
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDFRules: Making RDF Rule Mining Easier
and Even More Efficient
Václav Zeman a,*, Tomáš Kliegr a and Vojtěch Svátek a

a Department of Information and Knowledge Engineering, Faculty of Informatics and Statistics, University of
Economics Prague, nam W Churchilla 4, 13067 Czech Republic
E-mail: vaclav.zeman@vse.cz

Abstract. AMIE+ (Galárraga et al., 2015) is a state-of-the-art algorithm for learning rules from RDF knowledge graphs (KGs).
Based on association rule learning, AMIE+ constituted a breakthrough in terms of speed on large data compared to the previous
generation of ILP-based systems. In this paper we present several algorithmic extensions to AMIE+ which make it faster and
more practical to use. The main contributions are related to performance improvement: the top-k approach, which addresses the
problem of combinatorial explosion often resulting from a hand-set minimum support threshold, a grammar that allows to define
fine-grained patterns reducing the size of the search space, and the faster projection binding reducing the number of repetitive
calculations. Other enhancements include the possibility to mine across multiple graphs, lift as a new rule interest measure
adapted to RDF KGs, the support for discretization of continuous values, and the selection of the most representative rules using
proven rule pruning and clustering algorithms. Benchmarks show considerable improvements compared to AMIE+ on some
problems. An open-source reference implementation is available under the name RDFRules.

Keywords: Rule Mining, Rule Learning, Exploratory data analysis, Machine Learning, Inductive Logical Programming

1. Introduction

Finding interesting interpretable patterns in data is
a frequently performed task in modern data science
workflows. Software for finding association rules, as a
specific form of patterns, is present in nearly all data
mining software bundles. These implementations are
based on the apriori algorithm [1] or its successors.
While very fast, these algorithms are severely con-
strained with respect to the shape of analyzed data –
only single tables or transactional data are accepted.
Algorithms for logical rule mining developed within
the scope of Inductive Logical Programming (ILP) do
not have these restrictions, but they typically require
negative examples and do not scale to larger knowl-
edge graphs (KGs) [2].

Commonly used open knowledge graphs, such as
Wikidata [3], DBpedia [4], and YAGO [5], are pub-
lished in RDF [6] as sets of triples – statements in
the form of binary relationships. Most of these KGs

*Corresponding author. E-mail: vaclav.zeman@vse.cz.

operate under the Open World Assumption (OWA). It
means that the KG is regarded as potentially incom-
plete and is open for adding more statements that are
currently missing. For example, if the description of
a person does not contain any information about em-
ployment, it is not correct to infer that the person is
unemployed; however, a straightforward application
of ILP approaches to rule learning requires such in-
ferences to be made to generate negative examples.
Hence, it is not appropriate to use standard ILP tools
for mining rules from RDF KGs1 due to their reliance
on the Closed World Assumption (CWA) in input data.

The current state-of-the-art approach for rule mining
from RDF KGs is AMIE+ [2]. AMIE+ combines the
main principles that make association rule learning fast
with the expressivity of ILP systems. AMIE+ mines
Horn rules, which have the form of implication and
consist of one atomic formula (or simply atom) on the

1Also “RDF Knowledge Graph”, which is a term used in related
research (e.g., [7, 8]) to denote a knowledge base formed as a col-
lection of statements in the RDF format.

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:vaclav.zeman@vse.cz
mailto:vaclav.zeman@vse.cz

2 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

right side, called head, and conjunction of atoms on the
left side, called body:

B1 ∧ B2 ∧ · · · ∧ Bn ⇒ H

The restricted variant of atom relevant for RDF KG
mining has the form of a triple. For instance,2

(?a <hasChild> ?c) ∧ (?b <hasChild> ?c)

⇒ (?a <isMarriedTo> ?b).

In this example, each atom consists of a predicate and
two variables at its subject and object positions. A vari-
able can also be instantiated to a specific constant, e.g.,

(?a <hasChild> <Carl>).

AMIE+ uses its own strategy to evaluate the quality of
mined rules with respect to the OWA and, therefore,
it is also appropriate for mining rules from open KGs
forming the Semantic Web.

In our view, AMIE+ constitutes a big leap forward
in learning rules from KGs, similar in magnitude to
what the invention of apriori meant for rule learning
from transactional data. However, AMIE+ also shares
some notable limitations with the original apriori algo-
rithm. Decades of research in association rule learning
and frequent itemset mining continuously show how
difficult it is for users to constraint the search space
so that meaningful rules are generated, and combina-
torial explosion is avoided. In the presented work, we
address these limitations by drawing inspiration from
techniques proven in rule mining from transactional
databases. The extensions to AMIE+ introduced in this
paper include a top-k approach, which can circumvent
the need for a precise user-set support threshold, fine-
grained search space restrictions, avoidance of some
repetitive calculations, and the ability to process nu-
merical attributes.

Together, these optimisations substantially reduce
the large search space of potential rules that have to be
checked. All the aforementioned approaches have been
implemented within the RDFRules framework and
evaluated in comparison with the original AMIE+ im-
plementation. Additionally, this article describes two
post-processing approaches – rule clustering and prun-
ing – adopted for RDF KGs.

The scope of functionality of RDFRules is inspired
by the widely used arules framework [9] for rule

2Since all atoms are binary, we use an infix notation, which is
more readable here than the prefix (FOL) notation used in ILP. We
also distinguish variables with a question mark, and the IRIs with
angle brackets. See Sec. 3 for more details.

learning from tabular data. Similarly to arules, RD-
FRules covers the complete data mining process, in-
cluding data pre-processing (support for numerical at-
tributes), various mining settings (fine-grained patterns
and measures of significance), and post-processing of
mining results (rule clustering, pruning, filtering and
sorting).

We provided benchmarks demonstrating the benefits
of the proposed performance enhancements. For exam-
ple, for mining rules with constants – which are an es-
sential element of association rules mined from tabular
data – the presented approach has a more than an order
of magnitude shorter mining time than AMIE+. Simi-
larly, the top-k approach can provide a more than ten
times shorter mining time compared to the standard ap-
proach supported by AMIE+ when all rules conform-
ing to the user-set minimum support threshold are first
mined and then filtered. We also show that our imple-
mentation scales better than AMIE+ when additional
CPU cores are added.

The main contributions of this paper are:

– A review of recent developments in RDF rule
mining, with a focus on AMIE+ and its limita-
tions.

– A collection of optimisation steps that improve
performance of AMIE+, while providing the
same results, and a collection of pre-processing
and post-processing algorithms for rule learning
from RDF.

– A software framework including a web-based
GUI and an API designed to cover all steps of rule
learning from RDF data.

– Experiments evaluating the proposed algorithms,
showing considerable improvements over AMIE+.

This paper is organised as follows. Section 2 pro-
vides a broader overview of related work. A digest of
the AMIE+ approach is ranged as Section 3. Section 4
presents a list of limitations of AMIE+, providing the
motivation for our work. The proposed approach is
described in Section 5. Section 6 briefly describes its
reference implementation. The results of the evalua-
tion are presented in Section 7. The conclusion sum-
marises the contribution and provides an outlook for
future work.

A very limited work-in-progress version of this re-
search was published in the proceedings of the 2018
RuleML Challenge workshop, under the title "Rd-
fRules Preview: Towards an Analytics Engine for Rule
Mining in RDF Knowledge Graphs" [10].

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Related Work

Approaches applicable for rule learning from RDF-
style KGs come principally from two domains. Min-
ing Horn rules from KGs has been for several decades
studied within the scope of Inductive Logical Program-
ming (ILP). A second area that inspired the develop-
ment of recent algorithms, including AMIE+, is as-
sociation rule learning, where the downward closure
property has been introduced to prune the space of hy-
potheses.

Inductive Logical Programming Algorithms based
on the principles of ILP learn Horn rules on binary
predicates. Examples of applicable ILP approaches in-
clude ALEPH3 or WARMeR [11]. While ILP systems
were primarily designed for learning from closed col-
lections of ground facts, as has been demonstrated,
e.g., in [2], they can also be used for rule learning from
semantic web KGs. However, there are several chal-
lenges:

– ILP systems expect negative examples and are de-
signed for the CWA.

– Logic-based reasoning approaches can multiply
errors which are inherently present in most KGs
[12].

– ILP systems have been reported too slow to pro-
cess real-world KGs such as YAGO. Galárraga
et al. [2] benchmarked two state-of-the-art ILP
systems (ALEPH and WARMeR) and found that
these systems were under some settings unable
to terminate within one day, while AMIE+ pro-
cessed the same task within several seconds or
minutes.

Association Rule Mining Some algorithms for rule
mining from RDF KGs use adaptations of the seminal
apriori algorithm [13] for discovering frequent item-
sets or association rules from transactions. A trans-
action is a set of items typically related to a single
contextual object, such as a shopping basket, and the
whole transactional database contains objects of the
same type. An example association rule is:

{milk, bread} ⇒ {butter} .
This contrasts with ILP systems, where a logical rule
may span across several contextual object types.

The AMIE+ algorithm uses the downward closure
property used in the apriori algorithm to reduce the

3http://www.cs.ox.ac.uk/activities/programinduction/Aleph/
aleph_toc.html

search space by a minimum support threshold and
other mechanisms for making rule mining faster than
the mentioned ILP systems [2]. AMIE+ was recently
used, e.g., for completing missing statements in KGs
[14] and is also used for rule learning in SANSA-
Stack [15], which is a general-purpose toolbox for dis-
tributed data processing of large-scale RDF KGs based
on Apache Spark.

Another algorithm adapting association rule mining
for RDF data is called SWARM [8]. In the Semantic
Web we usually divide an RDF KG into two compo-
nents: an A-Box containing instance triples and a T-
Box defining a schema for them. The SWARM algo-
rithm, proposed by Barati et al., mines Semantic Asso-
ciation Rules (as the authors call the algorithm’s out-
put) from both the A-Box and the T-Box. Compared
with the AMIE+ algorithm, which only mines rules
from the A-Box, SWARM generates so-called Seman-
tic Items, forming a set of transactions which is used
as input for association rule mining. Hence, SWARM
does not mine typical ILP rules with variables, but only
semantically-enriched association rules, such as:

Person : (instrument,Guitar)⇒ (occupation,

Songwriter).

There are also other approaches that transform RDF
data into transactions and mine typical association
rules or itemsets, for example, in the specific contexts
of ontology classes [16] or Wikipedia categories [17].
Nebot and Berlanga [18], in turn, proposed an exten-
sion of the SPARQL query language to generate trans-
actions of a user-defined context and to mine associa-
tion rules using the apriori algorithm.

Graph Embeddings The main limitation of the pre-
viously mentioned approaches is the need to store the
entire KG in the memory to allow for fast exploration
of the search space. This may be a problem for large
KGs since they have high resource requirements, and
the existing systems are not able to effectively scale
input data and the mining process. Graph embedding
methods, e.g. RESCAL [19], HolE [20] or TransE
[21], transform a KG or its individual components
(nodes and edges) into vectors. With this representa-
tion, fast and easily scalable vector operations can be
performed, and the number of vector dimensions can
be kept under control.

The RLvLR algorithm [22] uses low-dimension em-
beddings of RDF KG resources and predicates for fast
search of rules. This approach is even faster than the
state-of-the-art AMIE+ algorithm but is focused only

http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph_toc.html
http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph_toc.html

4 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

on learning rules for a specific predicate and cannot
discover rules with constants.

Another rule mining system using embeddings is
RuLES4 [23]. It mines the same kind of rules as
AMIE+ (with or without constants) and requires an
embedding model pre-trained by TransE, HolE or SSP
[24].

While learning rules from embeddings has certain
advantages, it is also known to have multiple weak-
nesses. One is its poor capability of encoding sparse
entities [25]. Another problem is that the results of
learning embeddings are highly susceptible to the
choice of dimensionality, typically requiring the time-
consuming process of training the embeddings with
different dimensionality and evaluating them in func-
tional tests [25, 26]. Irrespective of the choice of di-
mensionality, the set of rules extracted from embed-
dings would not exactly match the exhaustive set of
rules that is valid in the input knowledge graph, which
is extracted by AMIE+. A recent independent evalua-
tion performed on the real-world task of graph com-
pletion indicated superior results of AMIE+ in terms
of precision compared to multiple algorithms based
on embeddings, including TransE, HolE, or RESCAL
[27], on some completion tasks.

3. A Review of AMIE+ of Galárraga et al, 2015

The following paragraphs describe the basic fea-
tures of the AMIE+ algorithm on which our approach
builds.

3.1. Specifics of RDF Knowledge Graph Mining

AMIE+ mines Horn rules from RDF Knowledge
Graphs (abbreviated as KG). A KG consists of a set of
statements (or ground facts) in the triple form 〈s, p, o〉,
where the predicate p expresses a relationship between
the subject s and the object o. In the Semantic Web
any subject or predicate is described by an IRI5 or (this
only holds for the subject) a blank node identifying the
resource. The object resource is represented by an IRI,
a blank node, or a literal value with some data type.
Individual statements may be linked to each other by
sharing the same resources within the current graph or
even across several graphs.

4https://github.com/hovinhthinh/RuLES
5Internationalized Resource Identifier

3.2. Rules

An AMIE+ (Horn) rule ~B ⇒ H consists of a single
atom H in the head position (consequent) and a con-
junction of atoms ~B = B1 ∧ · · · ∧ Bn in the body posi-
tion (antecedent).

3.2.1. Atom
An AMIE+ atom is a statement which is further in-

divisible and contains a constant at the predicate posi-
tion and at least one variable at the subject and/or ob-
ject position. E.g., the atom (?a <livesIn> ?b) contains
the variables ?a and ?b, whereas the atom (?a <livesIn>
<Prague>) contains only one variable ?a at the subject
position and the constant <Prague> at the object posi-
tion.

Notation The AMIE+ literature describes rules using
the Datalog notation [28] common in the ILP domain.
An example rule in Datalog notation is:

wasBornIn(a, b)⇒ diedIn(a, b).

In this paper we use an infix notation derived from the
RDF serialization Notation3.6 The same rule is then
written as

(?a <wasBornIn> ?b)⇒ (?a <diedIn> ?b).

All variables are prefixed by a question mark and
atoms are enclosed in parentheses for better readabil-
ity of a conjunction of more atoms. A specific triple
containing only constants (ground fact) is enclosed in
angle brackets to be distinguished from non-ground
atoms, e.g.,

〈<John>, <livesIn>, <Prague>〉.

Coverage Let the symbol ≺ denote the coverage of
a triple (or a conjunction of triples) by an atom (or a
conjunction of atoms). For example:

〈<John>, <livesIn>, <Prague>〉 ≺ (?a <livesIn> ?b).

A triple t is covered by an atom A if and only if there
exists a ground substitution θ = {V1/c1, . . . ,Vn/cn},
where {V1, . . . ,Vn} are variables and {c1, . . . , cn} are
constants, such that the application of the substitution
Aθ on the atom A produces the triple t. For instance, the
particular substitution and its application of the previ-
ous coverage example are:

θ = {?a/<John>, ?b/<Prague>} ,

(?a <livesIn> ?b)θ = 〈<John>, <livesIn>, <Prague>〉

6https://www.w3.org/2000/10/swap/grammar/n3-report.html

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 1. Computation of measures of significance in AMIE+ with the additional lift measure.

The application of a substitution can also be used on a
conjunction of atoms to obtain a conjunction of triples.

3.2.2. Form of Rules
The output rule has to fulfil several conditions. First,

the rule atoms must be connected. That means vari-
ables are shared among the atoms to form one con-
nected graph:

(?a <isMarriedTo> ?c) ∧ (?c <directed> ?b)

⇒ (?a <actedIn> ?b).

Second, only closed rules are allowed. A rule is closed
if each of its atoms contains a variable at the object
or/and the subject position and any variable appears at
least twice in the rule:

(a closed rule)

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b),

(an open rule)

(?a <livesIn> ?c)⇒ (?a <wasBornIn> ?b).

Finally, the rule atoms must not be reflexive: an atom
cannot contain the same variable at both object and
subject positions.

3.3. Measures

Each rule mined from a particular KG has some sig-
nificance with regard to the chosen measure. Gener-
ally, in the context of rule mining, we use support and
confidence as two main measures of significance.

The speed of discovering the desired rules depends
on minimising the search space including all possi-

ble rules. This can be achieved by efficient breadth-
first search, which prunes the branches that would not
yield rules matching the user-defined pruning condi-
tions such as the minimum support threshold.

3.3.1. Atom Size
One of the key functions used by AMIE+ is size(A),

which counts the number of triples from the KG cov-
ered by the given atom A. The size(A) function is de-
fined as

size(A) = #〈s, p, o〉 ∈ KG : 〈s, p, o〉 ≺ A,

where the # symbol refers to the number of distinct
triples. For example, size((?a <livesIn> ?b)) returns the
number of all distinct triples in the KG with predicate
<livesIn>, whereas size((?a <livesIn> <Prague>)) re-
turns the number of all distinct triples in the KG with
predicate <livesIn> and object <Prague>.

Each rule has a head predicate size, shortly head
size, which is the number of triples from the KG hav-
ing the same predicate that occurs in the rule head:

hsize(~B⇒ (s p o)) = size((?a p ?b)).

For instance, in Figure 1, there is a simple example
showing several statements, a rule induced from them,
and its measures of significance. Notice that the head
predicate <diedIn> is present in three triples; therefore,
the head size is three.

All rules returned by AMIE+ have to reach or ex-
ceed the minimum head size threshold minHS :

hsize(~B⇒ H) > minHS .

3.3.2. Support and Head Coverage
Support is the measure of significance used as the

main pruning threshold in AMIE+. In the context of

6 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

association rule mining, the support of a rule indicates
the number of transactions in the database that con-
form to this rule. The support has the anti-monotone
property [29] (also referred to as downward closure,
or apriori property). This means that once new atoms
have been added to the body of a rule and the rule
length thus increases, the support of the rule decreases
or remains unchanged. This property is crucial for
search space pruning. If a rule does not meet the min-
imum support threshold and thus is considered infre-
quent, then any extension of this rule, created by ap-
pending one or more new atoms to its body, is also in-
frequent. Hence, a whole branch of infrequent exten-
sions can be skipped.

In AMIE+, the support is defined as the number of
correctly predicted triples covered by the head atom H
given at least one conjunction of triples covered by the
body ~B:

supp(~B⇒ H) = #〈s, p, o〉 ∈ KG

: ∃〈s, p, o〉 ∧ t1 ∧ · · · ∧ tn ≺ (H ∧ ~B)

∧ t1, . . . , tn ∈ KG

In the example depicted in Figure 1, there is only one
triple covered by the rule head,

〈<Alice>,<diedIn>,<Berlin>〉,
for which there is at least one connected triple covered
by the body atom; therefore, the support is one.

The relative value of support to the head size is
called head coverage (hc):

hc(~B⇒ H) =
supp(~B⇒ H)

hsize(~B⇒ H)
.

This measure has the value range from zero to one. The
minimal head coverage threshold minHC can be used
as the relative support threshold for the search space
pruning, where:

hc(~B⇒ H) > minHC.

3.3.3. Confidence
The support of a rule only indicates the number of

correct predictions, but it does not convey the qual-
ity of the prediction made by the rule, because it dis-
regards the false positives. In the context of associa-
tion rule mining, the main measure of predictive qual-
ity of a rule is confidence. It expresses the empirical
conditional probability of the head of the rule given
the body: p(H|~B). AMIE+ uses two variations of con-
fidence: the standard rule confidence and the Partial
Completeness Assumption (PCA) confidence.

The standard confidence is computed as the ratio of
the support and the body size (bsize):

con f (~B⇒ H) =
supp(~B⇒ H)

bsize(~B⇒ H)
,

where bsize is the number of all distinct subject-object
pairs derived from the variables in the body that also
occur in the head:

bsize(~B⇒ H) = #〈s, o〉 : ∃{?a/s, ?b/o} ⊆ θ

∧ ~Bθ = (t1 ∧ · · · ∧ tn)

∧ t1, . . . , tn ∈ KG ∧ H = (?a p ?b)

For each pair 〈s, o〉 at least one conjunction of triples
(t1∧· · ·∧tn) covered by ~B must exist. This conjunction
contains constants s and o substituted from variables
?a and ?b. These variables have to be included in body
~B and also in head H.

The standard confidence operates under the CWA.
That means if some statement is missing, then it can be
considered a negative example. However, the seman-
tic web applications generally operate under the OWA.
Hence, for many KGs the standard confidence may not
be appropriate [2].

For this purpose, AMIE+ defines PCA confidence.
If some predicate p is completely absent for some sub-
ject s then it is not considered, unlike in the stan-
dard confidence, a negative example. For instance, if
the subject s does not appear with the <isMarriedTo>
predicate in any triple, s may not necessarily be un-
married. However, once we know of a triple with sub-
ject s and predicate p, we can assume that the KG in-
volves all facts associated with this subject and pred-
icate. As a consequence, all other missing statements
related to this predicate and subject are regarded as
negative examples:

bsizepca(~B⇒ H) = #〈s, o〉 : ∃{?a/s, ?b/o} ⊆ θ

∧ ((?a p o′) ∧ ~B)θ = (t1 ∧ · · · ∧ tn)

∧ t1, . . . , tn ∈ KG ∧ H = (?a p ?b)

where o′ is a dangling variable which is not connected
to the body.

For example, in Figure 1, while there are three
triples covered by the body (the body size is three),
only for two subjects of these triples, there exists at
least one triple containing the head predicate <diedIn>.
About the third subject Carl we have no record relat-
ing to his death; therefore, it cannot be considered a
negative example and the PCA body size is two.

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.4. Rule Mining

Before the mining phase, all input parameters should
be pre-set with respect to a specific task. AMIE+ uses
three main input parameters that affect the speed of
mining the most: the maximum rule length, the mini-
mum head size minHS and the minimum head cover-
age threshold minHC. These input parameters can be
further extended by the minimum confidence threshold
(standard or/and PCA), constants that must occur in a
rule, the number of threads, and other rule constraints
mentioned in [2].

The AMIE+ algorithm (see Algorithm 1) first enu-
merates all atoms whose size is higher than the pre-
set head size threshold minHS (lines 4 to 8). All these
atoms become the heads of rules, and will be further
expanded. Each head is saved into a queue which col-
lects all potential rules to be either refined or moved
into the result set. The queue can be processed in par-
allel since each rule forms its own branch within the
search space and the refinement process does not alter
any previous state. Moreover, the indexed KG, from
which the rules are constructed and measures counted,
is also immutable.

The algorithm gradually passes the rules from the
queue to the refine operation, which adds one atom at a
time to the body of the rule (line 15). The added atom
is either dangling (the output rule is open), or closing
(the output rule is closed), or containing a constant:

(rule before refinement)

∅⇒ (?a <wasBornIn> ?b),

(closing atom added)

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b),

(dangling atom added)

(?a <livesIn> ?c)⇒ (?a <wasBornIn> ?b),

(instantiated atom added)

(?a <livesIn> <Prague>)⇒ (?a <wasBornIn> ?b).

The extended rule is further added into the queue only
if it exceeds the pre-set pruning thresholds (line 17).
The queue is being processed until it is empty. All
found rules which satisfy all mining constraints are
stored in the result set (lines 11 to 13). When refining
a rule, the algorithm calculates all the measures of sig-
nificance needed for pruning. Furthermore, the queue
is designed to eliminate any duplicate rules, thus mak-

ing the mining process much faster. For detailed infor-
mation about the mining algorithm refer to [2].

Algorithm 1. The basic workflow of AMIE+.

1 function AMIE(maxRuleLength, minHS, minHC, KG)
2 out = {}
3 queue = ()
4 for each p : 〈 s, p, o 〉 ∈ KG do
5 if size((?a p ?b)) > minHS then
6 queue.enqueue(∅⇒ (?a p ?b))
7 end if
8 end while
9 while queue.nonEmpty do in parallel

10 rule = queue.dequeue()
11 if acceptedForOutput(rule) then
12 out += rule
13 end if
14 if length(rule) < maxRuleLength then
15 refinedRules = refine(rule)
16 for each newRule in refinedRules do
17 if hc(newRule) > minHC ∧ newRule /∈ queue then
18 queue.enqueue(newRule)
19 end if
20 end for
21 end if
22 end while
23 return out
24 end function

3.5. Index

To enable fast rule refinement and measure compu-
tation, the AMIE+ algorithm uses an in-memory index
containing all the triples of the analyzed KG. The in-
dex consists of six fact indexes: SPO, SOP, PSO, POS,
OSP, and OPS. Each fact index is a hash table contain-
ing other, nested hash tables. For example, for the SPO
fact index a subject s points to a subset of predicates
P where each predicate p ∈ P points to a subset of
objects O:

s ∈ S 7→ {p ∈ P′ 7→ O′ : P′ ⊆ P,O′ ⊆ O}.
Based on this structure, the data have to be replicated
six times and still have to fit into the main memory.

4. Limitations of AMIE+

As noted earlier, AMIE [30] and consequently
AMIE+ [2], constituted a breakthrough in rule mining
from RDF graph data. AMIE+ very well addresses the
core of the rule mining problem – extracting an ex-
haustive set of rules, given RDF data and the right set-
tings. At the same time, the algorithm as well as the
accompanying implementation pay relatively little at-
tention to the problems of data pre-processing, meta-
parameter tuning, and post-processing; these steps are
assumed to be addressed by external algorithms and
software components.

8 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Successful systems in the domain of rule mining
from tabular and transactional data, such as the popular
arules ecosystem [9], offer an integrated approach sup-
porting the complete data mining life cycle: from pre-
processing the input data to the selection of represen-
tative rules. Some other association rule learning pack-
ages also support automatic tuning of the rule learn-
ing meta-parameters, such as of the minimum support
threshold [31].

An integrated approach is even more necessary in
the linked data context as general algorithms for data
pre-processing are difficult to apply to linked datasets
due to the different structure of inputs as well as out-
puts. Also, in the tabular or transactional context, it
is typically computationally feasible to pre-process all
available data. However, for linked data such an in-
discriminative approach to pre-processing may be pro-
hibitively expensive. Instead, it is desirable to inte-
grate data pre-processing (such as discretization) di-
rectly into the mining algorithm, so that only the val-
ues that can prospectively appear in the generated rules
are processed.

Similar observations hold for the post-processing
of results. In association rule mining from tabular or
transactional data, it is sufficient for the mining algo-
rithm to support only coarse requirements on the rules
mined: it is computationally cheap to mine more rules
and then apply finer requirements on the content of
the mined rules within post-processing. However, the
size of linked datasets and the richer expressiveness of
Horn rules make such an approach prohibitively ex-
pensive. While AMIE+ was very fast in processing
synthetic benchmarks, as reported in [2], it may still be
unusably slow or memory-intensive in practical tasks
where – for example – the user does not know the pre-
cise minimum support threshold.

Some of the limitations described in this section do
not only call for enhancing or extending the function-
ality of AMIE+ as a tool but also to inefficiencies we
identified within the core AMIE+ algorithm. This is
the case of repetitive and exhaustive calculations per-
formed during the mining process.

Finally, some limitations consist of the lack of vari-
ous features which were found useful for mining rules
from transactional or tabular data, such as the sup-
port for additional interest measures or the selection of
most representative rules, but are missing in AMIE+,
or of features generally required from systems process-
ing linked data, such as the support for multiple graphs.

4.1. Inability to Process Numerical Data

Association rule learning algorithms do not work
well with numerical data due to the anti-monotone
property, which requires that not only the complete
rule but also each subset of atoms composing it meets
the minimum support threshold. Since numeric at-
tributes have typically many values, a single distinct
value may not have the required support. Such a value
will thus be excluded from all generated rules.

Consider an RDF dataset with prices of public con-
tracts. This dataset may include many facts containing
a particular price of a contract. Each of these facts con-
tains a numeric value at the object position related to a
specific contract, e.g.,

〈<Contract-1>,<hasPrice>, 40000〉.
If every contract has just one price, which is unique
in the dataset, the instantiated atom (?a <hasPrice> C),
where C is a numeric constant, has the size of at most
one. In AMIE+, the user sets the minimum size of the
head atom – Galárraga et al. [2] suggest 100 as the
default value. For this threshold, the above-mentioned
instantiated atom will not be contained in any rule as a
head atom due to the small atom size. For a rule ~B ⇒
H where the instantiated atom is in the body, e.g.,

(?a <hasPrice> C)⇒

(?a <authority> <MinistryOfDefense>),

the atom size must be greater than or equal to the min-
imum support threshold depending on the rule head
size and the minimum head coverage threshold (more
in 5.2).

An approach used to address this problem in as-
sociation rule learning frameworks for transactional
data, such as the arules library, is to replace multiple
neighbouring distinct values of a numerical attribute
by one broader nominal value. This process is called
discretization, binning or quantization.

4.2. Absence of the Top-k Approach

Decades of research in association rule learning and
frequent itemset mining continuously show how diffi-
cult it is for users to set the minimum support thresh-
old properly [32, 33]. Similarly to the standard associ-
ation rule learning, AMIE+ will generate all rules com-
plying with the user-set support threshold. A too-small
threshold leads to an enumeration of too many – mil-
lions and more – frequent itemsets (and consequently,
rules), eventually resulting in an out-of-memory situa-

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tion. In contrast, a too high threshold value may return
no results.

Generating all rules already posed problems when
association rule learning was executed on transactional
databases like those collecting the contents of shop-
ping baskets in a supermarket, where the analyst could
still use their knowledge of the analyzed data to set
these thresholds. This problem is further exacerbated
in the linked data context, where data may be very
large and not known beforehand.

In the top-k approach, the user is only returned the
k rules with the highest values of the chosen measure,
rather than all rules. This approach allows additional
pruning strategies, alleviating or completely removing
the risk of combinatorial explosion, the biggest prob-
lems of association rule mining [32, 34].

4.3. Coarse Rule Patterns

Association rule learning tasks are in constant risk
for combinatorial explosion, even on small datasets.
This problem cannot be completely addressed by the
top-k approach alone. Without additional guidance by
the user, the top-k approach often generates rules that
reflect patterns in data that are obvious or uninterest-
ing for the user. For this reason, association rule learn-
ing frameworks provide various means for controlling
the content of the generated rules. For example, in the
arules library, the user can set a list of items (attribute-
value pairs) that can appear in the antecedent and con-
sequent of the generated rules. The LISp-Miner sys-
tem7 offers much ampler capabilities: it provides a
structure of an arbitrary number of granular patterns
that the rule must match in order to be generated.

AMIE+ adopts a similar approach to arules when it
allows the user to provide a list of relations that should
be included in (or excluded from) the body and head of
the rule. In addition, there are several linked-data- spe-
cific settings relating to constants. The user can choose
whether the constants are allowed, or even enforced, in
all atoms of the generated rules. This approach, which
is taken in AMIE+, does not take full advantage of
the RDF data model. In particular, it is not possible
to define independent, fine-grained constraints on sub-
jects, predicates, and objects appearing in the discov-
ered rules. For example, the user may wish to mine for
rules containing only rules that contain a triple with a
specific value in the antecedent, such as:

(?a rdf:type dbo:Writer) ∧ · · · ⇒ (?a ? ?).

7http://lispimner.vse.cz

This pattern covers all rules where the consequent con-
tains variable ?a at the subject position, where ?a has to
cover an instance of the dbo:Writer class. Informally,
the user wishes to find all rules that involve writers.
Such a pattern cannot be enforced in AMIE+.

4.4. Repetitive Calculations

During the refinement process, AMIE+ binds vari-
ables to constants in order to count the support for
each fresh8 atom separately: AMIE+ first constructs
the closing atoms, then the dangling atoms and finally,
the instantiated atoms. For example, let the following
rule be subject to the refinement process:

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b).

AMIE+ sequentially adds the fresh atoms (?a ?p ?b)
and (?b ?p ?a) as closing atoms, and (?a ?p ?c), (?c
?p ?a), (?b ?p ?c) and (?c ?p ?b) as dangling atoms, to
the rule body or head. Each newly added atom is con-
nected to the rule, and the variables ?p, ?a, ?b and ?c
are bound with constants in order to calculate the sup-
port measure and to enumerate the instantiated atoms.

This approach results in repetitive calculations,
mainly in terms of variables binding. For example, the
binding process starting from (?a <livesIn> ?b) and
(?a <wasBornIn> ?b) is performed repeatedly for each
fresh atom. It slows down the overall mining process.

4.5. Exhaustive Calculations

AMIE+ first computes the value of support for each
refined rule, and only afterward, it applies the pruning
step based on a chosen support threshold. The same
technique is used for the confidence calculation, where
the algorithm first computes the confidence value and
then filters the rules using confidence thresholds.

Searching of all paths covered by the rule, which is
necessary for computing the final value of confidence
and support, may be very expensive. The process out-
lined above, used in AMIE+, can be made more ef-
ficient by terminating this counting early when it be-
comes clear that the final result of confidence or sup-
port will not meet the threshold.

4.6. Limited Choice of Measures of Significance

While minimum support and confidence thresholds
are an integral part of association rule mining, later

8"Fresh" is a term used in [2] to denote a newly added atom.

http://lispimner.vse.cz

10 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

research has shown the utility of involving thresholds
on a range of additional measures of significance into
association rule learning algorithms [35]. Out of the
dozens of proposed measures, the one most frequently
adopted seems to be the lift measure. Lift is supported
in most association rule learning systems, including
the open source (R language) arules package, but it is
not included in AMIE+.

4.7. Lack of Support for Multiple Graphs

In semantic web terms, a KG identified by a specific
IRI is called a named graph. Multiple graphs can be
part of one dataset if each triple has assigned the in-
formation about association to a particular graph. This
structure is called a quad 〈s, p, o, g〉, where g is the
IRI of the graph. Same resources from various graphs
stored under different identifiers can be unified by in-
terconnecting them using the owl:sameAs property.

AMIE+ does not support mining across multiple
graphs such that one rule would contain resources from
two or more different graphs. Also, AMIE+ is not able
to resolve the owl:sameAs predicate to join resources
from two different namespaces. For example, consider
the following statements:

〈dbr:Sofia, owl:sameAs, nyt:N8209,<dbpedia>〉,

〈dbr:Sofia, rdf:type, dbo:PopulatedPlace,<dbpedia>〉,

〈nyt:N8209, rdf:type, opengis:Feature,<nytimes>〉.

AMIE+ would not be able to infer that

〈nyt:N8209, rdf:type, dbo:PopulatedPlace〉.

4.8. Lack of Support for Rule Clustering and Pruning

Association rule discovery can result in the genera-
tion of a high number of potentially interesting rules.
Grouping – or clustering – of similar or overlapping
rules can be effective for presenting the mining results
in a concise manner to the end user.

Association rule learning frameworks, such as arules,
provide, for this purpose, measures that express the
similarity between association rules. Such support for
rule clustering is not provided in the scope of AMIE+.

Another approach for addressing the problem of too
many rules on the output is removal of some of the
rules based on analysis of their overlap with respect
to the input data. In rule learning literature, this super-
vised process is often called pruning [36]. While prun-
ing may not be applicable for explorative association

rule learning9, where the goal is to find all rules valid
in the data that match the user-defined interest mea-
sure thresholds, it is a key ingredient of adaptations of
association rule learning for classification [38].

Some search strategies supported by ILP systems,
such as ALEPH, are able to discover concise theo-
ries consisting of a small number of rules covering the
input knowledge base. Achieving the same coverage,
AMIE+ mines all rules matching the user-specified
mining thresholds without any pruning strategies,
which would remove overlapping or redundant rules.

5. Proposed Approach

In the following, we present a collection of enhance-
ments to AMIE+ that address the limitations summa-
rized in the previous section.

5.1. Faster Projection Counting

AMIE+ recursively binds variables each time when
new atoms are added. The binding process is important
for finding valid connections to a rule being refined and
for calculation of the support measure. However, it has
a major impact on the overall mining time.

During the refinement process of a rule ~B ⇒ H,
AMIE+ constructs the set of new atoms An which in-
cludes all closing and dangling variants compatible
with the rule being refined. A new atom (x ?r y) ∈
An contains the relational variable ?r, which is not yet
bound, and the variables x and y, where each of them
either closes another variable or is dangling. For each
new atom, a count projection query is run. Further-
more, AMIE+ also runs the count projection query for
each dangling atom while searching for instantiated
rules.

The count projection query (described in Algorithm
2) recursively binds all variables in the rule and enu-
merates all bound variants of the newly added atom
connected to the rule with a cardinality. This process is
inefficient in that it may redundantly bind variables in
atoms that have already been mapped in the past (line
7 and 8).

9E.g., the motto of the GUHA rule learning framework [37] is
“GUHA offers everything interesting”, which translates as “all hy-
potheses of the given form true in the data”.

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 2. The AMIE+ count projection query

1 function countProjections(A_n, ~B ⇒ H, k, KG)
2 out = {}
3 for all (x ?r y) ∈ A_n do
4 map = {}
5 q = ~B + H + (x ?r y)
6 for all 〈s, p, o〉 ≺ H : 〈s, p, o〉 ∈ KG do
7 q’ = bind(q, 〈s, p, o〉, H)
8 χ = select(?r, q’)
9 for all r ∈ χ do

10 if map[r] = ∅ then map[r] = 1 else map[r]++
11 end for
12 end for
13 map = {〈r→ n〉 ∈ map : n > k}
14 for all r ∈ map do
15 out += ((x r y) ∧ ~B ⇒ H)
16 end for
17 end for
18 return out
19 end function

The bind function (line 7) maps all variables of atom
H to constants of triple 〈s, p, o〉 and propagates this
binding to all shared variables in q. The select query
function (line 8) recursively binds all variables in q′

and returns all possible bindings for variable ?r. The
map is a hashtable containing the cardinality for each
binding of variable ?r. The cardinality n must be at
least k, where k is the minimum support threshold (line
13).

In our approach, we try to reduce the number of calls
to the binding functions (in line 6 to 12). In the refine-
ment process, the bindings of the head atom H should
be performed only once. This process is described in
Algorithm 3 within the refine function, which returns
the set of atoms to be added into the rule being refined.

Algorithm 3. The RDFRules refinement process

1 function refine(~B ⇒ H, k, KG)
2 map = {}
3 q = ~B + H
4 maxSupp = 0
5 remainingSteps = size(H)
6 A_n = newAtomVariants(~B ⇒ H)
7 for all 〈s, p, o〉 ≺ H : 〈s, p, o〉 ∈ KG do
8 A_r = bindProjections(A_n, ~B, bind(q, 〈s, p, o〉, H))
9 for all x ∈ A_r do

10 if map[x] = ∅ then map[x] = 1 else map[x]++
11 maxSupp = max(map[x], maxSupp)
12 end for
13 remainingSteps = remainingSteps - 1
14 if maxSupp + remainingSteps < k then
15 return {}
16 end if
17 end for
18 map = {〈x→ n〉 ∈ map : n > k}
19 return map
20 end function

The bindProjections function, described in Algo-
rithm 4, is called for each instance of the head atom
(lines 7 and 8). Notice that the binding is performed for

all added closing and dangling atom variants together
(lines 6 and 8). In each iteration, the bindProjections
function returns a set of atoms Ar, with a resolved re-
lation and an instantiated dangling variable, which is
connected to the current instance of the head H and to
the remaining atoms of the body ~B (line 8). At the end
of each iteration, the items from Ar are added to the
hashtable map and the atom cardinality map[x ∈ Ar] is
increased by one (line 10). Finally, we add only such
atoms to the rule for which map[x ∈ Ar] > k, where k
is the minimum support threshold (line 18).

Remark. If the Ar set is empty, the current binding
of the head 〈s, p, o〉 can be omitted within any other
refinements of subsequent rules having the basis of the
current rule.

The whole refinement process can be completed
faster if we know that none of the found atoms in a cer-
tain moment can reach the minimum support thresh-
old. The variable remainingSteps holds the number of
iterations that still have to be done within the count
projections query (lines 7 to 17). If

maxSupp + remainingSteps < k,

where maxSupp is the support value of a new atom
with the highest cardinality, we can immediately ter-
minate the refinement process since adding none of the
atoms will lead to reaching or exceeding the support
threshold k (line 14 to 16).

The bindProjections function invocation is com-
posed of four phases. In the first phase, new atoms are
divided into two sets: bound atoms Ab and unbound
atoms Au (lines 4 to 10). All variables of the atoms
in Ab can be immediately bound by the function bind-
FreshAtom in the second phase (line 12 to 16). This
function returns instantiated atoms with all possible re-
lations and instantiated variables with respect to vari-
ables so far bound in q. In this phase, the binding is
valid only if there exists a binding for all remaining
unbound variables in q where all atoms are connected
(line 12). In the third phase, the best unbound atom
with the smallest size is selected from ~B (line 18). For
each unbound atom from Au with a smaller size than
size(best), the binding process is performed, and the
connectivity with other atoms is checked as in the sec-
ond phase (lines 19 to 28). In the last phase, the best
atom is bound with a particular instance, and the bind
projection query is recursively called with this new
binding, without the best atom in ~B and with remaining
unbound atoms from Au (lines 30 to 32). All resolved
atoms are saved into Ar and returned on line 33.

12 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 4. The RDFRules bind projections query

1 function bindProjections(A_n, ~B, q, KG)
2 A_r, A_c, A_b = {}
3 // PHASE I
4 for all (x ?r y) ∈ A_n do
5 if z ∈ {x, y} : z ∈ q ∨ isDangling(z) then
6 A_c += (x ?r y)
7 else
8 A_b += (x ?r y)
9 end if

10 end for
11 // PHASE II
12 if ¬isEmpty(A_c) ∧ exists(q) then
13 for all (x ?r y) ∈ A_c do
14 A_r ++= bindFreshAtom((x ?r y), q)
15 end for
16 end if
17 // PHASE III
18 best = argmin_i(size(B_i ∈ ~B)) // B_i is the i-th atom of ~B
19 for all (x ?r y) ∈ A_b do
20 if size((x ?r y)) 6 size(best) then
21 χ = bindFreshAtom((x ?r y), q)
22 for all (x p y) ∈ χ do
23 q’ = bind(q, p, (x ?r y))
24 if exists(q’) then A_r += (x p y)
25 end for
26 A_b -= (x ?r y)
27 end if
28 end for
29 // PHASE IV
30 for all 〈s, p, o〉 ≺ best : 〈s, p, o〉 ∈ KG do
31 A_r ++= bindProjections(A_b, ~B - best, bind(q, 〈s, p, o〉, best))
32 end for
33 return A_r
34 end function

This approach eliminates a considerable number of
repetitive calculations and makes AMIE+ much faster,
especially for mining of rules with constants (see eval-
uation in Section 7).

5.2. Processing of Numerical Attributes

As noted in Section 4.1, the standard solution of
working with numerical data in association rule min-
ing is to perform discretization (or binning) of numeric
values with low frequencies into intervals. This step
not only reduces the search space, but can also increase
the support of some rules.

By default, the mining process starts with some
user-defined minimum head size threshold minHS and
minimum head coverage minHC. Let an instantiated
atom Ai = (?x p C), containing a numerical literal C,
be derived from atom A = (?x p ?y). To ensure that
atom Ai is included in the consequent of a rule, the fol-
lowing inequality must be true:

size(Ai) > size(A) · minHC, (1)

where size(A) > minHS . This observation can help to
merge numerical (or even nominal) values. This will
create bigger groups (bins) with size satisfying the
minHC threshold.

Data Type Determination As a first step, all predi-
cates that have a numeric range have to be found. Most
RDF serializations directly encode data types. Data
types can also be determined from associated RDF vo-
cabularies, which contain information about the range
of the predicates.

Discretization in the Rule Head For each predicate
p with a numeric range and its corresponding list of
numerical literals Lp ∈ L, where L is a set of all nu-
merical lists in the KG, we apply the equal-frequency
discretization. This process is performed on the sorted
list Lp. Intervals are gradually created by merging the
numbers until the frequency of the currently expanded
interval reaches a predefined threshold. For example,
the sorted list

L<hasGrade> = (1, 1, 2, 2, 2, 3, 3, 4, 4, 5)

can be divided into two equal-frequent intervals with
respect to the discretization threshold 5:

I[1; 2] = (1, 1, 2, 2, 2)

I[3; 5] = (3, 3, 4, 4, 5).

In our approach, a constructed interval I is broad-
ened until the atom (?x p I) satisfies Condition 1. All
atoms constructed by this process can be used as the
head of a rule since they exceed the minimum head
size and head coverage thresholds.

Discretization in the Rule Body The head coverage
of a rule is calculated from the head size. Therefore,
according to Condition 2, the discretization threshold
for generating intervals is dependent on the head of the
rule. Let Ai be an atom considered to be added into the
body of a rule ~B ⇒ H. Then the atom Ai can only be
added if the following condition is met:

size(Ai) > hsize(~B⇒ H) · minHC. (2)

For instance, this rule:

(?a <hasNumberOfPeople> "[1M;5M]")⇒

(?a <hasInflation> "[0.01;0.015]"),

containing intervals in all atoms at the object position,
is accepted for output only if

size(?a <hasNumberOfPeople> "[1M;5M]") >

size(?a <hasInflation> ?b) · minHC.

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

However, the previous discretization step, focused
only on the head of the rule, only ensured that

size(?a <hasInflation> "[0.01;0.015]") >

minHC · size(?a <hasInflation> ?b).

The solution is to perform the discretization process
for all numerical lists in L separately with respect to
the current head of the rule.

5.3. Multiple Graphs

Efficiently working with multiple graphs requires
data structures supporting quads (subject, predicate,
object, and graph assignment) throughout the learning
process. In AMIE+ this is not supported – the resulting
rule always consists of atoms corresponding to triples.

In our approach, atoms in a rule may be extended
with a fourth item that indicates the graph assignment;
such an extended rule is called a graph-aware rule.
This additional item is always generated as a specific
graph resource and not as a variable. For instance,

(?a <wasBornIn> ?b <YAGO>)⇒

(?a dbo:deathPlace ?b <DBpedia>).

The existence of such a rule depends on a same
description of identical resources in all used graphs.
For instance, this condition is not met for concepts
in YAGO and DBpedia, because the YAGO resource
<Prague> has a different description than the DBpedia
resource <http://dbpedia.org/resource/Prague> (abbre-
viated as dbr:Prague). This inconsistency can be re-
solved by owl:sameAs predicate, which would join
these two descriptions:

<Prague> owl:sameAs dbr:Prague .

Support for named graphs should also be reflected in
the user-set pattern for rule learning, introduced in de-
tail in the next subsection. Before mining, the user can
decide which atoms will be tightly bound to a graph
or whether to enable graph-aware mining at all. For
example, the user should be able to define a pattern of
a mining task where all rules have to consist of parts
belonging to various graphs, e.g.,

(?a ? ?b <YAGO>)⇒ (?a ? ?b <DBpedia>).

This pattern is applied in the mining process, which
returns only such matching rules where the body atom
is from YAGO, and the head is from DBpedia.

The inclusion of graph information in the rule min-
ing process also requires an extension of fact indexes,

described in 3.5, to: PG, PSG, POG, PSOG. These in-
dexes allow to check the affiliation to a given graph in
constant time for all predicates (PG), predicate-subject
pairs (PSG) and predicate-object pairs (POG), and for
any predicate-subject-object triples (PSOG).

5.4. Improvements to Expressiveness of Rule Patterns

AMIE+ only provides basic capabilities for restrict-
ing the content of the generated rules. These are gener-
ally limited to providing a list of predicates that can ap-
pear in the antecedent and consequent of the generated
rules. Inspired by the LISp-Miner system, we defined
a formal grammar-based pattern language for express-
ing more complex rule patterns in order to find desired
rules for a specific task.

Consider IPG = (N,Σ,Π,Θ, P, S) as the item pat-
tern grammar to generate any valid pattern for an atom
item, e.g., grammar for items p, s and o in atom (s p
o). N is a set of all non-terminal symbols, Σ is a set of
all terminal symbols for resources and literals occur-
ring in input KGs, Π is a set of all terminal symbols for
variables, Θ is a set of all special terminal symbols es-
pecially for grouping, P is a set of all rules applicable
in this grammar, and S is the start symbol representing
the whole item pattern.

N = {A, B,C},

Σ = constants from input KGs,

Π = {?a, ?b, . . . , ?z},

Θ = {?, ?v, ?c,¬, [,]},

P = {A→ ?; A→ ?v; A→ ?c;

A→ x ∈ Π; A→ x ∈ Σ;

B→ A; B→ B, B;

C → A; C → [B]; C → ¬[B]},

S = {C}.
Symbol ? is a pattern for any item, symbol ?v is a pat-
tern for any variable and symbol ?c is a pattern for any
constant. A concrete variable is written as a single al-
phabetic character prefixed by symbol ?. All these ter-
minal patterns are expressed by the non-terminal sym-
bol A. A pattern collection B, where one of the in-
ner patterns must match an item, is constructed inside
square brackets, e.g, [<Prague>, <Berlin>]. The com-
plement of this collection, where none of the inner pat-
terns must match an item, is prefixed by symbol ¬, e.g,
¬[<Prague>, <Berlin>].

14 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A rule pattern RP is an implication, where the right
side contains just one head atom pattern and the left
side consists of a conjunction of body atom patterns:

RP = AP1 ∧ · · · ∧ APn ⇒ APh.

Let item pattern IP be generated by the IPG gram-
mar. The atom pattern AP is defined by the 4-tuple in-
cluding four item patterns for subject, predicate, ob-
ject, and graph:

APn3 = (IPs IPp IPo IPg) | (IPs IPp IPo).

If the last graph item pattern IPg is not used, it may be
omitted. Here is an example of a valid rule pattern and
some matching rule:

(a rule pattern)

(?a <wasBornIn> ?b) ∧

(?b ?c ?c <DBpedia>)⇒

(?a [<livesIn>, <deadIn>] ?b),

(a matching rule)

(?a <wasBornIn> ?b) ∧

(?b dbo:isCityOf <USA> <DBpedia>)⇒

(?a <deadIn> ?b).

During the mining process, rules are pruned based
on all input patterns. A rule pattern RP is applied from
right to left as well as the rule refinement process. For
example, rules with length = 1 (with an empty body)
are pruned if their heads do not match the head atom
pattern of RP. Subsequently, rules with length = 2 are
pruned if their first atom from the right direction of the
body does not match the first body atom pattern from
the right direction of RP.

5.5. Top-K Approach

In the top-k mode, the result set contains at most k
rules with the highest value of a chosen measure. This
mining strategy alleviates the user from searching for
the right mining threshold, and can also substantially
reduce the mining time.

Our proposal is a variation on the top-k approach
introduced by Wang et al. [34] for mining top-k fre-
quent itemsets with the highest support from transac-
tional data. The main mining phase includes searching
for rules reaching a support threshold derived from a
given head coverage threshold. If the support thresh-
old or the head coverage is unknown we may set a k

r1
supp : 5

k

r2
supp : 8 supp : 10

r3

head

minS upp = 5

supp : 13

r4

r2
supp : 8

r5
supp : 9 supp : 10

r3

head

minS upp = 8

supp : 13

r4

r5
supp : 9

...

Figure 2. The top-k strategy using a priority queue with modification
of the minimum support threshold.

value as the maximum number of rules to be returned.
For this case, the mining algorithm saves all found ap-
propriate rules into a priority queue with fixed length
k, where the head of this queue (the head rule) is the
rule with the lowest head coverage. Once the capacity
of the queue is reached the minimum support thresh-
old is set to the head coverage of the head rule. Then
the following rules are pruned based on this support
threshold. At the moment when some new rule has its
head coverage greater than the minimum, the head rule
is removed from the queue, and the new rule is added.
Then the minimum support threshold is modified by a
next head element in the queue (see Figure 2). The sup-
port threshold is continuously increasing during min-
ing and the result set always contains at most k rules
with the highest head coverage.

The same strategy can be used for confidence calcu-
lation from a set of rules. Let k be the maximum length
of the result rule set with highest confidences (stan-
dard or PCA). Once the capacity of the priority queue
has been reached, the lowest confidence of the head
rule is used as the minimum confidence threshold. This
threshold is continuously increasing if the following
rules have a higher confidence value.

Increasing the minimum confidence threshold min-
Conf is important since it may speed up the confidence
calculation. The standard confidence formula is:

con f (~B⇒ H) =
supp(~B⇒ H)

bsize(~B⇒ H)
.

If the minConf value is set, then the following inequal-
ity must apply:

bsize(~B⇒ H) 6
supp(~B⇒ H)

minCon f
.

During the calculation of the body size, we can im-
mediately stop the process as soon as the body size
value is greater than the ratio between the rule support

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and minConf, because the rule is then guaranteed to
have its confidence lower than minConf.

5.6. Support for the Lift Measure

When the user wants to express the sought rules
in terms of the quantitative relationship between the
antecedent and consequent of the rules, AMIE+ only
provides a single option: the confidence (or, the PCA
confidence). We suggest to complement the confidence
with the lift, which is a measure often regarded as of
equal importance as the confidence [39, 40].

Intuitively, the lift should reflect an increase in the
probability of the head occurrence given the validity of
the conditions expressed in the body of the rule (which
corresponds to the confidence measure) compared to
the probability of the head occurrence under a ran-
dom choice across the complete dataset. The result is a
value expressing the relative increase in the probability
of the head occurrence caused by the addition of the
body:

li f t(~B⇒ H) =
con f (~B⇒ H)

hcon f (H)
.

The lift relies on the computation of the probability
of the head occurrence, the so-called head confidence
(hconf). The proposed formula depends on the given
variant of a head atom H. There are three atom vari-
ants:

(?a p ?b) (two variables),

(?a p C) (one variable at the subject position),

(C p ?a) (one variable at the object position).

For the head atom (?a p ?b) with a specified predicate
p, we need to determine the probability of binding any
resource x with the predicate p. It is the ratio between
the number of distinct subjects bound with the predi-
cate p and the number of distinct subjects in the whole
KG (exemplified in Figure 1). Similarly, it is also com-
puted for head atoms with constants, but the variable
is always bound with the predicate p:

if H = (?a p ?b) then

hcon f (~B⇒ H) =
#s : ∃〈s, p, o〉 ≺ (?a p ?b)

#s : ∃〈s, p, o〉 ≺ (?a ?r ?b)
,

if H = (?a p C) then

hcon f (~B⇒ H) =
#s : ∃〈s, p, o〉 ≺ (?a p C)

#s : ∃〈s, p, o〉 ≺ (?a p ?b)
,

if H = (C p ?a) then

hcon f (~B⇒ H) =
#o : ∃〈s, p, o〉 ≺ (C p ?a)

#o : ∃〈s, p, o〉 ≺ (?a p ?b)
.

Notice that the definition of lift refers to the stan-
dard confidence that is defined under the CWA. For the
head confidence computation, we assume that the data
is complete. Hence, if some resource is not bound with
a predicate, then it is considered a negative example.
E.g., for the head atom (?a <livesIn> ?b), negative ex-
amples are such resources that are not in the domain of
the <livesIn> predicate.

The lift value is a non-negative real number with the
following semantics:

– if li f t(~B⇒ H) > 1 the body of the rule is able to
predict the head better than a random choice,

– if li f t(~B⇒ H) < 1 the body is not able to predict
the head better than a random choice,

– if li f t(~B ⇒ H) = 1 the body and the head are
independent of each other.

This means that the closer the lift is to 1 the less rel-
evant is the body of the in the context of prediction
the head. Therefore, high confidence of a rule does not
necessarily mean a better prediction of the head given
the body than a random choice.

5.7. Rule Clustering

In order to cluster the rules, it is necessary to have
some means of determining the similarity between an
arbitrary pair of rules. The rule similarity can be com-
puted from rule features, such as the content of the rule
and the values of measures of significance.

Let the rules be represented with a matrix Rn×m,
where rows correspond to individual rules and columns
to features of them. For each i-th feature, there is a
partial similarity function simi(·, ·). The similarity be-
tween two rules, r1 and r2, is computed as:

sim(r1, r2) :=
m∑

i=1

wi · simi(R1,i,R2,i),

where wi is a weight of the feature i. The weights have
to be normalized:

m∑
i=1

wi = 1.

It is trivial to compare the measures of significance
of two rules, e.g., the head coverage or the confidence
values, as two numerical features. Nevertheless, in
practice, for example within the arules library [9], rule

16 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

clustering is mainly performed with respect to the rules
content, in particular, using the similarity of atoms and
their parts. Hence, for this purpose, we defined several
similarity functions taking into account the content of
the Horn rules.

Let an atom of a rule consists of a predicate p and of
two atom items in the position of subject s and object
o. These two atom items are either variables or con-
stants. The similarity function between two atom items
s1 and s2 (or, analogously, o1 and o2) returns one of
the three pre-defined values:

simt(〈s1, p1〉,
〈s2, p2〉)

=


1 if s1 = s2,
0.5 if s1 6= s2 ∧ p1 = p2 ∧

∃x ∈ {s1, s2} : IsVar(x),

0 otherwise.

where IsVar(x) is a function determining whether the
atom item x is a variable. The result of the simt func-
tion also depends on the predicates p1 and p2 of the
atoms in which s1 and s2 are contained. For instance,
the similarity between the constant <Prague> and the
variable ?b in atoms (?a <livesIn> <Prague>) and (?a
<livesIn> ?b) is 0.5, since the items are not identical
but the <Prague> constant can be assigned to variable
?b.

The similarity function for two predicates only tests
their equality.

simp(p1, p2) =

®
1 if p1 = p2,
0 otherwise.

For the atoms A1 = (s1 p1 o1) and A2 = (s2 p2 o2)

we are able to compute the atom similarity based on
their item similarities.

sima(A1, A2) =
1

3
[simt(〈s1, p1〉, 〈s2, p2〉)+

simt(〈o1, p1〉, 〈o2, p2〉) + simp(p1, p2)].

Suppose two rules r1 and r2, where r1 has the length
greater than or equal to the length of r2, |r1| > |r2| (the
rule length is the number of atoms in a rule). Then the
similarity function simr between two rules is defined
as the sum of atom similarities between the atoms from
r1 and atoms from r2, normalized using the maximum
similarity:

simr(r1, r2) =
1

|r1|

|r1|∑
i=1

max(sima(Ar1
i , A

r2
1), . . . ,

sima(Ar1
i , A

r2
|r2|))

5.8. Rule Pruning

For selection of the most representative rules from
the list of mined rules we propose to adapt data cov-
erage pruning, which is a technique that is commonly
used in association rule classification [38].

This technique, described in Algorithm 5, processes
input rules in the order specified in Figure 3. For each
rule, the algorithm checks whether the rule correctly
classifies at least one triple in the input KG (line 10). If
it does, the rule is kept and the triple is discarded (for
the purpose of pruning). If the rule does not classify
any (remaining) triple correctly, it is discarded.

Rule A is ranked higher than rule B

1. if conf(A) > conf(B),
2. if conf(A) = conf(B) and hc(A) > hc(B),
3. if rule A has the shorter body (fewer atoms)

than rule B.

Figure 3. Rule ranking criteria for rule pruning.

Algorithm 5. Rule data coverage pruning

1 function dataCoveragePruning(rules, KG)
2 KG’ = KG
3 rules = sort rules according to criteria in Fig. 3
4 prunedRules = ()
5 for each (~B ⇒ H) ∈ rules do
6 ruleCoversTriples = false
7 for each θ : ~Bθ = (t_1 ∧ . . . ∧ t_n) ∧ t_1, . . . , t_n ∈ KG do
8 // where θ is the substitution defined in Sec. 3.2.1
9 t_h = Hθ

10 if t_h ∈ KG’ then
11 KG’ -= t_h
12 ruleCoversTriples = true
13 end if
14 end for
15 if ruleCoversTriples then prunedRules += (~B ⇒ H)
16 end for
17 return prunedRules
18 end function

In the list of rules mined by AMIE+, it is often the
case that a single triple is covered by multiple rules.
After data coverage pruning, many rules are removed,
but it is still ensured that the new set of rules cov-
ers the same triples as the original rule set. Also, on
transactional data, it has been empirically shown that
the data coverage pruning (in combination with default
rule pruning10) reduces the number of input rules by

10The well-known Classification Based on Associations (CBA)
algorithm [41] essentially corresponds to data coverage pruning

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

up to two magnitudes, while maintaining good clas-
sification performance. For example, experiments per-
formed on 26 datasets, reported in [41], showed that,
on average, 35.140 input rules were pruned into 69 fi-
nal rules.

6. RDFRules: Reference Implementation

While AMIE+ constitutes a breakthrough approach
for rule learning from RDF-style data, the implemen-
tation accompanying the paper of Galárraga et al. [2]
has several limitations in terms of practical usability
compared to modern algorithmic frameworks for asso-
ciation rule learning from tabular datasets, such as the
arules package for R [9], or Spark MLlib.11

In this section, we briefly describe a new framework
for rule mining from RDF KGs called RDFRules,
which is the reference implementation of the enhance-
ments to AMIE+ described in the previous section, and
is also used in our benchmarks (see Section 7).

RDFRules is freely available under the GPLv312

open-source license and is hosted on GitHub13.

6.1. Overview

The core of the reference RDFRules implementa-
tion is written in the Scala language. In addition to the
Scala API, it also has a Java API, a RESTful service
and a graphical user interface (GUI), which is avail-
able via a web browser. The Scala and Java APIs can
be used as frameworks for extending another data min-
ing system or application. The RESTful service is suit-
able for modular web-based applications and remote
access. Finally, the GUI based on the RESTful service,
can be used either as a standalone desktop application
or as a web interface used to control the mining service
deployed on a remote server. All modules are shown in
Figure 4.

combined with ’default rule pruning’. In default rule pruning, during
the pruning process, we keep track of which rule led to the smallest
number of misclassifications, when all rules ranked lower than this
rule are replaced by a default rule assigning the most frequent class
among the remaining instances.

11https://spark.apache.org/mllib/
12https://www.gnu.org/licenses/gpl.txt
13https://github.com/propi/rdfrules

6.2. Architecture

The architecture of the RDFRules core is composed
of four main data structures: RDFGraph, RDFDataset,
Index, and RuleSet. These structures are created in the
listed order during the RDF data pre-processing and
rule mining. Inspired by Apache Spark, each structure
supports several operations which either transform the
current structure or perform some action.

Transformations The data structures are formed in
the following order:

RDFGraph∗ → RDFDataset→ Index→ RuleSet

All the transformations are lazy14 operations. A trans-
formation converts the current data structure to a target
data structure. The target data structure can be either of
the same type or of the succeeding type. For example,
a transformation of the RDFDataset structure creates
either a new RDFDataset or an Index object.

Actions An action operation applies all pre-defined
transformations on the current and previous structures
and processes the (transformed) input data to create
the desired output, such as rules, histograms, triples,
statistics, etc. Compared to transformations, actions
may load data into the memory and perform time-
consuming operations. Actions are further divided into
the streaming and strict ones. The streaming actions
process data as small chunks (e.g., triples or rules)
without large memory requirements, while the strict
actions need to load all the data or a big part thereof
into the memory.

Caching If several action operations are applied, e.g.,
with various input parameters, on the same data and
with the same set of transformations, then all the de-
fined transformations would normally be performed
repeatedly for each action. This is caused by the lazy
behavior of the data structures and the streaming pro-
cess lacking the memory of previous steps. RDFRules
eliminates those redundant and repeating calculations
by caching the accomplished transformations. Each
data structure has a cache method that can perform
all the defined transformations immediately and store
the result either into the memory or on the disk. The
stored information can be reused when the already
transformed data is to be further processed.

14A lazy transformation is not evaluated until a result of the trans-
formation is required within an action.

https://spark.apache.org/mllib/

18 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Available interfaces (b) Main data structures and processes

Figure 4. Architecture of RDFRules.

6.3. Graphs and Datasets

The RDFGraph structure is built once we load an
RDF graph from either a file or a stream of triples or
quads. For input data processing the RDFRules im-
plementation uses modules from the Apache Jena15

framework, which supports a range of RDF formats in-
cluding N-Triples, N-Quads, JSON-LD, TriG or TriX.
Besides these standard formats, RDFRules also has its
own native binary format for saving/caching its data
structures and transformations on a disk for later use.
During data loading, the system creates either one or
multiple RDFGraph instances. Multiple instances are
created when the input data format supports and uses
named graphs.

An RDFGraph instance corresponds to a set of
triples, on which applicable transformation operations
are defined. These operations include filtering the
triples using a condition, replacement of selected re-
sources or literals, and merging numeric values using
discretization algorithms. The transformed data may
be exported to an RDF file. Several further operations
focus on data exploration. These include the state-
ments aggregation on histograms of triple items, the
predicate ranges determination, and the triples count-
ing.

The RDFDataset structure is created from one or
more RDFGraph instances. It is composed of quads
where the triples are additionally associated with a par-
ticular named graph. This data structure supports trans-
formation of all triples/quads within a dataset, as well

15https://jena.apache.org/

as in the case of a single graph, with or without regard
to the graphs assignment. The operations implemented
over the RDFDataset structure are the same as for the
RDFGraph structure, aside a few extensions.

6.4. Indexing

Before the mining, the input dataset has to be in-
dexed in the memory, which allows for the fast enu-
meration of atoms and computation of the measures of
significance.

In the first phase of the indexing, each element of the
triples, whether an identifier or a literal, is mapped into
a unique number. This mapping is stored in a special
hash map and eliminates any duplicates.

In the second phase of the indexing, the program
only deals with the mapped numbers and creates the
six fact indexes described in Section 3.5. These in-
dexes are in one of the two modes: preserved or in-
use. The preserved mode keeps the data in the mem-
ory for the whole duration of the index object, whereas
the in-use mode only loads the data into the memory if
the index is needed and after the use of the index, the
memory is again released.

The Index instance can be created from the RDF-
Dataset structure or loaded from the cache. The image
of the fact indexes can, therefore, be saved on the disk
for further reuse. The Index structure contains the pre-
pared data and has operations for rule mining using the
AMIE+ algorithm.

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.5. Rule Mining

RDFRules implements the extensions to the AMIE+
rule mining algorithm covered in Section 5. Besides
the indexed data itself, the values of three kinds of
parameters also enter the mining phase in RDFRules;
these parameters are (pruning) thresholds, rule pat-
terns, and constraints.

Pruning Thresholds In addition to the thresholds de-
fined in AMIE+, RDFRules also offers the top-k ap-
proach (see Section 5.5), and the timeout threshold,
which determines the maximum mining time. All the
mining thresholds are listed in table 1. Notice that
the list of thresholds does not contain any confidence,
or lift measures. These additional measures of signif-
icance can only be calculated after the main mining
phase within the RuleSet structure.

MinHeadSize Minimum number of triples covered by the
rule head.

MinHeadCoverage Minimum head coverage.

MinSupport Minimum absolute support.

MaxRuleLength Maximum length of a rule.

TopK Maximum number of returned rules sorted
by head coverage.

Timeout Maximum mining time in minutes.
Table 1

Available user-defined pruning thresholds used in the mining process
in RDFRules.

Rule Patterns All the mined rules must match at least
one pattern defined in the list of rule patterns. If the
user has an idea of what kinds of atoms the mined
rules should contain, this information can be defined
through one or several rule patterns. The grammar of
the rule pattern is described in Section 5.4. Since the
process of matching the rules with patterns is per-
formed during the mining phase, the enumeration of
rules can be significantly sped-up.

We can define two types of rule pattern: exact and
partial. The number of atoms in any mined rule must
be the same as in the exact rule pattern. For a partial
pattern, if some rule matches the pattern, all its refined
extensions also match the pattern.

Constraints Finally, the last mining parameter speci-
fies additional constraints, thus further shaping the out-
put of the mining. Here is a list of the implemented
constraints that can be used:

– OnlyPredicates(x): the rules may only contain the
predicates from the set x.

– WithoutPredicates(x): the rules must not contain
any of the predicates from the set x.

– WithInstances: it allows to mine rules with con-
stants in the subject or object position.

– WithObjectInstances: it allows to mine rules with
constants in the object position only.

– WithoutDuplicatePredicates: disallows rules con-
taining the same predicate in more than one atom.

– GraphAwareRules: the atoms in the discovered
rules will be extended with information on their
graph of origin.

Mining The mining process can be run in different
behavior modes, with respect to the entry thresholds
and constraints. Compared to the pure AMIE+ im-
plementation, RDFRules does not calculate the con-
fidence while browsing the search space of possible
rules, thus saving time. Additionally, it applies vari-
ous extensions described in Section 5. The rule min-
ing process is performed in parallel and tries to use all
available cores.

The mining result is an instance of the RuleSet struc-
ture which contains all the mined rules conforming to
the input restrictions.

6.6. Rule Post-Processing

The RuleSet is the last defined data structure in the
RDFRules workflow. It implements the operations for
rule analysis, calculation of additional measures of sig-
nificance, rule filtering and sorting, rule clustering and
pruning, and finally, an export of the discovered rules
for use in other systems. Every rule in the rule set con-
sists of the head, the body, and the values of the mea-
sures of significance. The basic measures of signifi-
cance are: rule length, support, head size and head cov-
erage. Other measures may be calculated individually
on user demand within the RuleSet structure. These
measures include: body size, confidence, PCA body
size, PCA confidence, head confidence and lift. The
rules can be filtered and sorted according to all these
measures.

RDFRules supports rule clustering with the DBScan
algorithm [42], using similarity functions proposed in
Section 5.7. The clustering process returns an assign-
ment to a cluster for each rule based on input parame-
ters including selected features, a minimum number of
neighbors to create a cluster, and a minimum similarity
value for two rules to be in the same cluster. The user
can also opt to use similarity counting to determine the
top-k most similar or dissimilar rules to a selected rule.

20 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Triples Subjects Predicates Objects

YAGO2 core 948 358 470 483 36 400 341
Table 2

YAGO2 core dataset properties.

All the mined rules are stored in the memory, but, as
in the case of the previous data structures, all transfor-
mations defined in the RuleSet are lazy. Therefore, this
structure also allows to cache the rules and transfor-
mations on the disk or the memory for repeated usage.
The complete rule set (or its subsets) can be exported
and saved into a file in a human-readable text format
or in a machine-readable JSON format.

7. Experiments

We performed two kinds of experiments. The first
compare our proposed enhancements presented in Sec-
tion 5 and implemented within our RDFRules frame-
work presented in Section 6 with the original imple-
mentation of the AMIE+ algorithm. The second is fo-
cused on some additional methods, such as the top-
k approach and rule patterns, which are compared
with common mining approaches only employing ba-
sic thresholds.

7.1. Setup

For all experiments, we used the YAGO2 core
dataset available from the Max Planck Institute web-
site.16 The number of triples and their unique elements
are shown in Table 2.

All the mining tasks are set with the minimum head
size threshold 100 and maximum rule length 3. Each
experiment is composed of a set of mining thresholds,
constraints, patterns, the input dataset, the number of
threads and a selected framework (AMIE+ or RD-
FRules). Each experiment was executed 10 times. The
experimental outcome consists of the average mining
time together with the standard deviation and the num-
ber of found rules.

All experiments were launched on the scientific grid
infrastructure of the CESNET MetaCentrum17. This
grid architecture offers up to several hundred CPUs to
be used per machine. For our purpose we used from
1 to 24 cores per experiment on a machine with these
parameters:

16https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/downloads/

17https://metavo.metacentrum.cz/en/index.html

0 0.05 0.1 0.15 0.2 0.25 0.3

102

103

104

minHC

R
un

tim
e

(s
)

AMIE+ (const)
RDFRules (const)

Figure 5. AMIE+ vs RDFRules: Rule mining with constants.

– CPU: 4x 14-core Intel Xeon E7-4830 v4 (2GHz),
– RAM: 512 GB,
– OS: Debian 9.

A part of the implemented RDFRules framework is
the Experiments module,18, within which all the exper-
iments described below were conducted. Hence, all the
reported experiments can be easily reproduced.

7.2. RDFRules vs AMIE+

In this section we compare our proposed and imple-
mented enhancements of the AMIE+ algorithm with
the original AMIE+ implementation.19 Some selected
tasks, their settings, and results are shown in Table 3.
We performed two experiment types: 1) mining logical
rules only with variables – rules only with variables at
the subject and object positions – and 2) mining rules
with constants.

The mining process involves the computation of
both types of confidence, i.e. standard confidence
and PCA confidence. The results are reported for
fixed standard and PCA confidence thresholds (Min-
Conf+PCA) and the minimum head coverage thresh-
old (MinHC). The Diff column contains the difference
between the runtimes of AMIE+ and RDFRules. The
Rules column contains the number of rules returned by
RDFRules.

The results are also visualized in Figure 6 for min-
ing without constants, and in Figure 5 for mining with

18https://github.com/propi/rdfrules/tree/master/experiments
19https://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/amie/

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Task Cores MinHC
MinConf
+PCA

Runtime
Diff Rules

AMIE+ RDFRules

only
with
variables

8
0.005

0.1
54.8 s ± 2.49 s 18.72 s ± 1.04 s -36.08 s 48

0.01 15.32 s ± 222.1 ms 15.93 s ± 84.21 ms +613.3 ms 31
0.1 9.91 s ± 102.1 ms 11.98 s ± 56.4 ms +2.07 s 10

with
constants

8
0.005

0.1

2.12 h ± 3.96 min 10.08 min ± 13.38 s -1.96 h 1,043,539
0.01 13.40 min ± 9.22 s 5.06 min ± 11.56 s -8.33 min 123,877
0.1 2.87 min ± 5.76 s 36.7 s ± 1.63 s -2.26 min 28

1 0.01 27.94 min ± 15.47 s 15.47 min ± 12.51 s -12.47 min 123,877
Table 3

The mining runtime of AMIE+ and RDFRules with various settings.

10−3 10−2 10−1

10

20

30

40

50

minHC

R
un

tim
e

(s
)

AMIE+ (logrules)
RDFRules (logrules)

Figure 6. AMIE+ vs RDFRules: Rule mining without constants.

constants. We observed that for more difficult tasks
with lower head coverage thresholds, which generate a
larger set of rules, RDFRules is faster than the original
AMIE+. On the contrary, for simpler tasks lasting sev-
eral seconds and without constants, both approaches
are almost at the same level of mining time.

Our performance improvements proposed in Sec-
tion 5.1 have a considerable impact on mining with
constants. For instance, the mining task with constants
with minHC = 0.005 has a runtime of over 2 hours,
whereas RDFRules only needs about 10 minutes to
complete the same task.

The experiments also revealed that the original
AMIE+ implementation assigns the individual jobs
less efficiently into multiple threads when mining with
constants. In our experiments, RDFRules used 99%
of the CPU cores, whereas AMIE+ used only around
40%. To have a baseline, we also tried to mine rules
with constants in a single thread. In this setting, RD-
FRules was still almost twice faster than AMIE+ (see
the last row in Table 3). The degree to which the two

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Threads

Sp
ee

d-
up

AMIE+
RDFRules

Linear speed-up

Figure 7. Scalability of RDFRules and AMIE+. Mining with con-
stants and with minHC = 0.01.

systems scale when mining with constants is depicted
in Figure 7.

7.3. Top-k Approach and Rule Patterns

This section reports on results of experiments of en-
hancements specific to RDFRules: the top-k approach,
confidence calculation, and rule patterns. For the top-
k approach, described in Section 5.5, we launched the
same tasks as in the previous set of experiments with
the difference that the result set contained just the top
100 rules with the highest head coverage. We also tried
to compare confidence computation with vs. without
the top-k approach. Finally, we show some rules mined
with rule patterns, comparing the mining time with that
of mining all rules followed by subsequent filtering by
a particular pattern.

Figure 8 and Table 4 show how the top-k approach
improves the performance of mining if only a subset of
all rules with the highest head coverage is desired by
the user.

22 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 0.05 0.1 0.15 0.2 0.25 0.3

101

102

minHC

R
un

tim
e

(s
)

const+top100
const+all

logrules+top100
logrules+all

Figure 8. RDFRules rule mining, only with variables (logrules) and
instantiated (const), with vs. without the top-k approach.

Task MinHC Runtime

only
with
variables

0.005 13.26 s ± 746.2 ms
0.01 12.87 s ± 718.9 ms
0.1 8.320 s ± 709.4 ms

with
constants

0.005 36.80 s ± 2.42 s
0.01 35.85 s ± 3.07 s
0.1 23.76 s ± 1.06 s

Table 4
The mining runtime of the RDFRules top-k approach.

Rules
Runtime
All Top-100

10,000 1.69 s ± 68.6 ms 195.3 ms± 18.66 ms
Table 5

Confidence values for 10,000 rules compared with the top-k ap-
proach. Settings are: minCon f = 0.1, num of cores is 8.

As described in Section 5.5, the top-k approach
can also be used to speed-up confidence computation
(standard or PCA), and subsequently also for compu-
tation of the lift measure. Table 5 contains results for
confidence computation (both standard and PCA) of
10,000 rules. This is compared with searching for the
top 100 rules with the highest confidence.

Another experiment was conducted to benchmark
the mining with partial patterns, which were intro-
duced in Section 5.4. We launched two tasks for two
rule patterns. The first one emulates the situation when
the user-specified the head of the rules to be discov-
ered:

(? ? ?)⇒ (? <hasAcademicAdvisor> ?). (3)

The second one emulates the opposite case, when the
user only specifies the body:

(? <hasWonPrize> ?)⇒ (? ? ?). (4)

Both tasks were launched with minHC = 0.01, 8
cores, without confidence counting, and with con-
stants. Table 6 contains the mining time of both cases
compared with the mining time without patterns, but
with subsequent filtering of the desired rules by pat-
terns. Since the rules are refined starting from the right
side (the head) and ending at the leftmost atom in
the body, mining with the pattern depicted in Eq. 4 is
slower than with mining with the pattern depicted in
Eq. 3. Figure 9 shows three examples of rules gener-
ated in these two experiments.

Task Runtime Rules

Mine all + filter by patterns
5.03 min
± 10.47 s 137,595

Mine by pattern 3
216 ms
± 186 ms 13

Mine by pattern 4
14.29 s
± 1.1 s 13

Table 6
Mining with and without rule patterns.

(?b <influences> ?a)⇒ (?a <hasAcademicAdvisor> ?b)
(?b <hasWonPrize> ?c) ∧ (?a <hasWonPrize> ?c)⇒ (?a

<hasAcademicAdvisor> ?b)
(?a <hasWonPrize> <Purple_Heart>)⇒ (?a <hasWonPrize>

<Medal_of_Honor>)

Figure 9. The example of rules mined by RDFRules with patterns.

8. Conclusion

In this paper, we have presented a set of extensions
and enhancements to AMIE+, a state-of-the-art ap-
proach for mining Horn rules from RDF knowledge
graphs. The primary aim of our work was to contribute
to resolving the main challenge related to association
rule learning (not only) from knowledge graphs – mak-
ing it easy for the user to extract meaningful rules,
without having to repeatedly change the mining pa-
rameters due to either a lack of results or a combina-
torial explosion thereof. By giving the user the option
to automatically group similar rules or to remove re-
dundant rules, the result of rule learning remains ex-
plainable even when tens of thousands of rules are dis-

V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

covered. Other presented extensions allow for mining
rules spanning multiple graphs, support for numeri-
cal data, and substantial performance enhancements in
some special cases, such as when mining with con-
stants or when mining with many CPU cores.

In a number of experiments, we have shown per-
formance improvements of the individual extensions.
More than an order of magnitude improvement com-
pared to AMIE+ has been observed when mining for
rare patterns, e.g., anomalies, which requires a very
low head coverage threshold.

A reference implementation of the proposed ap-
proach is available as open source at https://github.
com/propi/rdfrules. This software integrates several
APIs (Java API, Scala API, and RESTful API) with a
graphical user interface. The project also contains the
source code required for a replication of the bench-
marks presented in this paper.

A promising direction for extending RDFRules
is adding support for RDF schemas and ontologies,
which would involve resource types with hierarchies
into the mining process. Although the system cur-
rently supports multi-threading on a single machine,
we would also like to add support for distributed min-
ing and memory scaling on multiple nodes. Finally,
AMIE+ produces logical rules with a possibly com-
plex structure, which may be found difficult to under-
stand by some users. From the user perspective, re-
search into human-perceived interpretability of logical
rules is urgently needed. In terms of applications, we
consider investigating to what extent RDFRules can
complement the recent generation of ILP systems such
as Metagol [43], or MIGO [44] in the domain of learn-
ing game strategies. Specifically, we consider using
RDFRules for learning an initial set of rules, leverag-
ing the speed of its base association rule learning ap-
proach, and then refining these rules in the established
ILP frameworks.

Acknowledgment

Access to computing and storage facilities owned
by parties and projects contributing to the National
Grid Infrastructure MetaCentrum provided under the
programme “Projects of Large Research, Develop-
ment, and Innovations Infrastructures” (CESNET-
LM2015042), is greatly appreciated. TK was sup-
ported by University of Economics, Prague by long
term institutional support of research activities.

References

[1] R. Agrawal, R. Srikant et al., Fast algorithms for mining as-
sociation rules, in: Proc. 20th int. conf. very large data bases,
VLDB, Vol. 1215, 1994, pp. 487–499.

[2] L. Galárraga, C. Teflioudi, K. Hose and F.M. Suchanek, Fast
rule mining in ontological knowledge bases with AMIE+, The
VLDB Journal 24(6) (2015), 707–730.

[3] D. Vrandečić, Wikidata: A new platform for collaborative data
collection, in: Proceedings of the 21st international conference
on world wide web, ACM, 2012, pp. 1063–1064.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cy-
ganiak and S. Hellmann, DBpedia-A crystallization point for
the Web of Data, Web Semantics: science, services and agents
on the world wide web 7(3) (2009), 154–165.

[5] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey and
G. Weikum, YAGO: A multilingual knowledge base from
Wikipedia, Wordnet, and Geonames, in: International Seman-
tic Web Conference, Springer, 2016, pp. 177–185.

[6] D. Beckett and B. McBride, RDF/XML syntax specification
(revised), W3C recommendation 10(2.3) (2004).

[7] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann and T. Stege-
mann, RelFinder: Revealing relationships in RDF knowledge
bases, in: International Conference on Semantic and Digital
Media Technologies, Springer, 2009, pp. 182–187.

[8] M. Barati, Q. Bai and Q. Liu, Mining semantic association
rules from RDF data, Knowledge-Based Systems 133 (2017),
183–196.

[9] M. Hahsler, S. Chelluboina, K. Hornik and C. Buchta, The
arules R-package ecosystem: analyzing interesting patterns
from large transaction data sets, Journal of Machine Learning
Research 12(Jun) (2011), 2021–2025.

[10] V. Zeman, T. Kliegr and V. Svátek, RdfRules Preview: To-
wards an Analytics Engine for Rule Mining in RDF Knowl-
edge Graphs, in: RuleML Challenge, 2018.

[11] B. Goethals and J. Van den Bussche, Relational association
rules: getting Warmer, in: Pattern Detection and Discovery,
Springer, 2002, pp. 125–139.

[12] H. Paulheim and C. Bizer, Type inference on noisy RDF data,
in: International semantic web conference, Springer, 2013,
pp. 510–525.

[13] R. Agrawal, T. Imieliński and A. Swami, Mining association
rules between sets of items in large databases, in: ACM SIG-
MOD record, Vol. 22, ACM, 1993, pp. 207–216.

[14] C. Meilicke, M.W. Chekol, D. Ruffinelli and H. Stucken-
schmidt, Anytime bottom-up rule learning for knowledge
graph completion (2019).

[15] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler,
I. Ermilov, S. Bin, N. Chakraborty, M. Saleem, A.-
C.N. Ngomo et al., Distributed Semantic Analytics Using the
SANSA Stack, in: International Semantic Web Conference,
Springer, 2017, pp. 147–155.

[16] J. Rabatel, M. Croitoru, D. Ienco and P. Poncelet, Contex-
tual itemset mining in dbpedia, in: LD4KD: Linked Data for
Knowledge Discovery, Vol. 1232, CEUR, 2014, p. http–ceur.

[17] J. Kim, E.-K. Kim, Y. Won, S. Nam and K.-S. Choi, The As-
sociation Rule Mining System for Acquiring Knowledge of
DBpedia from Wikipedia Categories., in: NLP-DBPEDIA@
ISWC, 2015, pp. 68–80.

https://github.com/propi/rdfrules
https://github.com/propi/rdfrules

24 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[18] V. Nebot and R. Berlanga, Finding association rules in seman-
tic web data, Knowledge-Based Systems 25(1) (2012), 51–62.

[19] M. Nickel, V. Tresp and H.-P. Kriegel, A Three-Way Model
for Collective Learning on Multi-Relational Data., in: ICML,
Vol. 11, 2011, pp. 809–816.

[20] M. Nickel, L. Rosasco and T. Poggio, Holographic embeddings
of knowledge graphs, in: Thirtieth AAAI conference on artifi-
cial intelligence, 2016.

[21] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston and
O. Yakhnenko, Translating embeddings for modeling multi-
relational data, in: Advances in neural information processing
systems, 2013, pp. 2787–2795.

[22] P.G. Omran, K. Wang and Z. Wang, Scalable Rule Learning
via Learning Representation, in: Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’18,
AAAI Press, 2018, pp. 2149–2155. ISBN 978-0-9992411-2-7.

[23] V.T. Ho, D. Stepanova, M.H. Gad-Elrab, E. Kharlamov and
G. Weikum, Rule learning from knowledge graphs guided by
embedding models, in: International Semantic Web Confer-
ence, Springer, 2018, pp. 72–90.

[24] H. Xiao, M. Huang, L. Meng and X. Zhu, SSP: semantic space
projection for knowledge graph embedding with text descrip-
tions, in: Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[25] W. Zhang, B. Paudel, L. Wang, J. Chen, H. Zhu, W. Zhang,
A. Bernstein and H. Chen, Iteratively Learning Embeddings
and Rules for Knowledge Graph Reasoning, in: The World
Wide Web Conference, ACM, 2019, pp. 2366–2377.

[26] Z. Yin and Y. Shen, On the dimensionality of word embedding,
in: Advances in Neural Information Processing Systems, 2018,
pp. 887–898.

[27] C. Meilicke, M. Fink, Y. Wang, D. Ruffinelli, R. Gemulla
and H. Stuckenschmidt, Fine-grained evaluation of rule-and
embedding-based systems for knowledge graph completion,
in: International Semantic Web Conference, Springer, 2018,
pp. 3–20.

[28] S. Ceri, G. Gottlob and L. Tanca, Logic programming and
databases, Springer Science & Business Media, 2012.

[29] C.K.-S. Leung, Anti-monotone constraints, Encyclopedia of
Database Systems (2009), 98–98.

[30] L.A. Galárraga, N. Preda and F.M. Suchanek, Mining rules
to align knowledge bases, in: Proceedings of the 2013 work-
shop on Automated knowledge base construction, ACM, 2013,
pp. 43–48.

[31] T. Kliegr and J. Kuchař, Tuning Hyperparameters of Classifi-
cation Based on Associations (CBA), in: Proceedings of ITAT
2019, CEUR-WS, 2019.

[32] G.I. Webb, Filtered-top-k association discovery, Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery
1(3) (2011), 183–192.

[33] L. Bustio-Martínez, M. Letras-Luna, R. Cumplido,
R. Hernández-León, C. Feregrino-Uribe and J.M. Bande-
Serrano, Using hashing and lexicographic order for Frequent
Itemsets Mining on data streams, Journal of Parallel and
Distributed Computing 125 (2019), 58–71.

[34] J. Wang, J. Han, Y. Lu and P. Tzvetkov, TFP: An efficient algo-
rithm for mining top-k frequent closed itemsets, IEEE Transac-
tions on Knowledge and Data Engineering 17(5) (2005), 652–
663.

[35] E.R. Omiecinski, Alternative interest measures for mining as-
sociations in databases, IEEE Transactions on Knowledge and
Data Engineering 15(1) (2003), 57–69.

[36] J. Fürnkranz, D. Gamberger and N. Lavrač, Foundations of rule
learning, Springer Science & Business Media, 2012.

[37] P. Hájek, M. Holeňa and J. Rauch, The GUHA method and
its meaning for data mining, Journal of Computer and System
Sciences 76(1) (2010), 34–48.

[38] K. Vanhoof and B. Depaire, Structure of association rule clas-
sifiers: a review, in: 2010 IEEE International Conference on
Intelligent Systems and Knowledge Engineering, IEEE, 2010,
pp. 9–12.

[39] Z. Zheng, R. Kohavi and L. Mason, Real world performance
of association rule algorithms, in: Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discov-
ery and data mining, ACM, 2001, pp. 401–406.

[40] P.D. McNicholas, T.B. Murphy and M. O’Regan, Standardis-
ing the lift of an association rule, Computational Statistics &
Data Analysis 52(10) (2008), 4712–4721.

[41] B. Liu, W. Hsu and Y. Ma, Integrating Classification and As-
sociation Rule Mining, in: Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining,
KDD’98, AAAI Press, 1998, pp. 80–86.

[42] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., A density-based
algorithm for discovering clusters in large spatial databases
with noise, in: KDD, Vol. 96, 1996, pp. 226–231.

[43] A. Cropper and S.H. Muggleton, Learning Higher-Order Logic
Programs through Abstraction and Invention, in: IJCAI, 2016,
pp. 1418–1424.

[44] C. Hocquette and S.H. Muggleton, Can Meta-Interpretive
Learning outperform Deep Reinforcement Learning of Evalu-
able Game strategies?, arXiv preprint arXiv:1902.09835
(2019).

	Introduction
	Related Work
	A Review of AMIE+ of Galárraga et al, 2015
	Specifics of RDF Knowledge Graph Mining
	Rules
	Atom
	Form of Rules

	Measures
	Atom Size
	Support and Head Coverage
	Confidence

	Rule Mining
	Index

	Limitations of AMIE+
	Inability to Process Numerical Data
	Absence of the Top-k Approach
	Coarse Rule Patterns
	Repetitive Calculations
	Exhaustive Calculations
	Limited Choice of Measures of Significance
	Lack of Support for Multiple Graphs
	Lack of Support for Rule Clustering and Pruning

	Proposed Approach
	Faster Projection Counting
	Processing of Numerical Attributes
	Multiple Graphs
	Improvements to Expressiveness of Rule Patterns
	Top-K Approach
	Support for the Lift Measure
	Rule Clustering
	Rule Pruning

	RDFRules: Reference Implementation
	Overview
	Architecture
	Graphs and Datasets
	Indexing
	Rule Mining
	Rule Post-Processing

	Experiments
	Setup
	RDFRules vs AMIE+
	Top-k Approach and Rule Patterns

	Conclusion
	Acknowledgment
	References

