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Abstract. Several domains have widely benefited from the adoption of Knowledge graphs (KGs). For recommender systems
(RSs), the adoption ofKGs has resulted in accurate, personalized recommendations of items/products according to users’ prefer-
ences. Among different recommendation techniques, collaborative filtering (CF) is one the most promising approaches to build
RSs. Their success is due to the effective exploitation of similarities/correlations encoded in user interaction patterns. Nonethe-
less, their strength is also their weakness. A malicious agent can add fake user profiles into the platform, altering the genuine
similarity values and the corresponding recommendation lists. While the research community has extensively studied KGs to
solve various recommendation problems, sufficient attention was not paid to the possibility of exploiting KGs to compromise
the quality of recommendations. KGs provide a rich source of information for item representation and recommendation that can
dramatically increase the attackers’ knowledge about the victim recommendation platform. To this end, this article introduces a
new attack strategy, named semantics-aware shilling attack (SAShA), that leverages semantic features extracted from a knowledge
graph. SAShA provides the semantics-aware variant of three state-of-the-art attack strategies: Random, Average, and BandWagon.
These improved attacks can exploit graph relatedness measures, i.e., Katz and Exclusivity-based, computed considering 1-hop
and 2-hops of graph exploration. We performed an extensive experimental evaluation with four state-of-the-art recommendation
systems and two well-known recommendation datasets to investigate the effectiveness of SAShA. Since the semantics of rela-
tions has a crucial role in KGs, we have also analyzed the impact of relations’ semantics by grouping them in various classes.
Experimental results indicate the benefit of embracing KGs in favor of the attackers’ capability in attacking recommendation
systems.

Keywords: Recommender Systems, Collaborative Filtering, Security, Semantic Web Technologies, Knowledge Graphs

1. Introduction

The advent of Knowledge Graphs (KGs) has
definitely changed the way structured information is
stored. Developed to make the Semantic Web a con-
crete idea, it has become much more than that. The
core idea of building a semantic network in which
information is represented as directed labeled graphs
(RDF graphs) is disarmingly simple. Nevertheless,

*Authors are listed in alphabetical order. Corresponding authors:
E-mails: felice.merra@poliba.it, vitowalter.anelli@poliba.it.

thanks to the possibilities it paves, it has been wel-
comed with several promises and expectancies. Com-
plete interoperability, the ability to link knowledge
across domains, the possibility to exploit Logical in-
ference and proofs are just a few of them. In numer-
ous domains, the exploitation of the Knowledge Graph
information has become the norm. Thanks to the ap-
pearance of wide-ranging Linked Datasets like DB-
pedia and Wikidata, we have witnessed the flourish-
ing of novel techniques in several research fields, like
Machine Learning, Information Retrieval, and Rec-
ommender Systems. To date, Recommender Systems
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(RSs) are considered the focal solution to assist users’
decision-making process. Since the volume of the
available products on the Web (in which we also con-
sider multimedia content and services) overwhelms the
users, RSs support and ease the decisional process.
Among them, collaborative filtering (CF) recommen-
dation techniques have shown very high performance
in real-world applications (e.g., Amazon [1]). Their
rationale is to analyze products experienced by sim-
ilar users to produce tailored recommendations. Al-
gorithmically speaking, they take advantage of user-
user and item-item similarities. Regrettably, malicious
users may want to jeopardize the operation of the rec-
ommendation platform. For example, they might be a
rival company or agents who want to increase (or de-
crease) the visibility of a particular product. Whatever
they are motivated by, the problem is that these simi-
larities are vulnerable to the insertion of fake profiles.
This kind of attack is called the shilling attack [2],
which aims to push or nuke the probabilities to rec-
ommend an item. The malicious agent (or adversary)
can rely on an extensive list of techniques to conduct
the attack. Researchers and companies have classified
them into two broad categories [3]: low-knowledge and
informed attack strategies. In the former attacks, the
adversary has poor system-specific knowledge [4, 5].
In the latter, the attacker has an accurate knowledge
of the recommendation model and the data distribu-
tion [4, 6].

Interestingly, despite the astonishing spread of knowl-
edge graphs, little attention has been paid to knowledge-
aware strategies to mine RS’s security. In a Web al-
ways composed of unstructured information, KGs are
the pillars of the Semantic Web. They have become
increasingly important as they can represent data em-
ploying a flexible and interoperable semantic graph
data structure. Several well-known tools have been
built on KGs, like IBM Watson [7], public decision-
making systems [8], and advanced machine learning
techniques [9–11]. Additionally, the Linked Open Data
(LOD) initiative1 has given birth to a broad ecosystem
of linked data datasets known as LOD-cloud2. These
KGs provide comprehensive information on numer-
ous knowledge domains. Consequently, if a malicious
agent decides to attack one of these domains, items’
semantic descriptions would be inestimable.

In the research study at hand, we have investigated
the possibility of improving an attack’s efficacy by

1https://data.europa.eu/euodp/en/linked-data
2https://lod-cloud.net/

leveraging semantic knowledge. One major contribu-
tion of the work is exploiting publicly available infor-
mation obtained from KG to generate more influential
fake profiles to threaten CF models’ performance. The
resulting attack strategy is named semantics-aware
shilling attack SAShA. Beyond the definition of SAShA
strategy, the work extends state-of-the-art shilling at-
tack approaches such as Random, BandWagon, and
Average profiting from semantic knowledge. Remark-
ably, the attacks’ semantics-enhanced variants only
rely on publicly available information without suppos-
ing any additional knowledge about the system.

The core idea is to reformulate the attacks with the
rationale of taking into account the semantic similar-
ity between the target item with the other items in the
catalog. The intuition of the approach is that seman-
tic similarity (or, more broadly, semantic relatedness)
can safely suffice the lack of the system’s knowledge
to craft natural and coherent fake profiles. These pro-
files are indistinguishable from the real ones, and they
effortlessly enter the neighborhood of users and items.

In a previous exploratory study, Random, Love-
Hate, and Average attacks were modified to consider
the cosine vector similarity between the semantic de-
scription of items. The limitation of that approach is
essentially twofold: it only considers the 1st-hop ex-
ploration of the graph (i.e., binarizing the semantic fea-
tures), and it only considers cosine similarity, which
is not particularly suited to bring out semantic relat-
edness. Here, we have overcome these limitations. On
the one hand, we have explored the KG until the 2-
hop, providing a much more in-depth investigation of
semantic descriptions’ role for this task. Given the re-
quired high computational effort, we hope this study
provides the interested reader a complete awareness
of the potential and the limitations of the approach.
On the other hand, we went beyond the famous (but
semantics-unaware) cosine similarity, and we have
considered Katz centrality and Exclusivity-based relat-
edness. Finally, to provide a more fine-grained analy-
sis, we have grouped the semantic relations into three
classes: ontological, categorical, and factual relations.

In detail, this study extends the state-of-the-art ap-
proach for the integration of semantics in the shilling
attacks [12] in numerous directions:

1. two novel graph topological and semantic ap-
proaches to build the set of products from which
the adversary can craft the fake profiles;

2. an extensive study of the efficacy of the attack
considering a two-hops graph exploration, and in-
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volving a state-of-the-art deep neural recommen-
dation model;

3. a novel semantic shilling attack strategy based on
BandWagon strategy;

4. a deeper discussion of the experimental results in-
volving several dimensions: number of explored
hops, type of considered relation, recommenda-
tion model, amount of injected fake profiles, and
dataset;

5. the publication of the full experimental frame-
work and the pre-processed datasets that can be
used, out-of-the-box, for further investigations.

Since the study analyzed several aspects, the inves-
tigations can be summarized to address the following
research questions to provide a general overview:

RQ1 Can relatedness-based measures along with pub-
lic available semantic information be employed to
develop more effective shilling attack strategies
against recommendation models?

RQ2 Can we assess which is the most impactful type
of semantic information?

RQ3 Is multiple hops exploration of a knowledge
graph more effective than single-hop exploration
to create coherent fake profiles?

RQ4 What are the recommendation algorithms that
suffer more for semantics-aware attacks?

We have carried out extensive experiments (approx-
imately 1440 experiments) to evaluate the impact of
proposed attacks against the recommendation models.
To this end, we have exploited two real-world recom-
mender systems datasets (LibraryThing and Ya-
hoo!Movies). Experimental results sharply indicate
that KG information is a valuable source of knowl-
edge that improves attacks’ effectiveness. Moreover,
the adoption of semantic relatedness measures can un-
leash the full potential of the semantics-aware attacks.

The remainder of the paper proceeds as follows.
In Section 2, we provide an overview of the state-of-
the-art of recommendation models and shilling attacks.
Section 3 describes the proposed approach (SAShA),
introduces the semantic relatedness measures, and for-
malizes the semantic attack strategies. Section 4 fo-
cuses on the experimental validation of the proposed
attack scenarios. We also provide an in-depth discus-
sion of the experimental results analyzing the several
dimensions of the study. Finally, in Section 6, we draw
some conclusions and introduce the open challenges.

2. Related Work

In this section, we focus on related literature on the
foundations of recommendation models, the integra-
tion of Knowledge Graphs (KGs) in RSs, and the se-
curity of collaborative filtering models.

2.1. Recommender Systems

Recommender Systems (RS) are the pivotal techni-
cal solution in different online systems nowadays to
assist users with many over-choice challenges by fil-
tering out important information out of a large amount,
according to user’s tastes and preferences. From a
technical point of view, a recommendation problem
can be stated as finding a utility function to automati-
cally predict how much users will like unknown items.

Definition 1 (Recommendation Problem). Let U and
I denote a set of users and items in a system, respec-
tively. Each user u ∈ U is related to I+u , the set of
items she has consumed, or her user profile. Given a
utility function g : U × I → R a Recommendation
Problem is defined as

∀u ∈ U , i′u = argmax
i∈I

g(u, i)

where i′u denotes an item not consumed by the user u
before. We assume that preference of user u ∈ U on
item i ∈ I is encoded with a continuous-valued prefer-
ence score rui ∈ R, where R represent the set of (u, i)
pairs for which rui is known

The major class of recommendation models in-
clude content-based filtering (CF), collaborative filter-
ing (CBF), and hybrid thereof [13, 14]. CBF models
build a profile of user interests based on the content
features of the items preferred by that user (liked or
consumed), characterizing the nature of her interests.
The item features can include a full range of avail-
able information including editorial metadata (genre,
emotion, instrumentation) and user-generated content
(tags, labels) [15], features extracted from the audio
and visual signals directly [16], and semantic informa-
tion collected from a knowledge graph [17].

On the other hand, CF models compute recommen-
dations based on similarities in interaction/preference
patterns of like-minded users. Collaborative recom-
menders are mainstream academic and industrial re-
search due to their state-of-the-art performance, achieved
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when a sufficient amount of preference data, ei-
ther explicit, e.g., ratings, or implicit, e.g., previous
clicks and check-ins, are available. Different CF mod-
els developed today can be classified according to
memory-based and model-based. Memory-based mod-
els compute recommendations exclusively based on
correlations in interactions across users (user-based
CF [18, 19]) or items (item-based CF [19, 20]), while
model-based approaches compute a model — typically
a machine learning model — that can be queried in the
production phase to generate recommendations for a
given user profile. A famous example of model-based
CF methods is the matrix factorization (MF) method
that learns a latent representation of items and users,
aka a latent factor model (LFM), whose linear inter-
action can explain an observed feedback [21]. There
are several MF variations proposed in the literature,
such as PMF and BNMF. These methods essentially
encode the complex relations between users and items
into a small number of shared hidden factors, where
their dot product drives the predictions. A major draw-
back of MF approaches, however, lies in their linearity.
To address this concern, a recently popularized trend
in the community of recommender systems (RS) is
using deep neural architectures with deep neural net-
works (DNNs) that are capable of modeling the non-
linearity in data through nonlinear activation functions.
The power of DNN is exploited in modern RS to cap-
ture complex interaction patterns between users and
items and ultimately to better judge users’ preferences.

2.2. Knowledge-aware Recommender Systems
(KaRSs)

All of us have witnessed the astonishing perfor-
mance of recommendation systems. However, few
know that, often, the recommendation algorithms
struggle to optimize the model. Despite the number
of transactions being massive, the number of per-user
interactions is usually very scarce. Over the years,
the recommendation system designers relied on addi-
tional sources of information to overcome this limita-
tion. Nowadays, modern RSs exploit various side in-
formation such as metadata (e.g., tags, reviews) [22],
social connections [23], image and audio signal fea-
tures [24], and users-items contextual data [25] to build
more in-domain [17] (i.e., domain-dependent), cross-
domain [26], or context-aware [27, 28] recommenda-
tion models. Among the diverse information sources,
what is, likely, the most relevant source is Knowl-
edge Graphs (KGs). A KG is a heterogeneous network

that encodes multiple relationships, edges, nodes, and
links items at high-level relationships, making them
a strong item representation technique. Thanks to the
heterogeneous domains that KGs cover, the design of
knowledge-based recommendation systems has arisen
as a specific research field of its own in the commu-
nity of RSs, usually referred to by Knowledge-aware
Recommender Systems (KaRS [11, 29]). This research
community combines the most advanced machine
learning techniques with state-of-the-art knowledge
representation paradigms. This blending of skills and
ideas has generated several advancements in the rec-
ommendation [30], knowledge completion [31], pref-
erence elicitation [32], user modeling [33] research,
and thus produced a vast literature. A comprehensive
review of the field would require a separate and spe-
cific paper; however, we can still provide an overview
of the most advanced (or particularly representative)
contributions. To help the reader orient herself in the
literature, we follow three distinct lines: impacted re-
search fields, recommendation techniques, and data
sources. In recent years, the Knowledge-aware Rec-
ommender Systems have been particularly impactful
for several research domains:

– KG/Graph-embeddings [34–40], where the latent
representation of semantic knowledge enables novel
and diverse applications;

– Hybrid Collaborative/Content-based recommen-
dation [30, 35], exploiting the KG information to
suffice the lack of collaborative information and to
improve the performance;

– Knowledge-completion, link-prediction, knowledge-
discovery [31, 40–46], where the topology of the
knowledge graph and the graph embeddings helped
to improve the overall quality of the knowledge
base;

– Knowledge-transfer, cross-domain recommenda-
tion [26, 47, 48], where the KGs allow to find se-
mantic similarities between different domains;

– Interpretable/Explainable-recommendation [30,
49–52], with KG being a backbone for under-
standing the recommendation model and providing
human-like explanations

– User-modeling [33, 53–55], since the resource de-
scriptions can drive the construction of the user pro-
file;

– Graph-based recommendation [56–61], where the
topology-based techniques have met the semantics
of the edges/relations, and the ontological classifica-
tion of nodes (classes);
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– The cold-start problem [26, 62–64], since the KGs
can overcome the lack of collaborative information;

– The content-based recommendation [65, 66] that
solely relies on KG and still produces high-quality
recommendations.

All the former advances have been shown to enhance
the recommendation quality or the overall user expe-
rience. Although the algorithms differ on many levels,
we can still classify recommendation techniques into
two broad approaches:

– Path-based methods [56–58, 61, 67, 68], which em-
ploy paths and meta-paths to estimate the user-item
similarities or the nearest items;

– KG embedding-based techniques [28, 30, 36, 56,
69, 70], which leverage KG embeddings (usually
obtained through matrix factorization or neural net-
work encoding) for items’ representation.

Finally, we focus on the Knowledge Graphs data
sources. The availability of a myriad of KGs is a def-
inite advantage of Knowledge-aware Recommender
Systems. Thanks to the Linked Data initiative, to-
day, we can benefit from 1, 483 different KGs con-
nected in the so-called Linked Open Data Cloud3.
KGs can be general-purpose, or domain-specific like
Academia/Industry DynAmics (AIDA) [71]. How-
ever, most of the contributions concentrate on a short-
list of KGs with a peculiar characteristic: being an
encyclopedic KG. Those KGs share the same on-
tology and the same schema across multiple do-
mains, giving access to a wide-spread knowledge
at the same development cost required for a sin-
gle domain. The most appreciated KGs of this spe-
cial class undoubtedly are DBpedia [72, 73], Wiki-
data [74, 75], Yago [76] (the 4th release [77] also sup-
ports RDF* [78]), FreeBase [79], Satori45 [80, 81],
NELL [82], Google’s Knowledge Graph6, Facebook’s
Entities Graph7, Knowledge Vault [83], Bio2RDF [84].

2.3. Security of Recommender System

Collaborative filtering recommender systems are
commonly employed on online platforms, e.g., Ama-

3https://lod-cloud.net/datasets
4https://searchengineland.com/library/bing/bing-satori
5https://blogs.bing.com/search/2013/03/21/understand-your-

world-with-bing
6https://blog.google/products/search/introducing-knowledge-

graph-things-not/
7https://www.facebook.com/notes/facebookengineering/under-

the-hood-the-entitiesgraph/10151490531588920/

zon8, eBay9, Netflix10. The rationale is to ease the cus-
tomer navigation across the catalog based on the so-
called “word-of-mouth”, i.e., a user might like what
other people like and dislike. However, the openness
of these systems has shown to be a possible point of
failure. Indeed, malicious users, the adversaries, can
meticulously craft fake profiles to poison the data and
alter the recommendation behavior toward malicious
goals [85–87]. An adversary may execute a shilling at-
tack (injects malicious profiles) to achieve a whole dif-
ferent set of objectives. To name a few, she may want
to demote competitor products [4], misuse the under-
lying recommendation system [2], or increase the rec-
ommendability of specific products [88, 89].

A standard categorization of shilling attacks con-
siders the adversary’s knowledge to mount the attack,
the adversary’s goal, and the number of added pro-
files [3, 90]. According to the adversary’s knowledge, a
shilling attack can be a low-knowledge or an informed
attack. The former class indicates a limited amount
of available data information accessible by the adver-
sary [4, 5]. The latter class assumes a higher knowl-
edge of dataset information, such as the rating distribu-
tion. In this case, the adversary might be able to craft
more effective profiles [4, 85]. Regarding the adver-
sary’s goal, the adversary might alter the recommender
to push or nuke the recommendability of a product, or
a class of products, named target items. Push attacks
aim to increase the targeted item’s appeal, while nuke
attacks aim to lower their recommendation frequency.
Also, shilling attacks can be categorized based on the
number of fake profiles added to the system. A com-
mon approach to measuring the granularity of attack
is to measure the percentage of added profile over the
total number of regular users in the systems [5, 91].

The research works on shilling attacks explored two
main research perspectives: proposing and investigat-
ing attack strategies with their effects on the recom-
mendation performance [4, 91–93] and exploring de-
fensive mechanisms [87, 94–98].

A typical characteristic of the first line of research
on shilling attacks is that the adversary’s knowledge
is related only to the recommender system’s user-
item interaction matrix. Furthermore, Anelli et al. [12]
demonstrate that publicly available KG improves ad-
versary’s efficacy, also in the case of low-informed at-
tacks. In this work, we extend the SAShA framework

8https://www.amazon.com/
9https://www.ebay.com/
10https://www.netflix.com/

https://lod-cloud.net/datasets
https://searchengineland.com/library/bing/bing-satori
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
https://www.amazon.com/
https://www.ebay.com/
https://www.netflix.com/
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to verify the possible improvement of the adversary’s
efficacy when processing the KG information with se-
mantic similarity measures.

Note that this work focuses on shilling attacks,
which are hand-engineered strategies to study rec-
ommender systems’ security. This research line is
different from machine-learned data poisoning at-
tack [99–103] and adversarial machine-learned at-
tacks [89, 104–106], recently surveyed by Deldjoo et
al. [107]. Indeed, those attacks study the security of
recommendation systems when adversaries adopt op-
timization techniques to create a minimal perturbation
able to fail the recommendation performance.

3. Proposed shilling attack approach

This section introduces the reader to the notations
and formalisms that may help understand the design
of shilling attacks against targeted items integrating
information obtained from a knowledge graph (KG).
First, we focus on categorizing the predicates in a
KG and formalizing the semantic features extraction
considering a single- and double- hop exploration of
the KG ( Section 3.1). Hence, the adopted relatedness
measures are summarized ( Section 3.2). Then, we
present an overview of shilling attack notation ( Sec-
tion 3.3), and, finally, semantics-aware extensions to
various widespread shilling attacks, namely: Random,
Average, and BandWagon attacks in Section 3.3.1.

3.1. Knowledge Graph Content Extraction

A knowledge graph is a structured repository of
knowledge, designed in the form of a graph, that en-
codes various kinds of information:

– Factual. General statements as Rika Dialina was
born in Crete or Heraklion is the capital of Crete
that describe an entity by using a controlled vo-
cabulary of predicates that connect the entity to
other entities (or literal values);

– Categorical. These statements connect the entity
to a particular category (i.e., the categories asso-
ciated with a Wikipedia page). Often, categories
are in turn organized as a hierarchy;

– Ontological. These are formal statements that de-
scribe the entity’s nature and its ontological mem-
bership to a specific class. Classes are often or-
ganized in a hierarchical structure. In contrast to
categories, sub-classes and super-classes are con-
nected through IS-A relations.

In a knowledge graph, we can express statements
through triplets σ

ρ−→ ω, with a subject (σ), a pred-
icate (or relation) (ρ), and an object (ω). There are
several ways to transform the knowledge coming from
a knowledge graph into a feature. We have chosen to
represent each distinct path as an explicit feature [30].
In the next section, it will be clear why it is conve-
nient. Given a set of items I = {I1, I2, . . . , IN} in a
collection and the corresponding triples 〈i, ρ, ω〉 in a
knowledge graph, the set of 1-hop features is defined
as 1-HOP-F = {〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG with i ∈ I}.

In an analogous way we can identify 2nd-hop fea-
tures. By continuing the exploration of KG we retrieve

the triples ω
ρ′−→ ω′, where ω is the object of a 1st-hop

triple and the subject of the next triple. The double-
hop predicate is denoted by ρ′ and the object is re-
ferred as (ω′). Therefore, the overall feature set is de-
fined as 2-HOP-F = {〈ρ, ω, ρ′, ω′〉 | 〈i, ρ, ω, ρ′, ω′〉 ∈
KG with i ∈ I}. Given the current definition, 2nd-hop
features also contain heterogeneous predicates (see
the previous classification of different kinds of state-
ments). To make it possible to analyze the impact of
the kind of semantic information, we consider a 2nd-
hop feature as Factual if and only if both relations (ρ,
and ρ′) are Factual. The same holds for the other types
of encoded information.

3.2. Entity Similarity/Relatedness in KGs

The keystone of the Knowledge Graph representa-
tion is the semantics enclosed in the resource descrip-
tion and the predicates that connect the different re-
sources. Nevertheless, if the metric to compute similar-
ities between the resources is not carefully chosen, this
piece of information is lost irretrievably. Motivated by
this awareness, we decided to consider a broad spec-
trum of diverse similarity/relatedness metrics: Cosine
Vector Similarity [108], Katz centrality [109], and
Exclusivity-based semantic relatedness [110]. The
three metrics cover three different aspects of the simi-
larity between the resources:

1. A signal of the overlap of the descriptions
2. The average length of the paths that connect the

resources
3. A semantics-aware signal that highlights the

specificity of the relations between the resources

Cosine Vector Similarity is a well-known similarity
that is very popular in recommendation systems. The
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idea is to measure how similar the two different repre-
sentations are. Suppose a numerical vector can repre-
sent the resource description, with the number of the
predicate-object chains observed in the KG being the
vector’s cardinality. Mathematically, it measures the
cosine of the angle between two vectors that repre-
sent two different resources. The smaller the angle, the
higher is the cosine, and thus the similarity. Suppose i
and j are two items in the KG, and F(·) is a function
that returns the features associated with an entity in the
KG. Hence in(i, f ) is a function that returns 1 if entity
i is associated with feature f , else 0. The Cosine Vec-
tor Similarity has been already formulated for KG as
follows [108]:

sim(i, j) =
∑

f∈F(i)∪F( j) in(i, f )·in( j, f )√∑
f∈F(i) in(i, f )2·

√∑
f∈F( j) in( j, f )2

(1)

Katz centrality [109] is a famous graph-centrality
measure that inspired several semantics-aware met-
rics [110, 111]. Katz suggests that the probability of
the path between two nodes can indicate the effec-
tiveness of the link. Given a constant probability for
a single-hop path, called α, the whole path’s overall
probability is αy, where y is the number of the nodes
involved. Hulpus [110] exploits the rationale to build
a relatedness measure. Therefore, he defined the Katz
relatedness between two items i and j as the accumu-
lated score over the top-t shortest paths between them.

rel(t)
Katz(i, j) =

∑
p∈S P(t)

i j
αlength(p)

t
(2)

where S P(t)
i j is the set of the top-t shortest paths be-

tween items i and j.
Exclusivity-based semantic relatedness [110] is a se-
mantic relatedness measure that takes into account the
type of relations that connect two nodes. The idea is
that two concepts are strongly connected if the type of
relations between them is different from the type of re-
lations they have with other concepts. This property of
relations, named exclusivity, is defined as follows.

Suppose a predicate ρ of type τ between two items i
and j, directed from i to j. The exclusivity of predicate
ρ is the probability to select, with a uniform random
distribution, a predicate ρ′ of type τ among the pred-
icates of type τ that exit resource i and enter node j,
such that predicate ρ′ is exactly the predicate ρ:

exclusivity(i τ−→ j) =
1

|i τ−→ ∗|+ |∗ τ−→ j| − 1
(3)

where |i τ−→ ∗| denotes the cardinality of relations of
type τ ∈ T that exit resource i, and |∗ τ−→ j| denotes the
number of relations of type τ ∈ T that enter resource
j. Since the relation i τ−→ j is in |i τ−→ ∗| and in |∗ τ−→ j|,
1 is subtracted from the denominator. The exclusivity
score for a predicate falls inside the (0, 1] interval. The
value 1 denotes the extreme case in which the predicate
is the only relation of its type for both i and j.

Given a path through KG, P = n1
τ−→ n2

τ2−→, . . . , nk

with τi ∈ T ∓, the weight of the path is defined as:

weight(P) =
1∑

i
1

exclusivity(ni
τi−→ni+1)

(4)

Finally, the relatedness between two resources can
be computed as the sum of the path weights of the
top-t paths between the resources with the highest
weights. To penalize longer paths, a constant length
decay factor, α ∈ (0, 1], can be introduced. The over-
all exclusivity-based relatedness measure is therefore
defined as follows:

rel(t)
Excl(i, j) =

∑
Pn∈Pt

i j

αlenght(Pn)weight(Pn) (5)

3.3. Strategies for Attacking a Recommender System

In order to increase the robustness of recommender
systems, or generally ML systems, against any poten-
tial attack, the system designer needs to understand the
following fundamental questions:

– Why have the attacks been performed?
– When have the attacks been performed?
– How have the attacks been realized?
– How much knowledge does the attacker have?

The Why question seeks to understand the intent of the
attacker. There are two most common motivations be-
hind shilling attacks against RSs. The first one is to
promote (push) or demote (nuke) the popularity of tar-
get items, or groups of items, so that they can be rec-
ommended to as many or as few users as possible in or-
der to gain an economic advantage over platform com-
petitors. The second one intends to compromise the
overall quality of the recommendations. These two di-
mensions will impact the definition of evaluation met-
rics used to evaluate the success of the attacks.

The When question concerns the attack’s timing, a
consideration that gives rise to a dichotomy that is cen-
tral to understand attacks on ML systems: train-time
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Table 1
Overview of shilling attack strategies and their profile composition for adversaries’ goal of pushing a target item (IT ).

Selected Items (IS ) Filler Items (IF) Iφ IT
Attack Type Number Items Rating Selection Number Items Rating
Random [4] ∅ Random

∑
u∈U |Iu|
|U| − 1 rnd(N(µ, σ2)) I − IF max

Love-Hate [112] ∅ Random
∑

u∈U |Iu|
|U| − 1 min I − IF max

Popular [113]
∑

u∈U |Iu|
|U| − 1 min if µ f < µ else min + 1 ∅ I − IS max

Average [4] ∅ Random
∑

u∈U |Iu|
|U| − 1 rnd(N(µ f , σ

2
f )) I − IF max

Bandwagon [92] (
∑

u∈U |Iu|
|U| )/2− 1 max Random (

∑
u∈U |Iu|
|U| )/2 rnd(N(µ, σ2)) I − IS − IF max

P. Knowledge [85]
∑

u∈U |Iu|
|U| − 1 max ∅ I − IS max

SAShA Random ∅ Semantics-aware
∑

u∈U |Iu|
|U| − 1 rnd(N(µ, σ2)) I − IF max

SAShA Love-Hate ∅ Semantics-aware
∑

u∈U |Iu|
|U| − 1 min I − IF max

SAShA Average ∅ Semantics-aware
∑

u∈U |Iu|
|U| − 1 rnd(N(µ f , σ

2
f )) I − IF max

SAShA Bandwagon (
∑

u∈U |Iu|
|U| )/2− 1 max Semantics-aware (

∑
u∈U |Iu|
|U| )/2 rnd(N(µ, σ2)) I − IS − IF max

where (µ, σ) are the dataset average rating and rating variance, (µ f , σ f ) are the filler item IF rating average and variance, and min and max are the minimum
and maximum rating value. rnd function generates one integer (i.e., rating) from a discrete uniform distribution.

attacks (aka data poisoning attacks) and decision-time
attacks (aka evasive attacks). Train-time attacks are
accomplished by modifying the training data used to
train the ML model. In RS, the most popular types of
poisoning attacks designed to date include shilling at-
tacks, and machine-learned data poisoning attacks.
Shilling attacks are realized by injecting hand-crafted
fake user profiles (shilling profile) into the user-rating
matrix (URM), aiming to learn a bad recommenda-
tion model from the user-item rating scores. In contrast
to hand-engineered shilling attacks, machine-learned
data poisoning attacks typically use an optimization
procedure to maximize the adversary’s goal automat-
ically. This class of data poisoning attacks was popu-
larized in RS research by Li et al. [99], that introduced
attacks against latent factor recommendation models
(LFM), paving the path for the introduction of a va-
riety of other attacks against in the upcoming years,
broadly classifiable into attacks against LFM [99, 100,
114, 115], reinforcement learning (RL) [116–118], and
other categories of recommendation such as graph-
based techniques [119–121]. We point the reader to a
few recent surveys for a broader frame of reference
into these techniques: [90] for a review of shilling at-
tacks against RS, [107] for a good understanding of
adversarial machine learning applications in RSs, and
[122] for a general introduction to adversarial attacks
and defenses against ML systems.

The How question, we discuss it for shilling attacks,
which was the choice in this work due to the simplic-
ity of designing such attacks. For a detailed discussion
about the design of other attacks (machine-learning
data position and AML-based attacks), we refer inter-
ested readers to [107]. A shilling attack is typically
conducted against a rating-based CF model based on

generation fake user profiles (shilling profile) that fol-
low a specific pattern, as designed by [4, 88].

Definition 2 (Shilling Profile). Given a Recommenda-
tion Problem, a Shilling Profile (SP) is a rating pro-
file partitioned into four sets, according to:

SP = IS + IF + Iφ + IT (6)

where IS denotes the selected item set containing
items identified by the attacker to maximize the effec-
tiveness of the attack, IF is the filler item set, contain-
ing a set of randomly selected items to which rating
scores are assigned to make them imperceptible. IT is
the target item, for which the recommendation model
will make a prediction, aimed to be maximal (for push
attack) or minimum (for nuke attack). Finally, Iφ is the
unrated item set, holding a number of items without
any ratings.

Note that IS and IF are chosen depending on the
attack strategy, and the attack size is the number of
injected fake user profiles. Throughout this paper, we
use φ = |IF | to represent the filler size, α = |IS | the
selected item set size and χ = |I∅| to show the size
of unrated items. Table 1 summarizes the main param-
eters involved in the implementation of most promi-
nent shilling attacks against rating-based CF models.
For instance, it can be seen the proposed semantic
attacks, referred to by S AS hA name of the attack,
are the extension of state-of-the-art shilling attacks,
with the difference that selection of the filler item set
(IF) is chosen semantically, not randomly. We will
describe details about semantic knowledge integration
with shilling attacks in Section 3.3.1.
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Finally, the last important consideration when de-
signing attacks is how much — information the adver-
sary has about the learning model, the algorithm, or the
training data they aim to attack. This will lead to clas-
sifies attacks according to white-box, black-box, and
gray-box attacks.

1. White-box attacks also referred to by perfect-
knowledge (PK) attacks, are attacks in which
we assume the adversary has perfect knowl-
edge about the learned model (the actual recom-
mendation model), including its characteristics,
the learning algorithm, hyper-parameters, among
others. White-box attacks are important since
they are the most potent possible threat model.
In the field of cybersecurity, it has been shown
that assuming attacker having no knowledge —
or security by obscurity — is ineffective [123].

2. Gray-box attacks assume that the adversary has
some knowledge about the model in gray-box
attacks —aka limited-knowledge attacks (LK)—
although this knowledge might not be complete.
For example, the attacker may know about the
recommendation model or the training data, but
not both of them together. For instance, attackers
can build a surrogate model using their knowl-
edge of the training data and effectively craft at-
tacks against the substitute model [124].

3. Black-box attacks, also known as zero-knowledge
attacks (ZK), consider adversaries without knowl-
edge about the learned model or the algorithm
used by the ML model before developing the at-
tack.

To connect it with state-of-the-art shilling attacks,
we can mention that the Random attack is a black-box
attack, the Perfect-knowledge attack is a while-box at-
tack, while the rest of the attacks can be considered as
a gray-box attack.

3.3.1. Semantics-aware Shilling Attack Strategies
Previous works on shilling attacks against RS mod-

els have predominately focused on CF models and the
way the user interaction data (ratings) can be exploited
to craft more effective shilling profiles. In our view, a
rich source of knowledge, namely KGs, has been ne-
glected in the design of such attacks. To fill this gap, in
this work, we strengthen state-of-the-art attack strate-
gies by exploiting semantic similarities between items.
The main idea behind our proposed semantics-aware
shilling attack (SAShA) strategies is that we can com-
pute the similarity/relatedness between the target It

with other items in the catalog by exploiting the fea-
tures extracted from a KG. This semantic information
is used to construct the filler set IF , by semantically
selecting the items. The key insight in the proposed
approach is that the exploitation of semantic similari-
ties/relatedness leads to the generation of more natural
and coherent fake profiles, given that the representative
description of items is encoded in computing pairwise
item similarities.

Semantics-aware Random Attack is an extension
of the baseline Random Attack [4]. The baseline ver-
sion is naive attack, which uses randomly chosen items
(α = 0, φ = profile-size) to create a fake user profile.
The ratings attributed to Iφ are sampled from a uni-
form distribution (see Table 1). We modify this attack
by selecting the items to complete IF with the pro-
posal semantics-aware technique. For this purpose, we
compute semantic similarities/relatedness between the
items in the catalog e the target item using KG-based
features (cf. Section 3.1). Afterward, we identify the
most similar items (IT ) by considering the first quar-
tile of most similar items, and we extract φ items from
this set by adopting a uniform distribution.

Semantics-aware Average Attack is an informed
attack strategy that extends the AverageBots attack [5].
The baseline attack leverages the mean and variance
of the ratings, which is then used to sample each filer
item’s rating from a normal distribution built using
these values. Similar to the previous semantics-aware
attack extension, we extract the filler items by exploit-
ing semantic similarities derived from a KG. Finally,
as before, we consider the items in the first quartile of
the most semantically similar/related to IT as the can-
didate filler items (IF).

Semantics-aware BandWagon Attack is a low-
knowledge attack that extends the standard Band-
Wagon attack [92]. We leave unchanged the injection
of the selected items (IS ), which are the most popular
ones and on which we associate the maximum possible
rating (see Table 1). However, similarly to the previous
two semantic attack extensions, we complete IF by
taking into account the semantic similarity/relatedness
between the target item IT and the rest of the catalog.

Note that in this work, we do not investigate the
semantics-aware extension of the Love-Hate attacks
since the integration of the semantic information has
been demonstrated to not improve the adversary effi-
cacy as discussed in related studies [12, 125].
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4. Experimental Setting

In this section, we describe the the experimen-
tal evaluation and provide details necessary to re-
produce the experiments. First, we introduce the two
real-world datasets used in recommendation scenar-
ios (Section 4.1), as well the process carried out to
extract, select and filter the semantic information ob-
tained from theKG (Section 4.1.1 to 4.1.3). Afterward,
we describes the four collaborative filtering (CF) rec-
ommendation models tested against the proposed at-
tacks (Section 4.2). Finally, we detail the evaluation
metrics and the experimental setting used for the ex-
perimental evaluation (Section 4.3 and 4.4).

4.1. Dataset

We test the proposed shilling attack approach on two
recommendation datasets: LibraryThing and Ya-
hoo!Movies.
LibraryThing [61] is a popular dataset whose

interactions originate from librarything.com, a
social cataloging web application. The dataset con-
tains user-item rating scores ranging from a mini-
mum of 1 to a maximum of 10. As presented in [12],
we use a reduced version by randomly extracting the
25% of products in the catalog. Furthermore, we ap-
ply a 5-core filtering by removing all the users with
less than five interactions to focus the study on ac-
tive users. These users are of adversaries’ interest since
they could more likely buy the pushed products.
Yahoo!Movies is a recommendation dataset re-

leased by research.yahoo.com with ratings col-
lected up to November 2003. The dataset also provides
mappings to the MovieLens and EachMovie cata-
logs. The recorded interactions consist of ratings rang-
ing from 1 to 5.

Another motivation for choosing these datasets was
the existence of a mapping between the products in
the catalogs and DBpedia knowledge-base entities.
In particular, we use the mappings publicly available
at https://github.com/sisinflab/LinkedDatasets. Table 2
reports the statistics of both datasets’ user-item inter-
action data, together with the total number of seman-
tic features extracted from both the first and the sec-
ond hop of the knowledge graph associated with each
item. In the following, we describe steps taken for pre-
processing and data sanity of the features extracted
from a KG.

Table 2
Datasets statistics.

Dataset #Users #Items #Ratings Sparsity #F-1Hop #F-2Hops

LibraryThing 4,816 2,256 76,421 99.30% 56,019 4,259,728
Yahoo!Movies 4,000 2,526 64,079 99.37% 105,733 6,697,986

4.1.1. Feature Extraction.
Once the items are semantically reconciled with

DBpedia entities, we remove the noisy features
whose triples contain one of the following predicates:

– owl:sameAs
– dbo:thumbnail
– foaf:depiction
– prov:wasDerivedFrom
– foaf:isPrimaryTopicOf

The feature denoising procedure follows the method-
ology proposed by Anelli et al. [30, 50].

4.1.2. Feature Selection.
To perform the analysis of the class (or type)

of semantic features, we implement our proposed
semantics-aware attacks by considering three differ-
ent types of features, i.e., categorical (CS), ontological
(OS), and factual (FS), a feature taxonomy commonly
adopted in the Semantic Web community [30].

For the semantics-aware attack strategies exploiting
single-hop (1H) features, we apply the following poli-
cies:

– Categorical-1H, we use the features with the
property dcterms:subject;

– Ontological-1H, we select the features contain-
ing the property rdf:type;

– Factual-1H, we consider all the features except
ontological and categorical features.

In the attacks employing double-hop (2H) features,
the strategies evolve as described below:

– Categorical-2H, we pick up the features with ei-
ther dcterms:subject or skos:broader
properties;

– Ontological-2H, we select the features con-
taining either rdf-schema:subClassOf or
owl:equivalentClass properties;

– Factual-2H, we use the features not selected in
the previous two classes.

Note that we did not place any domain-specific cat-
egorical/ontological feature in the respective lists. To
provide a domain-agnostic evaluation, we have treated
them as factual features.

https://github.com/sisinflab/LinkedDatasets
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Table 3
Selected features in the different settings either for single and double hops.

Single hop features Double hop features
Categorical Ontological Factual Categorical Ontological Factual

Dataset Total Selected Total Selected Total Selected Total Selected Total Selected Total Selected

LibraryThing 3,890 373 2,090 311 50,039 1,972 9,641 857 3,723 527 4,246,365 252,848

Yahoo!Movies 5,555 1,192 3,036 722 97,142 7,690 8,960 1,956 3,105 431 6,685,921 517,211

4.1.3. Feature Filtering.
This work aims to study the attack performance dif-

ferences up to the first and second hop. Addressing
this aim, we obtain millions of features for both Li-
braryThing and Yahoo!Movies as reported in
the last two columns of Table 2. Measuring semantic
similarities across the item catalog would quickly be-
come unfeasible. However, some features only occur
once and provide no useful informative or collabora-
tive information. Therefore, we decided to drop off ir-
relevant features following the filtering technique pro-
posed in Di Noia et al. [61, 126]. In detail, we removed
all the features with more than 99.74% of missing val-
ues and distinct values. Table 3 shows the remaining
features’ statistics after applying all the extraction, se-
lection, and filtering process.

4.2. Recommender Models

In this work, we test our attack proposal (see Sec-
tion 3.3) against four baseline collaborative recom-
mendation systems: User-kNN, Item-kNN, Matrix
Factorization, and Neural Matrix Factorization. The
first two approaches belong to memory-based CF,
while the next two are model-based CF (see Sec-
tion 2.1), thus providing us an overall picture of differ-
ent recommendation model types performance when
confronted with shilling attacks.

– User-kNN [18, 19] is a standard user-based Col-
laborative Filtering (CF) approach to measure the
preference score of a user u toward an not inter-
acted product i (r̂ui), by exploiting the similarity
with the k most similar users in her neighborhood.
We adopt the user and item’s unbiased User-kNN
formulation as proposed by Koren et al. [19]. Let
u ∈ U , and i ∈ I, where U and I are the set of
users, and items, in the recommendation system;
the prediction of the rating attributed by the user
u to the item i is estimated as follows:

r̂ui = bui +

∑
v∈U k

i (u) δ(u, v) · (rvi − bvi)∑
v∈U k

i (u) δ(u, v)
(7)

where δ is the distance function to measure the
users’ similarities, and U k

i (u) is the group of the k-
most similar users v of u (aka, the neighborhood).
Furthermore, bui is defined as µ + bu + bi, where
µ, bu, and bi are the overall average rating, the
observed bias of user u and item i, respectively.
We use the Pearson Correlation as the distance
metric δ(·) as suggested by Candillier et al. [127].
The size of the neighborhood, k, is set to 40.

– Item-kNN [19, 20] is a standard item-based CF to
predict the user-item preference score (r̂ui) from
the recorded feedback. Let u ∈ U , and i ∈ I, the
prediction of the score given by the user u to item
i is predicted as follows:

r̂ui = bui +

∑
j∈Ik

u(i) δ(i, j) · (ru j − bu j)∑
j∈Ik

u(i) δ(i, j)
(8)

where Ik
u(i) denotes the set of k most similar

items to (unrated) item i voted by user u. Similar
to User-kNN, we use the Pearson Correlation to
implement the distance function δ(·) and set k the
dimension of the considered neighborhood 40.

The third and fourth recommendation systems are
representative of model-based collaborative recom-
menders. In particular, matrix factorization is the base-
line recommender representing the class of linear la-
tent factor models, while neural matrix factorization
represents the class of non-linear models.

– Matrix Factorization (MF) [21] is a latent fac-
tor model to learn the unknown preferences. MF
represents both items and users by vectors of la-
tent factors. These factors are learned from lin-
ear patterns of the user-item rating matrix. The
learned user and item representation are two low-
rank matrices, one for the users P ∈ R|U|× f and
another for the items Q ∈ R|I|× f , where f is the
size of the latent vectors, i.e., f � |I|, |U|. The
prediction of an unknown user-item score r̂ui is
computed as the dot-product between the user
(pu ∈ P) and the item (qi ∈ Q) latent vectors:

r̂ui = bui + qT
i pu (9)
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Following the learning settings defined in [128],
we set the size of latent vectors f to 100.

– Neural Matrix Factorization (NeuMF) [129] is
one of the most representative recommendation
model that exploits deep neural networks to esti-
mate unknown user-item preference scores [130].
NeuMF makes use of both the linearity of MF
and the non-linearity of neural layers to improve
the learning capability of the model. Unlike MF,
the estimated score for a user − item pair of the
neural network, r̂ui, is the output of a deep neu-
ral network whose input is the combination of the
MF layer and the neural network layer. The latter
concatenates the user (pu )and the item (qi) em-
beddings. Let Φ(·) be the transformation function
of the deep neural network defined as Φ(x) :=
Rdim(x)) → Rout_dim, then the score is predicted as
follows:

φGMF = pu � qi

φMLP = Φ([pu,qi])

r̂ui = σ(HT
[
φGMF

φMLP

]
)

(10)

where � denotes the element-wise product of vectors,
whereas σ and H denote the activation function and
edge weights of the output layer, respectively. In Equa-
tion (10), qi ∈ R f1 and pu ∈ R f2 are the latent rep-
resentations of user u and item i that are concatenated
via the function [·], i.e., the input of the deep neural
network. We set f1 = f2 = 16 as suggested by He et
al. [129]. The vector resulting from the concatenation
of pu and qi is fed into a deep neural network com-
posed by 4 fully connected dense layers with {64, 32,
16, 8} hidden units, respectively. During the training,
we insert a dropout pre-layer for each of the four layers
with a dropout rate equal to 0.1.

4.3. Evaluation Metrics

In the following sections, we aim to analyze the vari-
ation of recommendation performance caused by the
proposed semantics-aware attack strategies. Two met-
rics are widely adopted to measure the performance
shift: [86]: Overall Prediction Shift (PS ) and Overall
Hit-Ratio at N (HR@N).

PS measures the average of estimated user prefer-
ence scores’ variation (before and after the attack) on
the target items. HR@N describes the average presence
of target items in the top-N recommendation lists gen-

erated for all the users. Although both are commonly
adopted, they are not equally adequate for evaluating
Top-N recommendation tasks. The reason for this con-
sideration will be evident with their formalization. Let
Î be the set of attacked items, then

PS (Î) =

∑
i⊂Î,u⊂U (r̂ui − rui)

|Î| × |U|
(11)

HR@N(Î) =

∑
i⊂Î hr@N(i,U)

|Î|
(12)

where rui is the prediction before attack and r̂ui is the
preference score predicted for the (u, i) pair after a
shilling attack. The hr@N(i,U) metric evaluates the
number of occurrences of the target (attacked) item
i in the top-N recommendation lists of each user. In
the case of push attack, the adversary’s goal is to
increase/maximize the metric values for PS and HR
since the purpose of the attacker is to promote the
recommendation-ability of certain interest items. Con-
versely, for the nuke attacks, the attacker’s main ob-
jective is to minimize these metric scores. Finally, it
can be highlighted that because HR is defined based
on top-N recommendation lists, it is of higher impor-
tance in practical settings, compared to PS, which is
agnostics to whether the shift in the prediction is suffi-
cient to push the target item into (or outside) the top-N
recommendation lists.

4.4. Evaluation Protocol

To investigate the impact of the proposed attack
strategies, we perform 360 experiments for each pair
of a dataset and the number of extracted hops, total-
ing 1440 experiments. Following the evaluation pro-
cedure used in Mobasher et al. [4, 88], we generate
the list of recommendations for each recommendation
model before executing the attack. After having mea-
sured the position and predicted score for each target
item-user pair, we simulated the attack. First of all,
we craft and add shilling profiles to the data follow-
ing the baseline attack strategies. The HR@N and PS
results extracted from the model’s training on the poi-
soned data constitute the baselines to compare with se-
mantic attack strategies. Then, we evaluate the same
metrics on the recommendation results generated on
the data poisoned by the fake profiles crafted with
the proposed strategy (details in Section 3). Note that
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we evaluate the semantic strategies considering a sce-
nario where the adversary’s goal is to push a target
item/product. In particular, we perform each one of
the 360 experiments on 50 randomly selected items in
the dataset. Furthermore, we perform each attack us-
ing three different amounts of injected shilling pro-
files: 1%, 2.5%, and 5% of the total number of users, as
adopted in [5, 12, 91]. Regarding the relatedness mea-
sures, we set the α = 0.25 and the t-path length to
10 for both metrics. To grant the results’ reproducibil-
ity, the experimented datasets and the code are publicly
available.11

5. Experiments

This section empirically evaluates the proposed
semantics-aware shilling attack methods to assess their
effectiveness against traditional neighborhood-based
and model-based CF-RSs, according to according to
the experimental settings defined in Section 4. All the
results are computed for top-10 recommendation, i.e.,
N = 10. To avoid redundancy, we will refer to HR@10
with HR in the rest of the paper.

5.1. Results

Table 4 and Table 5 report the HR values mea-
sured for each of the 360 attack combinations experi-
mented on the Yahoo!Movies and the Library-
Thing datasets, respectively. Across the next sec-
tions, we identify an attack combination using the
format <dataset, hops, recommendation model, attack
strategy, feature type, similarity measures, attack gran-
ularity>. For example, <Yahoo!Movies, 1H, User-
kNN, Average, Categorical, Katz, 1%> indicates an
experiment on the Yahoo!Movies dataset when the
adversary uses the average semantics-aware strategy
against a User-kNN recommendation model. Here, the
semantic features are the categorical ones extracted
from the first hop and exploited by the adversary by
measuring the Katz-relatedness between each item in
the catalog. Finally, 1% shows the percentage fraction
of fake profiles added into the training data.

By comparing the results across the two datasets, the
first observation is that the results obtained on the Ya-
hoo!Movies dataset (Table 5) are more indicative of
attacks’ effectiveness independently of the attack strat-
egy, the number of injected profiles, and recommender

11https://github.com/sisinflab/SAShA-against-CFRS

models, confirming the findings in our previous work,
Anelli et al. [12]. One plausible explanation for this
behavior is the differences in dataset characteristics,
e.g., the data sparsity, that has been showing impacting
shilling attacks’ performance as verified by Deldjoo et.
al. [93].

Furthermore, Table 4 also confirmed the semantics-
aware strategy’s efficacy over the baseline, either for
the average and random attacks. For instance, the se-
mantic strategies outperformed all the <LibraryThing,
1H, Random> and <LibraryThing, 1H, Average>
baseline attacks independently of the recommender
model and the size of attacks. However, it is worth
mentioning that, differently from the results on Ya-
hoo!Movies, on <LibraryThing, 1H, Band-
Wagon>, the baseline attack’s effectiveness did not im-
prove. This behavior might be linked with semantic in-
formation extracted from the KG and the attack strat-
egy itself. Since a bandwagon attack builds profiles by
filling the 50% of the profile with the most popular
items, it might make the semantic strategy that identi-
fies the informative filler items ineffective. These new
insights are interesting and show the nuances captured
by our proposed semantics-aware strategies for enrich-
ing state-of-the-art shilling attack methods against CF
models.

5.2. Discussion

In this section, devote ourselves to provide a more
in-depth discussion about the impact of several fac-
tors involved in the design space of the proposed
semantics-aware shilling attacks against CF models.
They include the effect of the feature type extracted
from the KG, i.e., CS, OS, or FS, the semantic similar-
ity/relatedness between the target item and the items
in the catalog, and the hop depth described in detail
in Section 4.1. Our goal is to answer the research ques-
tions provided in Section 1 along these directions.

RQ1: The impact of relatedness-based measures
and public available semantic information. The first
research question is intrinsically the most important
one. Given the extent of experiments carried out in the
experimental section, it could be hard to decipher this
information at first glance. Thus, in this section, we try
to decode some of the main insights obtained from the
experimental results along the experimental directions
outlined above. Let us consider the experiments on
LibraryThing. We can observe that the adoption
of graph-based relatedness generally leads to an attack
efficacy improvement over the baseline, which adopts

https://github.com/sisinflab/SAShA-against-CFRS
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Table 4
Hit Ratio (HR) result values evaluated on top-10 recommendation lists for the LibraryThing dataset.

User-kNN Item-kNN MF NeuMF
Attack Feature Type Similarity 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5

Random Baseline .0736 .1570 .2301 .2885 .4588 .5590 .7660 .8987 .9419 .0612 .1130 .2216

Categorical Cosine .0745 .1576 .2311 .2804 .4575 .5687 .7837 .9014 .9439 .0802 .1324 .1653
Katz .0808 .1698 .2441 .2862 .4610 .5691 .7885 .9021 .9418 .0808 .1105 .1812
Exclusivity .0816 .1703 .2456 .2915 .4635 .5707 .7897 .8993 .9427 .0886 .1479 .2417

Ontological Cosine .0709 .1503 .2252 .2748 .4483 .5634 .7720 .8979 .9423 .0561 .1493 .1926
Katz .0774 .1622 .2355 .2837 .4592 .5670 .7845 .9021 .9416 .0751 .1392 .1857
Exclusivity .0766 .1619 .2349 .2848 .4602 .5686 .7846 .9010 .9433 .1091 .0999 .2240

Factual Cosine .0740 .1558 .2280 .2786 .4528 .5642 .7835 .9023 .9419 .0676 .1009 .1285
Katz .0760 .1591 .2319 .2823 .4570 .5662 .7839 .9015 .9417 .0685 .1366 .1823
Exclusivity .0793 .1672 .2425 .2890 .4646 .5722 .7888 .9029 .9434 .0921 .1034 .2143

Average Baseline .0857 .1994 .2863 .3170 .5085 .6070 .8043 .9140 .9500 .0416 .0670 .1362

Categorical Cosine .0864 .1967 .2823 .3060 .5115 .6202 .8128 .9127 .9502 .0634 .0950 .1316
Katz .0940 .2094 .2922 .3136 .5133 .6136 .8149 .9132 .9486 .0630 .1031 .1119
Exclusivity .0941 .2074 .2888 .3185 .5142 .6142 .8165 .9128 .9502 .0482 .0586 .1548

Ontological Cosine .0849 .1954 .2805 .3073 .5126 .6207 .8114 .9163 .9509 .0906 .1248 .1569
Katz .0898 .2021 .2845 .3096 .5107 .6143 .8168 .9135 .9491 .0816 .1171 .1108
Exclusivity .0890 .2020 .2842 .3119 .5119 .6165 .8121 .9145 .9489 .0285 .0599 .0947

Factual Cosine .0868 .1989 .2806 .3073 .5112 .6185 .8163 .9166 .9471 .0362 .0851 .1222
Katz .0892 .2016 .2844 .3098 .5110 .6158 .8189 .9139 .9473 .0588 .0849 .1040
Exclusivity .0912 .2049 .2872 .3152 .5131 .6131 .8166 .9138 .9482 .0502 .0746 .0882

BandWagon Baseline .0817 .1319 .1881 .2640 .3834 .4694 .6000 .7656 .8435 .0100 .0105 .0061

Categorical Cosine .0763 .1234 .1752 .2641 .3801 .4632 .5918 .7661 .8429 .0107 .0077 .0074
Katz .0794 .1266 .1800 .2647 .3821 .4648 .5896 .7596 .8422 .0103 .0080 .0094
Exclusivity .0758 .1227 .1745 .2640 .3818 .4646 .5835 .7590 .8435 .0067 .0054 .0068

Ontological Cosine .0758 .1227 .1745 .2626 .3798 .4637 .5904 .7619 .8433 .0064 .0056 .0049
Katz .0792 .1257 .1779 .2636 .3802 .4637 .5820 .7642 .8447 .0051 .0027 .0077
Exclusivity .0776 .1249 .1770 .2633 .3815 .4643 .5979 .7611 .8413 .0057 .0047 .0052

Factual Cosine .0738 .1190 .1714 .2632 .3784 .4623 .6001 .7634 .8408 .0057 .0044 .0063
Katz .0776 .1239 .1771 .2641 .3801 .4630 .5833 .7602 .8415 .0026 .0083 .0036
Exclusivity .0792 .1272 .1796 .2638 .3813 .4642 .5948 .7590 .8405 .0051 .0054 .0227

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

cosine similarity metric. For instance, the random at-
tack (where the attacker does not have system knowl-
edge) largely benefits from the topological informa-
tion. The general observation here is that in majority
of the experimental cases, the adoption of relatedness-
based semantic information leads to improvement of
the attacks’ effectiveness. We may observe the same
behavior for the Yahoo!Movies dataset in Table 5,
in which the HR for <1H, User-kNN, Random, Cat-
egorical, Katz> is 10% better than the baseline, i.e.,
0.3725 vs. 0.3512. Beyond random attacks, we can ob-
serve some general trends also for informed attacks.
In detail, Table 4 (LibraryThing), we note that
categorical information improves both User-kNN and
Item-kNN. It is worth noticing that the same consid-
eration does not hold for latent factor-based models.
MF and NeuMF suit better cosine vector similarity.
This phenomenon is probably due to the significant
difference in how the two recommendation families

exploit the additional information. Finally, we can fo-
cus on the BandWagon attack. In that case, the at-
tack already exploits the most influential knowledge
source for collaborative filtering algorithms: popular-
ity. It follows that the integration with other knowl-
edge sources, e.g., KGs, does not provide any signifi-
cant improvement. However, the influence of popular-
ity is so high in this attack that the final recommenda-
tion lists are subject to a strong popularity bias [131].
Indeed, adding fake profiles with the maximum rat-
ings, e.g., 5 in Yahoo!Movies and 10 in Library-
Thing, placed on the most popular/rated items that
will form the IS (see Table 1) will amplify, even more,
the probability that these items will be recommended
in the highest positions of top-N recommendation lists
making ineffective the adversaries’ pushing goal to-
ward the target items.

As a consequence, it even prevents the attacked rec-
ommendation system from suggesting the target item.
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Table 5
Hit Ratio (HR) result values evaluated on top-10 recommendation lists for the Yahoo!Movies dataset.

User-kNN Item-kNN MF NeuMF
Attack Feature Type Similarity 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5

Random Baseline .1927 .3624 .4461 .3260 .5099 .6011 .4108 .5857 .7043 .0247 .0221 .0700

Categorical Cosine .1869 .3512 .4277 .3163 .4980 .5886 .4084 .5720 .6648 .0018 .0127 .0464
Katz .1912 .3725 .4559 .3429 .5270 .6098 .4244 .6029 .7049 .0223 .0317 .0891
Exclusivity .1968 .3712 .4533 .3394 .5233 .6072 .4272 .6011 .7023 .0171 .0516 .0544

Ontological Cosine .1730 .3353 .4163 .2994 .4793 .5726 .3916 .5513 .6407 .0030 .0051 .0118
Katz .1766 .3547 .4337 .3224 .5046 .5904 .4029 .5698 .6638 .0106 .0191 .0386
Exclusivity .2101 .3898 .4706 .3532 .5442 .6243 .4450 .6328 .7376 .0242 .0567 .0515

Factual Cosine .1881 .3501 .4289 .3149 .4933 .5840 .4087 .5665 .6590 .0188 .0115 .0365
Katz .2094 .3869 .4703 .3545 .5398 .6213 .4442 .6272 .7371 .0368 .0507 .0269
Exclusivity .2055 .3799 .4632 .3479 .5317 .6178 .4361 .6142 .7187 .0176 .0402 .0430

Average Baseline .2293 .4117 .4918 .3758 .5759 .6564 .4900 .6824 .7849 .0033 .0044 .0236

Categorical Cosine .2581 .4296 .4972 .3955 .5953 .6689 .5326 .7255 .8076 .0017 .0383 .0029
Katz .2319 .4142 .4917 .3882 .5773 .6542 .4889 .6777 .7716 .0015 .0064 .0272
Exclusivity .2277 .4026 .4845 .3752 .5698 .6493 .4813 .6658 .7624 .0064 .0014 .0087

Ontological Cosine .2584 .4264 .4953 .4019 .5952 .6704 .5457 .7315 .8128 .0043 .0018 .0111
Katz .2406 .4209 .4964 .3940 .5877 .6615 .5131 .7093 .7950 .0040 .0022 .0098
Exclusivity .2196 .3965 .4771 .3623 .5531 .6337 .4552 .6401 .7347 .0099 .0348 .0205

Factual Cosine .2573 .4290 .4960 .3882 .5884 .6634 .5353 .7256 .8009 .0026 .0055 .0054
Katz .2293 .4101 .4910 .3736 .5608 .6414 .4746 .6559 .7511 .0073 .0047 .0231
Exclusivity .2311 .4075 .4894 .3706 .5661 .6467 .4809 .6661 .7602 .0042 .0070 .0194

BandWagon Baseline .0996 .2418 .3556 .2427 .3764 .4691 .2357 .3606 .4320 .0010 .0026 .0025

Categorical Cosine .1020 .2544 .3634 .2453 .3831 .4748 .2536 .3909 .4662 .0010 .0208 .0010
Katz .0981 .2412 .3495 .2383 .3676 .4546 .2300 .3540 .4248 .0017 .0022 .0077
Exclusivity .0926 .2357 .3476 .2378 .3670 .4562 .2248 .3472 .4150 .0009 .0094 .0026

Ontological Cosine .1039 .2632 .3606 .2460 .3853 .4786 .2726 .4080 .4798 .0045 .0060 .0009
Katz .0958 .2476 .3528 .2412 .3754 .4652 .2253 .3602 .4376 .0009 .0023 .0012
Exclusivity .0941 .2227 .3346 .2289 .3528 .4402 .2092 .3191 .3885 .0030 .0022 .0054

Factual Cosine .1050 .2562 .3614 .2476 .3814 .4734 .2506 .3890 .4625 .0133 .0043 .0004
Katz .0930 .2302 .3460 .2295 .3569 .4461 .2178 .3399 .4064 .0255 .0028 .0115
Exclusivity .0926 .2360 .3515 .2345 .3616 .4504 .2309 .3446 .4137 .0023 .0012 .0014

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

All the experimental datasets and all the recommenda-
tion models clearly show this effect.

Another aspect that we want to underline is that in-
creasing the number of fake profiles injected into the
systems unleashes the potential of different seman-
tic knowledge types. Let us take as an example the
<LibraryThing, Average, MF>. With 1% injected
fake profiles, we observe the best results with Factual
knowledge and Katz centrality. With 2%, the best re-
sults are with Factual knowledge and cosine similar-
ity. Finally, with 5%, the best results come with On-
tological knowledge and cosine similarity. This behav-
ior suggests that the graph-based similarities have a
big impact even in a very sparse scenario. In contrast,
with the increase of fake profiles, the cosine similarity
starts leveraging interesting correlations. On the other
dimension, the factual information is massive by na-
ture, and it is crucial in sparse scenarios. However,
when the number of fake profiles increases, the knowl-

edge at a higher level of abstraction (Categorical and
Ontological) finds its way to improve the attack effi-
cacy further.

RQ2: The most impactful type of semantic infor-
mation. The following essential aspect to investigate
is the combined impact of semantic knowledge type
and relatedness measure. In detail, we believe this is
a straightforward natural evolution of RQ2. We start
focusing on Categorical knowledge. The experiments
on LibraryThing show that Exclusivity is proba-
bly the relatedness that best suits this information type.
However, the results are not that clear for the Ya-
hoo!Movies dataset. This behavior suggests that se-
mantic information type and relatedness are not the
only members of the equation. Indeed, the extension
and the quality of the item descriptions seem to have a
role. Afterward, we can focus on Ontological informa-
tion. Here, we can draw a general consideration since,
for both datasets, it is the cosine similarity metric that
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Table 6
Variation of Hit Ratio (HR) when using the features extracted from the second hop with respect to the first hop for both the LibraryThing
and Yahoo!Movies datasets.

LibraryThing Yahoo!Movies

Attack Feature Type Similarity U-kNN I-kNN MF NeuMF U-kNN I-kNN MF NeuMF
Random Categorical Cosine -1.28 -1.63 -0.70 -20.07 -0.03 -0.01 -0.01 1.57

Katz -0.77 2.05 -0.20 -6.05 -0.11 -0.10 -0.06 -0.47
Exclusivity -2.12 0.14 -0.26 -21.09 -0.05 -0.04 -0.02 0.08

Ontological Cosine 1.97 0.64 0.35 13.45 0.16 0.12 0.10 1.31
Katz -3.00 -0.24 0.10 -38.28 -0.07 -0.07 -0.04 -0.29
Exclusivity -4.57 -1.92 -0.47 -46.85 -0.13 -0.09 -0.07 -0.66

Factual Cosine -0.64 -0.62 -0.11 46.94 -0.01 0.02 0.01 -0.62
Katz 0.93 2.60 0.07 56.47 -0.12 -0.09 -0.07 -0.73
Exclusivity -0.33 0.25 -0.39 -29.80 -0.16 -0.11 -0.08 -0.21

Average Categorical Cosine -0.87 -0.86 -0.21 -17.66 -0.03 0.00 -0.01 0.67
Katz 0.07 2.13 0.02 36.36 0.03 -0.03 0.05 3.81
Exclusivity -1.82 -0.09 -0.22 52.37 0.02 -0.02 0.03 -0.69

Ontological Cosine 0.47 -0.05 0.22 -8.44 -0.14 -0.12 -0.17 -0.19
Katz -3.92 -0.82 -0.52 -70.51 0.07 0.00 0.06 2.94
Exclusivity -4.49 -2.26 0.32 152.52 0.07 0.02 0.06 -0.77

Factual Cosine -0.19 0.29 0.06 123.56 -0.04 0.00 -0.04 0.22
Katz 0.64 1.73 -0.28 13.12 0.01 -0.02 0.04 -0.75
Exclusivity 0.53 0.87 -0.33 -2.11 0.06 0.03 0.09 -0.17

BandWagon Categorical Cosine -0.02 -0.55 -0.42 -51.24 -0.03 0.00 0.02 -0.01
Katz -1.93 -1.01 -0.04 -68.96 -0.06 0.02 0.00 8.87
Exclusivity 3.25 -0.32 0.07 36.58 0.02 -0.02 0.05 0.07

Ontological Cosine -1.37 -0.10 0.16 49.05 -0.14 -0.08 -0.20 -0.62
Katz -5.69 -0.18 2.05 -9.28 0.01 -0.01 0.10 0.78
Exclusivity -2.37 -0.45 -0.55 -35.24 -0.02 0.02 0.10 0.61

Factual Cosine 1.80 -0.14 -0.32 5.18 -0.07 -0.02 -0.02 -0.91
Katz 1.57 -0.45 1.00 190.44 0.02 0.05 0.07 -0.90
Exclusivity -1.57 -0.61 -1.52 140.00 0.07 0.03 0.08 -0.17

leads to the best results. Lastly, Factual information re-
spects all the general remarks we have drawn before
showing that the relatedness is a better source of adver-
saries’ knowledge to perform more effective attacks.

In detail, we found that with low-knowledge attacks,
the best relatedness is Exclusivity for Library-
Thing and Katz for Yahoo!Movies. With informed
attacks, the best relatedness metric is the cosine sim-
ilarity. However, for the sake of electing a similarity
that better suits Factual information, we can note that
Exclusivity generally leads to better results with Li-
braryThing.

RQ3: Multiple hop v.s. single-hop. The subsequent
analysis focuses on the impact of the 1-hop and 2-hops
of the KG exploration. To support this analysis, we
have prepared the summary table. Table 6 firstly shows
the average variation of attack efficacy passing from
the adoption of single-hop extracted features to the
double-hop extraction for LibraryThing and Ya-

hoo!Movies. Regarding Yahoo!Movies, the first
and foremost consideration we can draw is that graph-
based relatedness measures seem to have no posi-
tive impact when exploiting a double-hop exploration.
However, it can be observed that those relatedness met-
rics already achieved impressive results with the first-
hop exploration. Hence, further improving the perfor-
mance is somehow challenging. Indeed, in most cases,
we can observe a minimal variation for the double-
hop performance. However, in some cases, the attacks
witness a more significant decrease, probably due to
the injection of some noisy and loosely-related second-
hop features. In general, given the high performance
achieved with a single-hop exploration, it seems that
it is not worth exploring the second-hop, and thus in-
creasing the computational complexity and introduc-
ing the new challenge of loosely-related second-hop
features. Beyond graph-based relatedness, we observe
that cosine vector similarity almost always shows an
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improvement when considering second-hop features
(particularly with Ontological and Factual informa-
tion). Finally, we have to observe that, even here, the
NeuMF model does not benefit from this new informa-
tion.

Table 6 also shows the average attack efficacy vari-
ation for LibraryThing. Here, some of the previ-
ously described behaviors are even more evident. In
detail, we note that the cosine similarity takes advan-
tage of the second-hop information. In this case, we
can also observe Katz’s improvement, suggesting that
this metric did not have unleashed its full potential
with only the first-hop features. Finally, in some cases,
the second-hop information also improves informed
attacks (reaching a peak of 53% improvement for <Av-
erage, Factual, Exclusivity>), confirming a less evident
trend we found with Yahoo!Movies.

RQ4: The most vulnerable recommendation mod-
els. The last discussion analyzes the efficacy of the se-
mantic attacks on the different recommendation fam-
ilies. Since the neighborhood-based models directly
exploit a similarity to compute the recommendation
lists, they are the privileged victim models to effec-
tively alter the recommendation performance. Indeed,
both user-based and item-based schemes heavily suf-
fer from semantics-aware shilling attacks. The pub-
licly available semantic information can help the at-
tacker in crafting impactful fake profiles even in the
case of complete lack of information about the sys-
tem, e.g., S AS hA-Random results. Even though la-
tent factor models seem to be more robust to the at-
tacks, semantic attacks produced an improvement of
the attacker’s performance. Finally, the most robust
model seems to be NeuMF. This result is probably due
to the non-linearity of NeuMF that helps the model
avoid learning from the pretended profiles. In detail,
the neural network may learn more sophisticated cor-
relations that the other models do not capture. We be-
lieve that this ability deserves specific further investi-
gation since it may lead to developing a new line of
research on Deep Learning-based semantics-aware at-
tacks that might exploit non-linear item-item similari-
ties to build more impactful attack methods.

6. Conclusion and Open Challenges

In the last decade, recommendation systems have
widely shown their effectiveness in alleviating the
over-choice problem. Indeed, with the most advanced
Machine Learning techniques, the automated recom-

mendation can support the user by providing them ac-
curate and tailored recommendation shortlists. Unfor-
tunately, being the malicious users more aggressive
and more technically prepared, the security concerns
became more frequent. However, the designer’s ability
to create a secure recommendation system starts with
the awareness of the possible attack the system can suf-
fer. In this work, we show how the adoption of struc-
tured and freely-accessible knowledge (i.e., Linked
Open Data repositories) further improves malicious
agents’ ability to attack a recommendation platform.
Knowledge Graphs have already extensively shown
that they help build more accurate recommendation
systems. However, this technical study is one of the
first attempts to exploit the external knowledge to al-
leviate the attacker’s lack of system knowledge. Start-
ing from the state-of-the-art shilling attacks (where
the attacker injects fake profiles into the platform to
alter the final recommendations), the work proposed
a broad spectrum of semantics-aware shilling attacks
(SAShA). To study and test these attacks’ efficacy, we
have investigated the impact of graph-based metrics
(Katz centrality and Exclusivity-based relatedness), se-
mantic information type, and Knowledge Graph ex-
ploration depth. We have analyzed the attack efficacy
along each dimension considering three recommenda-
tion families: neighborhood-based, latent factor mod-
els, and Neural Network-based recommendations sys-
tems, totaling 1440 experiments. The extensive ex-
perimental evaluation has taught us several important
lessons.

First, the adoption of structured knowledge gener-
ally improves by a large margin the attacker’s perfor-
mance.

Second, the graph-based metrics can efficiently deal
with very sparse scenarios capturing similarities that
are otherwise imperceptible.

Third, the type of semantic information to feed the
attacking system with has a significant function in en-
hancing the adversaries’ effectiveness. With a small
number of items/entities, the massive factual infor-
mation has an important role, but as the number of
involved entities grows, more structured information
(i.e., categorical and ontological information) leads to
better results.

Fourth, the single-hop exploration is already suffi-
cient to outperform the semantics-unaware techniques,
and the second-hop information does not introduce
significant further improvements.

Fifth, the recommendation systems that rely on a
similarity-based algorithm heavily suffer from seman-
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tic attacks, which perfectly suffice the lack of user in-
teraction knowledge. Latent factors models also suffer
from the proposed attacks since they exploit dot prod-
uct similarity. The experiments showed that the sole
recommendation technique that to be more robust to
SAShA is the Neural Network-based one, i.e., NeuMF,
probably thanks to the model’s non-linearities.

The latter finding suggests that there is still room
for improvements for the semantics-aware attacks. In-
deed, we plan to investigate Deep Learning-based se-
mantic attacks. Finally, we consider this research di-
rection as an initial investigation to design a new class
of semantics-aware recommendation systems that will
be robust to all these advanced attacks.
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