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Abstract. Computational Creativity (or artificial creativity) is a multidisciplinary field, researching how to construct computer
programs that model, simulate, exhibit or enhance creative behaviour. This vision paper explores a potential of Semantic Web
and its technologies for creative AI. Possible uses of Semantic Web and semantic technologies are discussed, regarding three
types of creativity: i) exploratory creativity, ii) combinational creativity, and iii) transformational creativity and relevant research
questions. For exploratory creativity, how can we explore the limits of what is possible, while remaining bound by a set of existing
domain axioms, templates, and rules, expressed with semantic technologies? To achieve a combinational creativity, how can we
combine or blend existing concepts, frames, ontology design patterns, and other constructs, and benefit from cross-fertilization?
Ultimately, can we use ontologies and knowledge graphs, which describe an existing domain with its constraints and, applying
a meta-rule for transformational creativity, start dropping constraints and adding new constraints to produce novel artifacts?
Together with these new challenges, the paper also provides pointers to emerging and growing application domains of Semantic
Web related to computational creativity: from recipe generation to scientific discovery and creative design.

Keywords: computational creativity, artificial intelligence, Semantic Web, knowledge graph, ontology

1. Introduction

The seminal paper by Tim Berners-Lee et al. [1] de-
scribes a vision of the Semantic Web with its main
building blocks and enabling technologies: knowledge
representation (KR) and automated reasoning, ontolo-
gies, agents. The motivating scenario of this paper, de-
scribed from its first sentences, concerns automated,
intelligent services delivered by intelligent (artificial)
agents. These agents are capable of carrying out so-
phisticated tasks for users such as making an appoint-
ment with a physical therapist, taking constraints on
schedules and routes into account. This is possible
thanks to adding explicit, machine-readable semantics

*Corresponding author. E-mail: alawrynowicz@cs.put.poznan.pl.

to the content of the Web for reasoning and interoper-
ability.

From its early days, the Semantic Web has been
largely related to KR, but also more broadly to artifi-
cial intelligence (AI). Semantic networks [2], as a form
of knowledge representation, dating back to early days
of AI, gained new attention (kind of ’AI summer’ w.r.t.
KR) by adding Web technologies (such as URIs) to
them and mechanisms of inference based on formal
semantics, which resulted in standards like RDF [3]
(with its graph interpretation), OWL [4], and leading
to nowadays knowledge graphs (KGs) [5] and the Se-
mantic Web. Not only then it is linked data constituting
the Semantic Web, but also linked semantics, linked
knowledge, and linked services, enabling reasoning on
the Web and intelligent applications.
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1.1. From analysis to synthesis

As applications and services are the key to adoption
of a given technology by users, what intelligent appli-
cations and services might be then facilitated and en-
abled with Semantic Web and semantic technologies
in the next several years?

It comes with no surprise that Semantic Web re-
search evolves influenced by major shift changes in
knowledge engineering and AI. Early Semantic Web
used mainly deductive reasoning, employing logic-
based reasoning services. With growing amounts of
data, this has later shifted to an increased interest in
applying statistical approaches, i.e., inductive reason-
ing [6, 7]. Both may be classified as analytic tasks, but
lately, there is an increasing interest in other types of
reasoning. Consider for instance generating justifica-
tions and explanations (for explainable AI), which may
serve for debugging purposes, and which are closely
related to abductive reasoning. Some of recently pop-
ular tasks deal with synthesis rather then analysis and
aim to generate rather than only analyse artefacts. Do-
mains previously reserved for humans, such as making
creative designs and scientific discoveries, are increas-
ingly being addressed by AI [8].

Can thus Semantic Web, semantic technologies and
resources facilitate creative AI, i.e. computationally
creative systems that use AI techniques?

1.2. What is Creativity?

Creativity, creative reasoning and creative problem
solving have been researched in cognitive [9] and com-
putational sciences [10]. Cognitive psychologists aim
to understand the human creative process. In her in-
fluencial works, Boden [11, 12] describes creativity as
the ability to come up with ideas or artifacts that are
new, surprising, and valuable. The former ones may be
concepts, musical compositions, poems but also cook-
ing recipes, or even scientific theories. The latter ones
may be paintings, pottery, but also vacuum cleaners,
engines, etc. Moreover, many researchers use the term
’concept’ to refer to a range of things such as abstract
ideas in arts, science, and in everyday life [9], and we
will also use this term throughout the paper.

1.3. Computational creativity

Can machines be creative? Some time ago it was
hardly believable. Ada Lovelace, arguably referred to
as the first computer programmer, was reflecting on the
Charles Babbage’s mechanical general-purpose com-

puter, the Analytical Engine that it “has no pretensions
whatever to originate anything. It can do whatever we
know how to order it to perform”. However, with the
development of machine learning, it is not needed any-
more to explicitly program machines that apparently
have begun to reveal creative behaviours [8, 13].

The computational creativity research area has
emerged concerned with “computational systems which,
by taking on particular responsibilities, exhibit be-
haviours that unbiased observers would deem to be
creative”[14]. Computationally creative systems per-
form various ’generative acts’ that create exemplars,
concepts, or provide an aesthetic evaluation for the
generated artefacts. Such systems have already been
built in various domains including not only art (fash-
ion, entertainment), but also design and engineering
(drugs, devices, processes, e.g. in software compo-
sition [15] or program synthesis [16]), and scien-
tific discovery disciplines [17] or even for inventing
recipes [18].

1.4. Motivating use cases

In the following, we briefly introduce illustrative use
cases for the research in Semantic Web for compu-
tational creativity, while Table 1 breaks them down
to: their relation with Semantic Web topics, (compu-
tational) creativity types (described in Section 2) and
sample solution methods (a selection of them is elabo-
rated more in Section 3).

Recipe generation The goal is to generate a recipe
given the list of desired and excluded ingredients.
This goes beyond simply retrieving a recipe based on
the specified conditions (ingredient lists), as existing
databases may not contain one meeting the conditions.
In case of culinary recipes, some ingredients may be
desirable, for instance, because they are in the user’s
fridge, while others may have to be excluded because
they are allergens. The recipe cannot be completely
random, it must be plausible also regarding taste and
smell. A new recipe may have to be aligned to a partic-
ular cuisine or a chef, mimicking his or her style. Tech-
niques that may be used for performing this include
data mining/machine learning against Web or Seman-
tic Web recipes, querying remote resources or applying
constraints regarding the resulting recipes, and finally
blending (mixing) available recipes.

Collaborative scientific discovery Another scenario
concerns a creative process of generation of plausible
hypotheses from observations. Scientists in their work
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use to invent hypotheses to explain phenomena, and
then design and apply methods to either verify or fal-
sify them. Imagine a computer system not only able
to verify hypotheses (which is now increasingly be-
ing done with machine learning predictive models),
but also to abduce novel hypotheses or to find novel,
surprising connections between domains to facilitate
scientific discoveries. A seminal example of a system
capable of abducing and testing novel hypotheses is
Robot Scientist, which originates novel hypotheses in
functional genomics and has been shown to make sci-
entific discoveries [17] with use of expressive ontolo-
gies to describe the domain of interest and use this for-
mal, machine-readable description for automated rea-
soning to automate scientific experiments.

Creative design Imagine that as a designer you are
able to just tell a computer what you want to design,
e.g. that you want to design a table, which uses ma-
terial X and costs no more than Y, and has weight Z,
and tell about the style you like or that is compliant
with your company’s aesthetics. In response, the com-
puter produces thousands of new solutions, meeting
your requirements and that are also easy to manufac-
ture as they consolidate parts. So called generative de-
sign makes it increasingly possible and enables design-
ers and engineers to collaborate with machines to co-
create new products, which are not only novel but also
more effective in terms of time to produce or impact on
the environment. To achieve this, evolutionary compu-
tation may be used in computational design, where the
generic approach is first to parameterize the topology
of an underlying knowledge structure and then use a
genetic program to modify it. More challenging exam-
ple use case than designing a table is video game de-
sign as it also must integrate various multimedia data
and complex artifacts such as, for instance, a monster
or a narrative and must incorporate social and cultural
context. This case may involve a team of human and
robot designers who exchange creative ideas and solu-
tions using languages shared between humans and ma-
chines.

2. Three Types of Creativity: opportunities for
Semantic Web

The best known categorization of creativity types
is by Boden [11], where three types of creativity are
defined: (i) exploratory, where new ideas are gener-
ated by exploration of a space of concepts, (ii) combi-

national, which concerns new combinations of famil-
iar ideas, and (iii) transformational, where the space
is transformed what facilitates new kinds of ideas to
be generated. Other formulations have also been pro-
posed, including extending the Boden’s categorization
to also include approaches for extraction and induction
of concepts as additional ways of concept creation by
Xiao et al. [19]. In particular, Wiggins [20] proposes
a unifying formalization of creativity as search, which
unifies the categorization of Boden and from [19].
Combinational and exploratory creativity are defined
there as search at the concept level, and transforma-
tional creativity as search at the meta-level.

2.1. Exploratory: generation of new ideas by
exploration of a space of concepts

Exploratory creativity refers to search within a pre-
defined search space (limited by rules, constraints
etc.). It is often modeled as an objective-driven search,
using techniques such as constraint satisfaction, evolu-
tionary algorithms, and data mining [21].

Regarding data mining, one may notice that its def-
inition as the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understand-
able patterns in data [22] has commonalities with def-
initions of computational creativity. Indeed, various
techniques of data mining have found their applica-
tions in computational creativity, for tasks such as con-
cept creation [23].

Potential for Semantic Web Ontologies and knowl-
edge graphs may provide conceptualizations for the
given domain, including its constraints. As such, they
serve to define the search space for generating novel
concepts. Use cases such as generating novel recipes
also concern procedural knowledge, thus one may pose
research questions such as: Are existing ontologies and
knowledge graphs sufficient to effectively support cre-
ative computing? or What other semantic resources
are needed to fuel computationally creative systems?

Regarding methods, concept induction [24, 25] and
pattern mining [26] have been active areas of research
in data mining in the Semantic Web context [7]. Many
of these approaches use so-called refinement opera-
tors, i.e. functions that ’traverse’ the search space and
generate specializations or generalizations of concepts.
For instance, an operator may add a primitive concept
as the new conjunct to a complex concept (being an
intersection of concepts), replace a primitive concept
with its (primitive) subconcept, or add an existential
restriction. Those refinements are further evaluated re-
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Recipe generation (Collaborative) Scientific discovery Creative design
(e.g. generating culinary recipes) (e.g. drug discovery) (e.g. product design such as furniture,

home applicances or video game design)

topic
Web websites providing recipes, recommender

systems, recipe ratings in social media
scientific papers, social media (side effects) social trend analysis (fashion), current

events, composition and interoperation of
Web services

knowledge
resources

ontologies and knowledge graphs (of ingre-
dients, their types, functions etc.), procedu-
ral knowledge

ontologies and scientific KGs (on com-
pounds, genes and diseases etc.), Research
Objects

ontologies and knowledge graphs (of parts
and components, their types, functions etc.)

reasoning constraint-based reasoning (which ingredi-
ents are not incompatible with dietetic rec-
ommendations?), inductive reasoning, de-
ductive reasoning

abductive reasoning (hypothesis abduction),
analogical reasoning, inductive reasoning,
deductive reasoning

constraint-based reasoning (constraint
solvers), Cased-Based Reasoning, inductive
reasoning, deductive reasoning

data integra-
tion

chemical databases (fragrance), medical
KGs (dietary recommendations), nutritive
value, units of measure etc.

chemical, pharmaceutical, medical KGs etc. material databases for product design or
multimedia and cultural heritage KGs for
video game design etc.

provenance
& trust

won’t this food cause an allergic reaction? won’t this drug cause adverse effects? is this material non-toxic? won’t this game
offend a player?

multi-agent
systems

Constraint elicitation and negotation Human and robot scientists Human and robot designers

creativity
type

exploratory, combinational (conceptual
blending)

exploratory, combinational (bisociation dis-
covery), transformational

exploratory, combinational, transforma-
tional

sample
methods

generative models (machine learning against
Web or Semantic Web recipes), querying
remote resources, constraint programming,
evolutionary computation

bisociation discovery, graph mining, induc-
tive logic programming, structure prediction

generative models (generative design), evo-
lutionary computation, constraint program-
ming

Table 1
Three illustrative use cases, their relation to Semantic Web topics, (computational) creativity types and sample solution methods.

garding their quality. To assess the quality of gener-
ated candidate concepts various measures can be used,
not only based on frequency or predictive quality but
also such that promote diversity [27] or novelty. The
further interesting research question to study would be
then: What properties should have refinement opera-
tors to support exploratory creativity on the Semantic
Web? and What research is needed to define quality
measures and evaluation procedures for concept cre-
ation with use of Semantic Web technologies that pro-
mote novelty?

2.2. Combinational: novel combinations of familiar
ideas

Creativity, understood as unfamiliar combinations
of familiar ideas, dates back to the notion of bisocia-
tion by Koestler in 1964 [28], who describes creativity
as a result of combining distinct frames of reference.
The work of Koestler was followed by a subsequent
cognitive theory of conceptual blending [29].

2.2.1. Conceptual blending
Conceptual blending is a process of inventing a

novel concept (the blend) by combining two familiar
input concepts. The framework of conceptual blend-
ing proposed by Fauconnier and Turner [29] concerns
so-called mental spaces that connect schematic knowl-

edge and frames representing the organization of ele-
ments and relations of the familiar knowledge. In the
center of the conceptual blending theory, there is a con-
ceptual integration network, which contains such ele-
ments as: (i) input spaces, (ii) a generic space (with a
structure being an abstraction of commonalities of all
the spaces of the system), (iii) a blended space, con-
taining chosen aspects of the structures from the in-
put spaces and its own, created structure, (iv) a par-
tial mapping, connecting chosen aspects of the mod-
els in the input mental spaces. This basic framework
may be also extended to include additional structure in
the blend, that is not copied from the input spaces, via
composition (which involves, possibly partial selection
of elements), completion, and elaboration.

One of the classical examples of conceptual blend-
ing concerns the concepts of house and boat (e.g. [29–
31]. Figure 1 illustrates one of the possible results,
which is a house-boat concept (another example could
be a boat-house concept).

Various formalisms have been used to represent in-
put spaces, including concept maps, frames, rules and
constraints by Pereira [32], Prolog and micro-theories
as in the system Divago [33], semantic networks used
by Veale and Donoghue [34], description logics by
Confalonieri et al., [35], Distributed Ontology Lan-
guage by Kutz et al. [36], and algebraic specifications
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resident	

live	in	

land	

on	

house	

person	

use	

medium	

on	

object	

resident/	
passenger	

live	in/	
ride	

water	

on	

housebot	

passenger	

ride	

water	

on	

boat	

blended	space	

generic	space	

input	space	 input	space	

Fig. 1. The houseboat blend (adapted from [29–31]).

by Eppe et al. [31]. Not only concepts may be blended,
but also ontologies, as proposed in [36].

The computational challenges associated with con-
ceptual blending are: (i) to compute a generic space
(representing what is common to the two input spaces),
which can be later specialised to produce meaningful
blends with elements from the input concepts and (ii)
to ensure that there are no inconsistencies by combin-
ing concepts in a too naive and arbitrary way.

Genetic algorithms and neural networks can be used
to generate blended concepts, capturing a combination
of the inputs.

Potential for Semantic Web There are multiple op-
tions for Semantic Web research in the area of con-
ceptual blending. There have already been proposals
to use the Web as a source of background informa-
tion to generate blends, such as ’conceptual mash-ups’
proposed by Veale [37]. Can thus these ideas be taken
further, and can Linked Data and knowledge graphs
be sources of vast amounts of (already structured)
knowledge for producing blends? How can we com-
bine or blend existing concepts, semantic frames, and
other constructs, and benefit from cross-fertilization?
Could we exploit (and how) Ontology Design Pat-
terns [38, 39] to represent a generic space?

When input spaces are being combined, another
challenge is to compute a generic space automatically,
especially for expressive representation languages, and
many proposed blending approaches are not capable of
it. Can thus automated approaches be developed for

Matrix	of	thought	/	Knowledge	Base:	M2	

Matrix	of	thought	/	Knowledge	Base:	M1	

c7	

c1	

c1	

c2	

c2	
c3	

c8	

c5	

c4	
c6	

Fig. 2. A concept of bisociation, illustrated with a solid line con-
necting concepts c1, c2 viewed in two different matrices of thought
or from two different knowledge bases, versus an association, illus-
trated with a dashed line, which connects concepts from one matrix
of thought or a knowledge base (adapted from [28, 40]).

computing a generic space automatically, leveraging
of reasoning services developed within the Semantic
Web area and aimed to compute a most generic con-
cept or of generalisation refinement operators? Even
after the generic space is identified, there remains a
challenge of a large number of possible combinations
to generate blends. Some of them need to be pruned,
and, besides using quality measures, can also consis-
tency checking be used and how to prune blends?

2.2.2. Bisociation
The term bisociation was introduced by Koestler [28]

to describe the creative act in humor, science and art.
It stands for a blend of bi- + association. An associa-
tion represents a relation between concepts within one
domain, and bisociation fuses the information from
multiple domains. Elements that are blended are taken
from two (previously) unrelated ’matrices of thought’
(or domains) (see: Figure 2) to form a new matrix of
meaning, applying processes such as abstraction, cate-
gorisation, analogies and metaphors, and comparisons.

Since bisociative thinking occurs when a problem,
idea etc. are viewed in two (or more) ’matrices of
thought’ or domains, to find bisociations it requires
to integrate data from different domains. Bisociative
Networks (BisoNets) [40] have been proposed as a
method to compute Koestler’s bisociation, and to se-
mantically integrate information. BisoNets are based
on a k-partite graph structure with nodes representing
units of information or concepts and with edges rep-
resenting their relations. Each partition of a BisoNet
contains a certain type of concepts or relations (terms,
documents etc.). Kötter et al. [41] discuss three differ-
ent kinds of bisociations: bridging concepts that con-
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Domain	1	 Domain	2	

Bridging	concept	

Fig. 3. A BisoNet with a bridging concept (a concept connecting
dense sub-graphs from different domains).

nect dense sub-graphs from different domains (see:
Figure 3), bridging graphs that are sub-graphs link-
ing concepts from different domains, and bridging by
graph similarity, where bisociations are represented by
structurally similar sub-graphs of different domains.

Once a BisoNet is formed, it can be mined for novel,
and interesting information, and patterns (bisociations)
to support creative discoveries. So-called creative in-
formation exploration aims to explore large volumes
of heterogeneous information to discover new, surpris-
ing and valuable relationships in data that would not
be mined by conventional information retrieval and
data mining approaches [40]. The discovered links rep-
resent non-obvious connections and domain-crossing
links, where concepts from various domains are not
commonly related. One ’classic’ example from litera-
ture of such non-obvious link regards connecting mag-
nesium and migraine. There had been a body of articles
on how migraine can be treated with calcium blockers,
and another body of articles (not connected with previ-
ous ones) describing how magnesium works as a cal-
cium blocker, but the potential to treat migraine with
magnesium had not been realized [42].

Such connections may be discovered by graph min-
ing and analysis techniques.

Potential for Semantic Web Semantic Web and Linked
Data coincide with the model of BisoNets as hetero-
geneuos information networks, integrating concepts.
How then the modeling choices of Linked Data may
impact creative information discovery? Could thus the
ideas and methods developed for creative information
exploration be used to mine multi-domain Linked Data
and vice-versa, i.e. can link discovery approaches de-
veloped within Semantic Web research be applied to
creative information exploration? Mining potential
novel associations between Linked Data [43] have al-
ready been explored within Semantic Web research.
Can this be taken further? Is research on ontology
mapping for bridging domains also relevant here?
How to compute which nodes in the Semantic Web
would bridge domains in creative ways?

2.3. Transformational: transforming the search space

Transformational creativity may be seen as meta-
search, i.e. search not only for concepts, but also for
rules, that is modifying rules and constraints and the
search method. Transformational creativity takes place
when the search space itself is also modified. The re-
sult are novel concepts in the modified space. This is
the most difficult type of creativity to implement in a
computational system, as one may argue that if the sys-
tem is not equipped with some autonomy to change the
rules, constraints or even the goals, nor it can be in-
fluenced by external information (beyond what a pro-
grammer equipped it with) then it only expresses the
programmer’s creativity [44]. Therefore, some form of
creative autonomy, i.e. when a system not only eval-
uates creations, but also changes its standards without
being given an explicit direction [44], is required for
transformational creativity.

But what inputs can a creative system receive to
modify its standards? Toivonen [45] points that those
may be: i) introspection, and ii) social interaction.
As an example for the former take a system able to
write songs, which modifies its own goals and opera-
tion [46]. It uses constraint programming, where con-
straints are used declaratively to define a search space
of songs. Consequently, a standard constraint solver
can then be used to generate songs. A meta-level con-
trol component manipulates the constraints at runtime
based on self-reflection of the system. Regarding the
latter, social interaction, it can be a source of new in-
fluences, ideas and feedback, and for developing cre-
ative autonomy it can be more plausible if the system
is embedded in a broader society of other creators [44].

Potential for Semantic Web Semantic Web technolo-
gies serve well to describe domain and cross-domain
knowledge with making explicit constraints existing
in a domain. Can we use ontologies and knowledge
graphs, which describe an existing domain with its ax-
ioms and constraints and, applying a meta-rule for
transformational creativity, start dropping constraints
and adding new constraints to produce novel artifacts?

One transformatory assumption regarding reasoning
in OWL and on the Web versus relational databases
is to assume ’open world’ rather than ’closed world’.
Can we also change some other assumptions underly-
ing reasoning on the Web to obtain novel problem set-
tings and surprising and useful results?

Semantic Web, envisaged as a multi-agent system
with all of its technologies provides an opportunity
for developing autonomous, creative agents that so-
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cially interact to gather new influences and ideas. They
need to communicate using common languages and
conceptualizations, shared between humans and ma-
chines to maintain common conceptual spaces. Due
to this setting, the area of transformational creativity
provides a big research opportunity to Semantic Web
specifically. How thus we should model and incorpo-
rate into a common conceptual space influences from
other agents, e.g. other designers and customers, their
preferences and aesthetics?

3. Research directions

In the previous section we discussed research ques-
tions regarding the potential of the Semantic Web with
respect to three types of creativity. In this section, we
gather and indicate promising research directions in-
corporating Semantic Web technologies with respect
to particular areas of artificial intelligence.

Bisociation discovery Bisociation discovery re-
quires development of methods for cross-domain link
discovery that go beyond simply linking a pair of sin-
gle resources in that they should also discover bridg-
ing concepts (connecting dense sub-graphs), bridging
graphs (sub-graphs linking concepts from different do-
mains) or find structurally similar sub-graphs of dif-
ferent domains. This may require detection of domain-
crossing sub-graphs. Such connections may be dis-
covered by graph mining and analysis techniques, and
development of similarity measures to compare sub-
graphs of knowledge graphs.

Evolutionary computation So far, the use of evolu-
tionary computation techniques within Semantic Web
is rather scarce with some exceptions like [47, 48].
Genetic programming requires defining operators such
as mutation, crossover or selection according to a
given fitness measure. Hence research on adequate ge-
netic operators, that exploit domain knowledge and
are semantics-aware, is an interesting research direc-
tion. Here research results on refinement operators for
knowledge structures may be of interest as a start-
ing point for developing mutation operators, and on
generating (conceptual) blends useful for developing
crossover operators.

Generative models Since creative artefacts should
be both novel and useful, creative computational sys-
tems commonly work in two phases (conforming to
psychological models of creative generation by hu-
mans [49]): generation of novel constructs and their
evaluation. Useful constructs may be produced by so-

called generative models, i.e. models learned from ob-
served data and capable of generating samples sharing
similar properties with those of the dataset on which
they were learned. For instance, if such data min-
ing/machine learning would be applied against recipes
found on the Web then it should enable generation of
new recipes with similar properties.

Consider models learned from a dataset of knowl-
edge graphs. Such models can prove useful in many
applications, e.g. in drug discovery where sampling
may help to discover new configurations or chemi-
cal design. However, the research on generative mod-
eling from observed data even of arbitrary graphs is
scarce [50]. The problem is challenging due to non-
local dependencies that exist between nodes and edges
in a given graph which make it hard to model distri-
butions over graphs and their complex relationships,
and it becomes even harder when semantics of nodes
and edges should be taken into account. Especially
deep generative models (i.e. that use deep learning) of
knowledge graphs constitute an interesting topic for
future research.

Analogical reasoning and Case-Based Reasoning
Analogical reasoning consists of transferring and us-
ing knowledge learned in one situation to another one,
which was not an original target. It commonly focuses
on cross-domain structural similarity. The Case-Based
Reasoning (CBR) is a related paradigm, but here the
solutions are transferred between semantically simi-
lar cases within one domain. The idea behind CBR
is to use previous problem situations to address new
problems, with an assumption that similar problems
have similar solutions. The CBR approach consists of
four phases [51]: retrieve (similar experiences: situa-
tions and cases), reuse (past experiences in the context
of a new situation), revise (producing new solution)
and retain. Cases may be retained as concrete exam-
ples, or a set of similar cases may constitute a gener-
alized case. A sample CBR system which uses ontolo-
gies published as Linked Data interlinked with its case
model is a tool called myCBR [52].

Though CBR is mostly concentrated on instance
analogy and design patterns are abstractions, CBR has
commonalities with Ontology Design Patterns, and
more generally with Semantic Web patterns in aim-
ing at reuse of knowledge and experiences. The CBR
viewpoint has already been combined with the use of
patterns in the OntoCase approach to ontology con-
struction [53]. For the applications in computational
creativity (e.g., in design, creative problem solving),
the area of ODPs and Semantic Web patterns requires
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further research to introduce more automation at all of
the phases, e.g. extracting more structured knowledge
representation of a pattern (case), finding and match-
ing similar patterns, automated revision and merging.

Evaluation measures Another research direction is
development of new measures for evaluating creative
artefacts. Various measures have already been pro-
posed such as novelty, interestingness, surprise, use-
fulness, elegance (see [54, 55] for a starting point).
In the context of the Semantic Web, not only such
measures are interesting that are local to the system
and involve so-called P-creativity or personal creativ-
ity (concerning artefacts new to the system) [9], but
also such that evaluate creative artefacts in the social
and global context (and involve so-called H-creativity
or historical creativity [9], i.e. concerned with creating
artefacts recognized as novel by society).

4. Conclusions

The intention of this paper was to point to under-
explored and rising opportunities for Semantic Web
research in the growing area of creative AI. We have
briefly surveyed the domain of computational creativ-
ity, with specific focus on aspects relevant to the Se-
mantic Web research: Web, knowledge resources, rea-
soning, data integration, provenance and trust, and
multi-agent systems.

We conclude that there is a lot of potential for fu-
ture research in Semantic Web for creative AI. This
includes: (i) knowledge representation languages to
represent concepts in a broader sense (e.g., proce-
dural knowledge to represent ideas such as culinary
recipes), (ii) cross-domain mapping discovery (biso-
ciations), (iii) machine learning (generative models)
and data mining approaches, including their building
blocks such as refinement operators, (iv) evolutionary
computation techniques and their buliding blocks (ge-
netic operators) (v) reasoning services beyond deduc-
tion (e.g., Cased-Based Reasoning), (vi) metrics for as-
sessing creatively computed artefacts, (vii) knowledge
resources in domains such as art and design, scientific
discovery and others.
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