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Abstract. Numerous success use cases involving deep learning have recently started to be propagated to the Semantic Web.
Approaches range from utilizing structured knowledge in the training process of neural networks to enriching such architectures
with ontological reasoning mechanisms. Bridging the neural-symbolic gap by joining deep learning and Semantic Web not
only holds the potential of improving performance but also of opening up new avenues of research. This editorial introduces
the Semantic Web Journal special issue on Semantic Deep Learning, which brings together Semantic Web and deep learning
research. After a general introduction to the topic and a brief overview of recent contributions, we continue to introduce the
submissions published in this special issue.
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1. Introduction

Semantic Web technologies and deep learning share
the goal of creating intelligent artifacts that emulate
human capacities such as reasoning, validating, and
predicting. Both fields have been impacting data and
knowledge analysis considerably as well as their asso-
ciated abstract representations. The term deep learn-
ing is used to refer to deep neural network algorithms
that learn data representations by means of transfor-
mations with multiple processing layers. Today, such
architectures are well studied in the field of Natural
Language Processing (NLP), where they have been
successfully applied to numerous research challenges.
These include low-level tasks, such as part-of-speech
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[1] and morphological tagging [2], as well as higher-
level linguistic problems, such as language modeling
[3–7], named entity recognition [8], machine transla-
tion [9, 10], or direct speech to speech translation [11].
Semantic Web technologies and knowledge represen-
tation boost the re-use and sharing of knowledge in a
structured and machine-readable fashion. Semantic re-
sources such as WikiData [12], Yago [13], BabelNet
[14] or DBpedia [15], as well as knowledge base con-
struction and completion methods [16, 17], have been
successfully applied to improve systems addressing se-
mantically intensive tasks (e.g. Question Answering as
in [18]).

There are notable examples showcasing the influ-
ence of neural approaches to knowledge acquisition
and representation learning on the broad area of Se-
mantic Web technologies. These include, among oth-
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ers, ontology learning [19–21], learning structured
query languages from natural language [22], ontol-
ogy alignment [23–26], ontology annotation [27, 28],
joined relational and multi-modal knowledge represen-
tations [29], and relation prediction [30, 31]. Ontolo-
gies, on the other hand, have been repeatedly utilized
as background knowledge for machine learning tasks.
As an example, there is a myriad of hybrid approaches
for learning linguistic representations by jointly in-
corporating corpus-based evidence and semantic re-
sources [32–36]. This interplay between structured
knowledge and corpus-based approaches has given
way to knowledge graph embeddings, which in turn
have proven useful for tasks such as hypernym discov-
ery [37], collocation discovery and classification [38],
word sense disambiguation [39, 40], joined relational
and multi-modal knowledge representations [29] and
many others.

In this context, this special issue aims to provide a
playground for exploring the interaction between neu-
ral NLP and representation learning, on the one hand,
and symbolic representation of knowledge and data-
driven approaches to pattern recognition, on the other.
Specifically, we invited submissions illustrating how
Semantic Web resources and technologies benefit from
interacting with neural networks. At the same time, we
also encouraged submissions showing how knowledge
representation would assist in neural NLP tasks, and
how knowledge representation systems can build on
top of deep learning. The timeliness of this special is-
sue becomes apparent, also, in the potential of sym-
bolic representations of knowledge in the form of on-
tologies, knowledge graphs, and rules to contribute to
the long standing goal of explainable and interpretable
Artificial Intelligence [41], for example, for “keep-
a-human-in-the-loop” approaches [42] or directly for
reasoning about neural network decisions [43].

This special issue builds on and complements a se-
ries of workshops dedicated to Semantic Deep Learn-
ing (SemDeep), co-organized by the editors of this is-
sue. The first workshop, co-chaired by Dagmar Gro-
mann, Thierry Declerck and Georg Heigold, took place
as a satellite event to the 14th Extended Semantic Web
Conference (ESWC 2017). Based on the success of
this first edition of SemDeep, a new edition was sub-
mitted to the 12th International Conference on Com-
putational Semantics (IWCS 2017), where SemDeep-
2 could reach the computational semantics commu-
nity. SemDeep-3, now co-chaired by Dagmar Gro-
mann, Thierry Declerck and Luis Espinosa Anke,
was co-located with the 27th International Confer-

ence on Computational Linguistics (COLING 2018).
The fourth edition of SemDeep came back to the Se-
mantic Web community and was co-located with the
17th International Semantic Web Conference (ISWC
2018). SemDeep-5 is a workshop of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI 2019). For this last workshop, the Organizing
Committee was glad to welcome José Camacho Colla-
dos and Mohammad Taher Pilehvar, as this new edition
of the successful SemDeep workshop series was aug-
mented by a challenge on evaluating contextualized
word representations called Word-in-Context (WiC).

2. Recent Semantic Deep Learning Approaches

Neural-symbolic approaches (see e.g. [44–46] for
an overview) represent a relatively young field of re-
search, having only attracted considerable attention
within the last few years. The SemDeep series in gen-
eral, and this special issue in particular, have offered
a forum where such methods, from a proof-of-concept
stage to a more advanced and robust stage of develop-
ment, could be presented and discussed.

Specifically, SemDeep has seen contributions on the
explicit modeling of lexical and semantic relations
stemming from joint neural-symbolic methods [47–
49]. Additionally, well-defined NLP tasks have also
been the focus of several SemDeep papers over the
years, covering event detection [50], part-of-speech
tagging [51], co-reference resolution [52], sentiment
analysis [53], named entity recognition [54] or ques-
tion answering [18]. Interestingly, another area that
has been prominently covered in SemDeep is (formal)
knowledge representation, such as the tasks of link pre-
diction in generic knowledge bases as well as domain-
specific use cases [55–57]. Fewer works focused on
more technical aspects of a knowledge-enhanced deep
learning pipeline, for example, exploring disjointness
in loss functions for classification tasks [58], end-to-
end memory networks [59], image-based neural user
profiling [60] or Siamese Long Short Term Memory
(LSTM) networks [61].

The topic that has attracted most interest in the
SemDeep workshop series has been representation
learning, and a plethora of submissions were accepted
for publication where vector representation of linguis-
tic items, as well as meta-embeddings, were discussed.
The concrete topics covered included word and docu-
ment embeddings [62, 63], knowledge graph embed-
dings [64], joint knowledge graph and text embeddings
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[65, 66], multi-modal approaches [60, 67], leverag-
ing external information such as lexical resources [68],
embeddings for low resource languages like Igbo [69],
and learning structured knowledge [70, 71].

3. Overview of This Special Issue

The paper Deep learning for noise-tolerant RDFS
reasoning by Bassem Makni and James Hendler presents
a noise-tolerant RDFS reasoning approach building on
neural machine translation. To this end, they present
an embedding approach where RDF graphs are lay-
ered and encoded in 3D adjacency matrices where each
layer layout forms a graph word. Both input graph
and its entailments are represented as a sequence of
graph words and RDFS inferences can then be for-
mulated as a machine translation of these graph word
sequences. As such the approach seeks to bridge the
neural-symbolic graph, adapting the idea of knowledge
graph embeddings to RDF graphs, the differences of
which are analyzed in detail. Evaluations demonstrate
the ability of the approach to learn RDFS rules from
a synthetic dataset as well as DBpedia subset and a
noise-tolerance not observed in rule-based reasoners.

In Semantic Referee: A Neural-Symbolic Frame-
work for Enhancing Geospatial Semantic Segmen-
tation Marjan Alirezaie, Martin Längkvist, Michael
Sioutis, and Amy Loutfi propose a neural-symbolic
framework in which an ontological reasoner character-
izes output errors of a deep learning framework, pro-
viding corresponding feedback to improve its perfor-
mance. In contrast to approaches that seek to integrate
neural and symbolic aspects, this approach focuses on
the interaction between these two. The reasoner func-
tions as supervisor, a so-called semantic referee, in
the training process of a variation of a Convolutional
Autoencoder utilized to perform semantic segmenta-
tion of satellite images. In order to feed concepts in-
ferred by the reasoner for misclassified regions back to
the neural network, such concepts are encoded as im-
age channels and concatenated with the original RGB
channels. Additional information from the reasoner in
the proposed approach relates to shadow estimation,
elevation estimation, and inconsistencies with respect
to the ontology constraints. On two real-world datasets
and the OntoCity ontology the approach could demon-
strate its capacity to reduce classification errors.

The paper Vecsigrafo: Corpus-based Word-Concept
Embeddings - Bridging the Statistic-Symbolic Repre-
sentational Gap in Natural Language Processing by

José Manuel Gómez-Pérez and Ronald Denaux pro-
poses to jointly learn word and concept embeddings
from large semantically annotated corpora. Words
are tokenized and disambiguated, where three disam-
biguation techniques are tested, and associated with
concepts from an existing knowledge graph. In an ex-
tensive evaluation comparing to word and knowledge
graph embeddings on the tasks of word similarity,
word prediction, and relation prediction, the merits of
the proposed approach are demonstrated. It could show
that the joint learning of word and concept embeddings
improves the quality over individual word and knowl-
edge graph embeddings and different aspects of such
joint vector spaces are discussed in detail in the pa-
per. Furthermore, an extensive ablation study provides
interesting insights into variants of Vecsigrafo, such
as lemmatization having positive effects on the result-
ing joint embeddings, filtering improving the cover-
age of concepts, and disambiguation strategies only
marginally impacting lexical embeddings.

In Studying the Impact of the Full-Network Em-
bedding on Multimodal Pipelines by Armand Vilalta,
Dario Garcia-Gasulla, Ferran Parés, Eduard Ayguadé,
Jesus Labarta, E Ulises Moya-Sánchez, and Ulises
Cortés, a Full-Network Embedding architecture is
evaluated on the task of image annotation and retrieval.
This architecture takes an image and its correspond-
ing caption as input and produces a single vector rep-
resentation that combines the output of a Convolu-
tional Neural Network (CNN) applied to the image
with the output of a Gated Recurrent Unit (GRU) ap-
plied to the caption. The authors propose, in this em-
pirical study, to determine the fitness of such model as
opposed to the one-layer image embeddings typically
used in the literature. They report experimental results
in three publicly available datasets, namely Flickr8K,
Flickr30K and MSCOCO, and discuss different set-
tings, involving hyperparemeter configurations, qual-
ity of training data and type of source CNN models.

The paper Hate Speech Detection: A Solved Prob-
lem? The Challenging Case of Long Tail on Twitter by
Ziqi Zhang and Lei Luo first describes a data analy-
sis to quantify and qualify the linguistic characteris-
tics of hate speech in the social media. As a result, the
authors show that it is much harder to detect hateful
content than non-hate speech in social media, as hate-
ful speech (in Twitter) lacks of unique, discriminative
linguistic features. In a second part, the authors pro-
pose neural network structures for identifying specific
types of hate speech, with a focus on two neural mod-
els. One is simulating a skip-gram like feature extrac-
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tion based on modified a CNN, while the other extracts
orderly information between features using a GRU. An
evaluation on an English Twitter datasets shows that
the described approach can outperform state-of-the-art
methods by up to five percentage points.

In A Convolutional Neural Network-based Model
for Knowledge Base Completion and Its Application
to Search Personalization by Dai Quoc Nguyen, Dat
Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung,
an embedding model of entities and relationships for
knowledge base completion is introduced. This model,
named ConvKB, generalizes transitional character-
istics in transition-based embedding models. Con-
vKB has been evaluated on two benchmark datasets,
WN18RR and FB15k-237, and better link prediction
performance than state-of-the-art embedding mod-
els can be reported. ConvKB has been additionally
evaluated for triple classification on two benchmark
datasets, WN11 and FB13, in order to check if a given
triple is valid or not. Here ConvKB also gets better re-
sults than state-of-the-art models. Finally, the authors
describe the adaptation of ConvKB for search person-
alization. This application of ConvKB has been posi-
tively verified on the query logs of a commercial web
search engine.

4. Conclusion and Future Directions

Contributions to this special issue have focused on
utilizing deep learning in connection with reasoning -
either making the network itself a reasoner or enabling
interaction between deep learning and a reasoner -
multi-modal embeddings, feature extraction from nat-
ural language, and knowledge base completion. While
this enumeration already hints at the large variety of
central approaches to Semantic Deep Learning, further
advances are needed, especially in the area of deep rea-
soning and inferences.

Combining Semantic Web technologies and deep
learning holds the potential to crucially contribute to
the recent hype of Explainable Artificial Intelligence
(XAI). This might, for instance, take the form of in-
jecting knowledge into training procedures to estimate
changes of behaviors depending on utilized knowl-
edge. Another important future direction is further
systematic investigations into multi-modal approaches
connecting linguistic, visual, and sensory inputs.
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