
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF Graph Validation Using
Rule-Based Reasoning
Ben De Meester a,*, Pieter Heyvaert a, Dörthe Arndt a, Anastasia Dimou a, and Ruben Verborgh a
a Ghent University – imec – IDLab, Department of Electronics and Information Systems,
Technologiepark-Zwĳnaarde 122, 9052 Ghent, Belgium
E-mails: ben.demeester@ugent.be, pheyvaer.heyvaert@ugent.be, doerthe.arndt@ugent.be,
anastasia.dimou@ugent.be, ruben.verborgh@ugent.be

Editor: Axel Polleres, Vienna University of Economics and Business, Vienna, Austria
Solicited reviews: Jose Emilio Labra Gayo, University of Oviedo, Oviedo, Spain; Ognjen Savković, Free University of Bozen-Bolzano, Bolzano,
Italy; Simon Steyskal, Vienna University of Economics and Business, Siemens AG Österreich, Vienna, Austria; Two anonymous reviewers

Abstract.The correct functioning of SemanticWeb applications requires that given RDF graphs adhere to an expected shape. This
shape depends on the RDF graph and the application’s supported entailments of that graph. During validation, RDF graphs are
assessed against sets of constraints, and found violations help refining the RDF graphs. However, existing validation approaches
cannot always explain the root causes of violations (inhibiting refinement), and cannot fully match the entailments supported
during validation with those supported by the application. These approaches cannot accurately validate RDF graphs, or combine
multiple systems, deteriorating the validator’s performance. In this paper, we present an alternative validation approach using
rule-based reasoning, capable of fully customizing the used inferencing steps. We compare to existing approaches, and present a
formal ground and practical implementation “Validatrr”, based on N3Logic and the EYE reasoner. Our approach – supporting
an equivalent number of constraint types compared to the state of the art – better explains the root cause of the violations due
to the reasoner’s generated logical proof, and returns an accurate number of violations due to the customizable inferencing rule
set. Performance evaluation shows that Validatrr is performant for smaller datasets, and scales linearly w.r.t. the RDF graph size.
The detailed root cause explanations can guide future validation report description specifications, and the fine-grained level of
configuration can be employed to support different constraint languages. This foundation allows further research into handling
recursion, validating RDF graphs based on their generation description, and providing automatic refinement suggestions.

Keywords: Constraints, Rule-based Reasoning, Validation

1. Introduction

Semantic Web data is represented using the Re-
sourceDescription Framework (RDF), forming anRDF
graph [36]. The quality of an RDF graph – its “fitness
for use” [135] – heavily influences the results of a Se-
mantic Web application [84]. An RDF graph’s fitness
for use depends on its shape, i.e., the RDF graph it-
self and the application’s supported entailments of that
RDF graph. For example, some applications support
inferring rdfs:subClassOf entailments [29], whereas

*Corresponding author. E-mail: ben.demeester@ugent.be.

other applications require the RDF graph to explicitly
contain all classifying triples (i.e., rdfs:subClassOf
entailment is not supported).
RDF graphs are validated by assessing their adher-

ence to a set of constraints [82], and different applica-
tions (i.e., different use cases) specify different sets of
constraints. Via validation, we discover (portions of)
RDF graphs that do not conform to these constraints,
i.e., the violations that occur. These violations guide
the user to the resources and relationships related to the
constraints. Refining these resources and relationships
results in an RDF graph of higher quality [47], thus,

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:ben.demeester@ugent.be
mailto:pheyvaer.heyvaert@ugent.be
mailto:doerthe.arndt@ugent.be
mailto:anastasia.dimou@ugent.be
mailto:ruben.verborgh@ugent.be
mailto:ben.demeester@ugent.be

2 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF graph validation is an important element for the
correct functioning of Semantic Web applications.

1.1. Validation problems

Let us consider the following example: anRDFgraph
containing people and their birthdates is validated. The
use case dictates the set of constraints and the supported
entailments. Specifically,we validate formula (1)1, with
a relevant ontology represented in formula (2).

:Bob :firstname "Bob" ; (1)

:birthdate "1970-01-01"ˆˆxsd:date .

:birthdate rdfs:domain :Person . (2)

:Bob a :Person . (3)

Problem 1 (P1): finding the root causes of violations.
For example, a use case dictates that every resource
should have either a firstname and lastname, or a nick-
name. This constraint, 𝑐compound, is thus a compound
of several constraints. When the RDF graph contains
formula (1) and formula (3), :Bob should be marked as
a resource violating 𝑐compound. However, the RDF graph
cannot be refined solely by knowing which resources
violate the constraint. The root cause of the violation
is needed: does the resource lack firstname, lastname,
or nickname?
For constraint types such as compound constraints,

existing validation approaches typically return the re-
source that violates the constraint. More detailed de-
scriptions are typically not provided, and manual in-
spection is needed to discover the root cause of a viola-
tion, i.e., why a resource violates a constraint. Without
the root cause, it is hard to (automatically) refine the
RDF graph and improve its quality.

Problem 2 (P2): the number of found violations de-
pends on the supported entailments. A mismatch be-
tween which entailments are supported during valida-
tion and which entailments are supported by the use
case influences, e.g., whether formula (3) is inferred or
not. Thus, either too many or too few violations can
be returned [26]. This difference in number of found
violations gives a biased idea of the real quality of the
validated RDF graph.

1For the remainder of the paper, empty prefixes denote the fictional
schema http://example.com/, other prefixes are conform with the
results of https://prefix.cc.

Too many violations: formula (2) specifies the do-
main of :birthdate. Let us validate that “every re-
source in the RDF graph that has a birthdate, is a per-
son” given formula (1). When the entailments of for-
mula (2) are not supported, this would result in a viola-
tion: formula (3) is missing in the RDF graph. However,
when the entailments of formula (2) are supported, we
can infer formula (3), and no violation is returned.
Too few violations: Let us validate that “every person

in the RDF graph adheres to constraint 𝑐compound” given
formula (1). Formula (3) is not explicitly stated and
the entailments of formula (2) are not supported. No
violations are found: :Bob is not explicitly classified
as a :Person, thus :Bob is not targeted by 𝑐compound.
However, supporting those entailments can create new
statements to be validated, and lead to new violations.
For example, by inferring formula (3) using formula (2),
:Bob is targeted by – and violates – 𝑐compound. Such
violations are not found in the original RDF graph, but
discovered due to the supported entailments.
Customizing the set of inferencing steps during vali-

dation (e.g., whether rdfs:domain entailments are sup-
ported or not) allows to match the entailments sup-
ported by the use case with those of the validation ap-
proach. However, support for customizable inferencing
steps is limited. When a fixed set (or no set) of infer-
encing steps is supported, a separate reasoning process
is needed to infer unsupported entailments, and edge
cases handling this fixed set cannot be validated ac-
curately. For example, let us look at the W3C recom-
mended Shapes Constraint Language (SHACL): a lan-
guage for validating RDF graphs against a set of con-
straints [78]. SHACL specifies a fixed set of inferenc-
ing steps during validation, namely, rdfs:subClassOf
entailment when targeting resources of a certain class.
Thus, one cannot validate, e.g., whether an RDF graph
explicitly contains all triples that link resources to all
their classes given a set of rdfs:subClassOf axioms,
as rdfs:subClassOf triples are inferred by a conform
SHACL validator2. RDF graphs that do not contain all
classifying triples will be valid according to SHACL
validators, however, they are handled poorly by applica-
tions that do not support rdfs:subClassOf entailment.

Problem 3 (P3): Combining validation with a reason-
ing preprocessing step decreases performance En-
tailments can be inferred by performing reasoning as a
preprocessing step prior to validation [26], thus com-

2For a detailed example, please see https://idlabresearch.github.
io/validatrr/blog/2019/09/shacl-subclassof.html.

http://example.com/
https://prefix.cc
https://idlabresearch.github.io/validatrr/blog/2019/09/shacl-subclassof.html
https://idlabresearch.github.io/validatrr/blog/2019/09/shacl-subclassof.html

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

bining multiple systems. The resulting RDF graph then
explicitly contains all supported entailments, given that
the reasoner can be configured to only infer the entail-
ments that are supported by the use case. The number of
found violations is then accurate with respect to the use
case (solving P2). However, this requires a sequence
of independent systems. Thus, the preprocessing step
possibly produces entailments not relevant for valida-
tion [26]. This independent generation of unnecessary
entailments can decrease the performance compared
to a single validation system. More, due to this se-
quence of independent systems, finding the root causes
involves investigating the results of both systems: the
validator who detects violations, and the reasoner who
infers entailments.

1.2. Hypotheses

To solve aforementioned observed validation prob-
lems, we pose following hypotheses.

Hypothesis 1 Root causes can be explained more ac-
curately compared to existing validation approaches
when using a logical framework that can be configured
declaratively.

Hypothesis 2 A more accurate number of violations
are found compared to existing validation approaches
when supporting a custom set of inferencing steps.

Hypothesis 3 A validation approach supporting more
accurate root cause explanations and a custom set of
inferencing steps can support an equivalent number of
constraint types compared to existing approaches.

Hypothesis 4 Avalidation approach supporting a cus-
tom set of inferencing steps is faster than an approach
including the same inferencing as a preprocessing step.

1.3. Contributions

In this paper, we propose an approach for RDF graph
validation that uses a rule-based reasoner as its under-
lying technology. Rule-based reasoners can generate a
proof stating which rules were triggered for which re-
turned violation. Thus, the root causes of violations can
be accurately explained (solving P1).
A validation approach using rule-based reasoning

natively support the inclusion of a custom set of in-
ferencing steps by adding custom rules. The supported
entailments during validation can thus be matched to
the entailments supported by the use case, and the val-

idation returns an accurate number of found violations
(solving P2).
Moreover, rule-based reasoners only need a single

language to declare both the constraints and the set of
inferencing rules, and only a single system to execute
the validation. Compared to a combination of a rea-
soner and a validation system, this approach does not
lead to the generation of entailments unnecessary to the
validation step, making it potentially faster than includ-
ing an inferencing preprocessing step (solving P3).
Our contributions are as follows.

i An analysis of existing validation approaches and
comparison to a rule-based reasoning approach.

ii A formal ground for using rule-based reasoning for
validation.

iii An application of that formal ground by providing
an implementation usingN3Logic [20] to define the
inferencing and validation rules, executed using the
EYE reasoner [131], supporting general constraint
types as described by Hartmann et al. [62, 64].

iv An evaluation of our approach, positioning it within
the state of the art by functionally validating the
hypotheses and comparing the validation speed.

We validated that (a) the formal logical proof ex-
plains the root cause of a violation more detailed than
the state of the art; (b) an accurate number of violations
is returned by using a custom set of inferencing rules
up to at least OWL-RL complexity and expressiveness;
(c) the number of supported constraint types is equiva-
lent to existing validation approaches; and (d) our im-
plementation is faster than a combined system, and
faster than an existing validation approach when RDF
graphs are smaller than one hundred thousand triples.
The remainder of the paper is organized as follows.

We start by giving an overview of the state of the art
(Section 2), after which we position and compare rule-
based reasoning as validation approach (Section 3).
Then, we discuss the logical requirements (Section 4)
and apply them to achieve a practical implementation
(Section 5). Finally, we evaluate our proposed approach
(Section 6) and summarize our conclusions (Section 7).

2. State of the art

In this work, we propose an alternative validation
approach using rule-based reasoning.We first provide a
background on validation and reasoning in Section 2.1.
Then, we give an overview of existing validation ap-
proaches in Section 2.2, and of related vocabularies

4 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and ontologies in Section 2.3. We conclude with an
overview of general constraint types in Section 2.4,
which allows us to functionally compare validation ap-
proaches. Our categorization is derived from the gen-
eral quality surveys of Zaveri et al. [135], Ellefi et
al. [49], and Tomaszuk [127], and from the “Validating
RDF Data” book [84]. The related works are extended
with recent works published in, among others, the ma-
jor SemanticWeb conferences (ESWC and ISWC), and
the major Semantic Web journals (Journal of Web Se-
mantics and Semantic Web Journal).

2.1. Background

Validation Data quality can be assessed by employing
a set of data quality assessment metrics [22]. Quality
assessment for the Semantic Web – and more specifi-
cally, for Linked Data – spans multiple dimensions, fur-
ther categorized in accessibility, intrinsic, trust, dataset
dynamicity, contextual, and representational dimen-
sions [135]. Validating an RDF graph directly relates
to intrinsic quality dimensions, as defined by Zaveri
et al. [135]: (i) independent of the user’s context, and
(ii) checking if information correctly and compactly
represents the real world data and is logically consistent
in itself, i.e., the graph’s adherence to a certain schema
or shape. In this paper, we specifically focus on RDF
graph validation, i.e., the intrinsic dimensions.
Validation of an RDF graph can be automated by

using a set of test cases, each assessing a specific con-
straint [82]. Violations of those constraints are then in-
dicated when a validation returns negative results. Val-
idation is typically achieved following Closed World
Assumption (CWA): what is not known to be true must
be false. For example, a validation assesses for a spe-
cific RDF graph if all objects linked via the predicate
schema:birthdate are a valid xsd:date, or if all sub-
jects and objects linked via the predicate foaf:knows
are explicitly listed to be of type :Human. Negative re-
sults are returned, indicating violations.

Reasoning Ontologies are prevalent in the Seman-
tic Web community to represent the knowledge of
a domain. Ontology languages are used to anno-
tate asserted facts (axioms). Examples include RDF
Schema (RDFS) [29] and the Web Ontology Language
(OWL) [68]. Reasoning on top of these axioms is
achieved, as the calculus of the used logic specifies a
set of inferencing steps, inferring logical consequences
(entailments) from these axioms [45]. Logics for the
Semantic Web – given the open nature of the Web –

typically follow the Open World Assumption (OWA):
what is not known to be true is simply unknown.
Semantic Web reasoners are typically description

logic-based reasoners supporting OWL-DL or sub-
profiles such as OWL-QL [94], or rule-based reason-
ers [100]. Description logic-based reasoners are typi-
cally optimized for specific description logics, such as
KAON23 forSHIQ and FaCT++4 forSROIQ. Rule-
based reasoners typically follow two types of inferenc-
ing algorithms: forward chaining and backward chain-
ing [100]. Whereas forward chaining tries to infer as
much new information as possible, backward chaining
is goal-driven: the reasoner starts with a list of goals
and tries to verify if there are statements and rules
available that support any of these goals [100]. The
employed rules define the logic followed by rule-based
reasoners such as EYE [131] or cwm [17]. Whereas
description logic-based reasoners have (optimized) in-
ferencing steps for, e.g., rdfs:subClassOf and other
RDFS or OWL constructs embedded, rule-based rea-
soners commonly rely on the general “implies” con-
struct. Each rule specifies “A implies B”, where both
the antecedent “A” and the consequence “B” can con-
sist of statements [100]. Certain constructs such as
rdfs:subClassOf can be translated into one or more
rules5.
There is a clear distinction between ontologies and

the constraint set for RDF graph validation: ontologies
focus on the representation of a domain, whereas RDF
graph validation checks whether the resources of that
graph conform to a desired schema [84]. It is not re-
quired that the representation of a domain aligns with
the schema for validation. However, they can comple-
ment each other. The usage of ontologies prescribes a
set of inferencing steps, for example, the FOAF ontol-
ogy declares the rdfs:range of the foaf:knows pred-
icate as foaf:Person [30]. Whether these inferencing
steps are taken into account during validation or not,
influences the number of found violations [26].

2.2. Validation Approaches

In this section, we discuss RDF graph validation ap-
proaches. Tools and surveys that cover quality dimen-
sions other than the intrinsic dimensions such as acces-
sibility or representational dimensions are out of scope.
We discuss the approaches roughly in chronological

3http://kaon2.semanticweb.org/
4http://owl.cs.manchester.ac.uk/tools/fact/
5http://eulersharp.sourceforge.net/#theories

http://schema.org/birthdate
http://www.w3.org/2001/XMLSchema#date
http://xmlns.com/foaf/0.1/knows
http://kaon2.semanticweb.org/
http://owl.cs.manchester.ac.uk/tools/fact/
http://eulersharp.sourceforge.net/#theories

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

order: hard-coded, using integrity constraints, query-
based, and using a high-level language. Except from
hard-coded systems, these validation approaches pro-
pose or use some kind of declarative means to describe
RDF graph constraints.

2.2.1. Hard-coded
Hard-coded systems are a black box where the busi-

ness logic lies within the code base: the implementation
embeds both description and validation of constraints.
Hogan et al. analyzed common quality problems both
for publishing and intrinsic quality dimensions [69],
providing an initial set of best practices [70]. Efforts
focus on a limited set of configurable settings (i.e.,
turning constraint rules on or off) [90].

2.2.2. Integrity Constraints
For these validation approaches (so-called “logic-

based approaches”), the axioms of vocabularies and
ontologies used by the validated RDF graph are in-
terpreted as integrity constraints [93, 101, 124]. For
example, disjointness forces a description logic-based
reasoner to throw an error, which is interpreted as a vio-
lation. To combine CWA typically assumed for valida-
tion with OWA assumed in ontology languages, alter-
native semantics for these ontology languages are pro-
posed. The underlying technology used is a description
logic-based reasoner or a SPARQL endpoint.

Description logic-based reasoner Motik et al. [93]
propose semantic redefinitions, where a certain subset
of axioms are designated as constraints. To knowwhich
alternative semantics for OWL apply, constraints have
to be marked as such. They propose to integrate their
implementationwithKAON2. Furthermore, custom in-
tegrity constraints forWordnet have been verified using
Protégé [95] with FaCT++ [33].

SPARQL endpoint Tao et al. [124] propose using
OWL expressions with ClosedWorld assumption and a
weak variant of UniqueName assumption to express in-
tegrity constraints. OWL semantics are redefined, with-
out being explicitly stated as such during validation.
They use SPARQL [2] for axioms described in RDF,
RDFS, and OWL [124], e.g., using SPARQL property
paths to simulate rdfs:subClassOf entailment. Tao et
al. work in a general OWL setting, where their approach
is sound but not complete. In an RDF setting the ap-
proach is both sound and complete, as there is only a
singlemodel that needs to be considered [101]. This im-
plementation is incorporated into Stardog ICV [107].
Patel-Schneider separates validation into integrity con-
straints and Closed World recognition [101], showing

that RDF and RDFS entailment can be implemented
for both by translation to SPARQL queries.

2.2.3. Query-based
In query-based approaches, constraints are described

and interpreted similar to SPARQL queries [64, 102]:
only RDF graphs whose structure is compatible with
the defined structure are returned. These approaches
use an embedded or external SPARQL endpoint as un-
derlying technology.
CLAMS [51] is a system to discover and resolve

Linked Data inconsistencies. They define a violation as
a minimal set of triples that cannot coexist. The system
identifies all violations by executing a SPARQL query
set. Knublauch et al. propose the SPARQL Inference
Notation (SPIN) [80]: a SPARQL-based rule and con-
straint language. The SPARQLquery is described using
RDF statements instead of using the original SPARQL
syntax. Kontokostas et al. [82] propose Data Quality
Test Patterns (DQTP): tuples of typed pattern variables
and a SPARQL query template to declare test case pat-
terns. The validation framework that validates these
DQTPs is calledRDFUnit. TheDQTPs are transformed
into SPARQL queries, where every SPARQL query is
a test case. RDFUnit additionally allows automatically
generated test cases, depending on the used schema.
RDFUnit is also used to validate Linked Data gener-

ation rules in the RDFMapping Language (RML) [46],
by manually defining different DQTPs to target the
generation description instead of the generated RDF
graph [47]. This means the RDF graph can be vali-
dated before any data is generated, as the generation
description reflects how the RDF graph will be formed.

2.2.4. High-level language
These approaches use a terse high-level language

specifically designed to describe constraints for vali-
dation [84]. These languages are independent of un-
derlying technologies, and alternative implementation
strategies can be devised. We first discuss initial high-
level languages, after which we discuss high-level lan-
guages with wide adoption from the community: ShEx
and SHACL.
Description Set Profiles (DSP) [97] define a set

of constraints using Description Templates, targeted
specifically to Dublin Core Application Profiles, and
implemented using SPIN [25]. Other high-level lan-
guages to describe constraints include OSLC Resource
Shapes [117] – part of IBM Resource Shapes – and
RDF Data Descriptions [53]. Luzzu [42] uses a custom
declarative constraint language (Luzzu Quality Metric
Language, LQML). Anymetric that can be expressed in

6 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

a SPARQL query can be defined using LQML. More-
over, quality dimensions other than the intrinsic dimen-
sions are also expressible using LQML. Luzzu supports
basic metrics and custom JAVA code allowing users to
implement custom metrics.

ShEx Shape Expressions (ShEx) [111, 112] is a struc-
tural schema language which can be used for RDF
graph validation. The grammar of ShEx is inspired by
Turtle and RelaxNG, its semantics are well-founded,
and its complexity and expressiveness are formal-
ized [23, 123]. ShEx provides an extension point to han-
dle advanced constraints via Semantic Actions, which
allows to evaluate a part of the validated RDF graph
using a custom function.

SHACL The Shapes Constraint Language (SHACL)
is the W3C Recommendation for validating RDF
graphs against a set of constraints [78]. The core of
SHACL is independent of SPARQL, which promotes
the development of new algorithms and approaches
to validate RDF graphs [85]. The original specifica-
tion does not include a denotational semantics such as
ShEx, however, the recent work of Corman et al. pro-
pose a concise formal semantics for SHACL’s core con-
straint components, and a way of handling recursion
in combination with negation [34]. Advanced features
of SHACL include SHACL Rules (to derive inferred
triples from the validated RDF graph) and SHACL
Functions (to evaluate a part of the validatedRDFgraph
using a custom function) [81].

2.3. Validation reports

Validation reports handle identification of which
data quality dimensions are assessed in general, and the
representation of violations in particular.
To identify data quality dimensions, Radulvic et al.

extended the Dataset Quality Ontology (daQ) [43] to
include all data quality dimensions as identified by Za-
veri et al. [135], leading to the Data Quality Vocabu-
lary [113]. This allows the comparison of data quality
dimension coverage of different frameworks.
The violations report itself allows to distribute and

compare the violations found in an RDF graph, and can
refer to the dimension specifications using aforemen-
tioned general vocabularies. For example, the Quality
Problem Report Ontology assembles detailed quality
reports for all data quality dimensions [42]. The Rea-
soning Violations Ontology (RVO) is used to represent
integrity constraint violations [28], and Kontokostas

et al [82] use the RDF Logging Ontology6 (RLOG)
to describe RDFUnit’s violation results. Both ShEx
and SHACL provide violation report descriptions, with
means to specify the violating resources, using a
ShapeMap [112] and a Focus node [78], respectively.

2.4. Constraint types

Hartmann néBosch et. al identify eighty-one general
constraint types [27, 64]. These constraint types are
an abstraction of specific constraints, independent of
the constraint language used to describe them. A con-
straint type can be defined in different ways. For exam-
ple, the property domain constraint type specifies that
resources that use a specific property should be clas-
sified via a specific class, e.g., all resources using the
:birthdate property that are not classified as a :Person
are violating resources. Using RDFS [29], the property
domain constraint type can be assessed by interpreting
rdfs:domain as an integrity constraint. Using SHACL,
this can be achieved by defining a sh:property with
sh:class for a sh:targetSubjectsOf shape [78].
Moreover, Hartmann et al. provide a logical under-

pinning stating the requirements for a validation ap-
proach to support all constraint types [26]. For thirty-
five out of eighty-one constraints types (43.2%), rea-
soning (up to OWL-DL expressiveness) can improve
the validation: without reasoning, either too many or
too few violations can be returned.

3. Comparative analysis

Different types of validation approaches are pro-
posed in the state of the art. The most prominent
approaches are hard-coded, based on integrity con-
straints, query-based, and using high-level languages.
In this section, we compare them with our proposed
rule-based reasoning approach. Our analysis is sum-
marized in Table 1.
We adapt the framework presented by Pauwels et

al. [105], which introduces comparative factors of key
implementation strategies for compliance checking ap-
plications. We adjust these factors with respect to the
validation problems identified in Section 1.1. We gen-
eralize the factors time, customization, and inferencing
steps, and introduce explanation and reasoning prepro-
cessing as validation-specific factors.

6http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#

http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/ns/shacl#property
http://www.w3.org/ns/shacl#class
http://www.w3.org/ns/shacl#targetSubjectsOf
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Comparing the prominent validation approaches with rule-based reasoning, using factors explanation, time, customization, inferencing steps, and
reasoning preprocessing. The time row indicates which approaches’ execution time is influenced due to the reasoning preprocessing using an
asterisk. The asterisk in the inferencing steps row indicates that approaches based on integrity constraints cannot combine with a custom set of
inferencing steps that overlaps with the integrity constraints, as their semantics are redefined.

Approach Hard-coded Integrity
constraints Query-based High-level

language
Rule-based
reasoning

Explanation No Limited / Yes Limited Limited Yes
Time Short* Long Long* Short* Long

Customization Limited Limited Open Open Open
Inferencing steps No / Limited Yes* Limited / Yes Limited / Yes Yes

Reasoning preprocessing Yes Limited Yes Yes N/A

Explanation The explanation as to why a certain vio-
lation occurs (i.e., the root cause). The more specific a
validator can explain, the easier it is to (automatically)
refine the RDF graph and improve its quality. Existing
approaches typically have the means to explain viola-
tions up to the level of which resource violates which
constraint. Explanations of hard-coded approaches ei-
ther need to be explicitly implemented, or are provided
by inspecting the code base. When using integrity con-
straints, approaches exist for resolving inconsistencies.
These approaches perform some sort of root cause anal-
ysis, but are usually targeted at refining the axioms
of the ontologies themselves [60]. It is not a standard
feature to produce proofs of the results of description
logic-based reasoners [99]. In a query-based approach,
the used SPARQL endpoint returns bindings [2]. In the
case of validation, it returns the violating resources,
without additional explanation. High-level languages
can have mechanisms to additionally include the vio-
lating resources in the validation report. For example,
ShEx and SHACL provide ShapeMaps [112] and Fo-
cus nodes [78], respectively. SHACL’s Focus nodes can
further specify which predicate and object cause the
violation, except for, e.g., compound constraints. Using
rule-based reasoning allows the generation of a logi-
cal proof, as rule-based reasoning relies on a general
“implies” construct to describe rules, and rule-based
reasoners typically do not contain description logic op-
timizations. Such a logical proof declares which rules
were triggered to arrive at a certain conclusion, giv-
ing a precise explanation for the root causes of con-
straint violations. Where existing approaches typically
have the means to explain violations up to the level of
which resource violates which shape, a logical proof
can provide a more detailed explanation.

Time The time needed to execute the validation: short
versus long. Typically, specialized approaches allow
for optimizations, making them faster than general ap-

proaches. Hard-coded is usually the fastest and needs
the shortest processing time, followed by systems that
use high-level languages: both can be optimized for
validation tasks. The other approaches (using integrity
constraints, query-based, and rule-based reasoning)
are typically built using an underlying existing technol-
ogy (description logic-based reasoners, SPARQL end-
points, and rule-based reasoners, respectively). They
are not built (or optimized) for validation tasks. This
makes them independent of the constraint language,
but can also slow down the validation. The total execu-
tion time of validation approaches depends on whether
a reasoning preprocessing step to include additional
inferencing steps is required or not. Using rule-based
reasoning is thus potentially slower than existing ap-
proaches, however, it does not require inclusion of rea-
soning preprocessing.

Customization The extent of customization each type
of approach enables. Typically, ease of customization is
improved by using a declarative language. Customiza-
tion of a hard-coded system requires development ef-
fort, as the business logic is embedded within the
code. Other approaches rely on declarations to cus-
tomize the validation. Declarations are decoupled, i.e.,
independent of the tool’s implementation. Thus, they
can be shared and easier customized to a certain use
case. Description logic-based reasoners used to iden-
tify integrity constraints are typically optimized for
description logics such as OWL-QL and OWL-DL.
Customization is limited to the description logic that
the reasoner is optimized for. Query-based approaches
allow customization by defining additional SPARQL
queries and registering custom functions [61]. Systems
using high-level languages are customized using the
declarations as specified by the used language. The
adoption of ShEx and SHACL shows that these lan-
guages provide sufficient customization. The extension
mechanisms of these languages such as Semantic Ac-

8 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tions [112] and SHACL Advanced Features [81], re-
spectively, allow to customize the validation even fur-
ther. Using rule-based reasoning allows customization
by adding and removing rules. As opposed to existing
approaches, users can customize both the constraint
types and the set of inferencing steps within the same
declarative language.

Inferencing steps Whether the validation approach
supports a (custom) set of inferencing steps. Hard-
coded systems can support a fixed set of inferencing
steps, but this set cannot be inspected or altered with-
out investigating the code base. Approaches that use in-
tegrity constraints for validation propose alternative se-
mantics of commonly agreed upon ontology languages
to include, among others, some form of CWA [93, 124].
This leads to ambiguity in the Semantic Web as an ex-
isting, globally agreed upon logic, is changed [7]. It is
not possible to combine such validationwith a (custom)
set of inferencing steps within a description logic: the
same inferencing step has different semantics whether
it is used for validation or for inferring new statements.
SPARQL endpoints used for query-based approaches
can support up to OWL-RL reasoning [77], or sup-
port up to RDF and RDFS entailment via translation
of the SPARQL queries using property paths [124].
High-level languages such as SHACL allow specify-
ing the entailment regime used [58]: SHACL validators
may operate on RDF graphs that include entailments
using the sh:entailment property [78]. Furthermore,
SHACL Rules [81] can be used to a certain extent to
generate inferred statements during validation. By de-
sign, rule-based reasoning allows inclusion of a set of
additional (custom)) inferencing rules [100]. Whereas
existing approaches mostly allow configuration to sup-
port, e.g., a specific entailment regime, the customiza-
tion of the set of inferencing steps is more fine-grained
for rule-based reasoners. This can increase complexity,
but also allows catering the validation to use cases that
depend on a specific set of inferencing steps. The im-
portance of such use cases is evidenced by the fact that
SHACL Rules is proposed as an advanced feature to
the SHACL specification [81].

Reasoning preprocessing Existing approaches have
no support for including a custom set of inferencing
steps, propose alternative semantics, or allow a specific
entailment regime. By including a reasoning step as
preprocessing step to these approaches (see Fig. 1.1),
the entailments valid during validation can be matched
with the entailments valid for the use case, even when
that use cases requires a custom set of inferencing

steps [26]. First, a reasoner – optionally, hence the
dashed line – infers all valid entailments of the original
RDF graph (Fig. 1.1, Reasoner), taking into account
the axioms of the relevant ontologies and vocabular-
ies (Axioms). Then, the newly generated RDF graph
(RDF graph*) is validated with respect to the specified
constraints (Fig. 1.1, Validator).
By using a preprocessed inferred RDF graph, mul-

tiple systems (i.e., the reasoner and the validator) need
to be combined, configured, and maintained. This sep-
arates concerns, however, this also means that differ-
ent languages may need to be learned and combined
for specifying the inferencing steps and constraints. As
these multiple systems are not aligned, the reasoner
could infer a large number of new triples that are irrele-
vant to the defined constraints, which could lead to bad
scaling (Fig. 1.1, RDF graph*). Also, explaining the
violation is hindered. Even when the reasoner can dif-
ferentiate between the original triples and the inferred
triples, finding the root causes involves investigating
the output of both systems: the validator detecting the
violations, and the reasoner inferring the supported en-
tailments.
Reasoning preprocessing is not required when using

rule-based reasoning. The set of inferencing steps and
the set of constraints can be defined using the same dec-
laration (Fig. 1.2, Inferencing rules and Constraints*),
and executed simultaneously on the RDF graph and the
axioms. Which statements need to be inferred can be
optimized guided by the set of constraints, and only the
output of a single system needs to be investigated to
explain the found violations.

4. Logical Requirements

In this section, we discuss the logical requirements
needed for RDF graph validation, and argue for using
a rule-based logic.
Constraint languages need to copewith different con-

straint types depending on users’ needs. Each constraint
type implies logical requirements. The constraint types
and the requirements they entail are investigated by
Hartmann et al., claiming that Closed World Assump-
tion (CWA) and Unique Name Assumption (UNA) are
crucial for validation [26]. These requirements typi-
cally do not apply to logics for the Semantic Web, as
data on the Web is decentralized, information is spread
(“anyone can say anything about anything” [36]), and
single resources can have multiple URIs. Instead, rel-
evant logics such as OWL-DL assume OWA and in

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Violations Violations

RDF graph RDF graph

Rule-based

reasoner
RDF graph*

Inferencing

rules

Reasoner Axioms Axioms

Validator Constraints Constraints*

(1) Preprocessing approach

Violations Violations

RDF graph RDF graph

Rule-based

reasoner
RDF graph*

Inferencing

rules

Reasoner Axioms Axioms

Validator Constraints Constraints*

(2) Rule-based reasoning approach

Figure 1. The preprocessing approach: first (optionally, hence the dashed line), a reasoner is used to generate intermediate data (RDF graph*).
That intermediate data is then the input data for the Validator. Using a rule-based reasoner only needs a single system and language to combine
reasoning and validation.

general non-Unique NameAssumption [94]. Hartmann
et al. emphasize the difference between reasoning and
validation, and favor query-based approaches for vali-
dation. When needed, query-based approaches can be
combinedwith reasoning (e.g., OWL-DL or OWL-QL)
as a preprocessing step.
However, in this section, we show how rule-based

reasoning can be used for validation in a Seman-
tic Web context, even though this reasoning typi-
cally does not follow CWA and UNA. Specifically, we
state that the requirements for using rule-based rea-
soning are (i) supporting Scoped Negation as Failure
(SNAF) [37, 76, 108] instead of CWA (Section 4.1),
(ii) containing predicates to compare URIs and literals
instead of supporting UNA (Section 4.2), and (iii) sup-
porting expressive built-ins, as validation often deals
with, e.g., string comparison and mathematical calcu-
lations (Section 4.3).

4.1. Scoped Negation as Failure

Existing works claim that CWA is needed to perform
validation [26, 101, 124]. Given that most Web logics
assumeOWA, this would require semantic redefinitions
to include inferencing during validation [93], which
leads to ambiguity. However, as validation copes with
the local knowledge base, and not the entire Web, we
claim Scoped Negation as Failure (SNAF) is sufficient.
This is an interpretation of logical negation: instead of
stating that 𝜌 does not hold (i.e., ¬𝜌), it is stated that
reasoning fails to infer 𝜌 within a specific scope [37,

76, 108]. This scope needs to be explicitly stated. As
such, SNAF keeps monotonicity.
To understand the idea behind Scoped Negation as

Failure, let us validate following RDF graph:

:Kurt a :Researcher; (4)

:name "Kurt01". (5)

We validate the constraint “every individual which is
declared as a researcher is also declared as a person”.
This thus means a violation is returned when an indi-
vidual is found during validation which is a researcher,
but not a person:

∀x : ((x a :Researcher)∧

¬(x a :Person))

→ (:constraint :isViolated "true".)
(6)

As stated, this constraint cannot be tested with OWA:
the knowledge base contains the triple of formula (4),
but not of:

:Kurt a :Person. (7)

The rule is more general: given its open nature, we
cannot guarantee that there is no document in the entire
Web which declares the triple of formula (7).
This changes if we take into account SNAF. Suppose

that K is the set of triples we can derive (either with or

10 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

without reasoning) from our knowledge base of formu-
las (4) and (5). Having K at our disposal, we can test:

∀x : (((x a :Researcher) ∈ K)∧

¬((x a :Person) ∈ K))

→ (:constraint :is :violated.)

(8)

The second conjunct is not a simple negation, it is a
negation with a certain scope, in this case K. If we
add new data to our knowledge base, e.g., the triple
of formula (7), we would have a different knowledge
baseK′ forwhich other statements hold. The truth value
of formula (8) would not change since this formula
explicitly mentions K. SNAF is what we actually need
for validation: we do not validate the Web in general,
we validate a specific RDF graph.

4.2. Predicates for Name Comparison

UNA is deemed required for validation [26], i.e.,
every resource taken into account can only have one
single name (a single URI in our case) [75]. UNA is
in general difficult to obtain for the Semantic Web and
Web logics due to its distributed nature: different RDF
graphs can – and actually do – use different names for
the same individual or concept. For instance, the URI
dbpedia:London refers to the same place in Britain as,
e.g., dbpedia-nl:London. That fact is even stated in the
corresponding datasets using the predicate owl:sameAs.
The usage of owl:sameAs conflicts with UNA and in-
fluences validation [26].
Let us look into the following example. We assume

dbo:capital is an owl:InverseFunctionalProperty.
Our knowledge base contains:

:Britain dbo:capital :London. (9)

:England dbo:capital :London. (10)

Since both :Britain and :England have :London as
their capital and dbo:capital is an inverse functional
property, an description logic-based reasoner would
derive that

:Britain owl:sameAs :England. (11)

This thus influences the validation result. Such a deriva-
tion cannot be made if UNA holds, since UNA explic-
itly excludes this possibility.

The related constraint – defined as INVFUNC by
Kontokostas et al. [82] – specifies that each re-
source should contain exactly one relationship via
dbo:capital, i.e., the capital is different for ev-
ery resource. The constraint INVFUNC is related to
owl:InverseFunctionalProperty, but it is slightly dif-
ferent: while OWL’s inverse functional property refers
to the resources that are in the domain of dbo:capital,
the validation constraint INVFUNC refers to the repre-
sentation of those resources. The RDF graph of formu-
las (9) and (10) thus violates the INVFUNC constraint.
Even if our logic does not follow UNA, this violation
can be detected if the logic offers predicates to compare
the (string) representation of resources.

4.3. Expressive Built-ins

Validation often deals with, e.g., string comparison
and mathematic calculations. These functionalities are
widely spread in rule-based logics using built-in func-
tions. While it typically depends on the designers of a
logic which features are supported, there are also com-
mon standards. One of them is the Rule Interchange
Format (RIF), whose aim is to provide a formalism to
exchange rules in the Web [74]. Being the result of a
W3Cworking group consisting of developers and users
of different rule based languages, RIF can also be un-
derstood as a reference for the most common features
rule based logics might have.
Let us take a closer look to the comparison of URIs

from the previous section. func:compare can be used to
compare two strings. This function takes two string val-
ues as input, and returns -1 if the first string is smaller
than the second one regarding a string order, 0 if the
two strings are the same, and 1 if the second is smaller
than the first. The example above gives:

("http://example.com/Britain"

"http://example.com/England")

func:compare -1. (12)

To refer to a URI value, RIF provides the predicate
pred:iri-stringwhich converts a URI to a string and
vice versa. To enable a rule to detect whether the two
URI names are equal or not, an additional function is
needed: the reasoner has to detect whether the compar-
ison’s result is different from zero. That can be checked
using the predicate pred:numeric-not-equal, which is
the RIF version of ≠ for numerical values. In the exam-

http://dbpedia.org/resource/London
http://nl.dbpedia.org/resource/London
http://www.w3.org/2002/07/owl#sameAs

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ple, the comparison would be true since 0 ≠ −1. Us-
ing these RIF built-ins, a reasoner can check the name
equality between :Britain and :England, and return
a violation. Whether a rule based Web logic is suited
for validation highly depends on its built-ins. If it sup-
ports all RIF predicates, this can be seen as a strong
indication that it is expressive enough.

5. Application

In this section, we present our approach that uses
rule-based reasoning for validation. We discuss the dif-
ferent components and the workflow in Section 5.1, the
underlying technologies in Section 5.2, and implemen-
tation in Section 5.3. We end with an example using
rules in Section 5.4.

5.1. Customizable validation

Our validator consists of multiple components that
can be configured by adjusting the different rule sets
(Fig. 2). The execution is primarily handled using the
rule-based reasoner as underlying technology.
The set of Inferencing rules specifies the supported

entailments during validation. This set can either be a
predefined set to support, e.g., RDFS entailment [29],
or can be fully customized. Optionally, the relevant
axioms are provided during validation. As such, the
entailments supported by the use case can be matched
during validation.
The set of rules forming the Constraint transla-

tion allows our validator to infer the general con-
straint types – common across existing constraint lan-
guages [27, 64] – from specific constraint descriptions.
It can thus infer these types from the constraints de-
scribed in a specific language such as SHACL [78]. The
general constraint types are described using RDF-CV,
which generalizes the constraint types into a coherent
structure [27]. The purpose of RDF-CV is not to in-
vent a new constraint language: it is a concise ontol-
ogy which is deemed universal enough to describe con-
straints expressible by other constraint languages such
as SHACL7. Our rule-based validator is thus constraint
language-independent.
The set of rules forming the Validation allows our

validator to infer violations on the RDF graph with all

7For a detailed description of RDF-CV, we refer to the origi-
nal papers [24, 27], or the source: https://github.com/boschthomas/
RDF-Constraints-Vocabulary

supported entailments, based on the general constraint
types. This set of rules specifies how to detect each
constraint type.
The set of rules forming the Report allows our val-

idator to infer the resulting violations in the required
format. This set can be adapted to, e.g., the SHACL
report format [78].
As a result, this declarative approach is decoupled

from ontology language, constraint language, and re-
port format. When no additional rule sets are included
(i.e., only the Validation rule set is used), this valida-
tor does not infer any entailments, only validates con-
straints described using RDF-CV, and returns a report
in a format based on RDF-CV.
All rule sets and input data are taken into account

during a single reasoner execution. As opposed to using
a reasoning preprocessing step, the inferred entailments
can be geared towards the specified constraints (when
making use of a backward chaining reasoner), and no
unnecessary entailments are produced. For example,
when an axiom specifies the range of a certain path,
but no constraints are related to that path, this range
might not need to be inferred. Moreover, as you only
have a single system, finding the root cause does not
require investigation of multiple systems: the logical
proof contains the complete overview of which rules
were used to generate which entailments and which
violations.

5.2. Used Technologies

Themost important technological considerations are
the rule-based web logic and reasoner in accordance
with that logic.

Rule-based web logic Rule-based web logics include
the Semantic Web Rule Language (SWRL) [71], the
Datalog+/- framework [32] and N3Logic [20]8. We
use N3Logic as it fulfills all requirements: SWRL
does not support the logical requirement SNAF9, and
the Datalog+/- framework does not support produc-
tion of logical proofs. N3Logic is being actively sup-
ported and used, as evidenced by recent papers and
patents [40, 106, 128, 134], and by the recently founded
W3C Notation 3 (N3) Community Group fostering de-
velopment, implementation, and standardization10.

8For a more thorough discussion of relevant rule languages, we
refer to Section 3.2 of [132].
9https://github.com/protegeproject/swrlapi/wiki/

SWRLLanguageFAQ#Does_SWRL_support_Negation_As_Failure
10https://www.w3.org/community/n3-dev/

https://github.com/boschthomas/RDF-Constraints-Vocabulary
https://github.com/boschthomas/RDF-Constraints-Vocabulary
https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#Does_SWRL_support_Negation_As_Failure
https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#Does_SWRL_support_Negation_As_Failure
https://www.w3.org/community/n3-dev/

12 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rule-based reasoner

RDF graph

Axioms

Inferencing

rules

Constraint

translation
Constraints

Violations
Violations*

using specific

report format

RDF graph*
with all valid

entailments

Constraints*
using general types

Validation Report

Figure 2. Components view of our approach. All double-snipped rectangles are rule sets, the single-snipped rectangles are RDF graphs or
constraint declarations. The large overlapping rectangle is the rule-based reasoner. By taking all rule sets into account, the rule-based validator
is formed. Four parts can be identified within the validation execution: (i) possibly guided by provided Axioms, all supported entailments of the
given RDF graph can be generated using the Inferencing rules, resulting in RDF graph*; (ii) the general Constraints* are inferred from the given
Constraints using a set of rules for Constraint translation; (iii) the rules for Validation generate Violations; and (iv) the returned Violations* are
structured given a set of rules that specify the Report format.

Wefollow the formalized semantics ofN3Logic [132]
as implemented in the EYE reasoner [9]: a clear for-
mal definition of Notation3’s semantics was missing
from its initial proposal [20]. Verborgh et al. formalised
the basics of the model theory of a logic with similar
properties to N3Logic, excluding the constructs which
lead to different interpretations (mainly nested implicit
quantification) [132]. This work also proves the cor-
rectness of the calculus N3 reasoners use. Thus: the
results of the reasoners are correct if the defined model
theory is followed. Arndt et al. expanded on this work,
specifically investigating the excluded constructs, and
defined two different mappings from N3 syntax to core
logic syntax covering two possible interpretations of
N3Logic [9]. Even though this work defines two possi-
ble semantics, the difference between these two seman-
tics does not influence the use of N3 in our paper since
the semantic differences are only relevant for deeply
nested formulas, our formulas are not of that nature
(see Listing 3).
More, N3Logic supports at least OWL-RL inferenc-

ing [6, 8], which can be included during validation: the
rules for OWL-RL are specified11 and are supported by
every rule language that is at least as expressive as Dat-
alog. This includes N3Logic: the concrete realisation
of these rules in N3 can be found online12.
N3Logic, among others, covers existential rules, thus

typically rendering the logic undecidable. This brings
three trade-offs. First, we note that decidability does
not imply that reasoning times are acceptable: even de-

11https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_
2_RL_and_RDF_Graphs_using_Rules
12http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html

cidable logics can result in reasoner time-outs. Sec-
ond, we expect the validation rules to be used in a dis-
tributed context (the Web). Thus, even though relevant
research investigates the maximal subset of existential
rules which are still decidable [13, 31, 125], we have
no control over all potential rules used together with
our validation rules, and cannot use these well-studied
mechanisms ensuring a set of existential rules to be de-
cidable. These mechanisms need to consider all rules
together. Third, for example, the logic framework Pro-
log is a widely used Turing complete programming
language. Even though this is a desirable property for
a programming language, making it very expressive,
checking properties over a Turing complete language
is undecidable. Prolog remains a popular choice: we
can conclude that using this undecidable logic allows
for expressiveness, without necessarily introducing a
performance bottleneck.
The rule language introduced togetherwithN3Logic

is N3 [18, 20]. Everything covered by RDF 1.1 Se-
mantics [65] is covered in N3. Syntactically, it is a su-
perset of Turtle [15]. N3 allows declaring inferencing
rules, axioms, and constraints in the same language.
As in RDF, blank nodes are understood as existen-
tially quantified variables and the co-occurrence of two
triples as in the RDF graph of formulas (9) and (10)
is understood as their conjunction. More, N3 supports
universally quantified variables, indicated by a leading
question mark ?.

?x :likes :IceCream. (13)

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

stands for “Everyone likes ice cream.”, or in first order
logic

∀𝑥 : likes(𝑥, ice-cream) (14)

Rules arewritten using curly brackets { } and the impli-
cation symbol =>. An rdfs:subClassOf relation such
as :Person rdfs:subClassOf :Researcher can be ex-
pressed as:

{?x a :Researcher} => {?x a :Person}. (15)

The general rdfs:subClassOf relation can be ex-
pressed as:

{?C rdfs:subClassOf ?D. ?X a ?C}

=> {?X a ?D}.
(16)

Reasoner Reasoners that support N3Logic include
FuXi, cwm, and EYE. FuXi13 is a forward chaining
production system for N3 whose reasoning is based
on the Rete algorithm [55]. The forward chaining
cwm [17] reasoner is a general-purpose data process-
ing tool which can be used for querying, checking,
transforming and altering information. EYE14 [131]
is a high-performance reasoner written in Prolog, en-
hanced with Euler path detection, allowing the creator
of the rules to decide when to do forward reasoning
and when backwards. EYE has generous support for
built-in functions15, among which, the RIF functions.
We choose the EYE reasoner as it fulfills the require-

ments as presented in Section 4. Furthermore, its abil-
ity to combine forward and backward chaining proves
especially useful since constraint types are mostly lo-
calized to single relationships [26]. This means back-
ward chaining has a potentially large impact on the
performance: reasoning during validation can be very
targeted, and in most cases, only facts that are relevant
to the defined constraints are inferred.

5.3. Implementation

Our implementation is dubbed “Validatrr”: a valida-
tor using rule-based reasoning. A Node.js JavaScript
framework was created to discover and retrieve the
vocabularies and ontologies as required by the use

13http://code.google.com/p/fuxi/
14https://github.com/josd/eye
15http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.

html

case, manage the commandline arguments, etc. The
implementation is available at https://github.com/
IDLabResearch/validatrr, and the set of validation
rules (Fig. 2, center) is available at https://github.com/
IDLabResearch/data-validation.

5.4. Execution example

As example, we validate anRDFgraphwith a custom
set of inferencing steps using SHACL constraints. We
take into account the example of the introduction (for-
mula (1)), but the case where :Bob has two birthdates
defined. The implications of rdfs:domain (formula (2))
should be taken into account as defined in RDFS [29]
during validation, and the SHACL constraint states that
each person should have exactly one birthdate (List-
ing 1). The result should be in the SHACL validation
report format. Using this example, we can detail every
step as show in Fig. 2: the RDF graphwith all supported
entailments (RDF graph*) and general constraint types
(Constraints*) are inferred using a (custom) set of in-
ferencing rules (Inferencing rules) and constraint trans-
lation rules (Constraint translation), after which the
validation occurs (Validation), and the resulting vio-
lations are translated via rules (Report) in a specific
report format (Violations*).

:PersonShape a sh:NodeShape ;
sh:targetClass :Person ;
sh:property [
sh:path :birthdate ;
sh:minCount 1 ; sh:maxCount 1 ;
sh:datatype xsd:date] .

Listing 1: Person Shape in SHACL

To make sure rdfs:domain is correctly interpreted
during validation, we include additional inferencing
rules16 (Inferencing rules), described in N3 as

{?P rdfs:domain ?C. ?X ?P ?Y}

=> {?X a ?C} .
(17)

Given formula (17), it is inferred that :Bob is a person
(RDF graph*).
To make sure SHACL constraints are correctly inter-

preted, SHACL translation rules need to be included
during validation (Constraint translation). The gen-

16http://eulersharp.sourceforge.net/2003/03swap/rdfs-domain.
html

http://code.google.com/p/fuxi/
https://github.com/josd/eye
http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html
http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html
https://github.com/IDLabResearch/validatrr
https://github.com/IDLabResearch/validatrr
https://github.com/IDLabResearch/data-validation
https://github.com/IDLabResearch/data-validation
http://eulersharp.sourceforge.net/2003/03swap/rdfs-domain.html
http://eulersharp.sourceforge.net/2003/03swap/rdfs-domain.html

14 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

eral “Exact Qualified Cardinality Restrictions” RDF-
CV constraint is inferred from the SHACL constraint
of Listing 1, using the rules of Listing 2 (Constraints*).

{
?sh a sh:NodeShape ;
sh:targetClass ?Class ;
sh:property [
sh:path ?p ;
sh:minCount ?v ; sh:maxCount ?v1 ;
sh:datatype ?C] .
?v pred:numeric-equal ?v1
} => {
?constraint a rdfcv:SimpleConstraint ;
:originalShape ?sh ;
:constraintType :ExQualCardRestr ;
rdfcv:constrainingElement
:exact-cardinality ;
rdfcv:contextClass ?Class ;
rdfcv:leftProperties ?p ;
rdfcv:classes ?C ;
rdfcv:constrainingValue ?v

} .

Listing 2: Translate the SHACL shape to a general
constraint type

Validation makes use of general rules, i.e., List-
ing 3 (Validation). Lines 11–14 define how to find
a violation, relying on built-ins: gather a set of re-
sources in a list (e:findall), calculate the length of
that list (e:length), and mathematically compare num-
bers (math:notEqualTo). For all objects of a certain
class or datatype related using predicate ?p (in this case
:birthdate) where the number of objects is different
from the constraint value ?v (in this case 1), a violation
is returned (lines 16–21).

1 {
2 ?constraint a rdfcv:SimpleConstraint ;
3 :constraintType :ExQualCardRestr ;
4 rdfcv:constrainingElement
5 :exact-cardinality ;
6 rdfcv:contextClass ?Class ;
7 rdfcv:leftProperties ?p ;
8 rdfcv:classes ?C ;
9 rdfcv:constrainingValue ?v .
10 ?x a ?Class.
11 _:x e:findall
12 (?C {?x ?p ?o. ?o a ?C} ?list) .
13 ?list e:length ?l .
14 ?l math:notEqualTo ?v
15 } => {
16 _:v a :constraintViolation ;

17 :violatedConstraint ?constraint ;
18 :class ?Class ;
19 :instance ?x ;
20 :objectClass ?C ;
21 :property ?p
22 } .

Listing 3: Validate using general constraint types

The general violations are translated into a report
format (Fig. 2, Violations*), e.g., using the SHACL
Validation Report [78] (see Listing 4). The result is a
set of triples using the exact same input and output as
a SHACL processor. However, the RDF graph’s sup-
ported entailments can be matched to the use case, and
the process is a single reasoning execution with trans-
parent rule sets.

{
_:v a :constraintViolation ;
:violatedConstraint [
:originalShape ?sh ;
:constraintType :exact-cardinality
] ;
:class ?Class ;
:instance ?x ;
:objectClass ?C ;
:property ?p

} => {
_:y a sh:ValidationReport ;
sh:conforms false ;
sh:result [
a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:focusNode ?x ;
sh:resultPath ?p ;
sh:resultMessage "No exact match" ;
sh:sourceShape ?sh]

} .

Listing 4: Translate the general violations to the
SHACL validation report

Moreover, different constraint descriptions are eas-
ily supported via the general constraint types. Given
the OWL restriction of Listing 5: using a different set
of rules, we can translate this restriction into the same
constraint type (Listing 6). The validation process con-
tinues exactly the same.

:Person rdfs:subClassOf _:x .
_:x a owl:Restriction ;
owl:onProperty :birthdate ;
owl:qualifiedCardinality

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

"1"^^xsd:nonNegativeInteger ;
owl:onDataRange xsd:date .

Listing 5: An OWL restriction

{
?Class rdfs:subClassOf ?c .
?c a owl:Restriction ;
owl:onProperty ?x ;
owl:qualifiedCardinality ?v ;
owl:onDataRange ?C

} => {
?constraint a rdfcv:SimpleConstraint ;
:originalShape _:x ;
:constraintType :ExQualCardRestr ;
rdfcv:constrainingElement
:exact-cardinality ;
rdfcv:contextClass ?Class ;
rdfcv:leftProperties ?p ;
rdfcv:classes ?C ;
rdfcv:constrainingValue ?v

} .

Listing 6: Translate the OWL restriction to the general
constraint type

6. Hypothesis validation

To validate the hypotheses of Section 1.2, we com-
pare Validatrr to different validation approaches. We
show that Validatrr (i) accurately explains the root
cause of why a violation occurs in more cases than
specified in SHACL, given the SHACL core constraint
components (accepting Hypothesis 1, see Section 6.1);
(ii) returns an accurate number of validation results
with respect to the used set of inferencing steps, com-
pared to an integrity constraints validator with a fixed
set of inferencing steps using RDFUnit (accepting Hy-
pothesis 2, see Section 6.2); and (iii) supports an
equivalent number of constraint types than existing ap-
proaches (acceptingHypothesis 3, see Section 6.3). The
performance evaluation shows that our implementation
is faster than the state of the art when combining infer-
encing and validation for commonly published datasets
(accepting Hypothesis 4, see Section 6.4).

6.1. Root cause explanation of constraint violations

Using the logical proof, we increase the explana-
tion’s accuracy compared to what is currently expected

of a validation approach. SHACL is a W3C Recom-
mendation standardizing the description of constraints
and violation reports for RDF graph validation. We
show that the logical proof produced by the rule-
based reasoning execution provides more detailed root
cause explanations of constraint violations, compared
to SHACL’s violation report description.
The SHACL recommendation provides a set of

test cases, enabling implementations to prove compli-
ance17. The validation report denotes the violating re-
sources via sh:focusNode, and in some cases can fur-
ther specify the violating path via sh:resultPath and
the violating value via sh:value [78]. However, it is
not always possible to retrieve such additional informa-
tion about the root cause.We revisit the previous exam-
ple constraint that given a resource 𝑟, this resource has
(𝑟firstname ∧ 𝑟lastname) ∨ (𝑟nickname)18. Validation of for-
mula (1) using a conforming SHACL implementation
results in a validation report similar to Listing 7. The
validation report does not provide any further details to
explain why :Bob is invalid19.

[rdf:type sh:ValidationReport ;
sh:conforms "false"^^xsd:boolean ;
sh:result [
rdf:type sh:ValidationResult ;
sh:focusNode :Bob ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent
sh:OrConstraintComponent ;
sh:sourceShape :PersonNameShape ;
sh:value :Bob ;] ;]

Listing 7: Validation report of an OR constraint

The rule-based reasoning execution of Validatrr can
generate a proof, showing the rules used to reach a con-
clusion. This logical proof allows to determine, for each
violation, which part of the RDF graph is the root cause
of the violation, and which axiom of the used ontology
triggered an inference causing the violation. Listing 8
shows the part of the proof which contains the rules de-
riving the violation. For :firstname, :lastname, and
:nickname, we query objects that are linked using the
respective predicate (Listing 8, lines 12–15, 18–21, and

17https://github.com/w3c/data-shapes/tree/gh-pages/
data-shapes-test-suite/tests
18This example is similar to the following SHACL

test case: https://github.com/w3c/data-shapes/blob/gh-pages/
data-shapes-test-suite/tests/core/node/or-001.ttl
19https://www.w3.org/TR/shacl/#validator-OrConstraintComponent

https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
https://github.com/w3c/data-shapes/blob/gh-pages/data-shapes-test-suite/tests/core/node/or-001.ttl
https://github.com/w3c/data-shapes/blob/gh-pages/data-shapes-test-suite/tests/core/node/or-001.ttl
https://www.w3.org/TR/shacl/#validator-OrConstraintComponent

16 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

24–27).K is the scope of our knowledge base, in which
we look for violations. We count the number of ob-
jects found and compare them with the needed number.
For :firstname, one linked object is found (Listing 8,
lines 16–17), however, no linked object is found for
:lastname nor :nickname (Listing 8, lines 22–23 and
28–29): a violation is returned.

1 <#lemma20> a r:Inference;
2 r:gives {
3 _:b1 a :constraintViolation.
4 _:b1 :violatedConstraint _:b2.
5 _:b1 :class :Man.
6 _:b1 :instance :Bob.
7 _:b1 :property :lastname.
8 _:b1 :property :nickname. };
9 r:evidence (
10 ...
11 <#lemma37>
12 [a r:Fact; r:gives { (K 1) e:findall
13 (1
14 {:Bob :firstname _:b3}
15 (1))}]
16 [a r:Fact; r:gives {(1) e:length 1}]
17 [a r:Fact; r:gives {1 math:greaterThan 0}]
18 [a r:Fact; r:gives {(K 1) e:findall
19 (1
20 {:Bob :lastname _:b3}
21 ())}]
22 [a r:Fact; r:gives {() e:length 0}]
23 [a r:Fact; r:gives {0 math:lessThan 1}]
24 [a r:Fact; r:gives {(K 1) e:findall
25 (1
26 {:Bob :nickname _:b3}
27 ())}]
28 [a r:Fact; r:gives {() e:length 0}]
29 [a r:Fact; r:gives {0 math:lessThan 1}]).

Listing 8: Validation proof of an OR constraint

Due to this proof, Validatrr can provide detailed
explanations for the root causes of violations for
all SHACL core constraint components, compared to
46%–75% of SHACL-conforming implementations.
Analysis of the SHACL specification shows that, out
of the 28 core constraint components, 13 (46%) pro-
vide a full explanation of the root cause (summarized
in Table 2). For eight of the remaining components (an
additional 29%), the validation report returns which
resource violates which constraint, but does not return
a detailed explanation. For example, a sh:class viola-
tion occurs when the targeted node is a literal, or when
the targeted node is not classified accordingly, but this

Table 2
Analysis of root cause explanation of violations for SHACL core con-
straint components. Validatrr can provide more detailed explanations
for up to 56% of the components compared to SHACL-conforming
implementations.

SHACL Name
Root
Cause

Explanation
Comment

sh:class ~ disjunction
sh:datatype ~ disjunction
sh:nodeKind ~ disjunction
sh:minCount 7 no explanation
sh:maxCount 7 no explanation

sh:minExclusive 3

sh:minInclusive 3

sh:maxExclusive 3

sh:maxInclusive 3

sh:minLength ~ disjunction
sh:maxLength ~ disjunction
sh:pattern 3

sh:languageIn ~ disjunction
sh:uniqueLang 7 no explanation

sh:equals 3

sh:disjoint 3

sh:lessThan 3

sh:lessThanOrEquals 3

sh:not 3

sh:and ~ conjunction
sh:or ~ disjunction

sh:xone 3

sh:node 7 nesting
sh:property 7 nesting

sh:qualifiedValueShape,
sh:qualifiedMinCount,
sh:qualifiedMaxCount

7 nesting

sh:close,
sh:ignoredProperties

3

sh:hasValue 3

sh:in 7 nesting

disjunction is not reflected in the validation report. For
the remaining seven components, the validation report
does not provide an explanation at all. For example,
violations of nested shapes are not reflected in the val-
idation report, only violations of top-level shapes.
Compared to SHACL-conforming implementations,

Validatrr supports, among others, explanation of dis-
junction and nested shapes. Our approach provides de-
tailed explanations for all core components of W3C’s
recommended high-level language to describe con-
straints. We thus accept Hypothesis 1.

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.2. Accurate number of found violations

Validatrr finds a more accurate number of violations
compared to the state of the art. To prove this, we first
compare Validatrr with the state of the art functionally,
and then include a set of inferencing steps to clarify the
difference.
Specifically, we compare with RDFUnit [82]. Hart-

mann et. al explicitly proposed using query-based ap-
proaches for validation [24], and RDFUnit is such a
query-based approach, relying on a SPARQL endpoint,
and describing the constrains using SPARQL templates
named Data Quality Test Patterns (DQTP). As such,
RDFUnit is highly configurable and one of the imple-
mentations that supports SHACL20.

Functional comparison We compare with the origi-
nal pattern library of RDFUnit [82]. This pattern li-
brary is the closest to the constraint types as introduced
by Hartmann et al. [27, 64]: the mapping between those
two is presented in previous work [7]. We test all unit
tests defined by RDFUnit21 after retrieving them as-is
from the RDFUnit repository. As Validatrr validates
general constraint types, a custom profile was created
that translates the RDFUnit patterns to general con-
straint types. For a detailed explanation of the different
test cases, we refer to the original RDFUnit paper [82].
The validation results depend on the used set of infer-

encing steps. RDFUnit implicitly takes “every resource
is an rdfs:Resource” and the rdfs:subClassOf con-
struct into account, forming the custom set of inferenc-
ing steps 𝜐. We compare RDFUnit with Validatrr using
three sets of inferencing steps, taking into account (i) no
entailment at all (∅), (ii) the custom set of inferencing
steps (𝜐), and (iii) full RDFS entailment (𝜌).
Table 3 summarizes the results. For each constraint,

we mention the test case’s name, the number of vio-
lations that RDFUnit detects, and the number of vio-
lations that Validatrr detects using the different sets of
inferencing steps. The table shows the impact of using
different sets of inferencing steps: depending on the set,
Validatrr finds a different number of violations. More,
Validatrr detects more violations using the same set of
inferencing steps: there is a higher number of found
violations for Validatrr under 𝜐 compared to RDFUnit.
Validatrr finds more violations and supports more

constraint types than RDFUnit, denoted as starred test

20https://w3c.github.io/data-shapes/data-shapes-test-suite/
21https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/

src/test/resources/org/aksw/rdfunit/validate/data

Table 3
Comparing RDFUnit to Validatrr using different sets of inferencing
steps (∅, 𝜐, and 𝜌). Validatrr finds more violations given the same set
of inferencing steps, and the set of inferencing steps used impacts the
result. Test cases where Validatrr outperforms RDFUnit are starred.
Rows where Validatrr and RDFUnit differ are marked gray.

Test Case # found violations
RDFUnit Validatrr

𝜐 ∅ 𝜐 𝜌

invfunc_correct 0 0 0 0
invfunc_wrong 2 0 2 2

owlcardt_correct 0 0 0 0
owlcardt_wrong_exact 6 6 6 6
owlcardt_wrong_max 2 2 2 2
owlcardt_wrong_min 2 2 2 2

owldisjc_correct 0 0 0 2
owldisjc_wrong 6 2 6 6

owlqcardt_correct 0 0 0 0
owlqcardt_wrong_exact 6 6 6 6
owlqcardt_wrong_max 2 2 2 2
owlqcardt_wrong_min 2 2 2 2
rdflangstring_correct 0 0 0 0
rdflangstring_wrong 2 2 2 0
rdfsrange-miss_wrong* 1 3 3 0
rdfsranged_correct 0 0 0 0
rdfsranged_wrong* 2 3 3 0
rdfsrange_correct* 0 5 4 0
rdfsrange_wrong* 1 3 3 3

rdfsrang_lit_correct 0 0 0 0
rdfsrang_lit_wrong 3 3 3 1

cases rdfsrange-miss_wrong, rdfsranged_wrong,
rdfsrange_correct, and rdfsrange_wrong. RDFUnit
does not yet support the constraint typemultiple ranges:
when a certain predicate is used, each resource linked
as an object to that predicate should be classified into
multiple classes. In all other cases, both solutions iden-
tify the same number of violations when using the same
set of inferencing steps. Validatrr thus functionally out-
performs the pattern library (i.e., the corresponding
constraint types) of RDFUnit.

Impact of including sets of inferencing steps during val-
idation Running Validatrr using different sets of in-
ferencing steps impacts the number of found violations.
Validatrr is designed to easily configure this set using
inferencing rules (Fig. 2, top-left). The results are found
in Table 3, comparing the different Validatrr columns.
On the one hand, certain violations are not found with-
out entailment (∅), as is the case for invfunc_wrong
and owldisjc_wrong. On the other hand, violations are

https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/src/test/resources/org/aksw/rdfunit/validate/data
https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/src/test/resources/org/aksw/rdfunit/validate/data

18 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

resolved early-onwhen includingRDFS entailment (𝜌),
as is the case for rdflangstring_wrong.
Compared to existing validation approaches, our ap-

proach allows including custom sets of inferencing
steps during validation. The inferencing provenance is
retained in the proof, as all inferencing occurs during a
single reasoning execution. The logical proof can thus
distinguish between violations that are caused due to
constraint violations in the original RDF graph, or due
to entailment during validation. We thus accept Hy-
pothesis 2.

6.3. Equivalent number of constraint types

Validatrr can support an equivalent number of
constraint types compared to existing validation ap-
proaches such as RDFUnit and SHACL. In the pre-
vious section, we showed we functionally outperform
the original pattern library of RDFUnit whilst includ-
ing a custom set of inferencing steps during validation.
In this section, we compare our number of supported
constraint types to that of SHACL [78].
We test Validatrr against general constraint types [63,

64], to show that the number of supported constraint
types is equivalent to SHACL. We do not test specifi-
cally against SHACL’s test cases, as Validatrr is inde-
pendent of the constraint language. We provide a set of
test cases, used to test these different constraint types22.
Hartmann et al. investigated the constraint type sup-

port of SHACL, and stated that its coverage is 52% [63].
We updated the coverage report as presented by Hart-
mann et al. to take the latest SHACL specification and
advanced features into account [78, 81]. The relevant
data is available at Appendix A, and online23. This up-
dated report shows that SHACL’s constraint type cov-
erage is 84%.
Validatrr can cover up to 94%of all constraint types –

given the current expressive support for built-ins – and
has been tested to cover a similar number of constraint
types as SHACL24. After including the rules for the
remaining constraint types, we support an equivalent
number of constraint types compared to SHACL. We
thus accept Hypothesis 3.
Achieving 100% coverage (i.e., the remaining five

constraint types) requires additional development on
the reasoner to support specific built-ins. “Whites-

22https://github.com/IDLabResearch/data-validation
23https://github.com/IDLabResearch/constraint-types-coverage
24The test report is available at https://github.com/

IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl

paceHandling” and “HTMLHandling” require parsing
built-ins, and “Valid Identifiers” requires a built-in to
test URIs’ dereferencability. The remaining two types
(“Structure” and “Data Model Consistency”) are gen-
eral constraint types, defined by Hartmann et al., re-
quiring SPARQL support. Supporting these constraint
types requires a translation from SPARQL queries to
N3 rules, for which we refer to related work [122].

6.4. Speed

A validation approach that supports a custom set of
inferencing steps is faster than a validation system that
includes a reasoning preprocessing step. We first com-
pare the performance of Validatrr to that of RDFUnit,
both without and with a custom set of inferencing steps.
For these performance evaluations, we used 300 data

sets with sizes ranging from ten to one million triples,
and an executing machine consisting of 24 cores (In-
tel Xeon CPU E5-2620 v3 @ 2.40GHz) and 128GB
RAM. All evaluations were performed using untam-
pered docker images for both approaches to maintain
reproducibility, the different tests were orchestrated us-
ing custom scripts. All timings include the docker im-
ages’ initialization time. The data is available online25.

Performance comparison We compare the execution
time of Validatrr to RDFUnit, following RDFUnit’s
original evaluation method. We use a default set of
constraints for a fixed set of schemas, as defined by
Kontokostas et al. [82]. We consider six commonly
used schemas: FOAF, GeoSPARQL, OWL, DC terms,
SKOS, and Prov-O. For each schema, we use RDF
graphs of varying size. The validated RDF graphs’ size
range from ten triples to one million triples, in loga-
rithmic steps of base ten. At most ten different RDF
graphs – per schema, per RDF graph size – were down-
loaded, by querying LODLaundromat’s SPARQL end-
point [16].
We validate the different RDF graphs against their

respective schema using the default set of constraints
and set of inferencing steps (𝜐) of RDFUnit, and mea-
sure total execution time ofValidatrr andRDFUnit. The
median execution time across all schemas is plotted
against RDF graph size per approach in a log-log scale
(see Fig. 3). To make sure we can combine execution
times across schemas, we tested the null hypothesis that
no significant difference in execution time was found

25https://github.com/IDLabResearch/validation-benchmark/tree/
master/data/validation-journal

https://github.com/IDLabResearch/data-validation
https://github.com/IDLabResearch/constraint-types-coverage
https://github.com/IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl
https://github.com/IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl
https://github.com/IDLabResearch/validation-benchmark/tree/master/data/validation-journal
https://github.com/IDLabResearch/validation-benchmark/tree/master/data/validation-journal

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

between schemas, by performing an ANOVA statistical
test with single factor “used schema” for measurement
variable “execution time per triple”, executed pairwise
for all used schemas. The null hypothesis with 𝛼 = 0.05
was accepted for every pair. The number of found vio-
lations are not plotted, as statistical analysis shows no
large correlation between execution time and number
of found violations, neither for Validatrr or RDFUnit
(−0.0203 and 0.0458, respectively).
Validatrr’s execution time is highly correlated with

the number of triples of the validated RDF graph. Re-
gression analysis shows an R square value of 0.9998,
the null hypothesis with 𝛼 = 0.05 is accepted: Valida-
trr’s execution time grows linearly with respect to the
size of the validated RDF graph.Meanwhile, the execu-
tion time of RDFUnit remains constant at around 30s.
This could largely be due to the set-up time required
by RDFUnit, however, the timings attained via RDF-
Unit’s docker image does not allow us to draw further
conclusions. The set-up time of RDFUnit thus possibly
dominates the total execution time.
Without customizing the set of inferencing steps and

docker images, Validatrr is faster for small RDF graphs.
Validatrr is about an order of magnitude faster until
10,000 triples, namely, 1-2s per RDF graph compared
to 30s per RDF graph for RDFUnit. After 100,000
triples, Validatrr is slower than RDFUnit, as Validatrr’s
linearly growing execution time surpasses RDFUnit’s
execution time.

Custom inferencing steps’ performance impact We
compare the execution time of Validatrr to RDFUnit
when using a custom set of inferencing steps. We use
RDFS entailment (𝜌): it is commonly used, and the
evaluation of Section 6.2 showed it affects the num-
ber of violations found. For Validatrr, we include the
RDFS rules during validation. For RDFUnit, we in-
clude an RDFS entailment preprocessing step, as RDF-
Unit’s docker image does not allow configuration to
use a SPARQL engine that has inferencing capabilities.
However, even if it would be possible to use a different
SPARQL engine, a reasoning preprocessing step would
still be needed for use cases that require support for a
specific set of inferencing steps, not covered by typical
entailment regimes [2].
To keep the measures comparable, we use the EYE

reasoner as used in Validatrr with the same RDFS en-
tailment rule set to execute the reasoning preprocess-
ing step. This also precludes the need to compare with
other sets of inferencing steps than RDFS entailment:
the conclusions will be similar due to the usage of the

same reasoner. Fig. 4 depicts the timings of RDFUnit
and Validatrr. For RDFUnit, it depicts the combined
timings of RDFS entailment as preprocessing step and
validation on the newly inferred RDF graph(RDFUnit
(𝜌)), and it depicts solely the validation timings on the
newly inferred graph (RDFUnit). For Validatrr, it de-
picts the timings of the validation with the two sets
of inferencing rules (Validatrr (𝜌) and Validatrr (𝜐),
respectively).
Validatrr’s performance is not affected by using a

different set of inferencing steps, whereas the prepro-
cessing step deteriorates RDFUnit’s performance. This
effect is noticable starting from RDF graphs of 10,000
triples. For RDF graphs of one million triples, com-
pared to the previous evaluation,median execution time
rises from 27s to 210s for RDFUnit, largely due to the
reasoning preprocessing step.
The number of found violations inversely affects the

validation execution speed. Most original violations
handle missing domain and range classes, which is in-
ferred in RDFS entailment. Statistical analysis does not
allow us to accept the null hypothesis that the number
of violations found is inversely correlated to the execu-
tion time. However, we notice increased performance
for both approaches when less violations need to be
handled. Compared to previous evaluation, for one mil-
lion triples, execution time (without reasoning prepro-
cessing) drops from 27s to 21s for RDFUnit, and from
116s to 80s for Validatrr.
The performance evaluations show that the execu-

tion time of Validatrr outperforms RDFUnit for small
RDF graphs up to 100,000 triples, and its linear scal-
ing behavior is not affected by including RDFS entail-
ment during validation. Validatrr outperforms RDF-
Unit when reasoning preprocessing is needed, i.e.,
when the used SPARQL endpoint does not support in-
ferencing up to the needed expressiveness, or cannot be
sufficiently customized to the use case. Where RDF-
Unit first needs to infer all implicit data before valida-
tion, Validatrr can infer this data during validation, and
thus performs better. We thus accept Hypothesis 4.

7. Conclusion and future work

In this section, we discuss our proposed rule-based
reasoning validation approach and introduced imple-
mentation. We provide concluding remarks and guide
towards future work with respect to (i) the detailed
root cause explanations, (ii) the fine-grained level of
configuration, (iii) the number of constraint types sup-

20 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1

10

100

1000

10 100 1k 10k 100k 1m

T
im

e
(s

)

Number of triples

RDFUnit (υ) Validatrr (υ)

Figure 3. Validatrr’s execution speed (dotted line) is up to an order of magnitude faster than RDFUnits’s (solid line) when the number of triples
per RDF graph is below 100,000 triples

1

10

100

1000

10 100 1k 10k 100k 1m

T
im

e
 (

s)

Number of triples

RDFUnit (ρ) Validatrr (ρ) RDFUnit Validatrr (υ)

Figure 4. Validatrr’s performance is not affected when including the RDFS inferencing rules (dotted line, compared to the lighter dotted line),
whereas the reasoning preprocessing time deteriorated RDFUnit’s performance (solid line, compared to the lighter solid line).

ported by our approach, and (iv) the scaling behavior of
Validatrr’s performance. We close by providing some
further research perspectives.
The logical proof of a validation execution, generated

by the rule-based reasoner, provides a more detailed
root cause explanation of why a violation occurs than
the state of the art. Our evaluation does not imply that
existing approaches and implementations are not capa-
ble of providing a similar level of detail. However, it
does show the feasibility of more detailed explanations,
and the capability of our approach to generate them. To
improve the level of detail of explanations provided in
the validation report, our work can guide future itera-
tions of, e.g., SHACL’s validation report descriptions,
and the algorithms that generate them.
Our approach is fully configurable by adjusting dif-

ferent rule sets: only a single declaration and single im-
plementation is needed to support different constraint
languages, sets of inferencing steps, and validation re-
port descriptions. This level of control considerably in-

creases expressiveness and complexity of the validator,
and a small change in a rule set could have large effects
on the validation results. However, such fine-grained
configuration is not needed for every use case. Future
work requires investigation into configuration defaults
for, among others, ShEx and SHACL: to what extend
can Validatrr be configured to function as a compliant
ShEx or SHACL validator, and how will the combi-
nation of inferencing rule sets look like? A short-term
goal is showing that Validatrr with the right configu-
ration passes the core SHACL tests and is included as
a compliant SHACL validator in the respective W3C
documentation26. As such, we can provide a compli-
ant SHACL validator where sh:entailment is accu-
rately supported: the user can choose exactly which in-
ferencing rule set is supported during validation, and
can choose not to rely on the predefined custom set of
inferencing steps (i.e., support for rdfs:subClassOf,

26https://w3c.github.io/data-shapes/data-shapes-test-suite/

https://w3c.github.io/data-shapes/data-shapes-test-suite/

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

but no other RDFS entailments) as currently specified
in SHACL [78].
Our approach supports an equivalent number of con-

straint types compared to the state of the art, with
description logic-expressiveness up to at least OWL-
RL. An important point of interest is handling recur-
sion, one of the main differences between ShEx and
SHACL. The semantics of ShEx are defined, also for
recursion [23], and – as it is currently undefined in
the SHACL specification [78] – current works are in-
vestigating recursion in combination with negation for
SHACL [34]. Future work for our approach is inves-
tigating recursion, taking into account the conclusions
and mentioned complexity issues of aforementioned
works. Accepting that the general problem is NP-Hard,
using rule-based reasoning gives us a strong tool to
handle recursion. A rule-based reasoner such as the
EYE reasoner has path detection: different validations
calling each other can be handled, as path detection pre-
vents the reasoner from applying the same rule to the
same data twice. In this regard, we can further inves-
tigate whether the strategies of Answer Set Program-
ming [48] help to solve related problems, taking into
account their two kinds of negation (Negation as Failure
and strong negation). After investigating which rules
are needed to handle recursion, the user can choose
whether or not recursion should be supported during
validation, as these extra rules can be added or not.
The performance of Validatrr is up to an order of

magnitude faster than RDFUnit for RDF graphs up to
100,000 triples, and scales linearly w.r.t. the number of
triples in the RDF graph. However, it scales less than
RDFUnit, making Validatrr less suitable for large RDF
graphs. As such, a trade-off must be made: our ap-
proach, which performs better for smaller RDF graphs,
allows fine-grained configuration and detailed expla-
nation, whereas other approaches scale better but do
not provide the same level of detail. For future work,
further investigation into related works that aim to im-
prove the performance of rule-based reasoners, such as
the work of Arndt et al. [6], can be used to improve the
current scaling behavior of Validatrr.
Further research perspectives include validation of

RDF graph generation descriptions, and automatic
graph refinement based on violation explanations. The
combination reduces the effort required to provide
high-quality RDF graph generation descriptions, and is
being further investigated by Heyvaert et al. [67].
On the one hand, a declarative description for gen-

erating an RDF graph – e.g., using the RDF Map-
ping Language (RML) [46] – can be validated, to

show whether that description produces a valid RDF
graph [47]. Certain constraints that apply to the descrip-
tion can be inferred based on the constraints that apply
to the RDF graph. By including a custom inferencing
rule set that reflects such inferencing in Validatrr, the
generation description can be validated based on the
set of constraints that apply to the RDF graph. As such,
only a single set of constraints needs to be maintained
and understood. The requirements of this custom in-
ferencing rule set, and which constraint types can be
applied to generation descriptions, is future work.
On the other hand, rules that handle the accurate

explanations of why a violation is returned, can provide
suggestions to (automatically) resolve the violation. For
example, the constraint specifying “every book should
have either an ISSN or an ISBN number” is violated by
a resource that has both numbers. Suggestions include
removing the ISSN number and removing the ISBN
number. Which types of suggestions can be provided,
and in which order these should be applied, is future
work.

Acknowledgements

The described research activities were funded by
Ghent University, imec, Flanders Innovation & En-
trepreneurship (VLAIO), and the European Union.
Ruben Verborgh is a postdoctoral fellow of the Re-
search Foundation – Flanders (FWO).

Appendix A. Updated Constraint Types Coverage

22 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Coverage of validation approaches w.r.t. constraint types. Taken
from Hartmann et al. [63], updated take the recent advancements
of SHACL into account [78, 81]. Changes w.r.t. the original tabe of
Hartmann et al. are marked grey.

Type Name SHACL Validatrr
A01 *Functional Properties 3 3

A02 *Inverse-Functional Properties 7 3

A03 *Primary Key Properties 7 3

A04 *Subsumption 3 3

A05 *Sub-Properties 7 3

A06 *Object Property Paths 7 3

A07 Allowed Values 3 3

A08 Not Allowed Values ∼ 3

A09 *Class Equivalence 7 3

A10 *Equivalent Properties 3 3

A11 Literal Value Comparison 3 3

A12 Value is Valid for Datatype 3 3

A13 *Property Domains 3 3

A14 *Property Ranges 3 3

A15 *Class-Specific 3 3

Property Range
A16 Data Property Facets 3 3

A17 Literal Ranges 3 3

A18 Negative Literal Ranges ∼ 3

A19 IRI Pattern Matching 3 3

A20 Literal Pattern Matching 3 3

A21 Negative ∼ 3

Literal Pattern Matching
A22 *Existential Quantifications 3 3

A23 *Universal Quantifications 3 3

A24 *Value Restrictions 3 3

A25 Use Sub-Super Relations 7 3

in Validation
A26 Negative Property Constraints ∼ 3

A27 Language Tag Matching 3 3

A28 Language Tag Card. ∼ 3

A29 Whitespace Handling 7 7

A30 HTML Handling 7 7

A31 Structure 3 7

A32 *Minimum Unqualified Card. 3 3

A33 *Minimum Qualified Card. 3 3

A34 *Maximum Unqualified Card. 3 3

A35 *Maximum Qualified Card. 3 3

A36 *Exact Unqualified Card. 3 3

A37 *Exact Qualified Card. 3 3

A38 *Cardinality Shortcuts ∼ ∼
A39 Vocabulary 3 3

A40 Provenance 3 ∼
A41 Required Properties ∼ 3

A42 Optional Properties ∼ 3

Table 5
Coverage of validation approaches w.r.t. constraint types. Taken
from Hartmann et al. [63], updated take the recent advancements
of SHACL into account [78, 81]. Changes w.r.t. the original tabe of
Hartmann et al. are marked grey (2).

Type Name SHACL Validatrr
A43 Repeatable Properties ∼ 3

A44 Conditional Properties 3 3

A45 Recommended Properties 3 3

A46 Severity Levels 3 ∼
A47 Labeling and Documentation 3 ∼
A48 Context-Sp. Property Groups 3 3

A49 Context-Sp. Exclusive OR of P. 3 ∼
A50 Context-Sp. Exclusive OR of P. 3 ∼

Groups
A51 Context-Sp. Inclusive OR of P. 3 3

A52 Context-Sp. Inclusive OR of P. 3 3

Groups
A53 Mathematical Operations ∼ ∼
A54 Ordering 3 ∼
A55 *Inverse Object Properties 3 ∼
A56 *Symmetric Object Properties 3 ∼
A57 *Asymmetric Object Properties 3 3

A58 *Transitive Object Properties 7 ∼
A59 *Self Restrictions 3 ∼
A60 Valid Identifiers 7 7

A61 Recursive Queries 3 ∼
A62 *Reflexive Object Properties 3 ∼
A63 *Class-Sp. Reflexive Object P. 3 ∼
A64 *Irreflexive Object Properties 3 3

A65 *Class-Specific 3 ∼
Irreflexive Object Properties

A66 Data Model Consistency 3 7

A67 Handle RDF Collections 3 ∼
A68 Membership in 3 ∼

Controlled Vocabularies
A69 Disjoint Properties 7 3

A70 Disjoint Classes ∼ 3

A71 String Operations ∼ ∼
A72 Aggregations 3 ∼
A73 *Individual Equality 3 ∼
A74 Individual Inequality 3 ∼
A75 Context-Specific 7 ∼

Valid Classes
A76 Context-Specific 3 ∼

Valid Properties ∼
A77 Property Assertions ∼ ∼
A78 *Intersection 3 3

A79 *Disjunction 3 ∼
A80 *Negation 3 3

A81 *Default Values 3 3

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

References

[1] Ziawasch Abedjan and Felix Naumann. Improving RDF Data
Through Association Rule Mining. Datenbank-Spektrum, 13
(2):111–120, May 2013. DOI: 10.1007/s13222-013-0126-x.

[2] Carlos Buil Aranda, Olivier Corby, Souripriya Das, Lee
Feigenbaum, Paula Gearon, Birte Glimm, Steve Harris, San-
dro Hawke, Ivan Herman, Nicholas Humfrey, Nico Michaelis,
Chimezie Ogbuji, Matthew Perry, Alexandre Passant, Axel
Polleres, Eric Prud’hommeaux, Andy Seaborne, and Gre-
gory Todd Williams. SPARQL 1.1 Overview. Recommenda-
tion,WorldWideWeb Consortium (W3C), March 2013. URL
http://www.w3.org/TR/sparql11-overview/.

[3] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting
beyond a Yottabyte, or how SPARQL 1.1 property paths will
prevent adoption of the standard. In Alain Mille, Fabien Gan-
don, and Jacques Misselis, editors, Proceedings of the 21st
international conference on World Wide Web, pages 629–638,
New York, NY, United States, April 2012. Association for
Computing Machinery. DOI: 10.1145/2187836.2187922.

[4] Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus
Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul Groth,
Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan,
and Steffen Staab, editors. The Semantic Web – ISWC 2015:
14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part II, volume 9367
of Lecture Notes in Computer Science, Cham, October 2015.
Springer. DOI: 10.1007/978-3-319-25010-6.

[5] Dörthe Arndt, Ruben Verborgh, Jos De Roo, Hong Sun, Erik
Mannens, and Rik Van de Walle. Semantics of Notation3
Logic: A solution for implicit quantification. In Nick Bassil-
iades, Georg Gottlob, Fariba Sadri, Adrian Paschke, and Du-
mitru Roman, editors, Rule Technologies: Foundations, Tools,
and Applications, volume 9202 of Lecture Notes in Computer
Science, pages 127–143, Cham, July 2015. Springer. DOI:
10.1007/978-3-319-21542-6_9.

[6] Dörthe Arndt, Ben De Meester, Pieter Bonte, Jeroen Schabal-
lie, Jabran Bhatti, Wim Dereuddre, Ruben Verborgh, Femke
Ongenae, Filip De Turck, Rik Van de Walle, and Erik Man-
nens. Improving OWL RL reasoning in N3 by using spe-
cialized rules. In Valentina Tamma, Mauro Dragoni, Rafael
Gonçalves, and Agnieszka Ławrynowicz, editors, Ontology
Engineering: 12th International Experiences and Directions
Workshop on OWL, volume 9557 of Lecture Notes in Com-
puter Science, pages 93–104, Cham, April 2016. Springer.
DOI: 10.1007/978-3-319-33245-1_10.

[7] Dörthe Arndt, Ben De Meester, Anastasia Dimou, Ruben
Verborgh, and Erik Mannens. Using Rule-Based Reasoning
for RDF Validation. In Stefania Constantini, Enrico Fran-
coni,WilliamVanWoensel, RomanKontchakov, Fariba Sadri,
and Dumitru Roman, editors, Rules and Reasoning: Inter-
national Joint Conference, RuleML+RR 2017, London, UK,
July 12–15, 2017, volume 10364 of Lecture Notes in Com-
puter Science, pages 22–36, Cham, July 2017. Springer. DOI:
10.1007/978-3-319-61252-2_3.

[8] Dörthe Arndt, Pieter Bonte, Alexander Dejonghe, Ruben Ver-
borgh, Filip De Turck, and Femke Ongenae. SENSdesc:
Connect Sensor Queries and Context. In Reyer Zwigge-
laar, Hugo Bamboa, Ana Fred, and Sergi Bermúdez i Ba-
dia, editors, Proceedings of the 11th International Joint Con-

ference on Biomedical Engineering Systems and Technolo-
gies, volume 5, pages 671–679, Setúbal, Portugal, 2018.
SCITEPRESS - Science and Technology Publications. DOI:
10.5220/0006733106710679.

[9] Dörthe Arndt, Tom Schrĳvers, Jos De Roo, and Ruben Ver-
borgh. Implicit quantification made explicit: How to inter-
pret blank nodes and universal variables in Notation3 Logic.
Journal of Web Semantics, 58(100501), October 2019. DOI:
10.1016/j.websem.2019.04.001.

[10] Ahmad Assaf, Raphaël Troncy, and Aline Senart. Roomba:
An Extensible Framework to Validate and Build Dataset Pro-
files. In Fabien Gandon, Christophe Guéret, Serena Villata,
John Breslin, Catherine Faron-Zucker, and Antoine Zimmer-
man, editors, The Semantic Web: ESWC 2015 Satellite Events,
volume 9341 of Lecture Notes in Computer Science, pages
325–339, Cham, 2015. Springer. DOI: 10.1007/978-3-319-
25639-9_46.

[11] Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo.
Introduction to Linked Data and Its Lifecycle on the Web. In
Axel Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried
Handschuh, Paula Kroner, Sascha Ossowski, and Peter F.
Patel-Schneider, editors, Reasoning Web. Semantic Technolo-
gies for the Web of Data, volume 6848 of Lecture Notes
in Computer Science, pages 1–75, Berlin, Heidelberg, 2011.
Springer. DOI: 10.1007/978-3-642-23032-5_1.

[12] Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation and Ap-
plications. Cambridge University Press, 2nd edition, 2007.

[13] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier,
and Eric Salvat. On rules with existential variables: Walking
the decidability line. Artificial Intelligence, 175(9-10):1620–
1654, June 2011. DOI: 10.1016/j.artint.2011.03.002.

[14] Jorge Baier, Dietrich Daroch, Juan L. Reutter, and Domagoj
Vrgoc. Evaluating navigational RDF queries over the Web.
In Peter Dolog and Peter Vojtas, editors, Proceedings of the
28th ACM Conference on Hypertext and Social Media, New
York, NY, United States, 2017. Association for Computing
Machinery. DOI: 10.1145/3078714.3078731.

[15] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and
Gavin Carothers. RDF 1.1 Turtle – Terse RDF Triple Lan-
guage. Recommendation, World Wide Web Consortium
(W3C), February 2014. URL http://www.w3.org/TR/turtle/.

[16] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan
Wielemaker, and Stefan Schlobach. LOD Laundromat: A
Uniform Way of Publishing Other People’s Dirty Data. In
Mika et al. [91], pages 213–228. DOI: 10.1007/978-3-319-
11964-9_14.

[17] Tim Berners-Lee. Cwm, October 2000. URL http://www.w3.
org/2000/10/swap/doc/cwm.html.

[18] Tim Berners-Lee. Notation 3 Logic, August 2005. URL
http://www.w3.org/DesignIssues/N3Logic.

[19] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A read-
able RDF syntax. Team submission, World Wide Web
Consortium (W3C), March 2011. URL http://www.w3.org/
TeamSubmission/n3/.

[20] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf,
and JimHendler. N3Logic: A logical framework for theWorld
WideWeb. Theory and Practice of Logic Programming, 8(3):
249–269, May 2008. DOI: 10.1017/S1471068407003213.

http://dx.doi.org/10.1007/s13222-013-0126-x
http://www.w3.org/TR/sparql11-overview/
http://dx.doi.org/10.1145/2187836.2187922
http://dx.doi.org/10.1007/978-3-319-25010-6
http://dx.doi.org/10.1007/978-3-319-21542-6_9
http://dx.doi.org/10.1007/978-3-319-21542-6_9
http://dx.doi.org/10.1007/978-3-319-33245-1_10
http://dx.doi.org/10.1007/978-3-319-61252-2_3
http://dx.doi.org/10.1007/978-3-319-61252-2_3
http://dx.doi.org/10.5220/0006733106710679
http://dx.doi.org/10.5220/0006733106710679
http://dx.doi.org/10.1016/j.websem.2019.04.001
http://dx.doi.org/10.1016/j.websem.2019.04.001
http://dx.doi.org/10.1007/978-3-319-25639-9_46
http://dx.doi.org/10.1007/978-3-319-25639-9_46
http://dx.doi.org/10.1007/978-3-642-23032-5_1
http://dx.doi.org/10.1016/j.artint.2011.03.002
http://dx.doi.org/10.1145/3078714.3078731
http://www.w3.org/TR/turtle/
http://dx.doi.org/10.1007/978-3-319-11964-9_14
http://dx.doi.org/10.1007/978-3-319-11964-9_14
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/DesignIssues/N3Logic
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://dx.doi.org/10.1017/S1471068407003213

24 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[21] Abraham Bernstein and Natasha Noy. Is this really science?
the semantic webber’s guide to evaluating research contribu-
tions. Technical report, University of Zurich – Department
of Informatics (IFI), 2014. URL https://www.merlin.uzh.ch/
contributionDocument/download/6915.

[22] Christian Bizer and Richard Cyganiak. Quality-driven
information filtering using the WIQA policy frame-
work. Web Semantics: Science, Services and Agents on
the World Wide Web, 7(1):1–10, January 2009. DOI:
10.1016/j.websem.2008.02.005.

[23] Iovka Boneva, Jose Emilio Labra Gayo, and Eric
Prud’hommeaux. Semantics and Validation of Shapes
Schemas for RDF. In d’Amato et al. [38], pages 104–120.
DOI: 10.1007/978-3-319-68288-4_7.

[24] Thomas Bosch and Kai Eckert. Requirements on RDF con-
straint formulation and validation. In WilliamMoen and Amy
Rushing, editors, Proceedings of the International Conference
on Dublin Core and Metadata Applications, pages 95–108.
Dublin Core Metadata Initiative, October 2014.

[25] Thomas Bosch and Kai Eckert. Towards Description Set Pro-
files for RDF using SPARQL as Intermediate Language. In
William Moen and Amy Rushing, editors, Proceedings of the
International Conference on Dublin Core and Metadata Ap-
plications, pages 129–137. Dublin Core Metadata Initiative,
October 2014.

[26] Thomas Bosch, Erman Acar, Andreas Nolle, and Kai Eck-
ert. The role of reasoning for RDF validation. In Sebas-
tian Hellmann, Josiane Xavier Parreira, and Axel Polleres,
editors, Proceedings of the 11th International Conference
on Semantic Systems, pages 33–40, New York, NY, United
States, 2015. Association for Computing Machinery. DOI:
10.1145/2814864.2814867.

[27] Thomas Bosch, Andreas Nolle, Erman Acar, and Kai Eck-
ert. RDF Validation Requirements – Evaluation and Log-
ical Underpinning. arXiv preprint, July 2015. URL http:
//arxiv.org/abs/1501.03933.

[28] Bojan Bozic, Rob Brennan, Kevin Feeney, and GavinMendel-
Gleason. Describing Reasoning Results with RVO, the Rea-
soningViolations Ontology. In JeremyDebattista, JürgenUm-
brich, and Javier D. Fernándex, editors, Joint Proceedings of
the 2nd Workshop on Managing the Evolution and Preserva-
tion of the Data Web (MEPDaW 2016) and the 3rd Work-
shop on LinkedData Quality (LDQ 2016) co-located with 13th
European Semantic Web Conference (ESWC 2016), volume
1585 of CEUR Workshop Proceedings, pages 62–69. CEUR-
WS.org, May 2016.

[29] Dan Brickley and R. V. Guha. RDF Schema 1.1. Recommen-
dation, World Wide Web Consortium (W3C), February 2014.
URL http://www.w3.org/TR/rdf-schema/.

[30] Dan Brickley and Libby Miller. FOAF Vocabulary Speci-
fication 0.99. Namespace document, January 2014. URL
http://xmlns.com/foaf/spec/.

[31] A. Calì, G. Gottlob, and M. Kifer. Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints.
Journal of Artificial Intelligence Research, 48:115–174, Oc-
tober 2013. DOI: 10.1613/jair.3873.

[32] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, and An-
dreas Pieris. Datalog+/-: A Family of Languages for Ontology
Querying. In Oege de Moor, Georg Gottlob, Tim Furche, and
Andrew Sellers, editors, Datalog Reloaded, volume 6702 of
Lecture Notes in Computer Science, pages 351–368, Berlin,

Heidelberg, March 2011. Springer. DOI: 10.1007/978-3-642-
24206-9_20.

[33] Fabricio Chalub and Alexandre Rademaker. Verifying In-
tegrity Constraints of a RDF-basedWordNet. InGlobalWord-
Net Conference, page 309, 2016.

[34] Julien Corman, Juan L. Reutter, andOgnjen Savković. Seman-
tics and Validation of Recursive SHACL. In Vrandečić et al.
[133], pages 318–336. DOI: 10.1007/978-3-030-00671-6_19.

[35] Umutcan Şimşek, Elias Kärle, Omar Holzknecht, and Dieter
Fensel. Domain Specific Semantic Validation of Schema.org
Annotations. In A. Petrenko and A. Voronkov, editors, Per-
spectives of System Informatics. PSI 2017, volume 10742 of
Lecture Notes in Computer Science, pages 417–429, Cham,
2018. Springer. DOI: 10.1007/978-3-319-74313-4_31.

[36] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF
1.1 Concepts and Abstract Syntax. Recommendation, World
Wide Web Consortium (W3C), February 2014. URL http:
//www.w3.org/TR/rdf11-concepts/.

[37] Carlos Viegas Damásio, Anastasia Analyti, Grigoris Anto-
niou, and Gerd Wagner. Supporting Open and Closed World
Reasoning on the Web. In Jóse Júlio Alferes, James Bailey,
Wolfgang May, and Uta Schwertel, editors, Principles and
Practice of Semantic Web Reasoning, volume 4187 of Lecture
Notes in Computer Science, pages 149–163, Berlin, Heidel-
berg, 2006. Springer. DOI: 10.1007/11853107_11.

[38] Claudia d’Amato, Miriam Fernandez, Valentina Tamma,
Freddy Lecue, Philippe Cudré-Mauroux, Juan Sequeda,
Christoph Lange, and Jeff Heflin, editors. The Semantic Web
– ISWC 2017: 16th International Semantic Web Conference,
Vienna, Austria, October 21–25, 2017, Proceedings, Part I,
volume 10587 of Lecture Notes in Computer Science, Cham,
October 2017. Springer. DOI: 10.1007/978-3-319-68288-4.

[39] Ben De Meester, Pieter Heyvaert, Anastasia Dimou, and
Ruben Verborgh. Towards a Uniform User Interface for Edit-
ing Data Shapes. In Valentina Ivanova, Patrick Lambrix,
Steffen Lohmann, and Catia Pesquita, editors, Proceedings of
the 4th International Workshop on Visualization and Interac-
tion for Ontologies and Linked Data, volume 2187 of CEUR
Workshop Proceedings, pages 13–24. CEUR-WS.org, October
2018.

[40] Jos De Roo, Giovanni Mels, Hong Sun, and Dirk Colaert.
Specialisation Mechanism for Terminology Reasoning, 2017.

[41] Jeremy Debattista, Christoph Lange, and Sören Auer. daQ,
an Ontology for Dataset Quality Information. In Christian
Bizer, Tom Heath, Sören Auer, and Tim Berners-Lee, edi-
tors, Proceedings of the Workshop on Linked Data on the
Web co-located with the 23rd International World Wide Web
Conference (WWW 2014), volume 1184 of CEUR Workshop
Proceedings. CEUR-WS.org, 2014.

[42] Jeremy Debattista, Sören Auer, and Christoph Lange. Luzzu
– A Methodology and Framework for Linked Data Quality
Assessment. J. Data and Information Quality, 8(1):4:1–4:32,
October 2016. DOI: 10.1145/2992786.

[43] JeremyDebattista,MakxDekkers, ChristopheGuéret, Deirdre
Lee, Nandana Mihindukulasooriya, and Amrapali Zaveri.
Data on theweb best practices: Data quality vocabulary. Work-
ing group note, World Wide Web Consortium, December
2016. URL https://www.w3.org/TR/vocab-dqv/.

[44] JeremyDebattista, Christoph Lange, SörenAuer, andDominic
Cortis. Evaluating the Quality of the LOD Cloud: An Em-

https://www.merlin.uzh.ch/contributionDocument/download/6915
https://www.merlin.uzh.ch/contributionDocument/download/6915
http://dx.doi.org/10.1016/j.websem.2008.02.005
http://dx.doi.org/10.1016/j.websem.2008.02.005
http://dx.doi.org/10.1007/978-3-319-68288-4_7
http://dx.doi.org/10.1145/2814864.2814867
http://dx.doi.org/10.1145/2814864.2814867
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://dx.doi.org/10.1613/jair.3873
http://dx.doi.org/10.1007/978-3-642-24206-9_20
http://dx.doi.org/10.1007/978-3-642-24206-9_20
http://dx.doi.org/10.1007/978-3-030-00671-6_19
http://dx.doi.org/10.1007/978-3-319-74313-4_31
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1007/11853107_11
http://dx.doi.org/10.1007/978-3-319-68288-4
http://dx.doi.org/10.1145/2992786
https://www.w3.org/TR/vocab-dqv/

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

pirical Investigation. Semantic Web Journal, 9(6):859–901,
September 2018. DOI: 10.3233/sw-180306.

[45] Kathrin Dentler, Ronald Cornet, Annette ten Teĳe, and Nico-
lette de Keizer. Comparison of Reasoners for Large Ontolo-
gies in the OWL 2 EL Profile. Semantic Web Journal, 2(2):
71–87, April 2011. DOI: 10.3233/SW-2011-0034.

[46] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben
Verborgh, Erik Mannens, and Rik Van de Walle. RML: A
Generic Language for Integrated RDFMappings of Heteroge-
neous Data. In Christian Bizer, Tom Heath, Sören Auer, and
Tim Berners-Lee, editors, Proceedings of the 7th Workshop
on Linked Data on the Web, volume 1184 of CEURWorkshop
Proceedings. CEUR-WS.org, 2014.

[47] Anastasia Dimou, Dimitris Kontokostas, Markus Freuden-
berg, Ruben Verborgh, Jens Lehmann, Erik Mannens, Sebas-
tian Hellmann, and Rik Van deWalle. Assessing and Refining
Mappings to RDF to Improve Dataset Quality. In Arenas et al.
[4], pages 133–149. DOI: 10.1007/978-3-319-25010-6_8.

[48] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwall-
ner. Answer Set Programming: A Primer. In Sergio Tessaris,
Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried
Handschuh, Marie-Christine Rousset, and Renate A. Schmidt,
editors, Reasoning Web. Semantic Technologies for Informa-
tion Systems, volume 5689 of Lecture Notes in Computer
Scinece, pages 40–110, Berlin, Heidelberg, 2009. Springer.
DOI: 10.1007/978-3-642-03754-2_2.

[49] Mohammed Ben Ellefi, Zohra Bellahsene, John Breslin, Elena
Demidova, Stefan Dietze, Julian Szymanski, and Konstantin
Todorov. RDF Dataset Profiling – a Survey of Features, Meth-
ods, Vocabularies and Applications. Semantic Web Journal,
9(5):677–705, August 2018. DOI: 10.3233/SW-180294.

[50] Ivan Ermilov, Jens Lehmann, Michael Martin, and Sören
Auer. LODStats: The data web census dataset. In Paul Groth,
Elena Simperl, Alasdair Gray,Marta Sabou,MarkusKrötzsch,
Freddy Lecue, Fabian Flöck, and Yolanda Gil, editors, The
Semantic Web – ISWC 2016, volume 9982 of Lecture Notes in
Computer Science, pages 38–46, Cham, 2016. Springer. DOI:
10.1007/978-3-319-46547-0_5.

[51] Mina Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska
Hoffmann, and Xu Chu. CLAMS: Bringing Quality to Data
Lakes. In Fatma Özcan and Georgia Koutrika, editors, Pro-
ceedings of the 2016 International Conference on Manage-
ment of Data (SIGMOD), pages 2089–2092, New York, NY,
United States, 2016. Association for Computing Machinery.
DOI: 10.1145/2882903.2899391.

[52] Kevin Chekov Feeney, Gavin Mendel Gleason, and Rob Bren-
nan. Linked data schemata: Fixing unsound foundations .
Semantic Web Journal, 9(1):53–75, February 2017. DOI:
10.3233/sw-170271.

[53] Peter M. Fischer, Georg Lausen, Alexander Schätzle, and
Michael Schmidt. RDF Constraint Checking. In Peter M.
Fischer, Gustavo Alonso, Marcelo Arenas, and Floris Geerts,
editors, Proceedings of the Workshops of the EDBT/ICDT
2015 Joint Conference (EDBT/ICDT 2015), volume 1330
of CEUR Workshop Proceedings, pages 2015–2012. CEUR-
WS.org, March 2015.

[54] Daniel Fleischhacker, Heiko Paulheim, Volha Bryl, Johanna
Völker, and Christian Bizer. Detecting Errors in Numerical
Linked Data Using Cross-Checked Outlier Detection. InMika
et al. [91], pages 357–372. DOI: 10.1007/978-3-319-11964-
9_23.

[55] Charles L. Forgy. Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial Intelli-
gence, 19(1):17–37, September 1982. DOI: 10.1016/0004-
3702(82)90020-0.

[56] Christian Fürber and Martin Hepp. Using SPARQL and SPIN
for data quality management on the Semantic Web. In Witold
Abramowicz and Robert Tolksdorf, editors, Business infor-
mation systems, volume 47 of Lecture Notes in Business In-
formation Processing, pages 35–46, Berlin, Heidelberg, 2010.
Springer. DOI: 10.1007/978-3-642-12814-1_4.

[57] Christian Fürber and Martin Hepp. Swiqa - a semantic web
information quality assessment framework. In Virpi Kristiina
Tuunainen, Matti Rossi, and Joe Nandhakumar, editors, Eu-
ropean Conference on Information Systems (ECIS), page 76.
Association for Information Systems, 2011.

[58] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entail-
ment Regimes. Recommendation, World Wide Web Con-
sortium (W3C), March 2013. URL https://www.w3.org/TR/
sparql11-entailment/.

[59] Christophe Guéret, Paul Groth, Claus Stadler, and Jens
Lehmann. Assessing Linked Data Mappings Using Network
Measures. In Elena Simperl, Philipp Cimiano, Axel Polleres,
Oscar Corcho, and Valentina Presutti, editors, The Semantic
Web: Research and Applications. Proceedings of the 9th Ex-
tended Semantic Web Conference (ESWC), volume 7295 of
Lecture Notes in Computer Science, pages 87–102, Berlin,
Heidelberg, 2012. Springer. DOI: 10.1007/978-3-642-30284-
8_13.

[60] Peter Haase and Guilin Qi. An Analysis of Approaches to
Resolving Inconsistencies in DL-based Ontologies. In Gior-
gos Flouris and Mathieu d’Aquin, editors, Proceedings of the
International Workshop on Ontology Dynamics (IWOD-07),
pages 97–109, 2007.

[61] Steve Harris and Andy Seaborne. SPARQL 1.1 Query
Language. Recommendation, World Wide Web Consor-
tium (W3C), March 2013. URL https://www.w3.org/TR/
sparql11-query/.

[62] Thomas Hartmann. Validation Framework for RDF-based
Constraint Languages. PhD thesis, Karlsruher Institut für
Technologie (KIT), 2016.

[63] Thomas Hartmann. Validation framework for rdf-based
constraint languages - phd thesis appendix. Technical re-
port, Karlsruher Institut für Technologie (KIT), 2016. URL
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000054062.

[64] Thomas Hartmann, Benjamin Zapilko, Joachim Wackerow,
and Kai Eckert. Validating RDF Data Quality using
Constraints to Direct the Development of Constraint Lan-
guages. In IEEE Tenth International Conference on Seman-
tic Computing (ICSC), pages 116–123. IEEE, 2016. DOI:
10.1109/icsc.2016.43.

[65] Patrik J. Hayes and Peter F. Patel-Schneider. RDF 1.1 Seman-
tics. Recommendation, World WideWeb Consortium (W3C),
February 2014. URL http://www.w3.org/TR/rdf11-mt/.

[66] Jelle Hellings, Marc Gyssens, Jan Paredaens, and YuqingWu.
Implication and Axiomatization of Functional Constraints on
Patterns with an Application to the RDF Data Model. In
Christoph Beierle and Carlo Meghini, editors, Foundations
of Information and Knowledge Systems, volume 8367 of Lec-
ture Notes in Computer Science, pages 250–269, Cham, 2014.
Springer. DOI: 10.1007/978-3-319-04939-7_12.

http://dx.doi.org/10.3233/sw-180306
http://dx.doi.org/10.3233/SW-2011-0034
http://dx.doi.org/10.1007/978-3-319-25010-6_8
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://dx.doi.org/10.3233/SW-180294
http://dx.doi.org/10.1007/978-3-319-46547-0_5
http://dx.doi.org/10.1007/978-3-319-46547-0_5
http://dx.doi.org/10.1145/2882903.2899391
http://dx.doi.org/10.3233/sw-170271
http://dx.doi.org/10.3233/sw-170271
http://dx.doi.org/10.1007/978-3-319-11964-9_23
http://dx.doi.org/10.1007/978-3-319-11964-9_23
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1007/978-3-642-12814-1_4
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/sparql11-entailment/
http://dx.doi.org/10.1007/978-3-642-30284-8_13
http://dx.doi.org/10.1007/978-3-642-30284-8_13
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000054062
http://dx.doi.org/10.1109/icsc.2016.43
http://dx.doi.org/10.1109/icsc.2016.43
http://www.w3.org/TR/rdf11-mt/
http://dx.doi.org/10.1007/978-3-319-04939-7_12

26 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[67] Pieter Heyvaert, Anastasia Dimou, Ben De Meester, and
Ruben Verborgh. Rule-driven inconsistency resolution for
knowledge graph generation rules. Semantic Web Journal, 10
(6):1071–1086, October 2019. DOI: 10.3233/SW-190358.

[68] Pascal Hitzler, Markus Krötzsch, Bĳan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph. OWL 2 Web Ontol-
ogy Language – Primer (Second Edition). Recommendation,
World Wide Web Consortium (W3C), December 2012. URL
http://www.w3.org/TR/owl2-primer/.

[69] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan
Decker, and Axel Polleres. Weaving the Pedantic Web. In
Christian Bizer, Tom Heath, Tim Berners-Lee, and Michael
Hausenblas, editors, 3rd International Workshop on Linked
Data on the Web, volume 628 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2010.

[70] Aidan Hogan, Jürgen Umbrich, Andreas Harth, Richard Cyga-
niak, Axel Polleres, and Stefan Decker. An Empirical Survey
of Linked Data Conformance. Journal of Web Semantics, 14:
14–44, July 2012. DOI: 10.1016/j.websem.2012.02.001.

[71] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: A semantic
web rule language combining OWL and RuleML. Member
submission, World WideWeb Consortium (W3C), May 2004.
URL https://www.w3.org/Submission/SWRL/.

[72] J. M. Juran. Juran’s Quality Control Handbook. Mcgraw-Hill,
Texas, USA, 4th edition, August 1988.

[73] Michael Kifer. Nonmonotonic Reasoning in FLORA-2. In
Chitta Baral, Gianluigi Greco, Nicola Leona, and Giorgio
Terracina, editors, Logic Programming and Nonmonotonic
Reasoning, volume 3662 of Lecture Notes in Computer Sci-
ence, pages 1–12, Berlin, Heidelberg, 2005. Springer. DOI:
10.1007/11546207_1.

[74] Michael Kifer. Rule Interchange Format: The Framework. In
Diego Calvanese and Georg Lausen, editors, RR 2008: Web
Reasoning and Rule Systems, volume 5341 of Lecture Notes
in Computer Science, pages 1–11, Berlin, Heidelberg, 2008.
Springer. DOI: 10.1007/978-3-540-88737-9_1.

[75] Michael Kifer, Georg Lausen, and James Wu. Logical
foundations of object-oriented and frame-based languages.
Journal of the ACM, 42(4):741–843, July 1995. DOI:
10.1145/210332.210335.

[76] Michael Kifer, Jos de Bruĳn, Harold Boley, and Dieter Fensel.
A Realistic Architecture for the Semantic Web. In Asaf Adi,
Suzette Stoutenburg, and Said Tabet, editors, Rules and Rule
Markup Languages for the Semantic Web, volume 3791 of
Lecture Notes in Computer Science, pages 17–29, Berlin, Hei-
delberg, 2005. Springer. DOI: 10.1007/11580072_3.

[77] Holger Knublauch. OWL 2 RL in SPARQL. Documentation,
TopBraid. URL http://topbraid.org/spin/owlrl-all.html.

[78] Holger Knublauch and Dimitris Kontokostas. Shapes Con-
straint Language (SHACL). Recommendation, World Wide
Web Consortium (W3C), July 2017. URL https://www.w3.
org/TR/shacl/.

[79] Holger Knublauch and Pano Maria. SHACL JavaScript Ex-
tensions. Working group note, World Wide Web Consortium
(W3C), June 2017. URL https://www.w3.org/TR/shacl-js/.

[80] Holger Knublauch, James A. Hendler, and Kingsley Idehen.
SPIN –Overview andMotivation. Member submission,World
Wide Web Consortium (W3C), February 2011. URL https:
//www.w3.org/Submission/spin-overview/.

[81] Holger Knublauch, Dean Allemang, and Simon Steyskal.
SHACL Advanced Features. Working group note, World
Wide Web Consortium (W3C), June 2017. URL https:
//www.w3.org/TR/shacl-af/.

[82] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebas-
tian Hellmann, Jens Lehmann, Roland Cornelissen, and Am-
rapali Zaveri. Test-driven evaluation of linked data quality.
In Chin-Wan Chung, editor, Proceedings of the 23rd interna-
tional conference on World Wide Web, pages 747–757, New
York, NY, United States, April 2014. Association for Com-
puting Machinery. DOI: 10.1145/2566486.2568002.

[83] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Harold Sol-
brig, and Jose María Álvarez Rodríguez. Validating and De-
scribing Linked Data Portals using RDF Shape Expressions.
InMagnus Knuth, Dimitris Kontokostas, and Harald Sack, ed-
itors, Proceedings of the 1st Workshop on Linked Data Qual-
ity co-located with 10th International Conference on Semantic
Systems (SEMANTiCS 2014), volume 1215 of CEUR Work-
shop Proceedings. CEUR-WS.org, September 2014.

[84] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva,
and Dimitris Kontokostas. Validating RDF Data, volume 7.
Morgan & Claypool Publishers LLC, September 2017. DOI:
10.2200/s00786ed1v01y201707wbe016.

[85] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Harold Sol-
brig, and Iovka Boneva. Validating and Describing Linked
Data Portals using Shapes. arXiv preprint, January 2017. URL
https://arxiv.org/abs/1701.08924.

[86] André Langer and Martin Gaedke. DaQAR – An Ontology
for the Uniform Exchange of Comparable Linked Data Qual-
ity Assessment Requirements. In Tommi Mikkonen, Ralf
Klamma, and Juan Hernández, editors,Web Engineering, vol-
ume 10845 of Lecture Notes in Computer Science, pages 234–
242, Cham, 2018. Springer. DOI: 10.1007/978-3-319-91662-
0_18.

[87] Huiying Li, Yuanyuan Li, Feifei Xu, and Xinyu Zhong. Prob-
abilistic Error Detecting in Numerical Linked Data. In Qim-
ing Chen, Abdelkader Hameurlain, Farouk Toumani, Roland
Wagner, and Hendrik Decker, editors, Database and Expert
Systems Applications, volume 9261 of Lecture Notes in Com-
puter Science, pages 61–75, Cham, 2015. Springer. DOI:
10.1007/978-3-319-22849-5_5.

[88] André Melo and Heiko Paulheim. Detection of Relation As-
sertion Errors in Knowledge Graphs. In Proceedings of the
Knowledge Capture Conference, pages 1–8, New York, NY,
United States, 2017. Association for Computing Machinery.
DOI: 10.1145/3148011.3148033.

[89] André Melo and Heiko Paulheim. Learning SHACL Con-
straints for Validation of Relation Assertions in Knowledge
Graphs. 2018. ESWC2018 Submission.

[90] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer.
Sieve: linked data quality assessment and fusion. In Divesh
Srivastava and Ismail Ari, editors, Proceedings of the 2012
Joint EDBT/ICDTWorkshops, pages 116–123,NewYork,NY,
United States, 2012. Association for Computing Machinery.
DOI: 10.1145/2320765.2320803.

[91] Peter Mika, Tania Tudorache, Abraham Bernstein, Chris
Welty, Craig Knoblock, Denny Vrandečić, Paul Groth,
Natasha Noy, Krzysztof Janowicz, and Carole Goble, editors.
The Semantic Web – ISWC 2014: 13th International Seman-
tic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part I, volume 8796 of Lecture Notes

http://dx.doi.org/10.3233/SW-190358
http://www.w3.org/TR/owl2-primer/
http://dx.doi.org/10.1016/j.websem.2012.02.001
https://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1007/11546207_1
http://dx.doi.org/10.1007/11546207_1
http://dx.doi.org/10.1007/978-3-540-88737-9_1
http://dx.doi.org/10.1145/210332.210335
http://dx.doi.org/10.1145/210332.210335
http://dx.doi.org/10.1007/11580072_3
http://topbraid.org/spin/owlrl-all.html
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl-js/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/TR/shacl-af/
https://www.w3.org/TR/shacl-af/
http://dx.doi.org/10.1145/2566486.2568002
http://dx.doi.org/10.2200/s00786ed1v01y201707wbe016
http://dx.doi.org/10.2200/s00786ed1v01y201707wbe016
https://arxiv.org/abs/1701.08924
http://dx.doi.org/10.1007/978-3-319-91662-0_18
http://dx.doi.org/10.1007/978-3-319-91662-0_18
http://dx.doi.org/10.1007/978-3-319-22849-5_5
http://dx.doi.org/10.1007/978-3-319-22849-5_5
http://dx.doi.org/10.1145/3148011.3148033
http://dx.doi.org/10.1145/2320765.2320803

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

in Computer Science, Cham, October 2014. Springer. DOI:
10.1007/978-3-319-11964-9.

[92] Boris Motik, Ian Horrocks, and Ulrike Sattler. Adding In-
tegrity Constraints to OWL. In Christine Golbreich, Aditya
Kalyanpur, and Bĳan Parsia, editors, OWL: Experiences and
Directions, volume 258 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[93] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridg-
ing the gap between OWL and relational databases. Jour-
nal of Web Semantics, 7(2):74–89, April 2009. DOI:
10.1016/j.websem.2009.02.001.

[94] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu,
Achille Fokoue, and Carsten Lutz. OWL 2 Web Ontology
Language Profiles (Second Edition). Recommendation,World
Wide Web Consortium (W3C), December 2012. URL https:
//www.w3.org/TR/owl2-profiles/.

[95] Mark A. Musen. The Protégé Project: A Look Back and
a Look Forward. AI Matters, 1(4):4–12, June 2015. DOI:
10.1145/2757001.2757003.

[96] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. Au-
tomated Quality Assessment of Metadata across Open Data
Portals. Journal of Data and Information Quality (JDIQ), 8
(2):1–29, November 2016. DOI: 10.1145/2964909.

[97] Mikael Nilsson. Description set profiles: A constraint lan-
guage for dublin core application profiles. Working draft,
Dublin Core Metadata Initiative (DCMI), 2008. URL http:
//dublincore.org/documents/2008/03/31/dc-dsp/.

[98] Chimezie Ogbuji et al. FuXi 1.4: A Python-based, bi-
directional logical reasoning system for the semantic web.
URL http://code.google.com/p/fuxi/.

[99] Bĳan Parsia, Nicolas Matentzoglu, Rafael Gonçalves, Birte
Glimm, and Andreas Steigmiller. The OWL Reasoner Eval-
uation (ORE) 2015 Competition Report. Journal of Au-
tomated Reasoning, 59:455–482, February 2017. DOI:
10.1007/s10817-017-9406-8.

[100] Adrian Paschke. Rules and Logic Programming for the Web.
In Axel Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried
Handschuh, Paula Kroner, Sascha Ossowski, and Peter F.
Patel-Schneider, editors, Reasoning Web. Semantic Technolo-
gies for the Web of Data, volume 6848 of Lecture Notes in
Computer Science, pages 326–381, Berlin, Heidelberg, 2011.
Springer. DOI: 10.1007/978-3-642-23032-5_6.

[101] Peter F. Patel-Schneider. Using Description Logics for RDF
Constraint Checking and Closed-World Recognition. In Blai
Bonet and Sven Koenig, editors, Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pages 247–253. AAAI
Press, 2015.

[102] Peter F. Patel-Schneider. Diverging Views of SHACL,
October 2016. URL https://research.nuance.com/
diverging-views-of-shacl/.

[103] Heiko Paulheim. Knowledge Graph Refinement: A Survey of
Approaches and Evaluation Methods. Semantic Web Journal,
8(3):489–508, December 2016. DOI: 10.3233/SW-160218.

[104] Heiko Paulheim and Christian Bizer. Improving the Quality
of Linked Data Using Statistical Distributions. International
Journal on Semantic Web and Information Systems, 10(2):
63–86, April 2014. DOI: 10.4018/ĳswis.2014040104.

[105] Pieter Pauwels and Sĳie Zhang. Semantic rule-checking for
regulation compliance checking: an overview of strategies and
approaches. In Jakob Beetz, Léon van Berlo, Timo Hartmann,

and Robert Amor, editors, Proceedings of the 32rd interna-
tional CIB W78 conference, 2015.

[106] Pieter Pauwels, Tarcisio Mendes de Farias, Chi Zhang,
Ana Roxin, Jakob Beetz, Jos De Roo, and Christophe
Nicolle. A performance benchmark over semantic rule
checking approaches in construction industry. Advanced
Engineering Informatics, 33:68–88, August 2017. DOI:
10.1016/j.aei.2017.05.001.

[107] Héctor Pérez-Urbina, Evren Sirin, and Kendall Clark. Val-
idating RDF with OWL integrity constraints. Technical re-
port, LLC, 2012. URL https://www.stardog.com/docs/4.1.3/
icv/icv-specification.

[108] Axel Polleres, Cristina Feier, and Andreas Harth. Rules
with Contextually Scoped Negation. In York Sure and
John Domingue, editors, The Semantic Web: Research
and Applications: 3rd European Semantic Web Conference,
ESWC 2006 Budva, Montenegro, June 11-14, 2006 Proceed-
ings, volume 4011 of Lecture Notes in Computer Science,
pages 332–347, Berlin, Heidelberg, 2006. Springer. DOI:
10.1007/11762256_26.

[109] Axel Polleres,HaroldBoley, andMichaelKifer. RIFDatatypes
and Built-Ins 1.0 (Second Edition). Recommendation, World
Wide Web Consortium (W3C), February 2013. URL https:
//www.w3.org/TR/rif-dtb/.

[110] María Poveda-Villalón, Asunción Gómez-Pérez, and
Mari Carmen Suárez-Figueroa. OOPS! (OntOlogy Pit-
fall Scanner!): An on-line tool for ontology evaluation.
International Journal on Semantic Web and Information
Systems (ĲSWIS), 10(2):7–34, 2014. DOI: 10.4018/i-
jswis.2014040102.

[111] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold
Solbrig. Shape expressions: an RDF validation and trans-
formation language. In Harald Sack, Agata Filipowska, Jens
Lehmann, and Sebastian Hellmann, editors, Proceedings of
the 10th International Conference on Semantic Systems, pages
32–40,NewYork, NY,United States, 2014. ACM,Association
for Computing Machinery. DOI: 10.1145/2660517.2660523.

[112] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo,
and Gregg Kellogg. Shape Expressions Language 2.1.
Draft community group report, World Wide Web Consortium
(W3C), November 2018. URL http://shex.io/shex-semantics/.

[113] Filip Radulovic, Nandana Mihindukulasooriya, Raúl García-
Castro, andAsunción Gómez-Pérez. A comprehensive quality
model for Linked Data. Semantic Web Journal, 9(1):3–24,
November 2017. DOI: 10.3233/sw-170267.

[114] Michael Röder, Ricardo Usbeck, and Axel-Cyrille
Ngonga Ngomo. GERBIL – Benchmarking Named Entity
Recognition and Linking Consistently. SemanticWeb Journal,
9(5):605–625, August 2017. DOI: 10.3233/SW-170286.

[115] Edna Ruckhaus, Oriana Baldizán, and María-Esther Vidal.
Analyzing Linked Data Quality with LiQuate. In Yan Tang
Demey and Hervé Panetto, editors, On the Move to Meaning-
ful Internet Systems: OTM 2013 Workshops, volume 8186 of
Lecture Notes in Computer Science, pages 629–638, Berlin,
Heidelberg, 2013. Springer. DOI: 10.1007/978-3-642-41033-
8_80.

[116] Arthur Ryman. Resource Shape 2.0. Member submission,
World Wide Web Consortium (W3C), February 2014. URL
https://www.w3.org/Submission/shapes/.

http://dx.doi.org/10.1007/978-3-319-11964-9
http://dx.doi.org/10.1007/978-3-319-11964-9
http://dx.doi.org/10.1016/j.websem.2009.02.001
http://dx.doi.org/10.1016/j.websem.2009.02.001
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1145/2757001.2757003
http://dx.doi.org/10.1145/2757001.2757003
http://dx.doi.org/10.1145/2964909
http://dublincore.org/documents/2008/03/31/dc-dsp/
http://dublincore.org/documents/2008/03/31/dc-dsp/
http://code.google.com/p/fuxi/
http://dx.doi.org/10.1007/s10817-017-9406-8
http://dx.doi.org/10.1007/s10817-017-9406-8
http://dx.doi.org/10.1007/978-3-642-23032-5_6
https://research.nuance.com/diverging-views-of-shacl/
https://research.nuance.com/diverging-views-of-shacl/
http://dx.doi.org/10.3233/SW-160218
http://dx.doi.org/10.4018/ijswis.2014040104
http://dx.doi.org/10.1016/j.aei.2017.05.001
http://dx.doi.org/10.1016/j.aei.2017.05.001
https://www.stardog.com/docs/4.1.3/icv/icv-specification
https://www.stardog.com/docs/4.1.3/icv/icv-specification
http://dx.doi.org/10.1007/11762256_26
http://dx.doi.org/10.1007/11762256_26
https://www.w3.org/TR/rif-dtb/
https://www.w3.org/TR/rif-dtb/
http://dx.doi.org/10.4018/ijswis.2014040102
http://dx.doi.org/10.4018/ijswis.2014040102
http://dx.doi.org/10.1145/2660517.2660523
http://shex.io/shex-semantics/
http://dx.doi.org/10.3233/sw-170267
http://dx.doi.org/10.3233/SW-170286
http://dx.doi.org/10.1007/978-3-642-41033-8_80
http://dx.doi.org/10.1007/978-3-642-41033-8_80
https://www.w3.org/Submission/shapes/

28 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[117] Arthur G. Ryman, Arnaud J. Le Hors, and Steve Speicher.
OSLCResource Shape: A language for defining constraints on
LinkedData. InChristianBizer, TomHeath, TimBerners-Lee,
Michael Hausenblas, and Sören Auer, editors, Proceedings of
the WWW2013 Workshop on Linked Data on the Web, volume
996 of CEUR Workshop Proceedings. CEUR-WS.org, May
2013.

[118] Schematron. Information technology – Document Schema
Definition Languages (DSDL) – Part 3: Rule-based validation,
Schematron. International standard, International Organiza-
tion for Standardization, Geneva, Switzerland, 2016. URL
http://schematron.com/.

[119] K. Bernhard Schiefer and Gary Valentin. DB2 universal
database performance tuning. IEEE Data(base) Engineering
Bulletin, 22(2):12–19, 1999.

[120] Shawn Simister and Dan Brickley. Simple Application-
Specific Constraints for RDF Models. In RDF Validation
Workshop. Practical Assurances for Quality RDF Data, Cam-
bridge, Ma, Boston, 2013.

[121] Evren Sirin and Jiao Tao. Towards Integrity Constraints in
OWL. In Rinke Hoekstra and Peter F. Patel-Schneider, editors,
Proceedings of the 6th International Conference on OWL:
Experiences and Directions – OWLED’09, volume 529 of
CEUR Workshop Proceedings, pages 79–88. CEUR-WS.org,
2009. DOI: 10.5555/2890046.2890055.

[122] José Hiram Soltren. Query-based database policy assurance
using semantic web technologies. mathesis, Massachusetts
Institute of Technology, 2009.

[123] Slawek Staworko, Iovka Boneva, Jose Emilio Labra Gayo,
Samuel Hym, Eric Prud’hommeaux, and Harold Sol-
brig. Complexity and Expressiveness of ShEx for RDF.
In Marcelo Arenas and Martín Ugarte, editors, LIPIcs-
Leibniz International Proceedings in Informatics, vol-
ume 31 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 195–211, Dagstuhl, Germany, 2015.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. DOI:
10.4230/LIPIcs.ICDT.2015.195.

[124] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness.
Integrity Constraints in OWL. In Maria Fox and David Poole,
editors, Proceedings of the 24th AAAI Conference on Artificial
Intelligence, pages 1443–1448, Menlo Park, California, July
2010. AAAI Press.

[125] Michaël Thomazo. Compact Rewritings for Existential Rules.
In Francesca Rossi, editor, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (ĲCAI),
pages 1125–1131, Menlo Park, California, August 2013.
AAAI Press.

[126] Dominik Tomaszuk. Inference rules for RDF(S) and OWL
in N3Logic. arXiv preprint, 2016. URL http://arxiv.org/abs/
1601.02650.

[127] Dominik Tomaszuk. RDF Validation: A Brief Survey. In
Stanislaw Kozielski, Dariusz Mrozek, Paweł Kasprowski, and

Bożena Małysiak-Mrozek, editors, Beyond Databases, Archi-
tectures and Structures. Towards Efficient Solutions for Data
Analysis and Knowledge Representation, volume 716 ofCom-
munications in Computer and Information Science, pages
344–355, Cham, 2017. Springer. DOI: 10.1007/978-3-319-
58274-0_28.

[128] Dominik Tomaszuk. Inference rules for OWL-P in N3Logic.
In M. Ganza, L. Maciaszek, and M. Paprzycki, editors, Com-
munication Papers of the 2018 Federated Conference on Com-
puter Science and Information Systems, volume 17 of ACSIS,
pages 27–33. Polskie Towarzystwo Informatyczne, September
2018. DOI: 10.15439/2018f102.

[129] Peter Van-Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004.

[130] Pierre-Yves Vandenbussche, Ghislain A. Atemezing, María
Poveda-Villalón, and Bernard Vatant. Linked Open Vocab-
ularies (LOV): a gateway to reusable semantic vocabularies
on the Web. Semantic Web Journal, 8(3):437–452, December
2016. DOI: 10.3233/SW-160213.

[131] Ruben Verborgh and Jos De Roo. Drawing Conclusions from
Linked Data on the Web: The EYE Reasoner. IEEE Software,
32(5):23–27, May 2015. DOI: 10.1109/MS.2015.63.

[132] Ruben Verborgh, Dörthe Arndt, Sofie Van Hoecke, Jos
De Roo, Giovanni Mels, Thomas Steiner, and Joaquim
Gabarró. The Pragmatic Proof: Hypermedia API Com-
position and Execution. Theory and Practice of
Logic Programming, 17(1):1–48, January 2017. DOI:
10.1017/S1471068416000016.

[133] Denny Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-
Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,
Lucie-Aimée Kaffee, and Elena Simperl, editors. The Seman-
tic Web – ISWC 2018: 17th International Semantic Web Con-
ference, Monterey, CA, USA, October 8–12, 2018, Proceed-
ings, Part I, volume 11136 of Lecture Notes in Computer Sci-
ence, Cham, 2018. Springer. DOI: 10.1007/978-3-030-00671-
6.

[134] Mustafa Yuksel, Suat Gonul, Gokce Banu Laleci Erturk-
men, Ali Anil Sinaci, Paolo Invernizzi, Sara Facchinetti, An-
drea Migliavacca, Tomas Bergvall, Kristof Depraetere, and
Jos De Roo. An Interoperability Platform Enabling Reuse
of Electronic Health Records for Signal Verification Stud-
ies. BioMed Research International, 2016:1–18, March 2016.
DOI: 10.1155/2016/6741418.

[135] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo
Pietrobon, Jens Lehmann, and Sören Auer. Quality assess-
ment for linked data: A survey. Semantic Web Journal, 7(1):
63–93, March 2015. DOI: 10.3233/SW-150175.

[136] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software
unit test coverage and adequacy. ACMComputing Surveys, 29
(4):366–427, December 1997. DOI: 10.1145/267580.267590.

http://schematron.com/
http://dx.doi.org/10.5555/2890046.2890055
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.195
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.195
http://arxiv.org/abs/1601.02650
http://arxiv.org/abs/1601.02650
http://dx.doi.org/10.1007/978-3-319-58274-0_28
http://dx.doi.org/10.1007/978-3-319-58274-0_28
http://dx.doi.org/10.15439/2018f102
http://dx.doi.org/10.3233/SW-160213
http://dx.doi.org/10.1109/MS.2015.63
http://dx.doi.org/10.1017/S1471068416000016
http://dx.doi.org/10.1017/S1471068416000016
http://dx.doi.org/10.1007/978-3-030-00671-6
http://dx.doi.org/10.1007/978-3-030-00671-6
http://dx.doi.org/10.1155/2016/6741418
http://dx.doi.org/10.3233/SW-150175
http://dx.doi.org/10.1145/267580.267590

	Introduction
	Validation problems
	Hypotheses
	Contributions

	State of the art
	Background
	Validation Approaches
	Hard-coded
	Integrity Constraints
	Query-based
	High-level language

	Validation reports
	Constraint types

	Comparative analysis
	Logical Requirements
	Scoped Negation as Failure
	Predicates for Name Comparison
	Expressive Built-ins

	Application
	Customizable validation
	Used Technologies
	Implementation
	Execution example

	Hypothesis validation
	Root cause explanation of constraint violations
	Accurate number of found violations
	Equivalent number of constraint types
	Speed

	Conclusion and future work
	Acknowledgements
	Appendix A. Updated Constraint Types Coverage
	References

