

Generator Real-world data Mappings Ontology Data generation Query evaluation Predicate growth Use of domain info

BSBM X - X - X X X -
DBLP - X X - - X X -
NPD - X X X - X X X

5.1. Experiment Design

For each dataset in our experiments, we consider the
following characteristics:

– generator: whether the dataset includes a data
generator;

– real-world data: whether the dataset includes
real-world data for evaluation;

– mappings: whether the dataset includes map-
pings;

– ontology: whether the dataset includes an ontol-
ogy.

Then we design the following experiments accord-
ing to the characteristics of each dataset:

– Data generation: it compares the performance of
data generation between the generator provided
by the dataset and VIG.

– Query evaluation: it evaluates the test queries
over different scaled data generated by VIG, the
native data generator (if available), and a random
data generator.

– Predicate growth: it evaluates how scaling affects
the growth of classes and properties.

– Use of domain info: it evaluates the impact on the
quality of the produced data of using, for the data
generation, the domain information provided by
the mappings and the ontology.

For the evaluation, we provide three experiments. In
the first experiment we use the BSBM benchmark [2]
to compare the synthetic data generated by VIG with
the one generated by the native ad-hoc BSBM data
generator. In the second experiment we use the real-
world DBLP dataset [12] about authors and publica-
tions, and compare it to the data generated by VIG. The
last experiment, which uses the NPD benchmark [17],
focuses on testing the impact of the mappings analysis
on the quality of the scaled data.

The characteristics of these datasets and the de-
signed experiments are summarized in Table 6, in
which “X” means yes and “-” means no or impossi-

ble. In particular, we only evaluate data generation in
BSBM because the other datasets do not include a gen-
erator, and we only evaluate the impact of an ontology
in NPD as only NPD includes an expressive ontology.

We do not evaluate here the ability of VIG to gen-
erate data in parallel. We just observe that VIG gener-
ates the data for the various columns independently of
each other, and as an immediate consequence the algo-
rithm can be parallelized up to the number of columns.
However, the actual impact of such parallelization on
the performance largely depends on the adopted paral-
lel system architecture (e.g., how concurrent write ac-
cesses to the storage layer by multiple threads/proces-
sors are handled). Experiments on this would test the
parallel system architecture rather than the algorithm,
and hence go beyond the scope of this paper.

Global Setting for All Experiments. For the DBLP
and BSBM experiments we used two different OBDA
systems, namely D2RQ v0.8.1 and Ontop v1.18.0 [5].
We used PostgreSQL v9.6.2 and MySQL v5.7.17 as
underlying database engines. The choice to test on
multiple systems and RDBMSs was made in order to
ensure that the observed results do not depend on the
actual implementation details of the considered sys-
tem/RDBMS. The hardware used is a PC desktop with
4 Intel(R) Xeon(R) E5-2680 0 @ 2.70 GHz processors
and 8 GB of RAM. The OS is Ubuntu 16.04 LTS.

For the NPD experiment, we changed our hard-
ware, and used an HP Proliant server with 2 Intel
Xeon X5690 Processors (each with 12 logical cores at
3.47 GHz), 106 GB of RAM and five 1TB 15K RPM
HDs. We underline that the change of hardware does
not affect the validity of the experiments, as we never
compare results run on different machines.

The experiments were run in the OBDA-Mixer sys-
tem13, which is an automated testing platform, shipped
with the NPD benchmark, that instantiates a set of
template-queries with values from the data instance so
as to produce SPARQL queries to be tested against an

13https://github.com/ontop/obda-mixer
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OBDA query answering system. The set of queries re-
sulting from this instantiation is called query mix (or,
simply, mix). The rationale behind query mixes is to
provide different variations of the test queries so as
to reduce the impact of caching, in the OBDA system
or in the database engine, on the measured execution
times. Each mix was run 4 times: 1 warm-up run and
3 test runs. Each query was executed with a timeout of
20 minutes. We treated failed executions as timeouts.

All the material used for the experiments is made
available online14.

5.2. BSBM Experiment

The BSBM benchmark is built around an e-
commerce use case in which different vendors offer
products that can be reviewed by customers. It comes
with a set of template-queries, an ontology, mappings,
and a native ad-hoc data generator (NTV) that can gen-
erate data according to a scale parameter given in terms
of the number of products. The queries contain place-
holders that are instantiated by actual values during the
test phase.

5.2.1. Experiment on Data Generation
Setup. We used the two generators to create six
data instances, denoted as BSBM-s-g, where s ∈
{1, 10, 100} indicates the scale factor with respect to
an initial data instance of 10000 products (produced
by NTV), and g ∈ {VIG, NTV} indicates the generator
used to produce the instance.

Results and Discussion. Figure 4 shows the re-
sources (time and memory) used by the two genera-
tors for creating the instances. For both generators the
execution time grows approximately as the scale fac-
tor, which suggests that the generation of a single col-
umn value is in both cases independent from the size
of the data instance to be generated. Observe that NTV

is on average 5 times faster than VIG (in single-thread
mode), but it also requires increasingly more memory
as the amount of the data to generate increase, contrary
to VIG that always requires the same amount of mem-
ory.

5.2.2. Experiment on Query Evaluation
We compare the execution times for the queries in

the BSBM benchmark evaluated over the instances

14For data instances, generators, mappings, queries, etc.,
see https://github.com/ontop/ontop-examples/
tree/master/swj-2017-vig
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Fig. 4. Generation Time and Memory Comparison.

produced by VIG and NTV. Additionally, we here con-
sider three additional data instances created with a ran-
dom generator (RAND) that only considers database in-
tegrity constraints (primary and foreign keys) as sim-
ilarity measures, ignoring the data statistics. This al-
lows us to quantify the impact of the measures main-
tained by VIG on the task of approximating (w.r.t. the
task of benchmarking) the data produced by NTV.

Setup. The experiment was run on a variation of the
BSBM benchmark over the testing platform, the map-
pings, and the considered queries. We now briefly dis-
cuss and motivate the variations, before introducing
the results.

The testing platform of the BSBM benchmark in-
stantiates the queries with concrete values coming
from binary configuration files produced by NTV. This
does not allow a fair comparison between the three
generators, because it is biased towards the specific
values produced by NTV. Therefore, we reused the
OBDA-Mixer of the NPD benchmark, which is inde-
pendent from the specific generator used as it instanti-
ates the queries only with values found in the provided
database instance.

Another important difference regards the mapping
component. The BSBM mapping contains some URI
templates with two arguments where one of them is a
unary primary key. This is commonly regarded as a bad
practice in OBDA, as it is likely to introduce redun-
dancies in terms of retrieved information. For instance,
consider the template

bsbm-i:dataFSite/{publisher}/Reviewer{nr}
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Table 7
Overview of the BSBM Experiment (D2RQ-MySQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

BSBM-1-NTV 135446 2.95 1219012 [229.436]
BSBM-1-VIG 135444 2.95 1219000 [43.8254]
BSBM-1-RAND 135336 2.96 1218028 [217.216]

BSBM-10-NTV 140639 2.84 1265755 [3344.42]
BSBM-10-VIG 140821 2.84 1267391 [557.378]
BSBM-10-RAND 140855 2.84 1267694 [2033.11]

BSBM-100-NTV 424915 0.94 3824234 [14976.1]
BSBM-100-VIG 426015 0.94 3834135 [2940.4]
BSBM-100-RAND 411002 0.97 3699016 [6463.91]

used to construct objects for the class bsbm:Person.
The template has as arguments the primary key nr
for the table person, plus an additional attribute
publisher. Observe that, being nr a primary key,
the information about the publisher does not contribute
to the identification of specific persons. Additionally,
the relation between persons and publishers is already
realized in the mappings by a specific mapping asser-
tion for the property dc:publisher. This mapping
assertion poses a challenge to data generation, because
query results are influenced by inclusion dependencies
between binary tuples stored in different tables. VIG

cannot correctly reproduce such inclusions, because it
only supports inclusions (even not explicitly declared
in the schema) between single columns. Observe that
this problem would not be addressed even by support-
ing multi-attribute foreign keys, because such keys are
not defined in the BSBM schema. For these reasons,
we have changed the problematic URI template into
a unary template by removing the redundant attribute
publisher, so as to build individuals only out of
primary keys. Observe that this change does not influ-
ence the semantics of the considered queries, nor their
complexity.

We tested the 9 SELECT queries from the BSBM
query set. We slightly modified two queries by relax-
ing an excessively restricting FILTER condition, so as
to avoid empty results sets. We point out that this mod-
ification only slightly changes the size of the produced
SQL translation, and that the modified queries are at
least as hard as the original ones.

Results and Discussion. Tables from 7 to 10 con-
tain the results of the experiment in terms of various
performance measures, namely the average execution

Table 8
Overview of the BSBM Experiment (D2RQ-PostgreSQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

BSBM-1-NTV 240185 1.67 2161668 [17334.4]
BSBM-1-VIG 246937 1.62 2222434 [4435.64]
BSBM-1-RAND 289572 1.38 2606150 [12374.5]

BSBM-10-NTV 431865 0.93 3886782 [7287.9]
BSBM-10-VIG 427559 0.94 3848029 [2131.52]
BSBM-10-RAND 426726 0.94 3840537 [1704.36]

BSBM-100-NTV 568777 0.70 5118991 [69847.8]
BSBM-100-VIG 543805 0.74 4894247 [319.844]
BSBM-100-RAND 540531 0.74 4864781 [923.719]

Table 9
Overview of the BSBM Experiment (Ontop-MySQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

BSBM-1-NTV 2762 144.83 24856 [25.1396]
BSBM-1-VIG 2767 144.58 24899 [224.129]
BSBM-1-RAND 2677 149.40 24097 [456.699]

BSBM-10-NTV 4338 92.21 39041 [373.56]
BSBM-10-VIG 4159 96.17 37434 [656.651]
BSBM-10-RAND 3037 131.72 27331 [235.793]

BSBM-100-NTV 22471 17.80 202237 [28799.8]
BSBM-100-VIG 23328 17.15 209950 [19442]
BSBM-100-RAND 10020 39.92 90179 [12347.7]

Table 10
Overview of the BSBM Experiment (Ontop-PostgreSQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

BSBM-1-NTV 2681 149.22 24125 [143.818]
BSBM-1-VIG 2649 151.02 23837 [63.3219]
BSBM-1-RAND 2654 150.69 23891 [348.161]

BSBM-10-NTV 3379 118.39 30409 [827.423]
BSBM-10-VIG 3234 123.68 29107 [957.519]
BSBM-10-RAND 3127 127.90 28147 [654.745]

BSBM-100-NTV 26222 15.25 236005 [29750.7]
BSBM-100-VIG 14128 28.31 127149 [37339.8]
BSBM-100-RAND 9924 40.31 89316 [17959.8]

time for the queries in mix (avg(ex_t)), the number of
query mixes per hour (qmpH), the average mix time
(avg(mix_t)), and the standard deviation calculated
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over the mix times ([σ]). We observe that the measured
performance for queries executed over the instances
produced by VIG is very close to the measured perfor-
mance for queries executed over the instances (of com-
parable size) produced by NTV. This confirms the hy-
pothesis that VIG can produce data that are of accept-
able quality for benchmarking in the BSBM setting.
Moreover, for the tests with Ontop (Tables 9 and 10),
we observe that VIG performs substantially better than
RAND, as the tests over the RAND instances generally
run twice faster than the tests over the instances gen-
erated by VIG or NTV. However, the tests over D2RQ
(Tables 7 and 8) display no substantial difference be-
tween the measured performance for queries executed
over the instances produced by RAND and the other in-
stances, despite the extremely naive generation strat-
egy. We realized that the reason for this odd behav-
ior is the fact that D2RQ is substantially (two orders
of magnitude) slower than Ontop when tested against
the BSBM benchmark: in D2RQ many queries time
out, flattening the overall mix time. The reason of the
performance discrepancy between the two OBDA sys-
tems is due to the ability of Ontop to optimize the pro-
duced SQL translations by exploiting database depen-
dencies such as primary and foreign keys [5]. These
optimizations, not performed by D2RQ, are apparently
very beneficial in the BSBM setting.

5.2.3. Experiment on Predicate Growth
Setup. In this experiment we evaluate how scaling
with VIG affects the growth of classes and properties
in the BSBM ontology. In particular, we expect this
growth to be consistent with the growth observed on
the data instances produced by NTV.

To perform this experiment, we have created a query
for each class C and property P in the ontology re-
trieving all the individuals or tuples of individuals be-
longing to C or P. We evaluate each such query on the
data instances generated by VIG and those generated
by NTV, expecting that the number of obtained results
is similar for both generators. In total, we have checked
the growth of 8 classes, 10 object properties, and 30
data properties.

Results and Discussion. Table 11 shows the devia-
tion, in terms of number of elements for each pred-
icate (class, object property, or data property) in the
ontology, between the instances generated by VIG and
those generated by NTV. The column avg(dev) reports
the average percent deviation. The last two columns
report respectively the absolute number and relative
percentage of predicates for which the deviation was

Table 11
Predicates Growth Comparison.

type-db-scale avg(dev) dev > 5% (#) dev > 5% (%)

CLASS-BSBM-1 0% 0 0%

CLASS-BSBM-10 23.72% 2 25%

CLASS-BSBM-100 250.74% 2 25%

OBJ-BSBM-1 0% 0 0%

OBJ-BSBM-10 7.46% 2 20%

OBJ-BSBM-100 82.35% 2 20%

DATA-BSBM-1 < 0.01% 0 0%

DATA-BSBM-10 2.84% 2 6.67%

DATA-BSBM-100 5.74% 2 6.67%

greater than 5%. We observe that the deviation for
predicates growth is inferior to 5% for the majority of
classes and properties in the ontology. The few outliers
are due to some predicates that are built from tables
that NTV, contrary to VIG, does not scale according to
the scale factor. These predicates are the two classes
ProductFeature and ProductType, and the 4
properties productFeature, comment, label
and subClassOf15.

5.3. DBLP Experiment

The DBLP computer science bibliography16 is an
on-line reference for bibliographic information on ma-
jor computer science publications. The data is re-
leased as open data under the ODC-BY 1.0 license.
The DBLP++ data set is an enhancement of DBLP
with additional keywords and abstracts. The DBLP++
data is stored in a MySQL database and can be
accessed through a SPARQL endpoint powered by
D2RQ. The database dump, the mapping and config-
uration of D2RQ are published by the DBLP team17.
The MySQL database dump is provided as a gzipped
file of 564MB, containing 1.9M authors, 3.6M pub-
lications, and 12.3M author-publication relations. We
have also converted the dump into PostgreSQL.

5.3.1. Experiment on Query Evaluation
Setup. We used VIG to scale the original DBLP data
instance (DBLP), and produced three instances of scal-
ing factors 1, 3, and 5 (named DBLP-s-VIG, s ∈
{1, 3, 5}, respectively). We also used RAND to scale
the original DBLP data instance of a scaling factor of 1
(DBLP-1-RAND).

15An object property defined under the BSBM namespace.
16http://dblp.uni-trier.de/
17http://dblp.l3s.de/dblp++.php
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Table 12
Overview of the DBLP Experiment (D2RQ-MySQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

DBLP 180265 1.25 2884246 [589596]
DBLP-1-VIG 154780 1.45 2476480 [10695.5]
DBLP-1-RAND 2209 101.86 35341 [218.634]

DBLP-3-VIG 157348 1.43 2517575 [37772.8]

DBLP-5-VIG 167884 1.34 2686144 [61017.3]

Table 13
Overview of the DBLP Experiment (D2RQ-PostgreSQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

DBLP 320145 0.70 5122325 [90711.1]
DBLP-1-VIG 155757 1.44 2492108 [589903]
DBLP-1-RAND 6702 33.57 107231 [1501.64]

DBLP-3-VIG 294028 0.77 4704454 [666089]

DBLP-5-VIG 409211 0.55 6547440 [172190]

We manually crafted a set of 16 queries resembling
some real-world information needs from DBLP (e.g.,
“list all the authors of a journal”, “list all coauthors of
an author”, “list all publications directly referencing a
publication from one author”, or “list publications in-
directly referencing18 a publication from one author”),
and evaluated them against the instances produced by
VIG and RAND, and against the original DBLP in-
stance. For the experiments we used the mapping file
provided by the DBLP team, written in the D2RQ
mappings syntax, and an equivalent version written in
the Ontop syntax, obtained with the help of a con-
verter19.

Results and Discussion. Tables from 12 to 15 con-
tain the results of the experiments. We observe that the
measured performances for query evaluation over the
instances DBLP and DBLP-1-VIG are relatively close.
This confirms that VIG is able to generate data of ac-
ceptable quality for benchmarking in the DBLP set-
ting. We point out that, contrary to synthetically gen-
erated instances from BSBM, the source data instance
in the DBLP experiment is a real-world instance. We
also observe that queries evaluated over the instance

18Under a bound on the length of the chain of indirect references.
19https://github.com/RMLio/D2RQ_to_R2RML

Table 14
Overview of the DBLP Experiment (Ontop-MySQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

DBLP 173978 1.29 2783649 [5028.72]
DBLP-1-VIG 178983 1.26 2863728 [8409.02]
DBLP-1-RAND 48544 4.63 776712 [14737]

DBLP-3-VIG 259885 0.87 4158162 [19578.3]

DBLP-5-VIG 283950 0.79 4543207 [72154]

Table 15
Overview of the DBLP Experiment (Ontop-PostgreSQL).

db avg(ex_t) qmpH avg(mix_t) [σ]
msec. msec.

DBLP 200159 1.12 3202546 [980.228]
DBLP-1-VIG 213306 1.05 3412889 [391.852]
DBLP-1-RAND 120924 1.86 1934778 [6979.83]

DBLP-3-VIG 317992 0.71 5087885 [9867.96]

DBLP-5-VIG 344435 0.65 5510988 [23256.4]

DBLP-1-RAND, obtained with the random generator,
have substantially different execution times from the
ones evaluated in either DBLP or DBLP-1-VIG (up to 2
orders of magnitude faster for D2RQ/MySQL, in Ta-
ble 12). Interestingly, the difference is not so extreme
for the tests with Ontop. In fact, Tables 14 and 15
show that Ontop performs significantly slower than
D2RQ on the instance DBLP-1-RAND. By manually
examining the generated SQL queries and their results,
we discovered that only 2 queries out of 16 return a
non-empty result when evaluated over the random in-
stance DBLP-1-RAND by both OBDA systems. Hence
14 queries are executed extremely fast. The remaining
two queries run slow in Ontop, whereas they are ex-
ecuted efficiently by D2RQ. These two queries have
a similar shape, and they use a combination of the
DISTINCT and LIMIT modifiers. We found out that
Ontop handles such queries in a different and less ef-
ficient way than D2RQ, which explains the difference
in the observed performance.

Since already at the scale factor 1, RAND behaves
significantly different from the original data and VIG,
for larger scale factors 3 and 5, we only evaluated
the queries over data generated by VIG. Looking at
three instances DBLP-s-VIG, s ∈ {1, 3, 5}, we observe
that the average execution time and the mix time grow
roughly proportionally to the scale factor.



16 Davide Lanti et al. / VIG: Data Scaling for OBDA Benchmarks

5.3.2. Experiment on Predicate Growth
Setup. In this experiment we evaluate how scaling
with VIG affects the growth of classes and properties
in the DBLP ontology. In particular, we compare the
original DBLP dataset and DBLP-1-VIG. The test is set
up analogously to the BSBM case. In total, we have
checked the growth of 55 classes, 44 object properties,
and 30 data properties.

Results and Discussion. Table 16 shows the devia-
tion, in terms of number of elements for each predi-
cate (class, object property, or data property) in the on-
tology, between DBLP and DBLP-1-VIG. Similarly to
what we observed for BSBM, the average deviation for
classes is strongly influenced by a few outliers. We ob-
serve that this deviation is inferior to 5% for the major-
ity of classes and properties in the ontology. The rea-
son of the deviation in DBLP is due to the fact that VIG
is assuming a uniform distribution of the data whereas
real-world instances do not always follow this assump-
tion. For instance, some productive authors have hun-
dreds of publications but the majority of the authors
only have a few publications.

5.4. NPD Experiment

The NPD Benchmark [17] is a benchmark for
OBDA systems based on the the Norwegian Petroleum
Directorate (NPD) FactPages20. The benchmark comes
with an ontology, a set of mappings containing thou-
sands of mapping assertions, and 31 SPARQL queries
that resemble information needs from the users of the
NPD Factpages. Contrary to the previous experiments,
this experiment allows for testing the impact of the
mappings analysis on the quality of the scaled data,
since NPD is the only setting (among the considered
ones) in which we have a structured ontology and com-
plex mappings. For this experiment we have used only
Ontop, as we did not manage to load the NPD map-
pings into D2RQ. Moreover, we do not include a com-
parison on NPD against the random data generator, as
this aspect has already been discussed in [17].

20http://factpages.npd.no/factpages.

Table 16
Predicates Growth Comparison.

type-db-scale avg(dev) dev > 5% (#) dev > 5% (%)

CLASS-DBLP-1-VIG 142.2% 8 14.54%

OBJ-DBLP-1-VIG 0.48% 1 2.32%

DATA-DBLP-1-VIG 0% 0 0%

Table 17
Overview of the NPD Experiment (NPD-MySQL).

db avg(ex_time) qmpH avg(mix_time) [σ]
msec. msec.

NPD 50263 2.98 1206560 [686.582]
NPD-1-VIG 50235 2.99 1205944 [491.685]

NPD-5-VIG 51052 2.94 1226204 [1158.09]

NPD-10-VIG 52204 2.87 1254703 [5595.96]

NPD-50-VIG 64467 2.31 1559613 [49349.4]

NPD-100-VIG 86769 1.71 2108334 [92309.3]

NPD-500-VIG 229213 0.64 5663050 [61835.2]

5.4.1. Experiment on Query Evaluation
Setup. We used VIG to scale the original NPD data
instance (NPD), and produced six instances of scaling
factors 1, 5, 10, 50, 100, and 500 (named NPD-s-VIG,
s ∈ {1, 5, 10, 50, 100, 500}, respectively).

For the test, we used the 24 queries from the
NPD benchmark that are supported by Ontop (i.e.,
all queries without aggregation operators), and eval-
uated them against the instances produced by VIG
and against the original NPD instance. For the experi-
ments we used the mapping file included with the NPD
benchmark.

Results and Discussion. Tables 17 and 18 contain the
results of the experiments. We observe that the mea-
sured performances for query evaluation over the in-
stances NPD and NPD-1-VIG almost coincide, in both
MySQL and PostgreSQL. This confirms that VIG is
able to generate data of acceptable quality for bench-
marking in the NPD setting. As already done with
DBLP, we point out also here that, contrary to syn-
thetically generated instances from BSBM, the source
data instance in the NPD experiment is a real-world
instance.

Looking at the other scaled instances, we observe
that the average execution time and the mix time over
the evaluations for PostgreSQL grow roughly pro-
portionally to the scale factor. This is not the case
for the MySQL evaluations, due to the presence of a
few queries which timeout and flatten the overall mix
times.

5.4.2. Experiment on Predicate Growth
Setup. In this experiment we evaluate how scaling
with VIG affects the growth of classes and properties
in the NPD ontology. In particular, we compare the
original NPD dataset and NPD-1-VIG. The test is set up
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Table 18
Overview of the NPD Experiment (NPD-PostgreSQL).

db avg(ex_time) qmpH avg(mix_time) [σ]
msec. msec.

NPD 2624 57.00 63158 [873.707]
NPD-1-VIG 2842 52.58 68467 [1559.15]

NPD-5-VIG 3694 40.30 89321 [2258.51]

NPD-10-VIG 7281 20.43 176197 [4413.34]

NPD-50-VIG 29790 4.97 724506 [32490.3]

NPD-100-VIG 53344 2.78 1297169 [41639.2]

NPD-500-VIG 169653 0.64 5587795 [2.00471e+06]

Table 19
Predicates Growth Comparison.

type-db-scale avg(dev) dev > 5% (#) dev > 5% (%)

CLASS-NPD-1-VIG 236.43% 70 20.42%

OBJ-NPD-1-VIG 63.68% 20 14.0%

DATA-NPD-1-VIG 26.93% 44 18.56%

analogously to the BSBM and DBLP cases. In total,
we have checked the growth of 343 classes, 142 object
properties, and 238 data properties.

Results and Discussion. Table 19 shows the devia-
tion, in terms of number of elements for each predicate
(class, object property, or data property) in the ontol-
ogy, between NPD and NPD-1-VIG. Similarly to what
we observed for BSBM and DBLP, the average devi-
ation for classes is strongly influenced by a few out-
liers. We observe that this deviation is inferior to 5%
for the majority of classes and properties in the ontol-
ogy. The reason for the deviation in NPD is similar to
what we have already encountered in DBLP, and it is
due to the complex data distributions in real world in-
stances, which are not captured by VIG.

5.4.3. Experiment on The Use of Domain Information
Setup. The query discussed in our running example
is at the basis of the three hardest real-world queries
in the NPD Benchmark, namely queries 6, 11, and
12. In this section we compare these three queries on
two modalities of VIG: one in which only the input
database is taken as input (DB mode), and for which
the columns cluster analysis is not performed, and the
one (OBDA mode) discussed in this paper where the
mapping is also taken into account.

Results and Discussion. Table 20 contains the selec-
tivities (i.e., number of results) of all four possible

Table 20
Selectivity Analysis.

joins NPD NPD-1 NPD-5 NPD-50
DB OBDA DB OBDA DB OBDA

|sw 1 ew| 0 841 0 5046 0 42891 0
|sw 1 dw| 0 841 0 5046 0 42891 0
|ew 1 dw| 0 1560 0 9344 0 79814 0
|sw 1 ew 1 dw| 0 841 0 5046 0 42891 0

Table 21
Evaluations for queries 6, 11, and 12.

query NPD NPD-1 NPD-5 NPD-50
DB OBDA DB OBDA DB OBDA

q6 787 597 456 10689 1494 17009 6961
q11 661 1020 364 2647 1487 37229 15807
q12 1190 2926 714 8059 3363 38726 17830

joins between the three tables shallow_wellbore
(abbreviated sw), exploration_wellbore (ab-
breviated ew), and development_wellbore (ab-
breviated dw), over the original NPD dataset as well as
its scaled versions of factors 1, 5, and 50. Observe that
the instances created through the OBDA mode correctly
produces zero selectivities by analyzing the mappings
as described in Section 4.1. On the contrary, the in-
stances created through the DB mode produce joins
of non-zero selectivities. This fact, together with the
mapping definitions of the NPD benchmark (in Table 3
we show the portion for the classes ExpWellbore and
ShWellbore; the class DevWellbore is mapped in a sim-
ilar way) produce a violation of the disjointness con-
straints between these classes in the NPD ontology.

Table 21 shows the impact of the wrong selectiv-
ities on the performance (response time in millisec-
onds) of evaluation for the queries under consideration.
Observe that the performance measured over the DB
instances differ sensibly from the one measured over
OBDA instances, or over the original NPD instance.
This is due to the higher costs for the join operations
in DB instances, which in turn derive from the wrong
selectivities discussed in the previous paragraph.

6. Discussions and Limitations

In our experiments, we observed that the perfor-
mance for query answering over the instances gen-
erated by VIG is comparable to the performance for
query answering over the original data instances. This
observation suggests that the data generated by VIG is
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suitable for benchmarking OBDA systems in the con-
sidered settings.

However, the encouraging conclusion will not ap-
ply to every setting. In fact, observe that VIG con-
siders only a limited set of similarity measures, and
that the produced instances that are similar in terms
of these measures might be not enough to guarantee
reliable performance analyses. For instance, we have
already discussed how VIG is not able to reproduce
constraints such as multi-attribute foreign keys or non-
uniform data distributions, or how implicit inclusion
dependencies between tuples are not being considered
(c.f. Section 5.2.2). Thus, although we show here how
VIG seems to suffice for BSBM and DBLP (under our
assumptions for queries, mappings, and testing plat-
form), we expect it not to perform as good in more
complex scenarios, where the non-supported measures
become significant. Indeed, we already observed in Ta-
ble 16 of the DBLP experiment that the data distri-
bution is playing an important role for generating in-
stances of some classes in the ontology.

Moreover, an intrinsic weakness of VIG, and of the
scaling approach in general, is that it only considers a
single source data instance: in case certain measures
depend on the size of the instance, as it seems to be the
case for two classes and properties in Table 11, then
the scaled instances might significantly diverge from
the real ones.

6.1. Discussion on Multi-attribute Foreign Keys

We have discussed how VIG can produce data that
retain certain statistics observed on the initial seed of
data, while complying with schema constraints such as
primary keys and single-attribute foreign keys. In this
section we discuss the impact of multi-attribute foreign
keys, and why it is non-trivial to satisfy this kind of
constraint while retaining the discussed statistics. We
carry out our discussion by means of an example.

Example 6.1. Consider a database schema Σ with
three tables T1, T2, and T3, where each table Ti con-
tains columns Xi and Yi, for i ∈ {1, 2, 3}. Suppose that
Σ defines a primary-key constraint Ki := (Xi,Yi) on
each table, and the following multi-attribute foreign-
key dependencies:

fk1 := K1 ⊆ K3, fk2 := K2 ⊆ K3.

For each Ki, with i ∈ {1, 2, 3}, we denote by
ints(Ki) the pair (ints(Xi), ints(Yi)), indicating that

Fig. 5. Multi-attribute Foreign Key Satisfaction. The X axis lists all
allowed values for the attributes Xi, i.e., all values in

⋃
i ints(Xi).

Similarly, the Y axis lists all allowed values for the attributes Yi.
Each position (x, y) in the grid is marked with the colors of the keys
in which the tuple (x, y) is allowed. For instance, position (1, 7) is
a valid tuple for K3, but not for K1 or for K2. Orange circles repre-
sent a possible assignment of positions satisfying all the constraints
specified in Example 6.1.
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the first element of a tuple in Ki should belong to the
intervals ints(Xi), and that the second element should
belong to the intervals ints(Yi).

Suppose that, after an analysis phase over a database
instance D, VIG has produced the following intervals:

ints(K1) = ({[3, 5]} , {[8, 11]}),
ints(K2) = ({[2, 3]} , {[7, 10]}),
ints(K3) = ({[1, 5]} , {[7, 12]}).

Let us call D′ the database instance to be produced by
VIG, and suppose that, after the analysis phase, VIG
has established the following statistics:

size(T1,D′) = 4,
size(T2,D′) = 4,
size(T3,D′) = 7.

Then, the problem of satisfying the dependencies
f k1 and f k2 in the generated instance D′, under these
assumptions, reduces to the problem of finding 7 posi-
tions in the bi-dimensional space from Figure 5, where
each of these positions represents a tuple for K3. Ob-
serve that positions have to be picked so that 4 of them
represent tuples for K2, 4 of them represent tuples for
K1, and exactly one position represents a tuple that is
shared between K1,K2, and K3.

In general, if there are k attributes used for foreign
key constraints, then this is a search problem in a k-
dimensional space. Observe that, even if this search
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could be done in polynomial time, it would still be dra-
matically slower than the current implementation of
VIG, which only requires constant-time and no mem-
ory accesses to generate a tuple.

7. Related Work

In this section we discuss the relation between VIG
and other data scalers, as it makes little sense to com-
pare it to classic data generators used in OBDA bench-
marks as, for instance, the one found in the Texas
Benchmark 21.

UpSizeR [26] replicates two kinds of distributions
observed on the values for the key columns, called
joint degree distribution and joint distribution over co-
clusters22. However, this requires several assumptions
to be made on the Σ, for instance tables can have at
most two foreign keys, primary keys cannot be multi-
attribute, etc. Moreover, generating values for the for-
eign keys require reading of previously generated val-
ues, which is not required in VIG. Rex [3] is an ap-
proach closely related to UpSizeR, but that it is eas-
ier to configure than UpSizeR. This approach provides,
through the use of dictionaries, a better handling of
the content for non-key columns than UpSizeR or VIG.
The limitations mentioned for UpSizeR apply for this
system as well.

In terms of similarity measures, the approach closest
to VIG is RSGen [25], that also considers measures like
NULL ratios or number of distinct values. Moreover,
values are generated according to a uniform distribu-
tion, as in VIG. However, the approach only works on
numerical data types, and it seems not to support multi-
attribute primary keys. A related approach, but with the
ability of generating data for non-numerical fields, has
been proposed in [23]. Notably, this approach is able
to produce realistic text fields by relying on machine-
learning techniques based on Markov chains.

In RDF graph scaling [22], an additional parameter,
called node degree scaling factor, is provided as in-
put to the scaler. The approach is able to replicate the
phenomena of densification that have been observed
for certain types of networks. However, the quality of
the data generated by an RDF scaler and by VIG is
not directly comparable: RDF scaling is able to ex-
ploit more graph-specific statistics because it is not

21http://obda-benchmark.org/
22The notion of co-cluster has nothing to do with the notion of

columns-cluster introduced here.

constrained by any schema and it directly generates an
RDF graph; instead, VIG has to be compliant with the
schema constraints of the underlying database and the
generation of the RDF graph depends on the mappings.
On the positive side, these OBDA specific inputs (i.e.,
database constraints and mappings) improve the qual-
ity of the generated data; on the negative side, it is un-
clear how to incorporate graph-specific statistics in this
setting. In addition, we observe that the general RDF
graph scaling approach is not suitable for benchmark-
ing OBDA systems, where the goal of data scaling is to
obtain a scaled-up database instance. In fact, the prob-
lem of obtaining a database instance, given an RDF
graph (produced by an RDF graph scaler) and a set of
mappings, corresponds to that of generating a database
instance given the extensions of database views, where
the queries in the source part of the mappings act as
view definitions. This problem is in turn equivalent to
the view update problem [9], which is known to be
challenging and actually solvable only for a very re-
stricted class of queries used in the mappings.

Observe that all the approaches above do not con-
sider ontologies or mappings. Therefore, many mea-
sures important in a context with mappings and ontolo-
gies and discussed here, like selectivities for joins in
a co-cluster, class disjointness, or reuse of values for
fixed-domain columns, are not taken into considera-
tion in such approaches. This leads to problems like the
one we discussed through our running example, and
for which we showed in Section 5 how it affects the
benchmarking analysis.

8. Conclusion and Development Plan

In this work we presented VIG, a data-scaler for
OBDA benchmarks. VIG integrates some of the mea-
sures used by database query optimizers and existing
data scalers with OBDA-specific measures, in order to
deliver a better data generation in the context of OBDA
benchmarks.

We have evaluated VIG in the task of generating
data for the BSBM, DBLP, and NPD benchmarks. In
BSBM and DBLP, we measured how similar the data
produced by VIG is to the one produced by the native
BSBM generator and the original DBLP data instance,
obtaining encouraging results. In the NPD benchmark,
we provided an empirical evaluation of the impact that
the most distinguished feature of VIG, namely the map-
pings analysis, has on the shape of the produced in-
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stances, and how it affects the measured performance
of benchmark queries.

The current work plan is to enrich the quality of the
generated data by adding support for multi-attribute
foreign keys, joint-degree and value distributions, and
intra-row correlations (e.g., objects from “Suspended
Wellbore” might not have a “Completion Year”). Un-
fortunately, we expect that some of these extensions
will conflict with the current feature of constant time
for the generation of tuples. In fact, they might require
access to previously generated tuples in order to cor-
rectly compute new tuples (e.g., to take into account
joint-degree distribution [26]).

A related problem is how to extend the notion of
“scaling” to the other components forming an input for
the OBDA system, like the mappings, the ontology, or
the queries. We see this as an interesting research prob-
lem to be addressed in the future.
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