LL(O)D and NLP Perspectives on Semantic Change for Humanities Research

Florentina Armaselu a,*, Elena-Simona Apostol b, Anas Fahad Khan c, Chaya Liebeskind d, Barbara McGillivray e, f, Ciprian-Octavian Truică g, Andrius Utka h, Giedrė Valunaitė Oleškevičienė i, Marieke van Erp j

a Luxembourg Centre for Contemporary and Digital History (C²DH), University of Luxembourg, Luxembourg
E-mail: florentina.armaselu@uni.lu

b Department of Computer Science and Engineering, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania
E-mail: elena.apostol@upb.ro

c Istituto di Linguistica Computazionale «A. Zampolli», Consiglio Nazionale delle Ricerche, Italy
E-mail: fahad.khan@ilc.cnr.it

d Department of Computer Science, Jerusalem College of Technology, Jerusalem, Israel
E-mail: liebchaya@gmail.com

e Theoretical and Applied Linguistics, Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, United Kingdom
E-mail: bm517@cam.ac.uk

f The Alan Turing Institute, United Kingdom
E-mail: bmcgillivray@turing.ac.uk

g Department of Computer Science and Engineering, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania
E-mail: ciprian.truica@upb.ro

h Centre of Computational Linguistics, Vytautas Magnus University, Kaunas, Lithuania
E-mail: andrius.UTKA@vdu.lt

i Institute of Humanities, Mykolas Romeris University, Vilnius, Lithuania
E-mail: gvalunaite@mruni.eu

j DHLab, KNAW Humanities Cluster, Amsterdam, Netherlands
E-mail: marijke.van.erp@dh.huc.knaw.nl

Author contributions: a, sections 1, 2, 4, 5, 7 and overall structure; b, section 4; c, section 3; d, section 4; e, section 4; g, section 4; h, section 4; i, section 2; j, section 6. All the authors critically revised and approved the final version of the manuscript submitted to the Journal.

Abstract. The paper presents a survey of the LLOD and NLP methods, tools and data for detecting and representing semantic change, with main application in humanities research. Its aim is to provide the starting points for the construction of a workflow and set of multilingual diachronic ontologies within the humanities use case of the COST Action Nexus Linguarum, European network for Web-centred linguistic data science. The various sections focus on the essential aspects needed to understand the current trends and to build applications in this area of study.

Keywords: linguistic linked open data, natural language processing, semantic change, ontologies, humanities
1. Introduction

The detection of semantic change in historical corpora and representing how a concept has changed over time as linked data is a core challenge on the intersection of digital humanities (DH) and Semantic Web. Although important advances in the development of natural language processing (NLP) methods and tools for extracting historical entities and modelling diachronic linked data, as well as in the field of Linguistic Linked Open Data (LLOD) have been made so far [1–3], there is a need for a systematic overview of this growing area of investigation.

The contribution of this paper is a literature survey. We posit that to better contextualise and target the combination of NLP and LLOD techniques for detecting and representing semantic change, the main workflow implied in the process should be taken into account in the description. The term semantic change is used as generally referring to a change in meaning, either of a lexical unit (word or expression) or of a concept (a complex knowledge structure that can encompass one or more lexical units and relations with other concepts). Semantic change and other related terms, such as semantic shift, semantic drift, concept drift, concept shift, concept split, are also introduced and explained in the context used by the authors considered for discussion.

The current study is developed as part of the use case in the humanities (UC4.2.1) carried out within the COST Action European network for Web-centred linguistic data science (Nexus Linguarum), CA18209. The goal of the use case is to create a workflow for the detection of semantic change in multilingual diachronic corpora from the humanities domain, and the representation of the evolution of parallel concepts, derived from these corpora, as LLOD. The intended outcome of UC4.2.1 is a set of diachronic ontologies in several languages and methodological guidelines for generating and publishing this type of knowledge using NLP and Semantic Web technologies. Thus, the paper is organised in seven sections describing the state-of-the art in data, tools, and methods for NLP and LLOD resources that we deem important to a workflow designed for the diachronic analysis and ontological representation of concept evolution. Our main focus is the concept change for humanities research, as this often involves investigations and data that span a long time, but the concepts may also apply to other domains. The various sections will focus on the essential aspects needed to understand the current trends and to build applications for detecting and representing semantic change.

The remainder of this paper is organised as follows. Section 2 discusses existing theoretical frameworks for tracing different types of semantic change. Section 3 presents current LLOD formalisms (e.g. RDF, OntoLex-Lemon, OWL-Time) and models for representing diachronic relations. Section 4 is dedicated to existing methods and NLP tools for the exploration and detection of semantic change in large sets of data, e.g. diachronic word embeddings, named entity recognition (NER) and topic modelling. Section 5 presents an overview of methods and NLP tools for (semi-) automatic generation of (diachronic) ontologies from text corpora. Section 6 provides an overview of the main diachronic LLOD repositories from the humanities domain, with particular attention to collections in various languages, and emerging trends in publishing ontologies representing semantic change as LLOD data. The paper is concluded by Section 7 where we discuss our findings and future directions.

2. Theoretical frameworks

Different disciplines (within or applied in the humanities) make use of different interpretations, theoretical notions and approaches in the study of semantic change. In this section, we survey different theoretical frameworks that depart either from knowledge or from language.

2.1. Knowledge-oriented approaches

Scholars in domains such as history of ideas, intellectual history and philosophy focus on concepts as units of analysis. In his comparative reading of German and English conceptual history, Richter accounts for the distinction between words and concepts in charting the history of political and social concepts, where a concept is understood as a “forming part of a larger structure of meaning, a semantic field, a network of concepts, or as an ideology, or a discourse” [4, p.10]. Basing his study on three major reference works by 20th-century German-speaking theorists, Richter notes that outlining the history of a concept may sometimes require tracking several words to identify continuities, alterations or innovations, as well as a combination
of methodological tools from history, diachronic, and synchronic analysis of language, semasiology, onomasiology, and semantic field theory. He also highlights the importance of sources (e.g. dictionaries, encyclopaedias, political, social, and legal materials, professional handbooks, pamphlets and visual, nonverbal forms of expression, journals, catechisms and almanacs) and procedures to deal with these sources, employed in tracing the history of concepts in a certain domain, as demonstrated by the considered reference works.

Within the same framework of intellectual history, Kuukkanen proposes a vocabulary allowing for a more formal description of conceptual change, in response to critiques of Lovejoy’s long-debated notion of “unit-ideas” or “unchangeable concepts” [5]. Assuming that a concept X is composed by two parts, the “core” and the “margin”, underlain by context-unspecific and context-specific features, Kuukkanen describes the core as “something that all instantiations must satisfy in order to be ‘the same concept’”, and the margin as “all the rest of the beliefs that an instantiation of X might have” (p. 367). This paradigm enables to record a full spectrum of possibilities, from conceptual continuity, implying core stability and different degrees of margin variability, to conceptual replacement, when the core itself is affected by change.

Another type of generic formalisation, combining philosophical standpoints on semantic change, theory of knowledge organisation and Semantic Web technologies, is proposed by Wang et al. who consider that the meaning of a concept can be defined in terms of “intension, extension and labelling applicable in the context of dynamics of semantics” [6, p. 1]. Thus, since reflecting a world in continuous transformation, concepts may also change their meanings. This process, called “concept drift” [2], occurs over time but other kinds of factors, such as location or culture, may be taken into account. The proposal is framed by two “philosophical views” on the change of meaning of a concept over time assuming that: (1) different variants of the same concept can have different meanings (concept identity hypothesis); (2) concepts gradually evolve into other concepts that can have almost the same meaning at the next moment in time (concept morphing hypothesis). In line with a tradition in philosophy, logic and semiotics going back to Frege’s

2The term “semantic drift” is also used, although the difference is not explicitly defined. See also the discussion on [7].
among subideas” and “fine-grained analyses of conceptual (dis)continuities” (pp. 832 - 833).

Starting with an overview of concept change approaches in different disciplines, such as computer science, sociology, historical linguistics, philosophy, Semantic Web and cognitive science, [11] proposes an adaptation of Kuukkanen’s and Wang et al.’s interpretations for modelling semantic change. Unlike [6], Fokkens et al. argue that only changes in the concept’s intension (definitions and associations), provided that the core remains intact, are likely to be understood as concept drift across domains; what belongs to the core being decided by domain experts (oracles). Changes of the core would determine conceptual replacement (following [5]), while changes in the concept’s extension (reference) or label (words used to refer to it) are considered related phenomena of semantic change that may or may not be relevant and indicative of concept drift. [11] applies these definitions in an example using context-dependent properties and an RDF representation in Lemon4. The authors also draw attention to the fact that making the context of applicability of certain definitions explicit can help in detecting conceptual changes in an ontology and distinguish between changes in the world, that need to be formally tracked, and changes due to corrections of inadequate or inaccurate representations. However, obtaining the required information for the former case appears to be a challenging task, a possible path of investigation mentioned in the paper referring to recent advances in distributional semantics that can be effective in capturing semantic change from texts.

A different interpretation is offered by Stavropoulos et al. through a background study intended to describe the usage of terms such as semantic change, semantic drift and concept drift in relation to ontology change over time and according to different approaches in the field [7]. Thus, from the perspective of evolving semantics and Semantic Web, the authors frame semantic change as a “phenomenon of change in the meaning of concepts within knowledge representation models”. More precisely, semantic change denotes “extensive revisions of a single ontology or the differences between two ontologies and can, therefore, be associated with versioning” (p. 1). Within the same framework, they define semantic drift as referring to the gradual change either of the features of ontology concepts, when their knowledge domain evolves, or of their semantic value, as it is perceived by a relevant user community. Further distinction are drawn between intrinsic and extrinsic semantic drift, depending on the type of change in the concept’s semantic value.

That is, in respect to other concepts within the ontology or to the corresponding real world object referred by it. Originated from the field of incremental concept learning [12] and adapted to the new challenges of the Semantic Web dynamics [13], concept drift is described in [7, p. 3] as a “change in the meaning of a concept over time, possibly also across locations or cultures, etc.”. Following [6], three types of concept drifts are identified as operating at the level of label, intension and extension. Stavropoulos et al. transfer this type of formalisation to measure semantic drift in a dataset from the Software-based Art domain ontology, via different similarity measures for sets and strings, by comparing each selected concept with all the concepts of the next version of the ontology and iterating across a decade. The two terms, semantic drift and concept drift, initially emerged from different fields but according to [7] an increasing number of studies show a tendency to apply notions and techniques from a field to the other.

2.2. Language-oriented approaches

Scholars from computational semantics employ a slightly different terminology than scholars from history of ideas, intellectual history and philosophy. Kuzov et al., for example, describe the evolution of word meaning over time in terms of “lexical semantic shifts” or “semantic change”, and identify two classes of semantic shifts: “linguistic drifts (slow and regular changes in core meaning of words) and cultural shifts (culturally determined changes in associations of a given word)” [14, p. 1385].

Disciplines from more traditional linguistics-related areas provide other types of theoretical bases and terminologies to research in semantic change and concept evolution. For instance, Kvastad underlines the distinction made in semantics between concept and ideas, on one side, and terms, words and expressions, on the other side, where a “concept or idea is the meaning which a term, word, statement, or act expresses” [15, p. 158]. Kvastad also proposes a set of methods bridging the field of semantics and the study of the history of ideas. Such approaches include synonymy, subsumption and occurrence analysis allowing the historians of ideas to trace and interpret concepts on a systematic basis within different contexts, authors, works and
periods of time. Other semantic devices listed by the
author can be used to define and detect ambiguity in
communication between the author and the reader, for-
malise precision in interpretation or track agreement
and disagreement in the process of communication and
discussion ranging over centuries.

Along a historical timeline, spanning from the mid-
dle of the 19th-century to 2009, Geeraerts presents the
major traditions in the linguistics field of lexical se-
manics, with a view on the theoretical and method-
ological relationships among five theoretical frame-
works: historical-philological semantics, structurist seman-
tics, generativist semantics, neostructuralist se-
manics and cognitive semantics [16]. While focusing
on the description of these theoretical frameworks
and their interconnections in terms of affinity, elabo-
ration and mutual opposition, the book also provides
an overview on the mechanisms of semantic change
within these different areas of study. The main classi-
fications of semantic change resulted from historical-
philological semantics include on one hand, the se-
masiological mechanisms (meaning-related that “in-
volves the creation of new readings within the range
of application of an existing lexical item”, with sema-
siological innovations endowing existing words with
new meanings. On the other hand, the onomasiologi-
cal (or “lexicogenetic”) mechanisms (naming-related)
“involve changes through which a concept, regardless
of whether or not it has previously been lexicalised,
has to be expressed by a new or alternative lexical
item”, with onomasiological innovations coupling
“concepts to words in a way that is not yet part of
the lexical inventory of the language” (p. 26). Further
distinctions within the first category refer to lexical-
semantic changes such as specialisation and gener-
alisation, or metonymy and metaphor. On the other
hand, the second category is related to the process
of word formation that implies devices such as mor-
phological rules for derivation and composition, trans-
formation through clipping or blending, borrowing
from other languages or onomatopoeia-based develop-
ment. Geeraerts also points out the general orientation
of historical-philological semantics as diachronic and
predominantly semasiological rather than onomasi-
ological, with a focus on the change of meaning under-
stood as a result of psychological processes, and an
“emphasis on shifts of conventional meaning” and thus
an empirical basis consisting “primarily of lexical uses
as may be found in dictionaries” (p. 43). In this sense,
historical-philological semantics links up with lexi-
cography, etymology and history of ideas (“meanings
are ideas”) (p. 9). Moreover, the author distinguishes
three main perspectives: structural that looks at the
“interrelation of [linguistic] signs” (sign-sign relation-
ship), pragmatic that considers the “relation between
the sign and the context of use, including the lan-
guage user” (sign-use(r) relationship), and referential
that delineates the “relation between the sign and the
world” (sign–object relationship). According to [16],
the evolution of lexical semantics (and implicitly of
the way meaning and semantic change are reflected
upon) can be characterised therefore by an oscillation
along these three dimensions. A historical-philological
stage dominated by the referential and pragmatic per-
spective, a structuralist phase centred on structural,
sign–sign relations, an intermediate position shaped
by generativist and neostructuralist approaches, and a
current cognitive stance that recontextualises seman-
tics within the referential and pragmatic standpoint
and displays a certain affinity with usage-based approaches
such as distributional analysis of corpus data (pp. 278 -
279, 285).

In cognitive linguistics and diachronic lexicoLOGY
Grondelaers et al. [17] also identify that semantic
change could be approached by applying two differ-
ent perspectives – onomasiological and semasiologi-
cal. The onomasiological approach focuses on the refer-
ent and studies diachronically the representations
of the referent, whereas the semasiological approach
investigates the linguistic expression by researching
diachronically the variation of the objects identified
by the linguistic expression under the investigation.
There is a tendency to apply the semasiological ap-
proach in computational semantic change research be-
cause it relies on words or phrases extracted from the
datasets; however, the extraction of concept rep-
resentations from linguistic data poses certain chal-
enges and requires either semi-automatically or auto-
matically learning ontologies to trace concept drift or
change as it was discussed above.

Diachronic change in the layer of pragmatics is a
specific task requiring special endeavor as it is con-
text specific. For example, while analysing diachronic
change of discourse markers there are two key points.
First, the terminological point which reveals the devel-
opment of the terminological notion. Schiffrin [18] in-
roduced the notion of discourse markers and consid-
ered such phrases like ‘I think’ a discourse marker per-
forming the function of discourse management deicti-
cally “either point backward in the text, forward, or in
both directions”. Fraser [19] provided a taxonomy of
pragmatic markers while Aijmer [20] suggested that ‘I
think’ is a “modal particle”. Over the last few decades the research on discourse markers has developed into a considerable and independent field accepting the term of discourse markers [21–23].

The second point deals with the manual analysis of diachronic change of discourse markers, e.g., Welterteit and Detges [24] analysed the development of the Spanish discourse marker *bien* derived from the Latin manner adverb *bene* (‘well’) and showed that the functional difference between discourse markers and modal particles can be related to different diachronic pathways. Currently, corpus-driven automatic analysis is acquiring the impetus, e.g. Stván and Smith [25] use corpus analysis relating early 20th-century American texts with modern TV shows to research diachronic change in the discourse markers ‘why’ and ‘say’ in American English. However, there are still challenges analysing diachronic change on the pragmatic layer as there is a need for a move from queries based on individual words towards larger linguistic units and pieces of text.

3. LLOD formalisms

After an overview of the theoretical perspectives on semantic change across various disciplines in the (digital) humanities-related areas, we will focus on the modalities of formally representing meaning (both at a lexical and conceptual level) evolution over time within the LLOD and Semantic Web framework. In this section, we present the most commonly used LLOD formalisms and models for representing diachronic relations.

3.1. The OntoLex-Lemon model

OntoLex-Lemon [26] is the most widely used model for publishing lexicons as linked data. In terms of its modelling of the semantics of words it represents the meaning of any given lexical entry “by pointing to the ontological concept that captures or represents its meaning” ⁵. In OntoLex-Lemon, the class *LexicalSense* is defined as “[representing] the lexical meaning of a lexical entry when interpreted as referring to the corresponding ontology element” that is “a reification of a pair of a uniquely determined lexical entry and a uniquely determined ontology entity it refers to”. Moreover, the property *sense* is defined in the W3C Community Report as “[relating] a lexical entry to one of its lexical senses” and reference as “[relating] a lexical sense to an ontological predicate that represents the denotation of the corresponding lexical entry”. See Figure 1 for a schematic representation of the OntoLex-Lemon core. Another property relevant to the modelling of lexical meaning is *denotes* which is equivalent to the property chain *sense o reference* ⁶. In addition, the *Usage* class allows us to describe sense usages of individuals of *LexicalSense*.

OntoLex-Lemon also allows users the possibility of modelling usage conditions on a lexical sense (conditions that reflect pragmatic constraints on word meaning such as those which concern register) via the (appropriately named) object property *usage*. The use of this property is intended to complement the lexical sense rather than to replace it.

Work on a Frequency, Attestation and Corpus Information module (FrAC) for OntoLex-Lemon is underway in the OntoLex W3C group [27]. This module, once finished, will enable the addition of corpus-related information to lexical senses, including information pertaining to word embeddings.

3.2. Representing etymologies and sense shifts in LL(O)D

Work in modelling etymology in LL(O)D has been preceded and influenced by similar work in related standards such as the Text Encoding Initiative (TEI) and the Lexical Markup Framework (LMF). This work

Fig. 1. OntoLex-Lemon core model

⁵Lexicon Model for Ontologies: Community Report, 10 May 2016 (w3.org)https://www.w3.org/2016/05/ontolex/#semantics

⁶Here o stands for the relation composition operator, i.e., \((a, b) \in R o S \iff \exists c. (a, c) \in R \land (c, b) \in S \)
includes Salmon-Alt’s LMF-based approach to repre-
senting etymologies in lexicons [28], as well as Bow-
ers and Romary’s work which builds on already exist-
ing TEI provisions for encoding etymologies in order
to propose a deep encoding of etymological informa-
tion in TEI [29]. This entailed enabling an increased
structuring of such data that would allow for the iden-
tification of, etymons and cognates in a
TEI entry as well as the specification of different vari-
eties of etymological change. This latter work also co-
cides with the development, currently in progress, of
an etymological extension of LMF by the Interna-
tional Standards Organization working group ISO/TC 37/SC
4/WG 4 [30], see also [31] for examples of LMF en-
coding from a Portuguese dictionary, the Grande Di-
icionarí Houaiss da Língua Portuguesa.

Work on the representation of etymologies in RDF
instead includes de Melo’s work on Etymological
WordNet [32] as well as Chiarcos et al’s [33] defi-
nition of a minimal extension of the Lemon model
with two new properties cognate and the transitive
derivedFrom for representing etymological rela-
tionships. Khan[34] defines an extension of OntoLex-
Lemon that, like [29] attempts to facilitate a more de-
tailed encoding of etymological information. Notably
this extension reifies the notion of etymology defin-
ing individuals of the Etymology class as containers
for an ordered series of EtymologicalLink individuals,
again a reification, this time of the notion of an ety-
mological link. These etymological link objects con-
nect together Etymon individuals and (OntoLex) Lexi-
cal Entries or indeed any other kinds of lexical element
that can have an etymology. We can subtype etymo-
logical links in order to represent sense shifts within
the same lexical entry. Other work specifically on the
modelling of sense shift in LL(O)D includes the mod-
elling of semantic shift in Old English emotion terms
in [35] in which semantic shifts are reified and linked
to elements in a taxonomy of metonymy and metaphor
which describe the conceptual structure of these shifts.

Etymological datasets in LL(O)D include the Latin-
based etymological lexicon published as part of the
LiLa project and described in [36].

3.3. Representing diachronic relations

As shown in [37], in order to be able to repre-
sent changes in the meaning of concepts, as well as
the concepts themselves within the framework of the
OntoLex-Lemon model, it would be useful to be able
to add temporal parameters to (at least) the properties
sense or reference. We refer to such properties or re-
lations that can change with time as fluents. Due to a
well known expressive limitation of the RDF frame-
work, it is not possible to add a temporal parameter to
a binary properties. In order to remedy this state of af-
fairs we can either extend RDF or use a number of sug-
gested ontology design patterns in order to stay within
the expressive constraints of RDF.

An example of the first strategy is described in [38]
where Rizzolo et al. present a formal “RDF-like
model” for concept evolution. This is based both on
the idea of temporal knowledge bases, in which tempo-
ral intervals or lifespans are associated with resources
as well as new relations for expressing parthood and
causality between concepts. These relations underpin
the authors’ representation of concept evolution via
specialised terms. Finally, they present a special exten-
sion of SPARQL based on their new framework which
permits the querying of temporal databases for ques-
tions relating to the evolution of a concept over a time
period. In [39] Gutiérrez et al. propose an extension of
RDF which permits temporal reasoning and which de-
scribes so-called temporal RDF graphs. They present
a syntax, semantics as well as an inference system for
this new extension\(^\text{8}\), as well as a new temporal query
language.

In terms of the second solution there are numer-
ous design patterns for adding temporal information
to RDF and permitting temporal reasoning over RDF
graphs without adding extra constructs to the language.
We will look very briefly at a few of the most promi-
tent of these, however see [40] for a more detailed sur-
vey.

The first pattern we will look at, proposed by the
W3C as a general strategy for representing relations
with an arity greater than 2, is to reify the relation in
question, that is turn it into an object. According to this
pattern we could turn OntoLex-Lemon sense and ref-
ence relations into objects. This pattern has the dis-
advantage of being too prolix and creating a profusion
of new objects, it also means that we cannot use cer-
tain OWL constructs for reasoning (see [41] for more
details).

Other prominent patterns take the perdurantist ap-
proach by modelling entities as having temporal parts,
as well as (for physical objects) physical parts. Per-
haps the most influential of these is the Welty-Fikes

\(^{8}\)They are able to show that their entailment for temporal RDF
graphs does not lead to an asymptotic increase in complexity.
pattern introduced in [41] where fluents are represented as holding between temporal parts of entities rather than the entities themselves. For instance, the OntoLex-Lemon property `sense` would hold between temporal parts of `LexicalSense` individuals rather than the individuals themselves. The Welty-Fikes pattern is much less verbose than the first pattern, and also allows us to use the OWL constructs alluded to in the last paragraph. However the fact that the Welty-Fikes pattern constrains us into redefining fluent properties as holding between temporal parts rather than between the original entities (so `sense`, or the temporal version, would no longer have the OntoLex-Lemon classes `LexicalEntry` as a domain and `LexicalSense` as a range) could be seen as a serious disadvantage. A simplification to the Welty-Fikes pattern is proposed in [42] in which “what has been an entity becomes a time slice”. This implies that fluents hold between perdurants, that is entities with a temporal extent, but these can be, in our example, lexical entries and senses. This is the approach which was taken in [43] in order to model dynamic lexical information, and where lexical entries and senses (among other OntoLex-Lemon elements) were given temporal extents.

3.4. OWL-Time ontology and other Semantic Web resources for temporal information

The most well known linked data resource for encoding temporal information is the OWL-Time ontology [44]; as of March 2020 it is a W3C Candidate Recommendation. OWL-Time allows for the encoding of temporal facts in RDF, both according to the Gregorian calendar as well as other temporal reference systems, including alternative historical and religious calendars. It includes classes representing time instants and time intervals as well as provision for representing topological relationships among intervals and instants and in particular those included in the Allen temporal interval algebra [45]. This allows for reasoning to be carried out over temporal data that uses the Allen properties, in conjunction with an appropriate set of OWL axioms and SWRL rules, such as those described in [46].

Other useful resources that should be mentioned here are PeriodO\(^9\), an RDF-based gazetteer of temporal periods which are salient for work in archaeology, history and art-history [47] and LODE, an ontology for Linking Open Descriptions of Events\(^10\).

4. NLP for detecting lexical semantic change

Given the possibilities described above for modelling semantic change via LLOD formalisms, we will address the question of automatically capturing such changes in word meaning by analysing diachronic corpora available in electronic format. This section draws an overview of existing methods and NLP tools for the exploration and detection of lexical semantic change in large sets of data, e.g. diachronic word embeddings, named entity recognition (NER) and topic modelling.

4.1. Automatic detection of lexical semantic change

The past decade has seen a growing interest in computational methods for lexical semantic change detection. This has spanned across different communities, including NLP and computational linguistics, information retrieval, digital humanities and computational social sciences. A number of different approaches have been proposed, ranging from topic-based models [48–50], to graph-based models [51, 52], and word embeddings [53–60, 61, 62], and [14] provide comprehensive surveys of this research until 2018. Since then, this field has advanced even further [63–66].

In spite of this rapid growth, it was only in 2020 that the first standard evaluation task and data were created. [67] present the results of the first SemEval shared task on unsupervised lexical semantic change detection, and represents the current NLP state of the art in this field. Thirty-three teams participated in the shared task, submitting 186 systems in total. These systems consist in a representation of the semantics of words from the input diachronic corpus, which is normally split into subcorpora covering different time intervals. The majority of the methods proposed rely on embedding technologies, including type embeddings (i.e. average embeddings representing a word type) and token embeddings (i.e. contextualised embeddings for each token). Once the semantic representations have been built, a method for aligning these representations over the temporal sub-corpora is needed. The alignment techniques used include orthogonal Procrustes [56], vector initialisation [53] and temporal referencing [65]. Finally, in order to detect any significant shift which can be interpreted as semantic change, the change between the representations of the same word over time needs to be measured. The change measures typically used include distances based on cosine and local neighbours, Kullback-Leibler divergence, mean/standard deviation of co-occurrence vec-

\(^9\)https://perio.os/\(^10\)https://linkeddata.org/ontology/
tors, or cluster frequency. The systems which participated in the shared task were evaluated on manually-annotated gold standards for four languages (English, German, Latin and Swedish) and two sub-tasks, both aimed at detecting lexical semantic change between two time periods: given a list of words, the binary classification sub-task aimed at detecting which words lost or gained senses between the two time periods, while the ranking sub-task consisted in ranking the words according to their degree of semantic change between the two time periods. The best-performing systems all use type embedding models, although the quality of the results differs depending on the language. Averaging over all four languages, the best result had an accuracy of 0.687 for sub-task 1 and a Spearman correlation coefficient of 0.527 for sub-task 2.

4.2. NLP tools and normalisation

Applying NLP tools, such as POS taggers, syntactic parsers, and named entity recognisers to historical texts is difficult, because most existing NLP tools are developed for modern languages [68, 69]. A historical language often differs significantly from its modern counterpart. The two often have different linguistic aspects, such as lexicon, morphology, syntax, and semantics which make a naive use of these tools problematic [70, 71]. One of the most prevalent differences is spelling variation. The detection of spelling variants is an essential preliminary step for identifying lexical semantic change. A frequently suggested solution for the spelling variation issue is normalisation. Normalisation is generally described as the mapping of historical variant spellings into a single, contemporary “normal form”.

Recently, Bollmann [72] systematically reviewed automatic historical text normalisation. Bollmann divided the research data into six conceptual or methodical approaches. In the first approach, each historical variant is checked in a compiled list that maps its expected normalisation. Although this method does not generalise patterns for variants not included in the list, it has proved highly successful as a component of several other normalisation systems [73, 74]. The second approach is rule-based. The rule-based approach aims to encode regularities in the form of substitution rules in spelling variations, usually including context information to distinguish between different character uses. This approach has been adopted to various languages including German [75], Basque, Spanish [76], Slovene [77], and Polish [78]. The third approach is based on editing distance measures. Distance measures are used to compare historical variants to modern lexicon entries [74, 79, 80]. Normalisation systems often combine several of these three approaches [73, 80–82]. The fourth approach is statistical. The statistical approach models normalisation as a probability optimisation task, maximising the probability that a certain modern word is the normalisation of a given historical word. The statistical approach has been applied as a noisy channel model [77, 83], but more commonly as character-based statistical machine translation (CSMT) [84–86], where the historical word is “translated” as a sequence of characters. The fifth approach is based on neural network architectures, where the encoder–decoder model with recurrent layers is the most common [87–91]. The encoder–decoder model is the logical neural counterpart of the CSMT model. Other works modelled the normalisation task as a sequence labelling problem and applied long short-term memory networks (LSTM) neural networks [92, 93]. Convolutional networks were also used for lemmatisation [94]. In the sixth approach Bollmann [72] included models that use context from the surrounding tokens to perform normalisation [95, 96]. Bollmann [72] also compares and analyses the performance of three freely available tools that cover all types of proposed normalisation approaches on eight languages. The datasets and scripts are publicly available.

4.3. Named-entity recognition and named-entity linking

Named-entity recognition (NER) and named-entity linking (NEL) which allow organisations to enrich their collections with semantic information have increasingly been embraced by the digital humanities (DH) community. Various NER approaches have been applied to historical texts including early rule-based approaches [97–99] through conventional machine learning approaches [100–102] and to deep learning approaches [103–107].

Different eras, domains, and typologies have been investigated, so comparing different systems or algorithms is difficult. Thus, [108] recently introduced the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and English [109]. One of its subtasks is Named Entity Linking (NEL). This subtask includes the linkage of the
named entity to a particular referent in the knowledge base (KB) (Wikidata) or a NEL node if the entity is not included in the base. Traditionally, NEL has been addressed in two main approaches: text similarity-based and graph-based. Both of these approaches were adapted to historical domains mostly as ‘of-the-shelf’ NEL systems. While some of the previous works perform NEL using the KB unique ids [109, 110], other works use LLOD formalisms [111–114]. One of the aims of the HIPE shared task was to encourage the application of neural-based approaches for NER which has not yet been applied to historical texts. This aim was achieved successfully. Teams have experimented with various entity embeddings, including classical type-level word embeddings and contextualised embeddings, such as BERT (see section 4.5). The manual annotation guidelines of the HIPE corpus were derived from the Quaero annotation guide [115] and thus, the HIPE corpus mostly remains compatible with the NewsEye project’s NE Finnish, French, German, and Swedish datasets. Pontes et al. [116] analysed the performance of various NEL methods on these two multilingual historical corpora and suggested multiple strategies for alleviating the effect of historical data problems on NEL.

4.4. Word embeddings

The common approach for lexical semantic change detection is based on semantic vector spaces meaning representations. Each term is represented as two vectors representing its co-occurring statistics at various eras. The semantic change is usually calculated by distance metric (e.g. cosine), or by differences in contextual dispersion between the two vectors. Previously, most of the methods for lexical semantic change detection built co-occurrence matrices [117–119]. While in some cases, high-dimensional sparse matrices were used, in other cases, the dimensions of the matrices were reduced mainly using singular value decomposition (SVD) [120]. Yet, in the last decade, with the development of neural networks, the word embedding approach commonly replaced the mathematical approaches for dimensional reduction.

Word embedding is the collective name for neural network based approaches in which words are embedded into a low dimensional space. They are used as a lexical representation for textual data, where words with a similar meaning have similar representation [121–124]. Although these representations have been used successfully for many natural language pre-processing and understanding tasks, they cannot deal with the semantic drift that appears with the change of meaning over time if they are not specifically trained for this task.

In [125], a new unsupervised model for learning condition-specific embeddings is presented, which encapsulates the word’s meaning whilst taking into account temporal-spatial information. The model is evaluated using the degree of semantic change, the discovery of semantic change, and the semantic equivalence across conditions. The experimental results show that the model captures the language evolution across both time and location, thus making the embedding model sensitive to temporal-spatial information.

Another word embeddings approach for tracing the dynamics of change of conceptual semantic relationships in a large diachronic scientific corpus is proposed in [126]. The authors focus on the increasing domain-specific terminology emerging from scientific fields. Thus, they propose to use hyperbolic embeddings [127] to map partial graphs into low dimensional, continuous hierarchical spaces, making more explicit the latent structure of the input. Using this approach, the authors manage to build diachronic semantic hyperspaces for four scientific topics (i.e., chemistry, physiology, botany, and astronomy) over a large historical English corpus stretching for 200 years. The experiments show that the resulting spaces present the characters of a growing hierarchisation of concepts, both in terms of inner structure and in terms of light comparison with contemporary semantic resources, i.e., WordNet.

To deal with the evolution of word representations through time, the authors in [128] propose three LSTM-based sequence to sequence (Seq2Seq) models (i.e., a word representation autoencoder, a future word representation decoder, and a hybrid approach combining the autoencoder and decoder) that measure the level of semantic change of a word by tracking its evolution through time in a sequential manner. Words are represented using the word2vec Skip-gram model [121]. The level of semantic change of a word is evaluated using the average cosine similarity between the actual and the predicted word representations through time. The experiments show that hybrid approach yields the most stable results. The paper con-
includes that the performance of the models increases alongside the duration of the time period studied.

4.5. Transformer-based language models

The current state of the art in word representation for multiple well-known NLP tasks is established by transformer-based pre-trained language models, such as BERT (Bidirectional Encoder Representations from Transformers) [129], ELMo [130] and XLNet [131]. Recently, transformers were also used in lexical semantic change tasks. In paper [132], the authors present one of the first unsupervised approaches to lexical-semantic change that utilise a transformer model. Their solution exploits the BERT transformer model to obtain contextualised word representations, compute usage representations for each occurrence of these words, and measure their semantic shifts along time. For evaluation, the authors utilise a large diachronic English corpus that covers two centuries of language use. The authors provide an in-depth analysis of the proposed model, proving that it captures a range of synchronic, e.g., syntactic functions, literal and metaphorical usage, and diachronic linguistic aspects.

4.6. Topic modelling

Topic modelling, another category of methods proposed for the study of semantic change. Topic modelling often refers to latent Dirichlet allocation (LDA) [133], a probabilistic technique for modelling a corpus by representing each document as a mixture of topics and each topic as a distribution over words. LDA is referred to either as an element of comparison or as a basis for further extensions that take into account the temporal dimension of word meaning evolution. Frersmann and Lapata [50] draw ideas from such an extension, the dynamic topic modelling approach [134], to build a dynamic Bayesian model of Sense ChANge (SCAN) that defines word meaning as a set of senses tracked over a sequence of contiguous time intervals. In this model, senses are expressed as a probability distribution over words, and given a word, its senses are inferred for each time interval. According to [50], SCAN is able to capture the evolution of a word’s meaning over time and detect the emergence of new senses, sense prevalence variation or changes within individual senses such as meaning extension, shift, or modification. Fremann and Lapata validate their findings against WordNet and evaluate the performance of their system on the SemEval-2015 benchmark datasets released as part of the diachronic text evaluation exercise.

Pöltiz et al. [135] compare the standard LDA [133] with the continuous time topic model [136] (called “topics over time LDA” in the paper), for the task of word sense induction (WSI) intended to automatically find possible meanings of words in large textual datasets. The method uses lists of key words in context (KWIC) as documents, and is applied to two corpora: the dictionary of the German language (DWDS core corpus of the 20th century and the newspaper corpus Die Zeit covering the issues of the German weekly newspaper from 1946 to 2009. The paper concludes that standard LDA can be used, to a certain degree, to identify novel meanings, while topics over time LDA can make clearer distinctions between senses but sometimes may result in too strict representations of the meaning evolution.

[48, 49] apply the hierarchical Dirichlet process technique [137], a non-parametric variant of LDA, to detect word senses that are not attested in a reference corpus and to identify novel senses found in a corpus but not captured in a word sense inventory. The two studies include experiments with various datasets, such as selections from the BNC corpus (British English from the late 20th-century), ukWaC Web corpus (built from the .uk domain in 2007), SiBol/Port collection (texts from several British newspapers from 1993, 2005, and 2010) and domain-specific corpora such as sports and finance. Another example is [138] that applies topic modelling to the corpus of Hartlib Papers, a multilingual collection of correspondence and other papers of Samuel Hartlib (c.1600-1662) spanning the period from 1620 to 1662, to identify changes in the topics discussed in the letters. They then experimented with using topic modelling to detect semantic change, following the method developed in [139].

Based on these overviews and state of the art, we can say that automatic lexical semantic change detection is not yet a solved task in NLP, but a good amount of progress has been achieved and a great variety of systems have been developed and tested, paving the way for further research and improvements. An important aspect to stress is that this research has rarely reached outside the remit of NLP. With some notable exceptions ([140]), no application of this work has involved humanities research. This is not particularly surprising, as it usually takes time for foundational research to find its way into application areas. However, as pointed out before (cf. [141]), given the high relevance of seman-
tic change research for the analysis of concept evolution, this lack of disciplinary dialogue and exchange is a limiting factor and we hope that it will be addressed by future multidisciplinary research projects.

5. NLP for ontology generation

While automatic detection of lexical semantic change has shown advances in recent years despite a still insufficient interdisciplinary dialogue, the field of generating ontologies from historical corpora and representing them as linked data on the Web needs also further development of multidisciplinary approaches and exchanges, given the inherent complexity of the work involved. In this section, we discuss the main aspects pertaining to this type of task, taking account of previous research in areas such as ontology learning, construction of ontological diachronic structures from texts and automatic generation of linked data.

5.1. Ontology learning

Iyer et al. [142] survey the various approaches for (semi-)automatic ontology extraction and enrichment from unstructured text, including research papers from 1995 to 2018. They identify four broad categories of algorithms (similarity-based clustering, set-theoretic approach, web corpus-based and deep learning) allowing for different types of ontology creation and updating, from clustering concepts in a hierarchy to learning and generating ontological representations for concepts, attributes and attribute restrictions. The authors perform an in-depth analysis of four “seminal algorithms” representative for each category (guided agglomerative clustering, C-PANKOW, formal concept analysis and word2vec) and compare them using ontology evaluation measures such as contextual relevance, precision and algorithmic efficiency. They also propose a deep learning method based on LSTMs, to tackle the problem of filtering out irrelevant data from corpora and improve relevance of retained concepts in a scalable manner.

Asim et al. [143] base their survey on the so-called “ontology learning layer cake” (introduced by Buite-laar et al. [144]), which illustrates the step-wise process of ontology acquisition starting with terms, and then moving up to concepts, concept hierarchy, relations, relation hierarchy, axioms schemata, and finally axioms. The paper categorises ontology learning techniques into linguistic, statistical and logical techniques, and presents detailed analysis and evaluation thereof. For instance, good performance is reported in the linguistic category for (lexico-)syntactic parsing and dependency analysis applied in relation extraction from texts in various domains and languages. C/N/C-value (see also 5.3) and hierarchical clustering from the statistical group are featured for the tasks of acquiring concepts and relations respectively, while inductive logical programming from the logical group is mentioned for both tasks. Among the tools making use of such techniques considered by the authors as most prominent and widely used for ontology learning from text are Text2Onto [145], ASIUM [146] and CRCTOL [147], in the category hybrid (linguistic and statistical), OntoGain [148] and OntoLearn [149], solely based on statistical methods, and TextStorm/Clouds [150] and Syndikate [151], from the logical category. Domain-specific or more wide-ranging datasets, such as Reuters-2157812 and British National Corpus 13, are also included in the description, as commonly used for testing and evaluating different ontology learning systems. Although published just one year earlier than [142], the survey does not mention any techniques based on neural networks. However, the authors state that ontology learning can benefit from incorporating deep learning methods into the field. Importantly, Asim et al. advocate for language independent ontology learning and for the necessity of human intervention in order to boost the overall quality of the outcome.

5.2. Diachronic perspectives

He et al. [152] use the ontology learning layer cake framework and a diachronic corpus in Chinese (People’s Daily Corpus), spanning from 1947 to 1996, to construct a set of diachronic ontologies by year and period. Their ontology learning system deals only with the first four bottom layers of the ‘cake’ (see also [143] and [144] above), for term extraction, synonymy recognition, concept discovery and hierarchical concept clustering. The first layer is built by segmenting and part of speech (POS) tagging the raw text using a hierarchical hidden Markov model (HHMM) for Chinese lexical analysis [153] and retaining all the words, except for stopwords and low frequency items. For synonymy detection, He et al. apply a distributional se-

13 http://www.natcorp.ox.ac.uk/
mantic model taking into account both lexical and syntactic contexts to compute the similarity between two terms, a method already utilised in diachronic corpus analysis in [154]. Cosine similarity and Kleinberg’s “hubs and authorities” methodology [155] are used to group terms and sub-syndromes into concepts and to select the top two terms with highest authority as semantic tags or labels for the concepts. An iterative K-means algorithm [156] is adopted to create a hierarchy of concepts with highly semantically associated clusters and sub-clusters. He et al. employ this four-step approach to build yearly-period diachronic XML ontologies for the considered corpus and evaluate concept discovery and clustering by comparing their results with a baseline computed via a Google word2vec implementation. The authors report that the proposed method outperformed the baseline in both concept discovery and hierarchical clustering, and that their diachronic ontologies were able to capture semantic changes of a term through comparison of its neighbouring terms or clusters at different points in time, and detect the apparition of new topics in a specific era. [152] also provides examples of diachronic analysis based on the ontologies derived from the studied corpus, such as shift in meaning from a domain to another, semantic change leading to polysemy or emergence of new similar terms as a result of real-world phenomena occurring in the period covered by the considered textual sources.

Other papers addressed the question of conceptualising semantic change using NLP techniques and diachronic corpora [126, 157, 158] implying various degrees of ontological formalisation. Focusing on the way conceptual structures and the hierarchical relations among their components evolve over time, Bizzoni et al. [126] explore the direction of using hyperbolic embeddings for the construction of corpus-induced diachronic ontologies (see also section 4.4). Using as a dataset the Royal Society Corpus, with a time span from 1665 to 1869, they show that such a method can detect symptoms of hierarchisation and specialisation in scientific language. Moreover, they argue that this type of technology may offer a (semi-)automatic alternative to the hand-crafted historical ontologies that require considerable amount of human expertise and skills to build hierarchies of concepts based on beliefs and knowledge of a different time.

In their analysis of changing relationships in temporal corpora [157], Rosin and Radinsky propose several methods for constructing timelines that support the study of evolving languages. The authors introduce the task of timeline generation that implies two components, one for identifying “turning points”, i.e. points in time when the target word underwent significant semantic changes, the other for identifying associated descriptors, i.e. words and events, that explain these changes in relation with real-world triggers. Their methodology includes techniques such as “peak detection” in time series and “projected embeddings”, in order to define the timeline turning points and create a joint vector space for words and events, representing a specific time period. Different approaches are tested to compare vector representations of the same word or select the most relevant events causing semantic change over time, such as orthogonal Procrustes [56], similarity-based measures, and supervised machine learning (random forest, SVM and neural networks). After assessing these methods on datasets from Wikipedia, the New York Times archive and DBpedia, Rosin and Radinsky conclude that the best results are yielded by a supervised approach leveraging the projected embeddings, and the main factors affecting the quality of the created timelines are word ambiguity and the available amount of data and events related to the target word. Although [157] does not explicitly refer to ontology acquisition as a whole, automatic timeline generation provides insight into the modalities of detecting and conceptualising semantic change and word-event-time relationships that may serve with the task of corpus-based diachronic ontology generation.

Gulla et al. [158] make use of “concept signatures”, representations constructed automatically from textual descriptions of existing concepts, to capture semantic changes of concepts over time. A concept signature is represented as a vector of weights. Each element in the vector corresponds to a linguistic unit or term (e.g. noun or noun phrase) extracted from the textual description of the concept, with its weight calculated as a tf-idf (term frequency - inverted document frequency) score. The process of signature building includes POS tagging, stopword removal, lemmatisation, noun/phrase selection and tf-idf computing for the selected linguistic units. According to Gulla et al., this type of vector representation enable comparisons via standard information retrieval measures, such as cosine similarity and Euclidian distance, that can uncover semantic drift of concepts in the ontology, both with respect to real-world phenomena (extrinsic drift) and inter-concept (taxonomic and non-taxonomic) relationships (intrinsic drift). The proposed methodology is applied to an ontology based on the Det Norske
Veritas (DNV) company’s Web site, 14 each Web page representing a concept. The text of the Web pages is used as a source for understanding the concepts and constructing the corresponding signatures at different points in time. [158] illustrates this procedure for various types of vector-based concept and relation comparison in the DNV ontology, computed for 2004 and 2008. The authors note that the size of the textual descriptions of concepts is determinant for the signature quality (too short descriptions may result in poor quality) and mention as further direction of research the use of deeper grammatical analysis of sentences and of semantic lexica for signature generation. Moreover, Gulla et al. point out that since the automatic construction of signatures relies on textual descriptions of existing concepts, the approach is primarily intended to updating existing structures rather than developing new ontologies.

5.3. Generating linked data

The transformation of the extracted information into formal descriptions that can be published as linked data on the Web is an important aspect of the process of ontology generation from textual sources. A number of tools have been devised to implement an integrated workflow for extracting concepts and relations, and converting the derived ontological structure into Semantic Web formalisations.

An example is LODifier [159], which applies such an approach by combining different NLP techniques for named entity recognition, word sense disambiguation and semantic analysis to extract entities and relations from text and produce RDF representations linked to the LOD cloud using DBpedia and WordNet 3.0 vocabularies. The tool was evaluated on an English benchmark dataset containing newspapers, radio and television news from 1998.

[148] propose OntoGain, a platform for unsupervised ontology acquisition from unstructured text. The concept identification module is based on C/NC-value, a method that enables the extraction of multi-word and nested terms from text. For the detection of taxonomic and non-taxonomic relations, [148] applies techniques such as agglomerative hierarchical clustering and formal concept analysis in the first task, and association rules and conditional probabilities in the second. OntoGain allows for the transformation of the resulted ontology into standard OWL statements. The authors report assessment including experiments with corpora from the medical and computer science domain, and comparisons with hand-crafted ontologies and similar applications such as Text2Onto.

Concept-Relation-Concept Tuple-based Ontology Learning (CRCTOL) [147] is a system for automatically mining ontologies from domain-specific documents. CRCTOL adopts various NLP methods such as POS tagging, multi-word extraction and tf-idf-based relevance measures for concept learning, a variant of Lesk’s algorithm [160] for word sense disambiguation, and WordNet hierarchy processing and full text parsing for the construction of taxonomic and non-taxonomic relations. The derived ontology is then modelled as a graph, with the possibility of exporting the corresponding representation in RDFS and OWL format. [147] presents two case studies, for building a terrorism domain ontology and a sport event domain ontology, as well as results of quantitative and qualitative evaluation of the tool through various comparisons with other systems or assessment references such as Text-To-Onto/Text2Onto, WordNet, expert rating and human-edited benchmark ontologies.

One of the systems often cited as a reference in ontology learning from textual resources (see also above) is Text2Onto (the successor of TextToOnto) [145]. Based on the GATE framework, it combines linguistic pre-processing (e.g. tokenisation, sentence splitting, POS tagging, lemmatisation) with the use of a JAPE transducer and shallow parsing run on the pre-processed corpus to identify concepts, instances and different types of relations (subclass-of, part-of, instance-of, etc.) to be included in a Probabilistic Ontology Model (POM). The model, independent of any knowledge representation formalism, can be then translated into various ontology representation languages such as RDFS, OWL and F-Logic. The paper also describes a strategy for data-driven change discovery allowing for selective POM updating and traceability of the ontology evolution, consistent with the changes in the underlying corpus. Evaluation is reported with respect to certain tasks and a collection of tourism-related texts, the results being compared with a reference taxonomy for the domain.

Recent work accounts for more specialised tools such as converters, making, for instance, linked data in RDF format out of CSV files (CoW 15 and cattle 16 [2])

14 A company specialising in risk management and certification.
15 https://pypi.org/project/cow-csvw/
16 http://cattle.datalegend.net/
or directly converting language resources into LLOD (LLODifier [161]). As already pointed out at the beginning of this section, the field may benefit from further exchanges among scholars in different areas of studies such as theoretical and cognitive linguistics, history and philosophy of language, digital humanities, NLP and Semantic Web.

6. LLOD resources and publication

In this section we outline the existing resources on the Web including diachronic representation of data from the humanities, with a view towards the possibilities of integrating more resources of this kind into the LLOD cloud in the future.

The main nucleus for linguistic linked open data is the LLOD cloud [162], which started in 2011 with less than 30 datasets, and at the time of writing consists of 185 different datasets. The resources linked in the LLOD cloud include corpora, lexicons and dictionaries, terminologies, thesauri and knowledge bases, linguistic resources metadata, linguistic data categories, and typological databases. The LLOD diagram is generated automatically from the subset of Linghub [19] that is published as linked open data.

Not all diachronic datasets are registered through Linghub/LLOD Cloud. Within the CLARIAH project [20] several datasets have been converted from csv format to linked open data, and published through project websites or GitHub. For example, in [163], different diachronic lexicons are modelled according to the Lemon model and interlinked, such that one can query across time and dialect variations. Also in the Netherlands, the Amsterdam Time Machine connects attestations of Amsterdam dialects and sociolects, cinema and theatre locations and tax information to base maps of Amsterdam at various points in time [164]. A combined resource like this, allows scholars to investigate ‘higher’ and ‘lower’ sociolects in conjunction with ‘elite density’ in a neighbourhood (i.e. the proportion of wealthier people that lived in an area). Lexicologists at the Dutch Language Institute have been creating dictionaries of Dutch that cover the period from 500 to 1976 which are now being modelled through OntoLex-Lemon [165].

Searching for and modelling diachronic change requires rethinking some contemporary (semantic) Web infrastructure. As [166] shows, standardised language tags cannot capture the differences between Old-, Middle- and Modern French resources.

Digital editions, often modelled in TEI [167], are a rich resource of diachronic language variation. Some corpora, such as the 15th-19th-century Spanish poetry corpus described in [168] contain additional annotations such as psychological and affective labels, but it seems the study was not focused particularly on how these aspects may have changed over time.

For humanities scholars such as historians, who deal with source materials dating back to for example the early modern period, language change is a given, but the knowledge they gain over time is not always formalised or published as linked data. For example, a project that analyses the representation of emotions plays from the 17th to the 19th century, a dataset and lexicon were developed, but these were not explicitly linked to the (linguistic) LLOD cloud [169, 170]. In contrast to [168], here the labels are explicitly grounded in time. There is a task here for the Semantic Web community to make it easier to publish and maintain LLOD datasets for non-Semantic Web experts.

It should be also noted that while there do not currently exist guidelines for publishing lexicons and ontologies representing semantic change as LL(O)D data, there are moves towards producing such material within the Nexus Linguarum COST Action, however, with particular reference to the overlap between different working groups and UC4.2.1.

7. Conclusions

This paper presents a literature survey, bringing together various fields of research that may be of interest in the construction of a workflow for detecting and representing semantic change. The survey touches upon the use of multilingual historical corpora from the humanities, and different approaches from linguistics-related disciplines, NLP and Semantic Web. The organisation of the sections and the themes included in the outline reflects the heterogeneity and complexity of the task and the necessity of a framework enabling interdisciplinary dialogue and collaboration.

[17] https://github.com/acoli-repo/LLODifier
[18] https://linguistic-lod.org/
[20] https://clariah.nl
This state of the art also represents the starting point in designing a methodology for the humanities use case UCD 2.1 as an application within the COST Action Nexus Linguarum, European network for Web-centred linguistic data science. At this stage, the reviewed literature suggests that the theoretical frameworks (section 2) and the NLP techniques for detecting lexical semantic change (section 4) show an advanced degree of development. The fields dealing with the generation of diachronic ontologies from unstructured text and their representation as LLOD formalisms on the Web (sections 3, 5, 6) require further harmonisation with the previous points and research investment. We assume that, given the current progress in deep learning, digital humanities and the ongoing undertakings in LLOD, the detection and representation of semantic change as linked data combined with the analysis of large datasets from the humanities will acquire the level of attention needed for the advancement in this area of study.

We consider that detecting and representing semantic change as LLOD is an important topic for the future development of Semantic Web technologies, since learning to deal with the knowledge of the past and its evolution over time, also implies learning to deal with the knowledge of the future.

References

of Language Use and Socio-Economic Status, 2021, Accepted for publication.

