Of Lions and Yakshis

Ontology-based Narrative Structure Modelling for Culturally Diverse Folktales

Franziska Pannach a,*, Caroline Sporleder a, Wolfgang May a and Aravind Krishnan b
Anusharani Sewchurran c

a Institute of Computer Science, University of Göttingen, Germany
E-mails: franziska.pannach@uni-goettingen.de, caroline.sporleder@cs.uni-goettingen.de, may@informatik.uni-goettingen.de

b Department of Electronics and Communication Engineering, College of Engineering, Trivandrum, Kerala, India
E-mail: aravindhp1999@gmail.com

c Department of Media and Cultural Studies, University of KwaZulu-Natal, Durban, South Africa
E-mail: sewchurrana@ukzn.ac.za

Abstract. Vladimir Propp’s theory Morphology of the Folktale identifies 31 invariant functions, subfunctions, and seven classes of folktale characters to describe the narrative structure of the Russian magic tale. Since it was first published in 1928, Propp’s approach has been used on various folktales of different cultural backgrounds. We built an ontology that models Propp’s theory by describing narrative functions using a combination of a function class hierarchy and characteristic relationships between the Dramatis Personae for each function. A special focus lies on the restrictions Propp defined regarding which Dramatis Personae fulfill a certain function. We investigated how an ontology can assist traditional Humanities research in examining how well Propp’s theory fits for folktales outside of the Russian-European folktale culture. For this purpose, a lightweight query system has been implemented. To determine how well both the annotation schema and the query system works, we annotated twenty African tales, and fifteen tales from the Kerala region in India. We evaluate the system by examining two case studies regarding the representation of characters and the use of Proppian functions in African and Indian tales. Our findings are in line with traditional analogous Humanities research. This project shows how carefully modelled ontologies can represent and re-evaluate traditional theories of literary scholars, and how they can be utilized as a knowledge base for comparative folklore research.

Keywords: Computational Folkloristics, Ontologies, Folktales, Narrative Structure, Vladimir Propp, India, Sub-Saharan Africa

1. Introduction

Folk and Fairy tales are a substantial part of oral folklore and an intangible element of cultural heritage. They play an important role in the cultural heritage of regions, nations or cultural minorities. While German fairy tales have been collected and edited by the Grimm brothers at the beginning of the 19th century [1], their Russian counterpart Alexander Afanasyev collected more than 450 folktales of Russian and Slavic origin [2]. Afanasyev’s tale collection later became the foundation of Vladimir Propp’s theory Morphology of the Folktale, which was published in 1928, but only gained international momentum after being translated into English in 1958 [3].

This project aims to construct an ontology, ProppOntology, and a lightweight query system1 for multicultural folktales following the morphological approach of the Russian folklorist Vladimir Propp.

We want to investigate how a carefully modelled ontology can help assessing the intercultural differences between folktales with regard to their narrative structure. For this purpose, we created an OWL (Web On-

*Corresponding author. E-mail: franziska.pannach@uni-goettingen.de.

1Our ontology and the query system is available at https://teaching.gcdh.de/ontology/index.
ontology Language)\(^2\) ontology, and subsequently annotated a small corpus of African and Indian tales according to their Proppian functions and character representations.

Our system permits storing the metadata about folktales and their publications, e.g., authors and editors, sources, or publishers, as well as the annotations\(^3\) following Propp’s *Morphology of the Folktale*, according to a well-designed ontology. An annotation contains the verbalisation of a Proppian function, e.g. the function *Absention* might be verbalised as “Each morning, Sibanda would sneak off to his food tree [...]” [4].

With this, it allows users to query Proppian functions and their verbalisations, and compare tales that share functions or characters with common traits, such as the *Villain* who is an evil witch. Hence, we are providing folklorists with the necessary information to form an opinion on which of two or more divergent analyses is more suitable for the given tale.

The ontology is open for additions of tales from these or other cultural backgrounds. The number of potential comparisons provided through the lightweight query system, and the conclusions folklorists can draw from those, naturally grows with the number of annotations available. The ProppOntology can assist different approaches on intercultural folktale comparison, e.g. how a certain Proppian function is verbalised in different tales, or how the verbalisation of a function in the same tale changes with translation. To this end, we annotated 20 mostly sub-Saharan African tales in their English translation, and 15 Indian tales both in Malayalam and English. We use this small corpus to illustrate the application of the system for comparative analysis.

Comparing Proppian analyses is tedious work and requires a lot of insight in his approach. As of yet and to our knowledge, there is no online system that allows to compare Proppian analyses of folktales to those of other tales or variants of the same tale. Therefore, contextualisation of Proppian analyses remains a manual task.

A description of the project with a focus on African tales can be found in [5].

The paper is structured as follows: the following section introduces the application domain, i.e., Propp’s *Morphology of the Folktale* and a short introduction to the ATU and TMI indices. In Section 3, we give an overview of our modelling approach. Related work is discusses in Section 4. Section 5 describes the used sources of folktales. Section 6 presents the design approaches of the query system, giving more insights in the implementation in Section 7. Section 8 discusses the ontology-aided information extraction from tale texts, which we implemented as a proof-of-concept. Section 9 presents results and describes some use cases from the application point of view. We discuss limitations and future work in Section 10, and give a conclusion in Section 11.

2. Description of the Domain

2.1. Morphology of the Folktale

The Russian folklorist Vladimir Propp introduced 31 invariant functions, shown in Fig. 1 describing the morphology of the Russian magic folktale.

In his work *Morphology of the Folktale*, he introduces seven classes of Dramatia Personae, i.e. agents, within a story: *the hero, the donor, who provides the hero with means to overcome the villain, the dispatcher, the helper, the false hero, and the princess/her father*.

He argues that narratives of folktales always follow a pattern that can be derived from his set of functions. Narrative functions, such as XXXI *Wedding W*, are strictly defined and specify recurrent units from which the tales are constructed. They follow a theory-inherent order, indicated by roman numerals. Furthermore, they are identified by a symbol, either a latin or greek letter, or an abbreviation which represents the function, e.g. *W* (*Wedding*), ↑ (*Departure*) or ↓ (*Return*). A function is always tied to specific Proppian characters, e.g. the *Wedding* function only applies if the *hero* character marries the princess (or a character that fulfills the narrative role of a princess). If a wedding between two other characters takes place, or if it appears at any other point than the end of the plot, the function does not apply. Hence, a story line is constructed from a subset of Proppian functions.

A sequence of functions represents the plot of a tale and is encoded in a string of function literals, as shown in Sequences 1 and 2 in Section 2.2. A function sequence is constructed from a subset of Proppian functions in their specific order. According to Propp, a tale can consist of one or multiple sequences, in the latter case, he calls them *moves*. A tale can consist of serial moves, e.g., two subsequent stories in a tale, or embed-

\(^2\)https://www.w3.org/TR/owl2-overview/

\(^3\)Note that we distinguish between *annotations* of the narrative patterns of the folktale in our domain, and the technical concept of *OWL AnnotationProperties*.
Figure 1. Schematic overview of Proppian functions. Bold lines represent function pairs, numbers on the lower right represent the order in which the functions appear. Contrasting colors indicate function grouping. Source: [6, p.4]

died, where one move interrupts the story line of another move, or even in an interleaved way, being told in parallel.

Propp set four axioms [3, p.21-23]:

1. Functions of characters serve as stable, constant elements in a tale, independent of how and by whom they are fulfilled. They constitute the fundamental components of a tale.

2. The number of functions known to the fairy tale is limited.

3. The sequence of functions is always identical.

4. All fairy tales are of one type in regard to their structure.

Furthermore, he grouped his functions into five categories: Preparation, i.e. the initial functions and first appearances of the main characters, Complication, in which the act of misfortune or villainy takes place, Functions of the Donor, where a helpful figure provides the hero with means to overcome the villain, the Struggle between hero and villain, and Dénouement in which the heroes are rewarded for their action. Functions belonging to the preparation category are represented by Greek letters. An overview about the main functions is given in Fig. 1 [6, p.4].

We investigate Propp’s function categories and specific functions from the point of view of the application domain when we discuss the results in Section 9 at the end of this paper. In the next section, we show some of them exemplarily in a concrete use case.

2.2. Propp and African Folktales

Structural analysis of African folktales and the applicability of Proppian functions to them has not been introduced without critical side-eyeing. Daniel J. Crowley was sceptical whether Propp’s approach was applicable to folklore studies, because in his opinion it was “doing too much violence to the variant nature of tales” [7, p.130].

Since then, studies that investigate the fitness of Propp’s theory for African Tales have been conducted. A prominent example is the “Morphology of the Igbo Folktale” by Chukwuma Azuonye [8].

Azuonye published a morphological analysis of the Obaraedo tale in 1990 [8]. The same tale has been analysed by Ikechukwu Okodo in 2012 [9].

In the tale, the girl Obaraedo is left alone at home by her mother, who gives her specific instructions on how to prepare her food and orders her not to go outside at a specific time of the day, as an evil spirit will come and steal her nose. The girl disobeys her mother, which results in her nose being stolen. After the parents return, the father learns about his daughter’s misfortune, and goes out to consult a wise herbalist, the dibia. The latter accompanies the father home and defeats the evil spirit. The girl receives her nose back and the kids of the community learn to obey their parents.

Both analyses explain how Propp’s functions are represented in the Obaraedo tale. While Azuonye did not provide the full text of the tale, Okodo included...
the text translated to English in his article. From the explanations Azuonye gave on how the Proppian functions appear in the untranslated text, it becomes apparent that both of them worked with the same version of the tale.

However, Azuonye’s findings regarding the structure of the tale are significantly different from Okodo’s analysis. Due to Propp’s formalistic approach, we can easily compare both findings. Azuonye defines the function sequence of the Obaraedo tale as

\[a \beta \gamma \delta \theta aBC \uparrow HIK \downarrow T. \] (1)

While Okodo defines the sequence as

\[\beta \gamma \delta \theta aBC \uparrow FGHIK \downarrow \] (2)

The first difference that we encounter when we compare both analyses is that the initial situation \(\alpha \) does not appear in Sequence 2. The initial situation is often omitted since according to Propp it should not be regarded as an own function, but as “an important morphological element”, which rather introduces the hero and the circumstances in which the tale takes place [3, p.25].

In Sequence 2, the preparatory functions include the tuple Reconnaissance \(\epsilon \), and Trickery \(\eta \) while in Sequence 1, Violation \(\delta \) is directly followed by Complicity \(\theta \).

Following the Departure \(\uparrow \) function, Okodo identifies the function Provision or Receipt of Magical Agent \(F \). Propp’s defines this function as the Hero acquiring the use of a magical agent [3, p.43]. Therefore, we can assume that Okodo sees the herbalist as the hero of the tale. In that case, Okodo’s analysis of the tale is inconsistent, since he uses the Departure function when Obaraedo’s father leaves the village to summon the herbalist. The Departure function, however, is specified for the departure of the hero. Both Azuonye and Okodo use the functions Struggle \(H \) and Victory \(I \), when the herbalist/dibia fights the spirit, indicating again that he fulfills the role of the hero in the tale.

Additionally, they both define the Departure function as departure of the girl’s father, but the Return function as a function of the herbalist/dibia.

In that sense, they are both separating the action described in the functions from the Dramatis Personae who fulfill them. This shows a rather free interpretation of what Propp clearly defined as “The Functions of the Dramatis Personae” [3].

These differences between two folkloric analyses show that the interpretation of Propp’s functions is not universal, nor is there only one correct sequence of functions per tale. Even for Russian magic tales that were annotated by Propp, trained and untrained annotators did not always produce the same analysis as Propp himself. While trained annotators performed better than untrained annotators, a certain vagueness in Propp’s descriptions of Dramatis Personae and functions leaves room for interpretation [10].

Furthermore, for the specific case of the Obaraedo tale as described above, the annotators’ comments on why a function was chosen were added to the function instance as an rdfs:comment. This way, users can comprehend the authors’ reasoning on why a particular function was chosen.

Our ontology can facilitate a comparison between existing analyses like those by Azuonye [8] and Okodo [9], and those of tales from other regions. Existing annotations can be accessed easily through SPARQL queries or by accessing the triple search of the lightweight query system. Therefore, the system allows the study of the Proppian morphology interculturally and language-independently which might lead to new findings in folklore research.

2.3. Motif Indices

The Aarne-Thompson-Uther index (ATU) [11] is used to classify a tale into exactly one class, the tale type. For instance, the tale of the Frog Prince or Iron Henry [1] falls into the ATU class 440 - The Frog King, which belongs into the broader category Magic Tales. Type classes are relatively wide, describing the main story line of the tale. Therefore, each tale can only have one ATU type. Tale types also indicate the relation of tales that belong to the same class. The Aarne-Thompson-Index was first published in 1910, revised by Hansjörg Uther and republished as ATU-Index in 2004.

In contrast, the Thompson-Motif-Index [12] is more fine-grained, describing single motifs, i.e. “recognizable object[s], character[s], or event[s]” [7, p.127], such as characters, actions, or numerical patterns. A tale can contain more than one TMI motif, e.g. the Frog Prince tale includes motifs such as B211.7.1 Speaking Frog, P40 Princesses, P23 Children and Parents, P320 Hospitality, or D935 Transformation: Frog to Person.
3. Modeling of the Domain as an Ontology

Our choice to model Propp’s theory as an ontology was influenced by the flexibility an ontology can provide, e.g. in contrast to a more rigid database approach. We can consider classes and instances as “static facts” of a tale, whereas relations describe the dynamics of the interaction between characters. Furthermore, the ontology-based approach allows us to infer knowledge where annotations are incomplete. The use of an OWL ontology allows us to consider the class hierarchy of Proppian functions, and to describe the instance level of the tales, their instances of Dramatis Personae, and the specific relationships between them that make up the instances of the Proppian annotations.

Since our goal was to use our ontology for narrative annotation and for queries on those annotations, and not for folktale generation like other ontologies, e.g. [13], we are focussing on representations of Proppian functions that allow multiple ways of querying for narratives, as described in Section 6. To allow both character-focused and function-focused queries, functions have representations as ontology classes and as relations.

Therefore, each Proppian function in a tale has at least two representations within the ontology: as instance of a class, and as one or more relations between instances of character classes, and between the function instance and the characters.

As an example, we consider the Indian tale *Kathanar and the Yakshi* in which the hero Kathanar kills the Yakshi, as depicted in Fig. 2. We use the object property defects to connect the two instances of *Hero* (Kathanar) and *Villain* (Yakshi). Additionally, we annotate the appearance of the function *Victory 1* as an instance of the *Victory* class that holds the verbalisations in both English and Malayalam. In addition, the instance of *Victory* is connected to the characters by :hasDefeated and :hasDefeater properties with the corresponding ranges (Villain and Hero). Table 1 gives some examples of these restrictions.

We included bibliographical information about original publications of the tales in ProppOntology. Anthology individuals provide metadata such as title or date of publication. Editors and authors of folktale collections are represented as individuals, since many of them are influential in their fields, e.g. Grimm and Grimm, Afanasyev, or Harold Scheub for tales of the Zulu people. We might want to extend the relationships between a real person and a specific tale beyond the publication, e.g. how collectors influenced the storytelling, in the future.

In the system, and for visualization, we use URIs such as O_2012_ for the appearance of the evil spirit in the 2012 version of the *Obaraedo* tale. The specific individual can then hold further information on how it is verbalised in the given tale.

To extend the available classes of characters, we extended the ProppOntology by including generational hierarchies from [14], see Section 4.

ProppOntology provides multilingual information for classes, supplied by either ourselves4, Nikolina Koleva [14] for the generational classes or Declerck et al [15].

For this purpose, common vocabularies, such as SKOS [16] or the Dublin Core metadata schema [17] are used. Also, we use common owl:AnnotationProperties, such as rdfs:label, rdfs:comment5, e.g. to explain why a specific Proppian function was chosen in a particular analysis.

3.1. Complexity of the Ontology

Basically, the ontology contains information analogous to a traditional database schema: class hierarchy, domains and ranges of properties, required properties. Therefore, its core is in ALC. It also uses inverse roles, subroles and functionality requirements, which extends it to SHTF/OWL-Lite. We should not exclude further extensions that use counting, nominals and datatypes (especially dates), which still is in SHorIQ[D], which is supported by the common tools (here, mainly Protégé).

4Special thanks to Siya Sikobi and Nokubonga Mkhize for the translation into isiZulu.
5https://www.w3.org/TR/owl-ref/#Header
4. Related Work

Peinado et al. [13] modelled a description logic ontology, ProppOnto, based on Proppian functions. Their work is probably the closest to our project. They implemented Proppian functions and some additional subconcepts regarding persons, places and objects as ontology classes. Their description logic foundation was used to generate folktales using Knowledge-Intensive Case-Based Reasoning (KI-CBR). Similar to our project, a significant amount of additional domain knowledge was modelled to achieve their goal of plot generation.

In order to achieve a temporally sound story line, they used relations and concepts from the CBROnto case representation structure [18]. In a two-stage approach, they first generated a raw plot from Proppian functions which were then filled with a textual representation.

Furthermore, Peinado et. al [13] made some design choices that were not pragmatic for our application, e.g., the annotation properties of their classes do not include the literal that represents a function in a function sequence, such as Sequence 1 in Section 2.2. As the users of their generator software do not directly interact with the ontology, this is not a drawback of their work. In our case, we aim to build a system that can assist scholarly Proppian annotations in which the identification of functions through their literal representation is critical.

Most importantly, while the generator application ProtoPropp is still mentioned on the author’s website, Peinado et. al do not provide its source code, and ProppOnto itself is not available.

Declerck et al. [15] created an ontology that modelled Proppian functions as classes with a vast set of rdfs:labels in English, German, and Russian. The Internationalized Resource Identifiers (IRI) of their classes contain a short description of the function according to the corresponding literal, e.g., Delta1. The functions in Declerck’s work are not grouped into the five categories defined by Propp. Furthermore, they did not provide object properties for functions, such as those modelling sequential order or those that connect a function with the corresponding tale it appears in.

The extensive labels and rdfs:comments provided by [15] were found a very useful addition to our existing ontology. Therefore, they were added to ProppOntology and converted to skos:prefLabels for the English labels, and skos:altLabels for the German and Russian labels.

Declerck et al. [19] also built an ontology on the Thompson-Motif-Index in combination with Aarne-Thompson-Uther types. These two indices are core instruments for traditional folktale research, as described in Section 2.3.

Declerck et al provide rdfs:labels in English and German, motifs and types appear both as classes in the ontology and as individuals [20]. Their ontology also includes a set of additional motifs as defined by the ETrap project6. As for now, only the core ATU classes and TMI motifs have been imported into the ProppOntology. While the population of the ontology with motifs and tale types as individuals technically does not follow the approach in our case, they were nevertheless imported to allow possible reuse at a later stage in the project. Following the approach of our project, motifs and tale classes should have only been added as individuals if they occur in a tale that is annotated.

The MOMFER project [21] provides an online search interface for TMI motifs. They also provided a quantitative analysis on the distribution of motifs within their broader categories, finding that motifs or magic, mythological motifs, and motifs of marvel are the most prevalent within the TMI. In a number of case studies, they evaluated the use of motifs in geographical contexts, or the distribution of motifs with respect to different genders of folktale characters [21], [22]. While following a motif-based approach that is different from our structural approach, their work is an important showcase of the possibilities that the use of computational methods can bring to the field of folkloristics. Especially their spatial analysis on motif reuse is similar to what we aim to achieve with regard to intercultural comparison folktales.

Nikolina Koleva [14] built the folktale ontology Monnet that modelled family relations of characters. She used SWRL3 rules for deriving property instances, such as uncle(x,y) and property values, such as isEvil = true. These rules were then used to automatically populate the ontology by iterating through a text, searching for semantic cues that introduce fairy tale characters. Koleva used Nooj grammars to detect the entities and the OWL API to populate the ontology. The automatic extraction of characters and role attribution from fairy tale texts seemed to work comparatively well, albeit on a small number of folktales.

6https://www.etrap.eu
3Semantic Web Rule Language, https://www.w3.org/Submission/SWRL/
Additionally, Koleva provided labels, although mistakenly annotated as dc:language fields, for the character classes in German, English, Russian, and Bulgarian. Those fields were carefully transformed into skos:prefLabel and skos:altLabel.

However, her characters lack certain features such as their verbalisation, or information about the tale they appear in. Therefore, in this project, we tried to implement the semi-automatic population in a different manner.

Nonetheless, the class hierarchy of the characters, including the SWRL rules, and the individuals resulting from the automatic population were imported to the ProppOntology as they are a valuable addition to the ontology beyond Propp’s definition of character roles, especially with regard to the prominent motifs of family relations in folktales from different origins. We excluded parts of the ontology, including Body of Water, Event or Body Part, as they were found to be insufficiently represented, e.g. Body Parts only included the classes Legs and Wings. We restructured the class hierarchy in order to resolve slight inconsistencies, e.g. Parent was not originally a subclass of Relative.

Since Monnet was specifically created to be used on Proppian folktales and it provides multi-lingual labels for classes, we chose Koleva’s work over other genealogical ontologies despite its shortcomings. Furthermore, Monnet was populated with individuals from the Russian tale The Magical Swan-Geese [2] which we found to be a valuable addition to our ontology.

With regard to the structure of African tales, the work of Uta Reuster-Jahn [23] provides insights about the endings of tales of the Merwa people in Tanzania. She elaborates on the lack of a reward situation at the end of a tale, and argues that endings are more a moral resolution, that is represented either by the punishment of the main character or a gain in knowledge and morality of a community. Azuonye’s [8] choice of the Transfiguration function at the end of his function sequence follows the same argumentation. He claims that the result of the tale is an increase in morality for the entire community, i.e. the children now follow their parents’ rules because they learned about the destiny of the victim. While technically, the Transfiguration function is used to represent physical changes, e.g. in clothing of the hero, it shows that Proppian functions might not be well suited to represent Dénouement situations in African tales. We investigate this thesis in the Results and Evaluation Section 9.

5. Sources

The African tales were taken from a number of anthologies. We tried to find a “healthy” mix between scholarly collections of tales, and typical children’s stories. Therefore, we included Harold Scheub’s collection African Tales [24] (2005), Nick Greaves’ children’s book When Hippo was hairy and other tales from Africa [25] (1990), Children of Wax (1989) [4] by Alexander McCall Smith, and Phillis Savory’s Bantu Folk Tales From Southern Africa (1974) [26].

Secondly, we identified a small corpus of Indian tales, from the state of Kerala, published in Malayalam with their English translation. The tales in Malayalam have predominantly been taken from Aithihyamaala [27], a corpus of all the prevalent legends in Kerala written in the 20th century. All the stories, history, mythology, and romance of the Keralite community of the time, are presented in 126 articles. It represents the social and cultural life in the state at that time, and popularised characters, such as Kayamkulam Kochunni, Naranathu Bhrandan and Kadambattathu Kathanar.

The book is still an indispensable reference for historians of the Keralite society, which lacks in historical record keeping. The English versions of the tales have been extracted from a translation of the book Aithihyamaala, The Great Legends of Kerala [28].

To encompass poetical literature in the scope of the study, some stories have been taken from the famous Vadakkan Pattukal, a collection of Ballads in Malayalam. These have survived by oral passage from generation to generation, and are believed to have been written down in the 17th or 18th century. There may have been some additions or reductions over time, but they still remain largely intact. The epic poem Poothapattu has also been included in the corpus [29, 30].

6. Design

The choice to model Propp’s theory by using an ontology has two main motivations. Firstly, the functions are highly hierarchical as they are divided in categories, functions and subfunctions. Secondly, the use of an OWL ontology allows us to represent the Proppian functions not only as classes within the ontology, but additionally to model the connection between the instances of the subclasses of Dramatis Personae, and the relationships between character and Proppian function, as shown in Fig. 2.
This approach allows us to query not only instances of functions, but also the relation they represent between characters in a tale. After all, the functions are defined as “Functions of the Dramatis Personae” [3] and should therefore not be separated from the characters in a tale. To our knowledge, the representation of functions as classes and separate object properties as followed in this project is a novel approach.

To demonstrate how a thoroughly modelled ontology in combination with natural language processing approaches can be employed to semi-automatically populate the ontology, an information extraction component for folktale characters and Proppian functions has been added. This module, as described in Section 8, should be seen as a proof of concept study rather than a perfect tool for extracting information from folktale texts. The implementation of the ontology-guided information extraction is currently not accessible on the project website.

Instead of using the information extraction tool, manual annotation of folktale texts can be used to populate the ontology with additional folktales.

6.1. Competency Questions

For the design of the ontology, we followed Noy and MacGuinness’ approach and defined a set of competency questions [31]. If these questions can be answered by the final ontology, it has fulfilled its expressive purpose. They should be seen as a minimal requirement to the expressivity of the system.

1. Which folktales fall into a given motif class, e.g. ATU 70-99 Other Wild Animals?
2. Which Dramatis Personae appear in a given tale?
3. Which Proppian functions appear in African folktales?
4. How are Dramatis Personae interacting in the African folktales, e.g., which figures use the “interdiction” function?
5. Which sequences of Proppian functions appear in a given tale? Which sequences appear in tales in general?
6. Which Proppian functions follow a given function predominantly, i.e., are there patterns within the Proppian sequences?
7. Who is the editor of an anthology of folktales from a given origin?
8. How are Proppian functions verbalised, i.e., which words are used to describe events that fall into a given function class?
9. Is there a dominating interaction between certain classes of Dramatis Personae?

6.2. Axioms

Following Noy and MacGuinness’ design pipeline [31] further, a set of axioms was defined before the implementation of the ontology. We determine some axioms regarding the publication of the tale and its metadata, e.g.:

- Each tale is published in an anthology, or as part of a journal article.
- Each anthology has at least one editor, a title, a publisher, and a date of publication.
- Each tale has a title.
- A tale can have an author and an origin if known.
- Each tale falls into one of the ATU type classes.
- Each ATU class has an ATU number and a description.

Furthermore, we defined content-related axioms, e.g.:

- Each tale has a set of Dramatis Personae.
- Each fictional character belongs to one or more character classes and is represented by one or more verbalisations.⁵
- If a Proppian function applies to a tale, there is some verbalisation in the text.
- In a tale, Proppian functions always follow a specific order (see below), which is represented by a sequence.
- Each Proppian function is represented by a symbol.

In addition to these axioms, following Propp’s approach, we derive axioms for the description of the narrative. These restrictions mainly model the scope of Proppian functions, e.g., the Wedding function can only be applied if it describes a relation between the Hero and the Princess. We modelled these restrictions using rdfs:range restrictions, e.g.:

```
:hasBride rdfs:domain Wedding ; rdfs:range :Princess .
:hasGroom rdfs:domain Wedding ; rdfs:range :Hero .
```

If a function applies to a tale, the axiom holds. Not all of the functions need to occur in every tale, but all axioms, regarding which Dramatis Personae fulfill them, need to be fulfilled. Additionally, their order needs to remain the same. An exception to the sequential order can be made under special circumstances when a function is inverted [3, p.107].

⁵e.g., in the tale Snow White ‘the stepmother’ and ‘the evil queen’ describe the same individual.
6.3. Modelling Folktales in Description Logic

Modelling folktales in Description Logic was particularly challenging, since certain real-life restrictions do not necessarily hold for the folk tale domain. For instance, while in real life the classes of humans and animals (in the sense of non-human biological animals) would certainly be distinct, these classes might mix in folktales, e.g., transfiguration of humans into animals or a human mother giving birth to animals are recurrent patterns especially in African tales.

Especially with regard to future extensions of the ontology, we needed to make sure that the logical foundations are not preventing the annotation of unforeseen patterns in folktales. Therefore, only general description logic statements, such as those that are indicated by Propp’s theory, have been defined in awareness that this approach might lead to a limited application of ontology reasoning in the future.

First, we defined a set of description logic statements that model the class hierarchy. We distinguish between statements that are content-related, such as Princess ⊑ DramatisPersonae, and those that are metadata related, such as Anthology ⊑ Publication.

Secondly, since our aim was to model Propp’s functions not only as classes but also as relations between folk tale characters, we defined restrictions regarding the range and domain of Proppian functions, e.g., Donor ⊑ ∀ requestsService.Hero. Furthermore, we connected Proppian functions to the corresponding characters, e.g. Departure ⊑ ∀ hasDepartee.Hero, as shown in Fig. 2.

Table 1 exemplarily shows how we modelled Proppian functions as relations between characters. In addition, we modelled functions and their subfunctions as ontology classes. Since the function hierarchy follows directly from Propp’s theory [3], we refrain from listing description logic statements on the class hierarchy for Proppian functions.

6.4. Implementation of Ontology Classes

Fig. 3a shows how the 31 function classes are implemented. They are divided into the five main categories Preparation, Complication, Functions of the Donor, Struggle, and Dénouement. Fig. 3b shows the main character classes, in particular the Proppian characters and the classes imported from [14]. The subclasses of Animal are far from complete, and are extended where needed.

In contrast to the ontology by Declerck et al [15], the classes modelling the Proppian functions and their subfunctions have been named after their original description as published in [3].

Furthermore, in our case the types of Dramatis Personae are modelled as subclasses and not as individuals of the Dramatis Personae class. This way, we can assign characters appearing in a specific tale as individuals of character classes, such as O_Obaraedo as Victim.

Following Propp’s naming conventions, the subfunctions are named following the same pattern as the parent function, e.g., δ1_Interdiction_violated. The ontology was designed in OWL using the Protégé desktop application [32].
Alternative labels consist of translations of the skos:prefLabels in different languages, such as German, Russian, and Bulgarian, that were either imported from the Family Ontology [14] or [15], provided by native speakers of isiZulu for the possible application of the system for African tales in their native languages, or created ourselves. Some English skos:altLabels have been derived from WordNet synsets via the NLTK WordNet interface, in order to increase the number of matches between the folktale text and the skos:prefLabels for the information extraction.

Example specifications for function and character classes are given in Listings 1 and 2, an illustration on a Proppian function instance is shown in Fig. 4.

Some classes appear in pairs, such as the A Lack function and K Liquidation of Lack. They can be combined using the correspondsTo relation.

6.5. Object and Data Properties and their Constraints

As mentioned before, we modelled Proppian functions as classes, capturing their appearance in a tale as individuals. To be able to examine the interaction between folktale characters, we also modelled them as object properties.

Propp [3] defines strictly which character has to perform a certain action in order for a function to apply. For instance, the Hero can be only interrogated by the donor, which implies the function D2 Donor greets and interrogates the Hero. If another person e.g., the villain interrogates the hero, in order to find out more about him or her, the function Reconnaissance applies.

Data properties mainly provide metadata information, such as the tale title or the key used for distinguishing the individuals. A few data properties come with the Family Ontology, such as hasGender.

6.6. Folktale Annotation

Note that the use of the term “annotation” in this section follows the linguistic definition, i.e. the analysis of tales, not the sense of owl:AnnotationProperties.

We asked five different student annotators to provide Proppian analyses for different folktales. Annotators

9http://www.nltk.org/howto/wordnet.html

\[\text{Figure 3. Subclasses Function and Dramatis Personae}\]
Listing 1: Example specification of a Proppian function

```xml
# https://teaching.gcdh.de/ProppOntology/1.0.1#XVIII_L_Victory
ProppOntology: XVIII_L_Victory rdf:type owl:Class;
  rdfs:subClassOf ProppOntology: IV_Struggle ;
  [ rdf:type owl:Restriction ;
    owl:onProperty :hasDefeated ;
    owl:someValuesFrom :Villain ] ,
  [ rdf:type owl:Restriction ;
    owl:onProperty :hasDefeated ;
    owl:someValuesFrom :Hero ] ;
  rdfs:comment "Der Gegenspieler wird besiegt."@de ,
  "The villain is defeated."@en ,
  skos:altLabel "Sieg"@de ,
  "ukunqoba"@zu ,
  skos:prefLabel "Victory"@en ;
  skos:xl.literalForm "I".
```

Listing 2: Example specification of a Character class

```xml
# https://teaching.gcdh.de/ProppOntology/1.0.1#Villain
ProppOntology: Villain rdf:type owl:Class;
  rdfs:subClassOf ProppOntology: Dramatis_Personae ;
  dc:source "Vladimir Propp: Morphology of the Folk tale. Austin , Texas 1968"@en ;
  skos:altLabel "Schurke , Boesewicht"@de ;
  skos:prefLabel "Villain"@en .
```

Figure 4. Graph representation of a Proppian function (dark grey ellipses indicate classes, light grey represents individuals, data property values are indicated by boxes)

were first introduced to the theory, before they annotated Dramatis Personae and their respective Proppian roles, as well as Proppian functions as they appear in the tales. Each character and function instance was annotated as an individual in the ontology. They are identifiable by a key that indicates to which folktale they belong, e.g., individuals starting with COW belong to the tale Children of Wax. Despite a function instance always being connected to a tale by an applies relation, and respectively a character by a appearsIn relation, this naming convention can be used for filtering query results later on and helps keeping the list of individuals comprehensible.

Each function or character of a tale comes with a verbalisation, i.e. their representation in the text (“the Yakshi”, “the witch”, “she”, etc.) In the case of annotations of the same tale in more than one language, we provide verbalisations in both languages, e.g., in En-
glish and Malayalam. We believe this feature allows interesting insights in the cultural transfer that folktales undergo during the translation process.

Furthermore, annotators were asked to provide metadata of the tale, such as the title or the publication it was published in. Each tale was annotated by one annotator. As illustrated in the discussion about the Obaraedo tale in Section 2.2, and in experiments by Bod et al [10], it is very unlikely that two annotators produce the same analysis. Moreover, in making the ontology accessible through the institutional Webprotégé server, we aim to create an environment that allows users to discuss different Proppian analyses, e.g., using the Webprotégé comment functionality, and foster scholarly communication within the discipline of Folkloristics. We do not aim to provide a ground truth in the sense of indisputable Proppian annotations.

Note that every annotation of a tale is represented by an own RDF subgraph that is only connected to the tale, and via rdf:type edges to the classes of ProppOntology, and by the verbalisations to the tale text, but not to any other annotation. Especially, every Dramatis Personae \(p \) of a tale \(t \) detected in an annotation \(a \) becomes a separate RDF node \(\text{uri}(t, a, p) \) – thus, different annotators could make different assignments of the same individuals named in a tale, as described in Section 2.2 for different annotations of the Obaraedo tale. This is not only useful for the current cases of manual annotation, but can also help much to generate automated annotations, or in an interactive process.

6.7. Usage of Ontology Reasoning

As described in Section 3.1, the ontology is in SHIF and might be extended with \(SHOIF(D) \), which is supported by e.g. Protégé.

The ontology reasoning is usually not actually used to derive new knowledge which would be interesting to the users (the only derived information could come from assertions like rdfs:domain/range, e.g., that a defeated Dramatis Personae belongs to class Villain – a fact that an annotator is (or should be) aware of). Instead, the DL framework is merely used as a formal framework that allows for a logical axiomatization with correctness guarantees, and for consistency checks.

Furthermore, as described in Section 2.2 for existing annotations of the Obaraedo tale, sometimes these annotations are actually inconsistent usage of Propp’s approach. One could conclude that these annotators should have used such a logic-based validation system (giving evidence that such a system is useful). In reality, these annotations exist, and might also contribute to research. So, keeping the reasoner turned off they are stored in the underlying database, seen as a pure RDF graph.

On the other hand, considering any (new or existing) annotation of a tale, this subgraph, can be considered (i.e., extracted from the RDF database) separately, to validate it together with the ProppOntology specification using the reasoner.

7. Implementation

In the following section, we discuss the general layout and implementation aspects of the lightweight query system.

The core of the system is a Flask\(^1\)-based web application which provides three major functionalities: queries, annotation, and ontology browsing. While most modern web applications are developed using programming languages like PHP or Ruby, Python was used in the context of this project because of the extensive availability of libraries and toolkits especially for the information extraction. This way, the system was developed in one language, avoiding the need to exchange data back and forth between different applications written in different programming languages.

The Flask application builds the webpages from HTML templates, and communicates with a Fuseki webserver\(^1\) via a RESTful API. The Fuseki server processes the SPARQL queries and sends the results back to the Flask application.

For the ontology processing, an Apache Jena Fuseki server application is used. It provides a comfortable handling of SPARQL updates and queries via a RESTful API. For development purposes, the employment of Fuseki came with the advantage that its interface could be used to check whether the ontology-driven information system that was developed behaves as desired, especially for the verification of the queries.

For the production system, the Fuseki server is hosted on a port that is only accessible from the server on which the Flask application is deployed. That way, we ensure that no requests, especially no SPARQL updates, are sent to the RESTful API except those that

1. https://flask.pocoo.org/
come from the Flask application. This way, the risk of
harmful injections into the ontology is reduced.

Webprotégé is used for the ontology browsing and
annotation part of the system [33]. While querying in
itself already provides a lot of insight, especially a
good overview of individuals that were added, users
might want to see how classes and subclasses are de-
defined. The Webprotégé instance is not directly con-
ected to the Flask application. A MongoDB database
is used for managing Webprotégé user accounts.

7.1. Connectivity of the ProppOntology to other
Knowledge Bases

The system itself is a full-fledged computer-supported
cooperative work-style tool for annotating tales ac-
cording to Propp’s functions. Its users in general log
in with personalized accounts and use the Webprotégé
user interface where they can add data and also ed-
it/extend the ontology. The additions to the ontology
are exported regularly, inspected for consistency and
made available via the Fuseki-Server.

Since the data itself is stored as RDF data, it is also
possible to use an RDF level API, e.g., to add bulk bib-
liographical data permanently to the system’s knowl-
edge.

The system’s knowledge can also be exported as
RDF data, either as a file, or as Linked Open Data,
and it provides a SPARQL interface where the ontol-
ogy can be queried using the corresponding SPARQL
endpoint12. Both variants make it interoperable with
remote data (similar annotations) that use the same on-
tology, or with different information that uses the same
URIs for the tales (or, connected by owl:sameAs state-
ments). Listing 3 illustrates how the ontology can be
connected to additional knowledge bases, such as the
Mondial ontology [34] for geographical information.

Listing 3: Example query connecting ProppOntology
to other knowledge bases

PREFIX mondial: <http://www.semdwebtech.org/mondial/10/meta#>
PREFIX ProppOntology: <https://teaching.gcdh.de/ProppOntology/>

SELECT ?t ?p ?d
WHERE {
 ?t a ProppOntology:Tale .
 SERVICE <http://www.semdwebtech.org/mondial/10/>{
 }
}

7.2. Queries

The users of the light-weight query system can
query the ontology in three ways. Firstly, a basic text
field can be used for advanced queries, triple queries

12https://teaching.gcdh.de/sparql/ds/sparql

13https://teaching.gcdh.de/sparql
On the other hand, nominal phrases of non-living objects that are repeated through the text can indicate a motif, such as the tree that Cinderella repeatedly visits which supplies her with the ball gown [1] corresponds to the TMI motif D950 Magic Tree. As of yet, we focussed on the extraction of characters and instances of Proppian functions and leave the motif extraction efforts for a future project.

While Wimalasuriya and Dou argued that linguistic extraction rules should be part of the ontology [35], we implemented the natural language processing elements entirely on the Flask side of the application. With a rule based approach, e.g., using regular expressions or gazetteer lists, it would make sense to include it within the ontology. However, this project followed a machine learning approach that used the Python module NeuralCoref 14.

8.1. Entity Recognition for Folktaile Characters

Initially, a set of syntactic rules were defined to extract potential candidates of Dramatis Personae from the text. However, this approach did not yield satisfying results. The main reason might be that the rules for the appearance of characters in tales must naturally be relatively broad.

A rule like: \(NP : < DT >? < JJ > * < NN > \), would deliver correct nominal phrases, such as the girl, but also yield many false positives, since not every grammatically correct nominal phrase indicates a folk-tale character. Stricter, more sophisticated rules would likely not find entities that are verbalised in a simple manner, like the man.

The NLTK toolkit for Python provides a named entity chunker ne_chunk15. Expectedly, fairy tale texts do seldomly supply named entities, with exception of some popular tales like Hans in Luck or the Obaraedo tale discussed before. Usually, characters are introduced in a more general way, e.g., the girl. Therefore, the pure named entity recognition task was abandoned.

Since verbalisation of characters is one of the interesting features the ontology is supposed to supply, the focus shifted to the resolution of coreferences instead.

The main idea behind using coreferences was that entities or other important features will likely be repeated throughout the text. We hypothesised that instances of Dramatis Personae yield particularly long coreference chains since they are key elements in folktale plots.

A satisfyingly working coreference resolution tool would not only provide characters that occur in the text, it would also provide reoccurring motifs, e.g., a tale revolving around an apple tree would yield many coreferences for apple tree or tree. Using a coreference approach yields results for named entities as well as unnamed entities, which is the most significant advantage and the main reason this approach was chosen.

From the available coreference resolution approaches, the NeuralCoref16 approach was found to be the most promising. Although NeuralCoref was initially designed for coreference resolution in chatbot systems17, this approach seems to work reasonably well on English folktale texts.

The text is first preprocessed using Spacy’s nlp method18. Subsequently, coreferences are resolved using NeuralCoref. Candidate entities of characters are identified from the text using Spacy’s named entity recognition method ents, finding token sequences from the entire text that are labelled as Person. Since this list alone yields very noisy results, the candidate tokens are then compared to the antecedents in the coreference clusters. Candidates that do not appear in the coreference clusters are abandoned.

8.2. Extraction of Instances of Proppian Functions

For extracting occurrences of Proppian Functions, the extensive SKOS labels provided by the ontology were employed. For the time being, we extract function instances from English tale texts, therefore only skos:prefLabel fields are used. However, skos:altLabels could be used to identify instances for classes in different languages in the future.

For the information extraction, the text is preprocessed as described above. A SPARQL query yielding the values of all pref:Labels and their corresponding classes is sent to the Fuseki server at the beginning of the text processing.

After the coreferences are identified, a list of first mentions in all the coreference chains is created. Each mention is tokenized and stripped of punctuation. A list of tokenized prefLabels is created. Both lists are then lemmatized using the NLTK WordNetLemmatizer and compared. If one antecedent matches a token

14https://huggingface.co/coref/
15https://www.nltk.org/api/nltk.chunk.html
16https://coref.cardiff.ac.uk/
18https://spacy.io/api/doc
in a prefLabel, it is added to the list of potential candidates for that particular class.

The results of both approaches are then handed back to the Flask application, which creates an input form. If a potential person is found, a dropdown list allows the user to select the correct ontology class. If a candidate class is found by the second approach, the class name is shown next to the input field. Users can then change the data and create their own annotation.

9. Results and Evaluation

This section reports the quantitative results of the application of the Proppian annotations of African and Indian folktales that can be gathered by querying the ontology. To date, the corpus of annotated tales includes 20 (mostly sub-Saharan) African tales and 15 tales from the region of Kerala in southern India.

We want to investigate the annotations with respect to the structure of the tales, paying particular attention to initial and final functions, and see how characters are represented in culturally different tales. It should also be borne in mind that our corpora are relatively small and results can therefore only be indicative of potential tendencies that would have to be verified on a larger corpus.

We believe that our results are potentially interesting for folklorists who want to compare Proppian analyses of African and Indian tales. Furthermore, existing theories about those tales, e.g. [23], [36], can be investigated and supported.

To evaluate the ontology, we are phrasing natural language questions as SPARQL queries to our lightweight query system.

We plan on extending the functionality of the frontend in the future, e.g., by adding visualizations for the data that is currently only displayed in a list.

9.1. Case Studies

9.1.1. Narrative Structure of Tales

We now want to investigate how the structure of tales differs throughout the small corpus. Propp divided the 31 functions into five categories, Preparation, Complication, Functions of the Donor, Struggle, and Dénouement. The annotated tales were analysed to determine how prevalent these five categories are. Fig. 5 shows the mean percentage of each of the categories among function sequences from African and Indian tales.

We can see that African tales focus more strongly on the preparatory functions, e.g., the description of the initial situation. Indian tales, on the other hand, stress the complicating functions more, e.g., the acts of villainy or the beginning counteraction. While 40% of the mean function sequence length in African tales consists of preparative functions ($\alpha - \theta$), and 27% consist of functions from the Struggle category, only 5% of the sequence length is made up of function from the Dénouement category. In Table 2, only four of the eleven functions fall into that category. The rest of the final functions belong to the Struggle category, with the exception of Provision of Magical Agent F (Functions of the Donor).

![Figure 5. Composition of African and Indian tales by function classes](image)

We see a different behaviour in Indian tales, which focus more on the Complication aspects of story telling, i.e. the acts of Villainy or the Departure of the Hero. The complication functions make up 31% of the mean function sequence length. Neither story telling cultures seem to make extensive use the Functions of the Donor.

Tables 2 and 3 illustrate the different tale beginnings and endings for African and Indian tales. The African tales that were investigated showed a clear preference for the Proppian functions Interdiction γ, Absentation β and Trickery η at the beginning of the tales. This indicates, that Propp’s preparatory functions are well suited for representing African tales beginnings. The only exception is Azuonye’s analysis of the Obarae do tale [8], where the initial function is $initial\ situation\ \alpha^{19}$ and Absentation β is the second function. Also note that in Okodo’s analysis [9] of this tale the initial

19Propp himself states that the initial situation function is not technically a function. [3] Therefore, in Tables 2 and 3 the beginning of the tale starts with the first plot-driving function.
function is indeed Absentation β as discussed in Section 2.2.

Interestingly, the distribution of ending functions reported in Tables 2 and 3 might allow some new interpretations. While the functions belonging to the Dénouement class symbolise some sort of reward for the hero’s struggles, only four out of eleven different ending functions in African tales belong into that category, corresponding to seven out of 20 tales.

This could indicate that the reward for heroes in African tales is not to gain something, e.g. a throne, the princess, monetary reward, or fame, as described in Propp’s Dénouement functions. Instead, the “reward” seems to be to restore the status from the beginning of a tale, e.g. returning home, liquidation of lack brought onto the hero by the villain, or victory over some form of evil. These end functions indicate a lack of individual reward, e.g. monetary, in African tales which is in line with previous analyses for African tales as discussed in Section 4. [23]

This particularity should further be investigated as the population of the ontology grows.

It might be worth studying the function sequence endings in greater detail. Folklorists might come to the conclusion that an alternative to Dénouement with an new set of functions might be worth defining for African tales.

For Indian tales, we find a slightly different division of initial and concluding functions, as shown in Table 3. The non-preparatory function Villainy/Lack A appears four times as an initial function, if we ignore the Initial Situation α, which appears 14 times in total. The other start functions fall into the Preparation category.

The tale endings Return ↓ and Liquidation of Lack K fall into the Struggle category. The remaining eight ending functions belong into the category of Dénouement. In Indian tales we observe less diverse tale endings than in African tales, and Propp’s Dénouement category seems to be better suited. Nine out of 15 tales end in Dénouement functions.

9.1.2. Patterns of Functions

Spatial distance seems to play a certain role in all tales. The functions Departure ↑ and Return ↓ appear alone or together in eight of 20 African tales. In Indian tales, they appear 13 times, counting occurrences in multi-move tales separately. In four African tales and nine Indian tales, both Departure ↑ and Return ↓ can be found as a pair.

The Departure ↑ function appears without a corresponding Return ↓ once in African tales and four times in Indian tales, while Return ↓ appears on its own three times in African tales.

The appearance of the functions Return ↓ and Departure ↑ on their own could be an indicator towards the prevalence of transformation patterns, in this case spatial transformation, which Harold Scheub found “reveal[ing] the way people of the region survived the onslaught of colonialism.” [36, p.20] He argues that oral story telling serves as a form of resistance in which metaphors help listeners to identify with characters. This might also explain why African tales give more room for preparatory functions, as shown in Fig. 5, e.g. to create a setting that recipients can recognize.

Another prominent pattern is the pair Villainy A/Villainy Lack a and the corresponding function Liquidation of Lack K and their subfunctions. The pair appears together in nine African tales and ten Indian tales resp. moves. The distance between Villainy A/Villainy Lack a and Liquidation of Lack K ranges between one function and seven functions in African tales, and three to six functions in the Indian corpus.
Additionally, Villainy A/Villainy Lack a appears alone in five sequences of African tales and seven times in the Indian corpus. This indicates that in 25% of the analysed African tales and 47% of the Indian tales, some form of harm is done to the hero or his/her family members without being resolved later.

In line with Propp’s theory, there is no occurrence of Liquidation of Lack without a preceding Villainy A/Villainy Lack a in African or Indian tales.

9.1.3. Representation of Characters

Characters in the annotated African tales mainly belong to three upper classes, Animal (23), Family Member (30) and Dramatis Personae (48). Of course, one character can belong to multiple of those upper classes. Fig. 6 shows the distribution of Proppian characters in our corpus. For the tales from India, the most prevalent character classes are Human (44) and Dramatis Personae (57). The Dramatis Personae fall into seven categories as defined by [3]: Hero/Victim, Villain, Helper, Donor, Dispatcher, Princess and her father, and False Hero.

The classes Hero and Villain appear 16 and 17 times in the corpus of twenty African tales. Five instances of Victim, three instances of Donor, and two instances of Helper occur; Seeker and Dispatcher both appear exactly once. There was no instance of either Princess or Princess’ Father.

In our corpus of fifteen Indian tales, we find that the most common Proppian characters are Hero (19), Villain (14), and Victim (13). In addition, the classes Donor and Helper appear five times each, and there is one occurrence of the Dispatcher class.

Since we imported the Family Ontology [14] to gain more insights on how Proppian characters are represented in tales, we allowed characters to belong to more than one character class. For instance, if the victim in a tale is the father of the hero, his character might fall into the classes victim, man, and father, and husband if the hero’s mother appears in the tale as well.

Fig. 7 shows character classes in both Indian and African tales that do not belong into the group of Proppian Dramatis Personae. While African tales show a preference for animal characters, we can also see that the agents are more diverse than in Indian tales. Especially family relations seem to play a more significant role. On the other hand, Indian tales show a strong preference towards male characters.

Since one character can belong to multiple classes, we can investigate the distribution of Proppian roles among other classes. Fig. 8 shows the distribution of the hero class among other character classes. We can see the same preferences towards animal resp. male character classes as above.

Fig. 9 shows the distribution of the villain class among other character classes. Interestingly, while the African tales follow the same pattern as before, i.e., the
Figure 9. Distribution of the Villain class among other character classes (multiple occurrences possible)

Villain mainly belonging to animal classes, the Indian tales show almost the same number of female and male villains.

Regarding the representation of agents in the corpus of tales that were annotated, we see that the Dramatis Personae mainly consist of the Proppian roles Hero and Villain in African tales, and Hero, Villain and Victim in Indian tales.

Especially the lack of Donor figures in our annotations seems to indicate that this role is a specific feature in Russian magic tales, for which Propp’s theory was initially developed.

As expected, animal characters play a dominant role in African tales. Noticably, they mainly seem to fulfill roles of Villain, see Fig. 9 and Hero, see Fig. 8. This could be an indicator that a clear separation of characters into good and evil is characteristic for animal tales. In Indian tales, Heros are predominantly male figures, see Fig. 8. While our corpus is very limited and by no means representative, the representation of characters might be a relict of patriarchal structures in early Indian society where stories originated. [37]

In general, comparative ontologies like the Propp-Ontology have the potential to reveal the universal nature of powerful ideologies and traditional stereotypes. Ortner quoted in Tuğlu [38, p.18] indicates that “universality of female subordination, the fact that it exists within every type of social and economic arrangement” is “something very profound, very stubborn”. In this case, glimpses of patriarchy may be seen in the character distribution of the male and female figures. In Indian tales, the male figures have the highest distribution. Patriarchy creates hierarchical binaries across genders which manifest in the narrative in particular ways [39, p.161]. The male character is most often coded as the rational, prime mover acting in a range of capacities and roles, while the female is confined to the stereotype governed by perceived biological imperative, usually represented in the role of the mother [40, p.6]. Moutsou further argues that the female in narrative structure is cast within the ‘Madonna –Whore axis’. The ‘Madonna’ (or mother figure) is passive and subordinate, and hence not a plot-driving character. The ‘Whore’ (or witch figure) is active, independent and uncontrollable [41, p.184]. The ‘mother’ figure reinforces female connection to biology as the key marker of identity, and is usually self-effacing, keen to obey [41, p.185]. She is present yet either not heard or serves only as a frame for action, e.g. by giving an interdiction at the beginning of a tale, never or rarely the pole position of prime mover [38, 15]. This basic analysis of gender indicates the range of work possible by modelling ontologies to represent ideological and traditional stereotypes in folktales. Future modelling could extend Proppian functions to include voice and further delineations of gender.

10. Limitations & Future Work

10.1. Fulltexts

By design, no fulltexts are stored in the context of the ontology. We do not see this as a limitation of the usability of the system, as the verbalisations we provide are sufficient proof for the Proppian analyses. However, first time users might expect to be able to access the entire tale and not only the verbalisations stored when annotating functions and characters. This could be potentially achieved by storing the fulltexts as annotated XML-TEI²¹ files and referencing the verbalisations by using pointers to the specific parts of the document. For this, the Web Annotation Data Model [42] (which follows the concept of XLink third-party links [43]), can be employed by using annotation instances that point to the fulltext fragment (and/or also video/audio) on their target side, and to the URI of the Propp function instance on their body side. An alternative would be to incorporate textual representations of characters and Proppian functions by using TEI as Linked Open Vocabulary, as proposed by Ciotti and Tomasi [44].

However, copyright aspects need to be taken into consideration when following this fulltext approach.
10.2. Natural Language Questions

Efforts have been made to generate the SPARQL queries answering the competency questions automatically. However, a natural-language-to-SPARQL system would either have to rely on an extensive rule system or needs to be trained on a large set of questions and corresponding queries if a machine learning approach is used. Unfortunately, the implementation of this feature exceeds the scope of this project. However, for the system at hand such a feature would certainly be useful, especially since it would allow users with lower levels of IT-proficiency to use it in a more intuitive manner. Attempts in this direction have been made by the ORAKEL project [45], or [46].

10.3. Future Work

As the ontology grows, potentially also linking additional media types such as video and voice recordings, one might consider taking into account additional features, such as features like facial expressions, reactions of the audience, interaction between narrator and audience, degree of attention, and composition of the audience “from the standpoint of age, sex, class or other social division” [7] should be added as datatype properties.

Furthermore, we want to add the possibility to visualize findings, e.g., by showing origins of tales on a map.

Measuring occurrence of function pairs and their distance, as discussed in Section 5, could be automated with relatively low effort. This feature would certainly become more interesting as the ontology grows.

As the ontology can be extended by folklorists with different cultural foci, we hope to create a larger foundation for the intercultural comparison of folktales. The more folktales we can provide, the more possible applications our tool could yield. If we could host a substantial number of instances per function with their respective verbalisations, this data could be used to train a machine learning system for automatic function suggestion, extending the information extraction functionalities discussed in Section 8. The more tales of different origins are added by specialists, the more thorough investigations can be made through queries. We aim to make this system available to folklorists around the world, in order to build a community-driven knowledge base on Proppian analyses.

11. Conclusion

In this project, we aimed to show how ontologies can help formalise traditional theories from the Humanities.

In contrast to many successful ontology-related Digital Humanities projects, our project was not modelled on a vast amount of data. Instead, we created the ProppOntology in a bottom-up approach from a theory-oriented point of view, with a specific purpose – the comparison of Proppian analyses.

We chose to model Vladimir Propp’s theory on the Morphology of the Folktale [3] and demonstrated that we can easily access and compare data about folktales from different cultural backgrounds by translating traditional folkloristic questions about the structure of tales or the representation of characters into queries. A carefully modelled ontology cannot only serve as means to access data and put it into context, but it can also assist traditional Humanities researchers approaching research questions that are commonly solved by manual analysis and comparisons even today.

Our system allows users to compare different analyses of the same tale, and therefore holds potential to spark scientific discourse, providing a platform for different interpretations of Proppian functions, e.g., in the case of the Obaraedo tale as discussed in the beginning.

Proppian analyses are used both for teaching and research. Unfortunately, many of these analyses could previously not be contextualised and compared, because a digital tool to collect annotations was still missing.

We present an ontology that is accessible and we invite folklorists to share their annotations on our Webprotégé instance. This way, we provide a tool for folklorists who are interested in contextualising their analyses in an intercultural environment. Furthermore, we would like to invite folklorists and linguists to expand our set of translations for Proppian functions, Dramatis Personae, motifs and other concepts.

We believe that our ontology may be of interest for intercultural research on folktales, but also for translation studies because verbalisations of the same character or function can be provided together. While still work in progress, our lightweight query system allows users to access the data and draw own conclusions about Proppian morphology and character representations in tales of different origins.
12. Acknowledgements

We would like to thank Thierry Declerck, Jean Vincent Fonou Dombeu, and Yasar Abbas for their help with the conceptualization of the project. We are grateful to Yuvika Singh and Danielle Rüssel for help with the annotation of the African folktales.

References

[16] A. Miles and S. Bechhofer, SKOS simple knowledge organization system reference, W3C recommendation 18 (2009), W3C.

[40] M.A. Ferguson, Images of Women in Literature, University of Massachusetts, 1986.

