Semantic Web 0 (2021) 1

Semantics-Aware Shilling Attacks against collaborative recommender systems via **Knowledge Graphs**

Vito Walter Anelli^a Yashar Deldjoo^a Tommaso Di Noia^a Eugenio Di Sciascio^a Felice Antonio Merra^{a,*}

^a Dipartimento di Ingegneria Elettrica e dell'Informaizone, Politecnico di Bari, Italy E-mails: vitowalter.anelli@poliba.it, yashar.deldjoo@poliba.it, tommaso.dinoia@poliba.it,

eugenio.disciascio@poliba.it, felice.merra@poliba.it

Abstract. Several domains have widely benefited from the adoption of Knowledge graphs (\mathcal{KGs}). For recommender systems (RSs), the adoption of \mathcal{KGs} has resulted in accurate, personalized recommendations of items/products according to users' preferences. Among different recommendation techniques, collaborative filtering (CF) is one the most promising approaches to build RSs. Their success is due to the effective exploitation of similarities/correlations encoded in user interaction patterns. Nonetheless, their strength is also their weakness. A malicious agent can add fake user profiles into the platform, altering the genuine similarity values and the corresponding recommendation lists. While the research community has extensively studied \mathcal{KGs} to solve various recommendation problems, sufficient attention was not paid to the possibility of exploiting $\mathcal{KG}s$ to compromise the quality of recommendations. \mathcal{KGs} provide a rich source of information for item representation and recommendation that can dramatically increase the attackers' knowledge about the victim recommendation platform. To this end, this article introduces a new attack strategy, named semantics-aware shilling attack (SAShA), that leverages semantic features extracted from a knowledge graph. SAShA provides the semantics-aware variant of three state-of-the-art attack strategies: Random, Average, and BandWagon. These improved attacks can exploit graph relatedness measures, i.e., Katz and Exclusivity-based, computed considering 1-hop and 2-hops of graph exploration. We performed an extensive experimental evaluation with four state-of-the-art recommendation systems and two well-known recommendation datasets to investigate the effectiveness of SAShA. Since the semantics of relations has a crucial role in \mathcal{KGs} , we have also analyzed the impact of relations' semantics by grouping them in various classes. Experimental results indicate the benefit of embracing \mathcal{KGs} in favor of the attackers' capability in attacking recommendation systems.

Keywords: Recommender Systems, Collaborative Filtering, Security, Semantic Web Technologies, Knowledge Graphs

1. Introduction

The advent of Knowledge Graphs (\mathcal{KGs}) has definitely changed the way structured information is stored. Developed to make the Semantic Web a concrete idea, it has become much more than that. The core idea of building a semantic network in which information is represented as directed labeled graphs (RDF graphs) is disarmingly simple. Nevertheless,

*Authors are listed in alphabetical order. Corresponding authors: E-mails: felice.merra@poliba.it, vitowalter.anelli@poliba.it.

thanks to the possibilities it paves, it has been welcomed with several promises and expectancies. Complete interoperability, the ability to link knowledge across domains, the possibility to exploit Logical inference and proofs are just a few of them. In numerous domains, the exploitation of the Knowledge Graph information has become the norm. Thanks to the appearance of wide-ranging Linked Datasets like DBpedia and Wikidata, we have witnessed the flourishing of novel techniques in several research fields, like Machine Learning, Information Retrieval, and Recommender Systems. To date, Recommender Systems

(RSs) are considered the focal solution to assist users' 1 decision-making process. Since the volume of the 2 available products on the Web (in which we also con-3 sider multimedia content and services) overwhelms the 4 5 users, RSs support and ease the decisional process. 6 Among them, collaborative filtering (CF) recommendation techniques have shown very high performance 7 in real-world applications (e.g., Amazon [1]). Their 8 rationale is to analyze products experienced by sim-9 ilar users to produce tailored recommendations. Al-10 gorithmically speaking, they take advantage of user-11 user and item-item similarities. Regrettably, malicious 12 users may want to jeopardize the operation of the rec-13 ommendation platform. For example, they might be a 14 rival company or agents who want to increase (or de-15 16 crease) the visibility of a particular product. Whatever they are motivated by, the problem is that these simi-17 larities are vulnerable to the insertion of fake profiles. 18 This kind of attack is called the *shilling attack* [2], 19 which aims to push or nuke the probabilities to rec-20 21 ommend an item. The malicious agent (or adversary) 22 can rely on an extensive list of techniques to conduct the attack. Researchers and companies have classified 23 them into two broad categories [3]: low-knowledge and 24 informed attack strategies. In the former attacks, the 25 adversary has poor system-specific knowledge [4, 5]. 26 In the latter, the attacker has an accurate knowledge 27 of the recommendation model and the data distribu-28 tion [4, 6]. 29

2

Interestingly, despite the astonishing spread of knowl-30 edge graphs, little attention has been paid to knowledge-31 aware strategies to mine RS's security. In a Web al-32 ways composed of unstructured information, \mathcal{KGs} are 33 the pillars of the Semantic Web. They have become 34 increasingly important as they can represent data em-35 ploying a flexible and interoperable semantic graph 36 37 data structure. Several well-known tools have been built on \mathcal{KGs} , like IBM Watson [7], public decision-38 making systems [8], and advanced machine learning 39 techniques [9-11]. Additionally, the Linked Open Data 40 (LOD) initiative¹ has given birth to a broad ecosystem 41 of linked data datasets known as LOD-cloud². These 42 \mathcal{KGs} provide comprehensive information on numer-43 ous knowledge domains. Consequently, if a malicious 44 agent decides to attack one of these domains, items' 45 semantic descriptions would be inestimable. 46

In the research study at hand, we have investigated the possibility of improving an attack's efficacy by

²https://lod-cloud.net/

47

48

49

50

51

leveraging semantic knowledge. One major contribution of the work is exploiting publicly available information obtained from \mathcal{KG} to generate more influential fake profiles to threaten CF models' performance. The resulting attack strategy is named semantics-aware shilling attack *SAShA*. Beyond the definition of *SAShA* strategy, the work extends state-of-the-art shilling attack approaches such as *Random*, *BandWagon*, and *Average* profiting from semantic knowledge. Remarkably, the attacks' semantics-enhanced variants only rely on publicly available information without supposing any additional knowledge about the system. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

The core idea is to reformulate the attacks with the rationale of taking into account the semantic similarity between the target item with the other items in the catalog. The intuition of the approach is that semantic similarity (or, more broadly, semantic relatedness) can safely suffice the lack of the system's knowledge to craft natural and coherent fake profiles. These profiles are indistinguishable from the real ones, and they effortlessly enter the neighborhood of users and items.

In a previous exploratory study, Random, Love-Hate, and Average attacks were modified to consider the cosine vector similarity between the semantic description of items. The limitation of that approach is essentially twofold: it only considers the 1st-hop exploration of the graph (i.e., binarizing the semantic features), and it only considers cosine similarity, which is not particularly suited to bring out semantic relatedness. Here, we have overcome these limitations. On the one hand, we have explored the \mathcal{KG} until the 2hop, providing a much more in-depth investigation of semantic descriptions' role for this task. Given the required high computational effort, we hope this study provides the interested reader a complete awareness of the potential and the limitations of the approach. On the other hand, we went beyond the famous (but semantics-unaware) cosine similarity, and we have considered Katz centrality and Exclusivity-based relatedness. Finally, to provide a more fine-grained analysis, we have grouped the semantic relations into three classes: ontological, categorical, and factual relations.

In detail, this study extends the state-of-the-art approach for the integration of semantics in the shilling attacks [12] in numerous directions:

- 1. two novel graph topological and semantic approaches to build the set of products from which the adversary can craft the fake profiles;
- 2. an extensive study of the efficacy of the attack considering a two-hops graph exploration, and in-

¹https://data.europa.eu/euodp/en/linked-data

volving a state-of-the-art deep neural recommendation model;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

- 3. a novel semantic shilling attack strategy based on *BandWagon* strategy;
- a deeper discussion of the experimental results involving several dimensions: number of explored hops, type of considered relation, recommendation model, amount of injected fake profiles, and dataset;
- 5. the publication of the full experimental framework and the pre-processed datasets that can be used, out-of-the-box, for further investigations.

Since the study analyzed several aspects, the investigations can be summarized to address the following research questions to provide a general overview:

- **RQ1** Can relatedness-based measures along with public available semantic information be employed to develop more effective shilling attack strategies against recommendation models?
- **RQ2** Can we assess which is the most impactful type of semantic information?

RQ3 Is multiple hops exploration of a knowledge graph more effective than single-hop exploration to create coherent fake profiles?

RQ4 What are the recommendation algorithms that suffer more for semantics-aware attacks?

30 We have carried out extensive experiments (approx-31 imately 1440 experiments) to evaluate the impact of 32 proposed attacks against the recommendation models. 33 To this end, we have exploited two real-world recom-34 mender systems datasets (LibraryThing and Ya-35 hoo!Movies). Experimental results sharply indicate 36 that \mathcal{KG} information is a valuable source of knowl-37 edge that improves attacks' effectiveness. Moreover, 38 the adoption of semantic relatedness measures can un-39 leash the full potential of the semantics-aware attacks. 40

The remainder of the paper proceeds as follows. 41 In Section 2, we provide an overview of the state-of-42 the-art of recommendation models and shilling attacks. 43 Section 3 describes the proposed approach (SAShA), 44 introduces the semantic relatedness measures, and for-45 malizes the semantic attack strategies. Section 4 fo-46 cuses on the experimental validation of the proposed 47 attack scenarios. We also provide an in-depth discus-48 sion of the experimental results analyzing the several 49 dimensions of the study. Finally, in Section 6, we draw 50 some conclusions and introduce the open challenges. 51

2. Related Work

In this section, we focus on related literature on the foundations of recommendation models, the integration of Knowledge Graphs (\mathcal{KGs}) in RSs, and the security of collaborative filtering models.

2.1. Recommender Systems

Recommender Systems (RS) are the pivotal technical solution in different online systems nowadays to assist users with many over-choice challenges by filtering out important information out of a large amount, according to user's tastes and preferences. From a technical point of view, a recommendation problem can be stated as finding a utility function to automatically predict how much users will like unknown items.

Definition 1 (Recommendation Problem). Let \mathcal{U} and \mathcal{I} denote a set of users and items in a system, respectively. Each user $u \in \mathcal{U}$ is related to \mathcal{I}_u^+ , the set of items she has consumed, or her user profile. Given a utility function $g : \mathcal{U} \times \mathcal{I} \to \mathbb{R}$ a **Recommendation Problem** is defined as

$$\forall u \in \mathcal{U}, \ i'_u = \operatorname*{argmax}_{i \in \mathcal{I}} g(u, i)$$

where i'_u denotes an item not consumed by the user ubefore. We assume that preference of user $u \in U$ on item $i \in I$ is encoded with a continuous-valued preference score $r_{ui} \in \mathcal{R}$, where \mathcal{R} represent the set of (u, i)pairs for which r_{ui} is known

The major class of recommendation models include content-based filtering (CF), collaborative filtering (CBF), and hybrid thereof [13, 14]. CBF models build a profile of user interests based on the content features of the items preferred by that user (liked or consumed), characterizing the nature of her interests. The item features can include a full range of available information including editorial metadata (genre, emotion, instrumentation) and user-generated content (tags, labels) [15], features extracted from the audio and visual signals directly [16], and semantic information collected from a knowledge graph [17].

On the other hand, CF models compute recommendations based on similarities in interaction/preference patterns of like-minded users. Collaborative recommenders are mainstream academic and industrial research due to their state-of-the-art performance, achieved

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

when a sufficient amount of preference data, ei-1 ther explicit, e.g., ratings, or implicit, e.g., previous 2 clicks and check-ins, are available. Different CF mod-3 els developed today can be classified according to 4 5 memory-based and model-based. Memory-based mod-6 els compute recommendations exclusively based on correlations in interactions across users (user-based 7 CF [18, 19]) or items (item-based CF [19, 20]), while 8 9 model-based approaches compute a model - typically a machine learning model — that can be queried in the 10 production phase to generate recommendations for a 11 given user profile. A famous example of model-based 12 CF methods is the matrix factorization (MF) method 13 that learns a latent representation of items and users, 14 aka a latent factor model (LFM), whose linear inter-15 16 action can explain an observed feedback [21]. There are several MF variations proposed in the literature, 17 such as PMF and BNMF. These methods essentially 18 encode the complex relations between users and items 19 into a small number of shared hidden factors, where 20 21 their dot product drives the predictions. A major drawback of MF approaches, however, lies in their linearity. 22 To address this concern, a recently popularized trend 23 in the community of recommender systems (RS) is 24 using deep neural architectures with deep neural net-25 26 works (DNNs) that are capable of modeling the nonlinearity in data through nonlinear activation functions. 27 The power of DNN is exploited in modern RS to cap-28 ture complex interaction patterns between users and 29 items and ultimately to better judge users' preferences. 30

4

31

32

33

34

2.2. Knowledge-aware Recommender Systems (KaRSs)

All of us have witnessed the astonishing perfor-35 36 mance of recommendation systems. However, few 37 know that, often, the recommendation algorithms struggle to optimize the model. Despite the number 38 of transactions being massive, the number of per-user 39 interactions is usually very scarce. Over the years, 40 41 the recommendation system designers relied on additional sources of information to overcome this limita-42 tion. Nowadays, modern RSs exploit various side in-43 formation such as metadata (e.g., tags, reviews) [22], 44 social connections [23], image and audio signal fea-45 tures [24], and users-items contextual data [25] to build 46 47 more in-domain [17] (i.e., domain-dependent), cross-48 domain [26], or context-aware [27, 28] recommendation models. Among the diverse information sources, 49 what is, likely, the most relevant source is Knowl-50 edge Graphs (\mathcal{KGs}). A \mathcal{KG} is a heterogeneous network 51

that encodes multiple relationships, edges, nodes, and 1 links items at high-level relationships, making them 2 a strong item representation technique. Thanks to the 3 heterogeneous domains that \mathcal{KGs} cover, the design of 4 knowledge-based recommendation systems has arisen 5 as a specific research field of its own in the commu-6 nity of RSs, usually referred to by Knowledge-aware 7 Recommender Systems (KaRS [11, 29]). This research 8 community combines the most advanced machine 9 learning techniques with state-of-the-art knowledge 10 representation paradigms. This blending of skills and 11 ideas has generated several advancements in the rec-12 ommendation [30], knowledge completion [31], pref-13 erence elicitation [32], user modeling [33] research, 14 and thus produced a vast literature. A comprehensive 15 review of the field would require a separate and spe-16 cific paper; however, we can still provide an overview 17 18 of the most advanced (or particularly representative) contributions. To help the reader orient herself in the 19 literature, we follow three distinct lines: impacted re-20 21 search fields, recommendation techniques, and data 22 sources. In recent years, the Knowledge-aware Rec-23 ommender Systems have been particularly impactful for several research domains: 24

 - KG/Graph-embeddings [34–40], where the latent representation of semantic knowledge enables novel and diverse applications; 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

- Hybrid Collaborative/Content-based recommendation [30, 35], exploiting the \mathcal{KG} information to suffice the lack of collaborative information and to improve the performance;
- Knowledge-completion, link-prediction, knowledgediscovery [31, 40–46], where the topology of the knowledge graph and the graph embeddings helped to improve the overall quality of the knowledge base;
- Knowledge-transfer, cross-domain recommendation [26, 47, 48], where the KGs allow to find semantic similarities between different domains;
- Interpretable/Explainable-recommendation [30, 49–52], with \mathcal{KG} being a backbone for understanding the recommendation model and providing human-like explanations
- User-modeling [33, 53–55], since the resource descriptions can drive the construction of the user profile;
- Graph-based recommendation [56–61], where the topology-based techniques have met the semantics of the edges/relations, and the ontological classification of nodes (classes);

- The cold-start problem [26, 62–64], since the \mathcal{KGs}
- can overcome the lack of collaborative information;The content-based recommendation [65, 66] that

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

41

42

43

44

45

46

47

48

49

50

51

solely relies on \mathcal{KG} and still produces high-quality recommendations.

All the former advances have been shown to enhance the recommendation quality or the overall user experience. Although the algorithms differ on many levels, we can still classify recommendation techniques into two broad approaches:

- Path-based methods [56–58, 61, 67, 68], which employ paths and meta-paths to estimate the user-item similarities or the nearest items;
- KG embedding-based techniques [28, 30, 36, 56, 69, 70], which leverage KG embeddings (usually obtained through matrix factorization or neural network encoding) for items' representation.

19 Finally, we focus on the Knowledge Graphs data 20 sources. The availability of a myriad of \mathcal{KGs} is a def-21 inite advantage of Knowledge-aware Recommender 22 Systems. Thanks to the Linked Data initiative, to-23 day, we can benefit from 1,483 different \mathcal{KGs} con-24 nected in the so-called Linked Open Data Cloud³. 25 \mathcal{KGs} can be general-purpose, or domain-specific like 26 Academia/Industry DynAmics (AIDA) [71]. How-27 ever, most of the contributions concentrate on a short-28 list of \mathcal{KGs} with a peculiar characteristic: being an 29 encyclopedic \mathcal{KG} . Those \mathcal{KGs} share the same on-30 tology and the same schema across multiple do-31 mains, giving access to a wide-spread knowledge 32 at the same development cost required for a sin-33 gle domain. The most appreciated \mathcal{KGs} of this spe-34 cial class undoubtedly are DBpedia [72, 73], Wiki-35 data [74, 75], Yago [76] (the 4th release [77] also sup-36 ports RDF* [78]), FreeBase [79], Satori⁴⁵ [80, 81], 37 NELL [82], Google's Knowledge Graph⁶, Facebook's Entities Graph⁷, Knowledge Vault [83], Bio2RDF [84]. 38 39

2.3. Security of Recommender System

Collaborative filtering recommender systems are commonly employed on online platforms, e.g., Ama-

⁴https://searchengineland.com/library/bing/bing-satori

⁵https://blogs.bing.com/search/2013/03/21/understand-yourworld-with-bing

⁶https://blog.google/products/search/introducing-knowledgegraph-things-not/

⁷https://www.facebook.com/notes/facebookengineering/underthe-hood-the-entitiesgraph/10151490531588920/ zon⁸, eBay⁹, Netflix¹⁰. The rationale is to ease the customer navigation across the catalog based on the socalled "word-of-mouth", i.e., a user might like what other people like and dislike. However, the openness of these systems has shown to be a possible point of failure. Indeed, malicious users, the *adversaries*, can meticulously craft fake profiles to poison the data and alter the recommendation behavior toward malicious goals [85–87]. An adversary may execute a **shilling attack** (injects malicious profiles) to achieve a whole different set of objectives. To name a few, she may want to demote competitor products [4], misuse the underlying recommendation system [2], or increase the recommendability of specific products [88, 89].

A standard categorization of shilling attacks considers the adversary's knowledge to mount the attack, the adversary's goal, and the number of added profiles [3, 90]. According to the adversary's knowledge, a shilling attack can be a low-knowledge or an informed attack. The former class indicates a limited amount of available data information accessible by the adversary [4, 5]. The latter class assumes a higher knowledge of dataset information, such as the rating distribution. In this case, the adversary might be able to craft more effective profiles [4, 85]. Regarding the adversary's goal, the adversary might alter the recommender to push or nuke the recommendability of a product, or a class of products, named target items. Push attacks aim to increase the targeted item's appeal, while nuke attacks aim to lower their recommendation frequency. Also, shilling attacks can be categorized based on the number of fake profiles added to the system. A common approach to measuring the granularity of attack is to measure the percentage of added profile over the total number of regular users in the systems [5, 91].

The research works on shilling attacks explored two main research perspectives: proposing and investigating attack strategies with their effects on the recommendation performance [4, 91–93] and exploring defensive mechanisms [87, 94–98].

A typical characteristic of the first line of research on shilling attacks is that the adversary's knowledge is related only to the recommender system's useritem interaction matrix. Furthermore, Anelli *et al.* [12] demonstrate that publicly available \mathcal{KG} improves adversary's efficacy, also in the case of *low-informed* attacks. In this work, we extend the *SAShA* framework

- ⁸https://www.amazon.com/
- ⁹https://www.ebay.com/
- 10 https://www.netflix.com/

50

51

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

³https://lod-cloud.net/datasets

to verify the possible improvement of the adversary's efficacy when processing the \mathcal{KG} information with semantic similarity measures.

Note that this work focuses on shilling attacks, which are hand-engineered strategies to study recommender systems' security. This research line is different from machine-learned data poisoning attack [99–103] and adversarial machine-learned attacks [89, 104–106], recently surveyed by Deldjoo *et al.* [107]. Indeed, those attacks study the security of recommendation systems when adversaries adopt optimization techniques to create a minimal perturbation able to fail the recommendation performance.

3. Proposed shilling attack approach

This section introduces the reader to the notations and formalisms that may help understand the design of shilling attacks against targeted items integrating information obtained from a knowledge graph (\mathcal{KG}). First, we focus on categorizing the predicates in a \mathcal{KG} and formalizing the semantic features extraction considering a single- and double- hop exploration of the \mathcal{KG} (Section 3.1). Hence, the adopted relatedness measures are summarized (Section 3.2). Then, we present an overview of shilling attack notation (Section 3.3), and, finally, semantics-aware extensions to various widespread shilling attacks, namely: *Random*, *Average*, and *BandWagon* attacks in Section 3.3.1.

3.1. Knowledge Graph Content Extraction

A knowledge graph is a structured repository of knowledge, designed in the form of a graph, that encodes various kinds of information:

- Factual. General statements as *Rika Dialina was* born in Crete or Heraklion is the capital of Crete that describe an entity by using a controlled vocabulary of predicates that connect the entity to other entities (or literal values);
- Categorical. These statements connect the entity to a particular category (i.e., the categories associated with a Wikipedia page). Often, categories are in turn organized as a hierarchy;
- Ontological. These are formal statements that describe the entity's nature and its ontological membership to a specific class. Classes are often organized in a hierarchical structure. In contrast to categories, sub-classes and super-classes are connected through IS-A relations.

In a knowledge graph, we can express statements through triplets $\sigma \xrightarrow{\rho} \omega$, with a *subject* (σ), a *predicate* (*or relation*) (ρ), and an *object* (ω). There are several ways to transform the knowledge coming from a knowledge graph into a feature. We have chosen to represent each distinct path as an explicit feature [30]. In the next section, it will be clear why it is convenient. Given a set of items $I = {\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_N}$ in a collection and the corresponding triples $\langle i, \rho, \omega \rangle$ in a knowledge graph, the set of 1-hop features is defined as 1-*HOP-F* = { $\langle \rho, \omega \rangle | \langle i, \rho, \omega \rangle \in \mathcal{KG}$ with $i \in I$ }. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

In an analogous way we can identify 2nd-hop features. By continuing the exploration of \mathcal{KG} we retrieve the triples $\omega \xrightarrow{\rho'} \omega'$, where ω is the *object* of a 1st-hop triple and the *subject* of the next triple. The doublehop *predicate* is denoted by ρ' and the *object* is referred as (ω') . Therefore, the overall feature set is defined as 2-*HOP*- $F = \{\langle \rho, \omega, \rho', \omega' \rangle \mid \langle i, \rho, \omega, \rho', \omega' \rangle \in \mathcal{KG} \text{ with } i \in I \}$. Given the current definition, 2nd-hop features also contain heterogeneous predicates (see the previous classification of different kinds of statements). To make it possible to analyze the impact of the kind of semantic information, we consider a 2ndhop feature as Factual *if and only if* both relations (ρ , and ρ') are Factual. The same holds for the other types of encoded information.

3.2. Entity Similarity/Relatedness in KGs

The keystone of the Knowledge Graph representation is the semantics enclosed in the resource description and the predicates that connect the different resources. Nevertheless, if the metric to compute similarities between the resources is not carefully chosen, this piece of information is lost irretrievably. Motivated by this awareness, we decided to consider a broad spectrum of diverse similarity/relatedness metrics: **Cosine Vector Similarity** [108], *Katz* centrality [109], and *Exclusivity*-based semantic relatedness [110]. The three metrics cover three different aspects of the similarity between the resources:

- 1. A signal of the overlap of the descriptions
- 2. The average length of the paths that connect the resources
- 3. A semantics-aware signal that highlights the specificity of the relations between the resources

Cosine Vector Similarity is a well-known similarity that is very popular in recommendation systems. The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ı

idea is to measure how similar the two different repre-sentations are. Suppose a numerical vector can repre-sent the resource description, with the number of the predicate-object chains observed in the \mathcal{KG} being the vector's cardinality. Mathematically, it measures the cosine of the angle between two vectors that represent two different resources. The smaller the angle, the higher is the cosine, and thus the similarity. Suppose *i* and j are two items in the \mathcal{KG} , and $F(\cdot)$ is a function that returns the features associated with an entity in the \mathcal{KG} . Hence in(i, f) is a function that returns 1 if entity i is associated with feature f, else 0. The Cosine Vec-tor Similarity has been already formulated for \mathcal{KG} as follows [108]:

$$sim(i,j) = \frac{\sum_{f \in F(i) \cup F(j)} in(i,f) \cdot in(j,f)}{\sqrt{\sum_{f \in F(i)} in(i,f)^2} \cdot \sqrt{\sum_{f \in F(j)} in(j,f)^2}}$$
(1)

r

Katz centrality [109] is a famous graph-centrality measure that inspired several semantics-aware met-rics [110, 111]. Katz suggests that the probability of the path between two nodes can indicate the effec-tiveness of the link. Given a constant probability for a single-hop path, called α , the whole path's overall probability is α^y , where y is the number of the nodes involved. Hulpus [110] exploits the rationale to build a relatedness measure. Therefore, he defined the Katz relatedness between two items *i* and *j* as the accumu-lated score over the top-*t* shortest paths between them.

$$el_{Katz}^{(t)}(i,j) = \frac{\sum_{p \in SP_{ij}^{(t)}} \alpha^{length(p)}}{t}$$
(2)

where $SP_{ij}^{(t)}$ is the set of the top-*t* shortest paths between items *i* and *j*.

Exclusivity-based semantic relatedness [110] is a semantic relatedness measure that takes into account the
 type of relations that connect two nodes. The idea is
 that two concepts are strongly connected if the type of
 relations between them is different from the type of re lations they have with other concepts. This property of
 relations, named exclusivity, is defined as follows.

⁴³ Suppose a predicate ρ of type τ between two items *i* ⁴⁴ and *j*, directed from *i* to *j*. The exclusivity of predicate ⁴⁵ ρ is the probability to select, with a uniform random ⁴⁶ distribution, a predicate ρ' of type τ among the pred-⁴⁷ icates of type τ that exit resource *i* and enter node *j*, ⁴⁸ such that predicate ρ' is exactly the predicate ρ :

$$exclusivity(i \xrightarrow{\tau} j) = \frac{1}{|i \xrightarrow{\tau} *| + |* \xrightarrow{\tau} j| - 1}$$
(3)

where $|i \xrightarrow{\tau} *|$ denotes the cardinality of relations of type $\tau \in \mathcal{T}$ that exit resource *i*, and $|* \xrightarrow{\tau} j|$ denotes the number of relations of type $\tau \in \mathcal{T}$ that enter resource *j*. Since the relation $i \xrightarrow{\tau} j$ is in $|i \xrightarrow{\tau} *|$ and in $|* \xrightarrow{\tau} j|$, 1 is subtracted from the denominator. The exclusivity score for a predicate falls inside the (0, 1] interval. The value 1 denotes the extreme case in which the predicate is the only relation of its type for both *i* and *j*.

Given a path through $\mathcal{KG}, \mathcal{P} = n_1 \xrightarrow{\tau} n_2 \xrightarrow{\tau_2}, \dots, n_k$ with $\tau_i \in \mathcal{T}^{\mp}$, the weight of the path is defined as:

$$weight(\mathcal{P}) = \frac{1}{\sum_{i} \frac{1}{exclusivity(n_{i} \stackrel{\tau_{i}}{\longrightarrow} n_{i+1})}}$$
(4)

Finally, the relatedness between two resources can be computed as the sum of the path weights of the top-*t* paths between the resources with the highest weights. To penalize longer paths, a constant length decay factor, $\alpha \in (0, 1]$, can be introduced. The overall exclusivity-based relatedness measure is therefore defined as follows:

$$rel_{Excl}^{(t)}(i,j) = \sum_{\mathcal{P}_n \in P_{ij}^t} \alpha^{lenght(\mathcal{P}_n)} weight(\mathcal{P}_n)$$
(5)

3.3. Strategies for Attacking a Recommender System

In order to increase the robustness of recommender systems, or generally ML systems, against any potential attack, the system designer needs to understand the following fundamental questions:

- *Why* have the attacks been performed?
- *When* have the attacks been performed?
- *How* have the attacks been realized?
- *How much* knowledge does the attacker have?

The *Why* question seeks to understand the *intent* of the attacker. There are two most common motivations behind shilling attacks against RSs. The first one is to promote (**push**) or demote (**nuke**) the popularity of target items, or groups of items, so that they can be recommended to as many or as few users as possible in order to gain an economic advantage over platform competitors. The second one intends to compromise the overall quality of the recommendations. These two dimensions will impact the definition of evaluation metrics used to evaluate the success of the attacks.

The *When* question concerns the attack's *timing*, a consideration that gives rise to a dichotomy that is central to understand attacks on ML systems: *train-time*

	Select	ed Items (\mathcal{I}_S)		Filler Items (\mathcal{I}_F)		\mathcal{I}_{ϕ}	IT
Attack Type	Number Items	Rating	Selection	Number Items	Rating	\mathcal{L}_{ϕ}	
Random [4]	Ø		Random	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	$\operatorname{rnd}(N(\mu,\sigma^2))$	$\mathcal{I} - \mathcal{I}_F$	ma
Love-Hate [112]	Ø		Random	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	min	$\mathcal{I} - \mathcal{I}_F$	ma.
Popular [113]	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	<i>min</i> if $\mu_f < \mu$ else <i>min</i> + 1		Ø		$\mathcal{I} - \mathcal{I}_S$	ma
Average [4]	Ø		Random	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	$rnd(N(\mu_f, \sigma_f^2))$	$\mathcal{I} - \mathcal{I}_F$	ma
Bandwagon [92]	$\left(\frac{\sum_{u\in\mathcal{U}} \mathcal{I}_u }{ \mathcal{U} }\right)/2-1$	max	Random	$\left(\frac{\sum_{u\in\mathcal{U}} \mathcal{I}_u }{ \mathcal{U} }\right)/2$	$\operatorname{rnd}(N(\mu,\sigma^2))$	$\mathcal{I} - \mathcal{I}_S - \mathcal{I}_F$	ma
P. Knowledge [85]	$\frac{ \mathcal{U} }{ \mathcal{U} } - 1$	max		Ø		$\mathcal{I} - \mathcal{I}_S$	ma
SAShA Random	Ø		Semantics-aware	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	$rnd(N(\mu, \sigma^2))$	$\mathcal{I} - \mathcal{I}_F$	ma
SAShA Love-Hate	Ø		Semantics-aware	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	min	$\mathcal{I} - \mathcal{I}_F$	ma
SAShA Average	Ø		Semantics-aware	$\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} } - 1$	$rnd(N(\mu_f, \sigma_f^2))$	$\mathcal{I} - \mathcal{I}_F$	ma
SAShA Bandwagon	$\left(\frac{\sum_{u \in \mathcal{U}} \mathcal{I}_u }{ \mathcal{U} }\right)/2 - 1$	max	Semantics-aware	$\left(\frac{\sum_{u\in\mathcal{U}} \mathcal{I}_u }{ \mathcal{U} }\right)/2$	$rnd(N(\mu, \sigma^2))$	$\mathcal{I} - \mathcal{I}_S - \mathcal{I}_F$	ma

Table 1	
erview of shilling attack strategies and their profile composition for adversaries'	goal of <i>pushing</i> a target item (

where (μ, σ) are the dataset average rating and rating variance, (μ_f, σ_f) are the filler item \mathcal{I}_F rating average and variance, and *min* and *max* are the minimum and maximum rating value. *rnd* function generates one integer (i.e., rating) from a discrete uniform distribution.

attacks (aka data poisoning attacks) and decision-time attacks (aka evasive attacks). Train-time attacks are accomplished by modifying the training data used to train the ML model. In RS, the most popular types of poisoning attacks designed to date include shilling attacks, and machine-learned data poisoning attacks. Shilling attacks are realized by injecting hand-crafted fake user profiles (shilling profile) into the user-rating matrix (URM), aiming to learn a bad recommenda-tion model from the user-item rating scores. In contrast to hand-engineered shilling attacks, machine-learned data poisoning attacks typically use an optimization procedure to maximize the adversary's goal automatically. This class of data poisoning attacks was popu-larized in RS research by Li et al. [99], that introduced attacks against latent factor recommendation models (LFM), paving the path for the introduction of a va-riety of other attacks against in the upcoming years, broadly classifiable into attacks against LFM [99, 100, 114, 115], reinforcement learning (RL) [116–118], and other categories of recommendation such as graphbased techniques [119-121]. We point the reader to a few recent surveys for a broader frame of reference into these techniques: [90] for a review of shilling at-tacks against RS, [107] for a good understanding of adversarial machine learning applications in RSs, and [122] for a general introduction to adversarial attacks and defenses against ML systems.

The *How* question, we discuss it for shilling attacks, which was the choice in this work due to the simplicity of designing such attacks. For a detailed discussion about the design of other attacks (machine-learning data position and AML-based attacks), we refer interseted readers to [107]. A shilling attack is typically conducted against a rating-based CF model based on generation fake user profiles (shilling profile) that follow a specific pattern, as designed by [4, 88].

Definition 2 (Shilling Profile). *Given a Recommendation Problem, a* **Shilling Profile** (SP) *is a rating profile partitioned into four sets, according to:*

$$S\mathcal{P} = \mathcal{I}_S + \mathcal{I}_F + \mathcal{I}_\phi + \mathcal{I}_T \tag{6}$$

where \mathcal{I}_S denotes the selected item set containing items identified by the attacker to maximize the effectiveness of the attack, \mathcal{I}_F is the filler item set, containing a set of randomly selected items to which rating scores are assigned to make them imperceptible. \mathcal{I}_T is the target item, for which the recommendation model will make a prediction, aimed to be maximal (for push attack) or minimum (for nuke attack). Finally, \mathcal{I}_{ϕ} is the unrated item set, holding a number of items without any ratings.

Note that \mathcal{I}_S and \mathcal{I}_F are chosen depending on the attack strategy, and the attack size is the number of injected fake user profiles. Throughout this paper, we use $\phi = |\mathcal{I}_F|$ to represent the filler size, $\alpha = |\mathcal{I}_S|$ the selected item set size and $\chi = |\mathcal{I}_{\emptyset}|$ to show the size of unrated items. Table 1 summarizes the main parameters involved in the implementation of most prominent shilling attacks against rating-based CF models. For instance, it can be seen the proposed semantic attacks, referred to by *SAShA* name of the attack, are the extension of state-of-the-art shilling attacks, with the difference that selection of the filler item set (\mathcal{I}_F) is chosen semantically, not randomly. We will describe details about semantic knowledge integration with shilling attacks in Section 3.3.1.

 (τ)

Finally, the last important consideration when designing attacks is how much — information the adversary has about the learning model, the algorithm, or the training data they aim to attack. This will lead to classifies attacks according to *white-box*, *black-box*, and *gray-box* attacks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

29

30

31

32

33

34

35

36

37

38

39

40

- White-box attacks also referred to by perfectknowledge (PK) attacks, are attacks in which we assume the adversary has perfect knowledge about the learned model (the actual recommendation model), including its characteristics, the learning algorithm, hyper-parameters, among others. White-box attacks are important since they are the most potent possible threat model. In the field of cybersecurity, it has been shown that assuming attacker having no knowledge or security by obscurity — is ineffective [123].
- 18 2. Gray-box attacks assume that the adversary has 19 some knowledge about the model in gray-box 20 attacks — aka limited-knowledge attacks (LK) — 21 although this knowledge might not be complete. 22 For example, the attacker may know about the 23 recommendation model or the training data, but 24 not both of them together. For instance, attackers 25 can build a surrogate model using their knowl-26 edge of the training data and effectively craft at-27 tacks against the substitute model [124]. 28
 - 3. **Black-box attacks**, also known as zero-knowledge attacks (ZK), consider adversaries without knowledge about the learned model or the algorithm used by the ML model before developing the attack.

To connect it with state-of-the-art shilling attacks, we can mention that the Random attack is a black-box attack, the Perfect-knowledge attack is a while-box attack, while the rest of the attacks can be considered as a gray-box attack.

3.3.1. Semantics-aware Shilling Attack Strategies

Previous works on shilling attacks against RS mod-41 els have predominately focused on CF models and the 42 way the user interaction data (ratings) can be exploited 43 to craft more effective shilling profiles. In our view, a 44 rich source of knowledge, namely \mathcal{KGs} , has been ne-45 glected in the design of such attacks. To fill this gap, in 46 47 this work, we strengthen state-of-the-art attack strate-48 gies by exploiting semantic similarities between items. The main idea behind our proposed semantics-aware 49 shilling attack (SAShA) strategies is that we can com-50 pute the similarity/relatedness between the target \mathcal{I}_t 51

with other items in the catalog by exploiting the features extracted from a \mathcal{KG} . This semantic information is used to construct the filler set \mathcal{I}_F , by semantically selecting the items. The key insight in the proposed approach is that the exploitation of semantic similarities/relatedness leads to the generation of more natural and coherent fake profiles, given that the representative description of items is encoded in computing pairwise item similarities.

Semantics-aware Random Attack is an extension of the baseline Random Attack [4]. The baseline version is naive attack, which uses randomly chosen items $(\alpha = 0, \phi = profile-size)$ to create a fake user profile. The ratings attributed to \mathcal{I}_{ϕ} are sampled from a uniform distribution (see Table 1). We modify this attack by selecting the items to complete \mathcal{I}_F with the proposal semantics-aware technique. For this purpose, we compute semantic similarities/relatedness between the items in the catalog e the target item using \mathcal{KG} -based features (cf. Section 3.1). Afterward, we identify the most similar items (\mathcal{I}_T) by considering the first quartile of most similar items, and we extract ϕ items from this set by adopting a uniform distribution.

Semantics-aware Average Attack is an informed attack strategy that extends the AverageBots attack [5]. The baseline attack leverages the mean and variance of the ratings, which is then used to sample each filer item's rating from a normal distribution built using these values. Similar to the previous semantics-aware attack extension, we extract the filler items by exploiting semantic similarities derived from a \mathcal{KG} . Finally, as before, we consider the items in the first quartile of the most semantically similar/related to \mathcal{I}_T as the candidate filler items (\mathcal{I}_F).

Semantics-aware BandWagon Attack is a lowknowledge attack that extends the standard Band-Wagon attack [92]. We leave unchanged the injection of the selected items (\mathcal{I}_S), which are the most popular ones and on which we associate the maximum possible rating (see Table 1). However, similarly to the previous two semantic attack extensions, we complete \mathcal{I}_F by taking into account the semantic similarity/relatedness between the target item \mathcal{I}_T and the rest of the catalog.

Note that in this work, we do not investigate the semantics-aware extension of the Love-Hate attacks since the integration of the semantic information has been demonstrated to not improve the adversary efficacy as discussed in related studies [12, 125].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

4. Experimental Setting

In this section, we describe the the experimental evaluation and provide details necessary to reproduce the experiments. First, we introduce the two real-world datasets used in recommendation scenarios (Section 4.1), as well the process carried out to extract, select and filter the semantic information obtained from the \mathcal{KG} (Section 4.1.1 to 4.1.3). Afterward, we describes the four collaborative filtering (CF) recommendation models tested against the proposed attacks (Section 4.2). Finally, we detail the evaluation metrics and the experimental setting used for the experimental evaluation (Section 4.3 and 4.4).

4.1. Dataset

We test the proposed shilling attack approach on two recommendation datasets: LibraryThing and Yahoo!Movies.

LibraryThing [61] is a popular dataset whose interactions originate from librarything.com, a social cataloging web application. The dataset contains user-item rating scores ranging from a minimum of 1 to a maximum of 10. As presented in [12], we use a reduced version by randomly extracting the 25% of products in the catalog. Furthermore, we apply a 5-core filtering by removing all the users with less than five interactions to focus the study on active users. These users are of adversaries' interest since they could more likely buy the pushed products.

Yahoo!Movies is a recommendation dataset re-34 leased by research.yahoo.com with ratings col-35 lected up to November 2003. The dataset also provides 36 mappings to the MovieLens and EachMovie cata-37 logs. The recorded interactions consist of ratings rang-38 ing from 1 to 5. 39

Another motivation for choosing these datasets was 40 the existence of a mapping between the products in 41 the catalogs and DBpedia knowledge-base entities. 42 In particular, we use the mappings publicly available 43 at https://github.com/sisinflab/LinkedDatasets. Table 2 44 reports the statistics of both datasets' user-item inter-45 action data, together with the total number of seman-46 tic features extracted from both the first and the sec-47 ond hop of the knowledge graph associated with each 48 item. In the following, we describe steps taken for pre-49 processing and data sanity of the features extracted 50 from a \mathcal{KG} . 51

Table 2
Datasets statistics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

		Dutte	Buusets stutisties.								
Dataset	#Users	#Items	#Ratings	Sparsity	#F-1Hop	#F-2Hops					
LibraryThing	4,816	2,256	76,421	99.30%	56,019	4,259,728					
Yahoo!Movies	4,000	2,526	64,079	99.37%	105,733	6,697,986					

4.1.1. Feature Extraction.

Once the items are semantically reconciled with DBpedia entities, we remove the noisy features whose triples contain one of the following predicates:

_	owl	:	sameAs
---	-----	---	--------

- dbo:thumbnail
- foaf:depiction
- prov:wasDerivedFrom
- foaf:isPrimaryTopicOf

The feature denoising procedure follows the methodology proposed by Anelli et al. [30, 50].

4.1.2. Feature Selection.

To perform the analysis of the class (or type) of semantic features, we implement our proposed semantics-aware attacks by considering three different types of features, i.e., categorical (CS), ontological (OS), and factual (FS), a feature taxonomy commonly adopted in the Semantic Web community [30].

For the semantics-aware attack strategies exploiting single-hop (1H) features, we apply the following policies.

- Categorical-1H, we use the features with the property dcterms:subject;
- Ontological-1H, we select the features containing the property rdf:type;
- Factual-1H, we consider all the features except ontological and categorical features.

In the attacks employing double-hop (2H) features, the strategies evolve as described below:

- Categorical-2H, we pick up the features with either dcterms:subject or skos:broader properties;
- Ontological-2H, we select the features containing either rdf-schema:subClassOf or owl:equivalentClass properties;
- Factual-2H, we use the features not selected in the previous two classes.

Note that we did not place any domain-specific categorical/ontological feature in the respective lists. To provide a domain-agnostic evaluation, we have treated them as factual features.

10

1

2

3

4

5

6

7

8

			Single h	op features			Double hop features									
	Categorical Ontological Fac					ctual	Categorical Ontological					actual				
Dataset	Total	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected				
LibraryThing	3,890	373	2,090	311	50,039	1,972	9,641	857	3,723	527	4,246,365	252,848				
Yahoo!Movies	5,555	1,192	3,036	722	97,142	7,690	8,960	1,956	3,105	431	6,685,921	517,211				

 Table 3

 Selected features in the different settings either for single and double hops.

4.1.3. Feature Filtering.

This work aims to study the attack performance differences up to the first and second hop. Addressing this aim, we obtain millions of features for both LibraryThing and Yahoo!Movies as reported in the last two columns of Table 2. Measuring semantic similarities across the item catalog would quickly become unfeasible. However, some features only occur once and provide no useful informative or collaborative information. Therefore, we decided to drop off irrelevant features following the filtering technique proposed in Di Noia *et al.* [61, 126]. In detail, we removed all the features with more than 99.74% of missing values and distinct values. Table 3 shows the remaining features' statistics after applying all the extraction, selection, and filtering process.

4.2. Recommender Models

In this work, we test our attack proposal (see Section 3.3) against four baseline collaborative recommendation systems: User-*k*NN, Item-*k*NN, Matrix Factorization, and Neural Matrix Factorization. The first two approaches belong to memory-based CF, while the next two are model-based CF (see Section 2.1), thus providing us an overall picture of different recommendation model types performance when confronted with shilling attacks.

- User-*k*NN [18, 19] is a standard user-based Collaborative Filtering (CF) approach to measure the preference score of a user *u* toward an not interacted product *i* (\hat{r}_{ui}), by exploiting the similarity with the *k* most similar users in her neighborhood. We adopt the user and item's unbiased User-*k*NN formulation as proposed by Koren *et al.* [19]. Let $u \in \mathcal{U}$, and $i \in \mathcal{I}$, where \mathcal{U} and \mathcal{I} are the set of users, and items, in the recommendation system; the prediction of the rating attributed by the user *u* to the item *i* is estimated as follows:

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{v \in \mathcal{U}_i^k(u)} \delta(u, v) \cdot (r_{vi} - b_{vi})}{\sum_{v \in \mathcal{U}_i^k(u)} \delta(u, v)}$$
(7)

where δ is the distance function to measure the users' similarities, and $\mathcal{U}_i^k(u)$ is the group of the *k*-most similar users v of u (aka, the neighborhood). Furthermore, b_{ui} is defined as $\mu + b_u + b_i$, where μ , b_u , and b_i are the overall average rating, the observed bias of user u and item i, respectively. We use the *Pearson Correlation* as the distance metric $\delta(\cdot)$ as suggested by Candillier *et al.* [127]. The size of the neighborhood, k, is set to 40.

- Item-*k*NN [19, 20] is a standard item-based CF to predict the user-item preference score (\hat{r}_{ui}) from the recorded feedback. Let $u \in \mathcal{U}$, and $i \in \mathcal{I}$, the prediction of the score given by the user *u* to item *i* is predicted as follows:

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in \mathcal{I}_u^k(i)} \delta(i, j) \cdot (r_{uj} - b_{uj})}{\sum_{j \in \mathcal{I}_u^k(i)} \delta(i, j)}$$
(8)

where $\mathcal{I}_{u}^{k}(i)$ denotes the set of *k* most similar items to (unrated) item *i* voted by user *u*. Similar to User-*k*NN, we use the *Pearson Correlation* to implement the distance function $\delta(\cdot)$ and set *k* the dimension of the considered neighborhood 40.

The third and fourth recommendation systems are representative of **model-based** collaborative recommenders. In particular, matrix factorization is the baseline recommender representing the class of linear latent factor models, while neural matrix factorization represents the class of non-linear models.

- Matrix Factorization (MF) [21] is a latent factor model to learn the unknown preferences. MF represents both items and users by vectors of latent factors. These factors are learned from linear patterns of the user-item rating matrix. The learned user and item representation are two low-rank matrices, one for the users $P \in \mathbb{R}^{|\mathcal{U}| \times f}$ and another for the items $Q \in \mathbb{R}^{|\mathcal{I}| \times f}$, where *f* is the size of the latent vectors, i.e., $f \ll |\mathcal{I}|, |\mathcal{U}|$. The prediction of an unknown user-item score \hat{r}_{ui} is computed as the **dot-product** between the user $(p_u \in P)$ and the item $(q_i \in Q)$ latent vectors:

$$\hat{r}_{ui} = b_{ui} + \mathbf{q}_i^T \mathbf{p}_u \tag{9}$$

Following the learning settings defined in [128], we set the size of latent vectors f to 100.

12

1

2

19

20

21

22

23

24

25

39

40

41

Neural Matrix Factorization (NeuMF) [129] is 3 one of the most representative recommendation 4 5 model that exploits deep neural networks to esti-6 mate unknown user-item preference scores [130]. NeuMF makes use of both the linearity of MF 7 and the non-linearity of neural layers to improve 8 9 the learning capability of the model. Unlike MF, the estimated score for a user - item pair of the 10 neural network, \hat{r}_{ui} , is the output of a deep neu-11 ral network whose input is the combination of the 12 MF layer and the neural network layer. The latter 13 concatenates the user (p_u) and the item (q_i) em-14 beddings. Let $\Phi(\cdot)$ be the transformation function 15 16 of the deep neural network defined as $\Phi(x) :=$ $\mathbb{R}^{dim(x))} \to \mathbb{R}^{out_dim}$, then the score is predicted as 17 follows: 18

$$\phi^{GMF} = \mathbf{p}_{u} \odot \mathbf{q}_{i}$$

$$\phi^{MLP} = \Phi([\mathbf{p}_{u}, \mathbf{q}_{i}])$$

$$\hat{r}_{ui} = \sigma(H^{T} \begin{bmatrix} \phi^{GMF} \\ \phi^{MLP} \end{bmatrix})$$
(10)

where \odot denotes the element-wise product of vectors, 26 whereas σ and H denote the activation function and 27 edge weights of the output layer, respectively. In Equa-28 tion (10), $\mathbf{q}_i \in \mathbb{R}^{f_1}$ and $\mathbf{p}_u \in \mathbb{R}^{f_2}$ are the latent rep-29 resentations of user u and item i that are concatenated 30 via the function $[\cdot]$, i.e., the input of the deep neural 31 network. We set $f_1 = f_2 = 16$ as suggested by He *et* 32 al. [129]. The vector resulting from the concatenation 33 of \mathbf{p}_{ij} and \mathbf{q}_{ij} is fed into a deep neural network com-34 posed by 4 fully connected dense layers with {64, 32, 35 36 16, 8} hidden units, respectively. During the training, 37 we insert a dropout pre-layer for each of the four layers with a dropout rate equal to 0.1. 38

4.3. Evaluation Metrics

In the following sections, we aim to analyze the vari-42 ation of recommendation performance caused by the 43 proposed semantics-aware attack strategies. Two met-44 rics are widely adopted to measure the performance 45 shift: [86]: Overall Prediction Shift (PS) and Overall 46 47 Hit-Ratio at *N* (*HR*@*N*).

48 PS measures the average of estimated user preference scores' variation (before and after the attack) on 49 the target items. HR@N describes the average presence 50 of target items in the top-N recommendation lists gen-51

erated for all the users. Although both are commonly adopted, they are not equally adequate for evaluating Top-N recommendation tasks. The reason for this consideration will be evident with their formalization. Let $\hat{\mathcal{I}}$ be the set of attacked items, then

$$PS(\hat{\mathcal{I}}) = \frac{\sum_{i \in \hat{\mathcal{I}}, u \in \mathcal{U}} (\hat{r}_{ui} - r_{ui})}{|\hat{\mathcal{I}}| \times |\mathcal{U}|}$$
(11)

9

1

2

3

$$HR@N(\hat{\mathcal{I}}) = \frac{\sum_{i \in \hat{\mathcal{I}}} hr@N(i,\mathcal{U})}{|\hat{\mathcal{I}}|}$$
(12)

where r_{ui} is the prediction before attack and \hat{r}_{ui} is the preference score predicted for the (u, i) pair after a shilling attack. The $hr@N(i,\mathcal{U})$ metric evaluates the number of occurrences of the target (attacked) item i in the top-N recommendation lists of each user. In the case of push attack, the adversary's goal is to increase/maximize the metric values for PS and HR since the purpose of the attacker is to promote the recommendation-ability of certain interest items. Conversely, for the nuke attacks, the attacker's main objective is to minimize these metric scores. Finally, it can be highlighted that because HR is defined based on top-N recommendation lists, it is of higher importance in practical settings, compared to PS, which is agnostics to whether the shift in the prediction is sufficient to push the target item into (or outside) the top-Nrecommendation lists.

4.4. Evaluation Protocol

To investigate the impact of the proposed attack 35 strategies, we perform 360 experiments for each pair 36 of a dataset and the number of extracted hops, total-37 ing 1440 experiments. Following the evaluation pro-38 cedure used in Mobasher et al. [4, 88], we generate 39 the list of recommendations for each recommendation 40 model before executing the attack. After having mea-41 sured the position and predicted score for each target 42 item-user pair, we simulated the attack. First of all, 43 we craft and add shilling profiles to the data follow-44 ing the baseline attack strategies. The HR@N and PS 45 results extracted from the model's training on the poi-46 soned data constitute the baselines to compare with se-47 mantic attack strategies. Then, we evaluate the same 48 metrics on the recommendation results generated on 49 the data poisoned by the fake profiles crafted with 50 the proposed strategy (details in Section 3). Note that 51

27

28

29

30

31

32

33

we evaluate the semantic strategies considering a scenario where the adversary's goal is to push a target item/product. In particular, we perform each one of 3 the 360 experiments on 50 randomly selected items in 4 the dataset. Furthermore, we perform each attack us-6 ing three different amounts of injected shilling profiles: 1%, 2.5%, and 5% of the total number of users, as adopted in [5, 12, 91]. Regarding the relatedness mea-8 sures, we set the $\alpha = 0.25$ and the *t*-path length to 9 10 for both metrics. To grant the results' reproducibil-10 ity, the experimented datasets and the code are publicly available.11

5. Experiments

1

2

5

7

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

50

51

This section empirically evaluates the proposed semantics-aware shilling attack methods to assess their effectiveness against traditional neighborhood-based and model-based CF-RSs, according to according to the experimental settings defined in Section 4. All the results are computed for top-10 recommendation, i.e., N = 10. To avoid redundancy, we will refer to HR@10with *HR* in the rest of the paper.

5.1. Results

Table 4 and Table 5 report the HR values mea-28 sured for each of the 360 attack combinations experi-29 mented on the Yahoo! Movies and the Library-30 Thing datasets, respectively. Across the next sec-31 tions, we identify an attack combination using the 32 format <dataset, hops, recommendation model, attack 33 strategy, feature type, similarity measures, attack gran-34 ularity>. For example, <Yahoo!Movies, 1H, User-35 kNN, Average, Categorical, Katz, 1%> indicates an 36 experiment on the Yahoo! Movies dataset when the 37 adversary uses the average semantics-aware strategy 38 against a User-kNN recommendation model. Here, the 39 semantic features are the categorical ones extracted 40 from the first hop and exploited by the adversary by 41 measuring the Katz-relatedness between each item in 42 the catalog. Finally, 1% shows the percentage fraction 43 of fake profiles added into the training data. 44

By comparing the results across the two datasets, the 45 first observation is that the results obtained on the Ya-46 hoo!Movies dataset (Table 5) are more indicative of 47 attacks' effectiveness independently of the attack strat-48 egy, the number of injected profiles, and recommender 49

models, confirming the findings in our previous work, Anelli et al. [12]. One plausible explanation for this behavior is the differences in dataset characteristics, e.g., the data sparsity, that has been showing impacting shilling attacks' performance as verified by Deldjoo et. al. [93].

Furthermore, Table 4 also confirmed the semanticsaware strategy's efficacy over the baseline, either for 8 the average and random attacks. For instance, the semantic strategies outperformed all the <LibraryThing, 10 1H, Random> and <LibraryThing, 1H, Average> baseline attacks independently of the recommender model and the size of attacks. However, it is worth mentioning that, differently from the results on Yahoo!Movies, on <LibraryThing, 1H, Band-Wagon>, the baseline attack's effectiveness did not im-16 prove. This behavior might be linked with semantic information extracted from the \mathcal{KG} and the attack strat-18 egy itself. Since a bandwagon attack builds profiles by 19 filling the 50% of the profile with the most *popular* 20 items, it might make the semantic strategy that identifies the informative filler items ineffective. These new insights are interesting and show the nuances captured 23 by our proposed semantics-aware strategies for enriching state-of-the-art shilling attack methods against CF models. 26

5.2. Discussion

In this section, devote ourselves to provide a more in-depth discussion about the impact of several factors involved in the design space of the proposed semantics-aware shilling attacks against CF models. They include the effect of the feature type extracted from the KG, i.e., CS, OS, or FS, the semantic similarity/relatedness between the target item and the items in the catalog, and the hop depth described in detail in Section 4.1. Our goal is to answer the research questions provided in Section 1 along these directions.

RQ1: The impact of relatedness-based measures 40 and public available semantic information. The first 41 research question is intrinsically the most important 42 one. Given the extent of experiments carried out in the 43 experimental section, it could be hard to decipher this 44 information at first glance. Thus, in this section, we try 45 to decode some of the main insights obtained from the 46 experimental results along the experimental directions 47 outlined above. Let us consider the experiments on 48 LibraryThing. We can observe that the adoption 49 of graph-based relatedness generally leads to an attack 50 efficacy improvement over the baseline, which adopts 51

13

1

2

3

4

5

6

7

9

11

12

13

14

15

17

21

22

24

25

27

28

29

30

31

32

33

34

35

36

37

38

¹¹ https://github.com/sisinflab/SAShA-against-CFRS

Table 4

Hit Ratio (HR) result values evaluated on top-10 recommendation lists for the LibraryThing dataset.

			User-kNN		Item-kNN			MF			NeuMF			
Attack	Feature Type	Similarity	1	2.5	5	1	2.5	5	1	2.5	5	1	2.5	5
Random	Basel	ine	.0736	.1570	.2301	.2885	.4588	.5590	.7660	.8987	.9419	.0612	.1130	.2216
	Categorical	Cosine	.0745	.1576	.2311	.2804	.4575	.5687	.7837	.9014	.9439	.0802	.1324	.1653
		Katz	.0808	.1698	.2441	.2862	.4610	.5691	.7885	.9021	.9418	.0808	.1105	.1812
		Exclusivity	.0816	.1703	.2456	.2915	.4635	.5707	.7897	.8993	.9427	.0886	.1479	.2417
	Ontological	Cosine	.0709	.1503	.2252	.2748	.4483	.5634	.7720	.8979	.9423	.0561	.1493	.1926
		Katz	.0774	.1622	.2355	.2837	.4592	.5670	.7845	.9021	.9416	.0751	.1392	.1857
		Exclusivity	.0766	.1619	.2349	.2848	.4602	.5686	.7846	.9010	.9433	.1091	.0999	.2240
	Factual	Cosine	.0740	.1558	.2280	.2786	.4528	.5642	.7835	.9023	.9419	.0676	.1009	.1285
		Katz	.0760	.1591	.2319	.2823	.4570	.5662	.7839	.9015	.9417	.0685	.1366	.1823
		Exclusivity	.0793	.1672	.2425	.2890	.4646	.5722	.7888	.9029	.9434	.0921	.1034	.2143
Average	Basel	ine	.0857	.1994	.2863	.3170	.5085	.6070	.8043	.9140	.9500	.0416	.0670	.1362
	Categorical	Cosine	.0864	.1967	.2823	.3060	.5115	.6202	.8128	.9127	.9502	.0634	.0950	.1316
		Katz	.0940	.2094	.2922	.3136	.5133	.6136	.8149	.9132	.9486	.0630	.1031	.1119
		Exclusivity	.0941	.2074	.2888	.3185	.5142	.6142	.8165	.9128	.9502	.0482	.0586	.1548
	Ontological	Cosine	.0849	.1954	.2805	.3073	.5126	.6207	.8114	.9163	.9509	.0906	.1248	.1569
		Katz	.0898	.2021	.2845	.3096	.5107	.6143	.8168	.9135	.9491	.0816	.1171	.1108
		Exclusivity	.0890	.2020	.2842	.3119	.5119	.6165	.8121	.9145	.9489	.0285	.0599	.0947
	Factual	Cosine	.0868	.1989	.2806	.3073	.5112	.6185	.8163	.9166	.9471	.0362	.0851	.1222
		Katz	.0892	.2016	.2844	.3098	.5110	.6158	.8189	.9139	.9473	.0588	.0849	.1040
		Exclusivity	.0912	.2049	.2872	.3152	.5131	.6131	.8166	.9138	.9482	.0502	.0746	.0882
BandWagon	Basel	ine	.0817	.1319	.1881	.2640	.3834	.4694	.6000	.7656	.8435	.0100	.0105	.0061
	Categorical	Cosine	.0763	.1234	.1752	.2641	.3801	.4632	.5918	.7661	.8429	.0107	.0077	.0074
		Katz	.0794	.1266	.1800	.2647	.3821	.4648	.5896	.7596	.8422	<u>.0103</u>	.0080	<u>.0094</u>
		Exclusivity	.0758	.1227	.1745	.2640	.3818	.4646	.5835	.7590	.8435	<u>.0067</u>	.0054	<u>.0068</u>
	Ontological	Cosine	.0758	.1227	.1745	.2626	.3798	.4637	.5904	.7619	.8433	<u>.0064</u>	<u>.0056</u>	.0049
		Katz	.0792	.1257	.1779	.2636	.3802	.4637	.5820	.7642	.8447	.0051	.0027	<u>.0077</u>
		Exclusivity	.0776	.1249	.1770	.2633	.3815	.4643	.5979	.7611	.8413	<u>.0057</u>	.0047	<u>.0052</u>
	Factual	Cosine	.0738	.1190	.1714	.2632	.3784	.4623	.6001	.7634	.8408	.0057	.0044	<u>.0063</u>
		Katz	.0776	.1239	.1771	.2641	.3801	.4630	.5833	.7602	.8415	.0026	.0083	<u>.0036</u>
		Exclusivity	.0792	.1272	.1796	.2638	.3813	.4642	.5948	.7590	.8405	.0051	.0054	.0227

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

cosine similarity metric. For instance, the random at-tack (where the attacker does not have system knowl-edge) largely benefits from the topological informa-tion. The general observation here is that in majority of the experimental cases, the adoption of relatedness-based semantic information leads to improvement of the attacks' effectiveness. We may observe the same behavior for the Yahoo! Movies dataset in Table 5, in which the HR for <1H, User-kNN, Random, Cat-egorical, Katz> is 10% better than the baseline, i.e., 0.3725 vs. 0.3512. Beyond random attacks, we can ob-serve some general trends also for informed attacks. In detail, Table 4 (LibraryThing), we note that categorical information improves both User-kNN and Item-kNN. It is worth noticing that the same consid-eration does not hold for latent factor-based models. MF and NeuMF suit better cosine vector similarity. This phenomenon is probably due to the significant difference in how the two recommendation families

exploit the additional information. Finally, we can focus on the BandWagon attack. In that case, the attack already exploits the most influential knowledge source for collaborative filtering algorithms: popularity. It follows that the integration with other knowledge sources, e.g., \mathcal{KGs} , does not provide any significant improvement. However, the influence of popularity is so high in this attack that the final recommendation lists are subject to a strong popularity bias [131]. Indeed, adding fake profiles with the maximum ratings, e.g., 5 in Yahoo! Movies and 10 in Library-Thing, placed on the most popular/rated items that will form the \mathcal{I}_S (see Table 1) will amplify, even more, the probability that these items will be recommended in the highest positions of top-N recommendation lists making ineffective the adversaries' pushing goal toward the target items.

As a consequence, it even prevents the attacked recommendation system from suggesting the target item. Table 5

Hit Ratio (HR) result values evaluated on top-10 recommendation lists for the Yahoo! Movies dataset.

			User-kNN			Item-kNN			MF			NeuMF		
Attack	Feature Type	Similarity	1	2.5	5	1	2.5	5	1	2.5	5	1	2.5	5
Random	Basel	line	.1927	.3624	.4461	.3260	.5099	.6011	.4108	.5857	.7043	.0247	.0221	.0700
	Categorical	Cosine	.1869	.3512	.4277	.3163	.4980	.5886	.4084	.5720	.6648	.0018	.0127	.0464
		Katz	.1912	.3725	.4559	.3429	.5270	.6098	.4244	.6029	.7049	.0223	.0317	.0891
		Exclusivity	.1968	.3712	.4533	.3394	.5233	.6072	.4272	.6011	.7023	.0171	.0516	.0544
	Ontological	Cosine	.1730	.3353	.4163	.2994	.4793	.5726	.3916	.5513	.6407	<u>.0030</u>	<u>.0051</u>	.0118
		Katz	.1766	.3547	.4337	.3224	.5046	.5904	.4029	.5698	.6638	<u>.0106</u>	.0191	.0386
		Exclusivity	.2101	.3898	.4706	.3532	.5442	.6243	.4450	.6328	.7376	<u>.0242</u>	.0567	.0515
	Factual	Cosine	.1881	.3501	.4289	.3149	.4933	.5840	.4087	.5665	.6590	.0188	.0115	.0365
		Katz	.2094	.3869	.4703	.3545	.5398	.6213	.4442	.6272	.7371	.0368	.0507	.0269
		Exclusivity	.2055	.3799	.4632	.3479	.5317	.6178	.4361	.6142	.7187	<u>.0176</u>	.0402	.0430
Average	Basel	ine	.2293	.4117	.4918	.3758	.5759	.6564	.4900	.6824	.7849	.0033	.0044	.0236
	Categorical	Cosine	.2581	.4296	.4972	.3955	.5953	.6689	.5326	.7255	.8076	<u>.0017</u>	<u>.0383</u>	<u>.0029</u>
		Katz	.2319	.4142	.4917	.3882	.5773	.6542	.4889	.6777	.7716	<u>.0015</u>	<u>.0064</u>	<u>.0272</u>
		Exclusivity	.2277	.4026	.4845	.3752	.5698	.6493	.4813	.6658	.7624	<u>.0064</u>	<u>.0014</u>	.0087
	Ontological	Cosine	.2584	.4264	.4953	.4019	.5952	.6704	.5457	.7315	.8128	<u>.0043</u>	<u>.0018</u>	<u>.0111</u>
		Katz	.2406	.4209	.4964	.3940	.5877	.6615	.5131	.7093	.7950	<u>.0040</u>	<u>.0022</u>	<u>.0098</u>
		Exclusivity	.2196	.3965	.4771	.3623	.5531	.6337	.4552	.6401	.7347	<u>.0099</u>	<u>.0348</u>	.0205
	Factual	Cosine	.2573	.4290	.4960	.3882	.5884	.6634	.5353	.7256	.8009	<u>.0026</u>	<u>.0055</u>	.0054
		Katz	.2293	.4101	.4910	.3736	.5608	.6414	.4746	.6559	.7511	<u>.0073</u>	<u>.0047</u>	<u>.0231</u>
		Exclusivity	.2311	.4075	.4894	.3706	.5661	.6467	.4809	.6661	.7602	<u>.0042</u>	<u>.0070</u>	<u>.0194</u>
BandWagon	Basel	ine	.0996	.2418	.3556	.2427	.3764	.4691	.2357	.3606	.4320	.0010	.0026	.0025
	Categorical	Cosine	.1020	.2544	.3634	.2453	.3831	.4748	.2536	.3909	.4662	<u>.0010</u>	<u>.0208</u>	<u>.0010</u>
		Katz	.0981	.2412	.3495	.2383	.3676	.4546	.2300	.3540	.4248	<u>.0017</u>	<u>.0022</u>	<u>.0077</u>
		Exclusivity	.0926	.2357	.3476	.2378	.3670	.4562	.2248	.3472	.4150	<u>.0009</u>	<u>.0094</u>	<u>.0026</u>
	Ontological	Cosine	.1039	.2632	.3606	.2460	.3853	.4786	.2726	.4080	.4798	<u>.0045</u>	<u>.0060</u>	.0009
		Katz	.0958	.2476	.3528	.2412	.3754	.4652	.2253	.3602	.4376	<u>.0009</u>	<u>.0023</u>	<u>.0012</u>
		Exclusivity	.0941	.2227	.3346	.2289	.3528	.4402	.2092	.3191	.3885	<u>.0030</u>	.0022	<u>.0054</u>
	Factual	Cosine	.1050	.2562	.3614	.2476	.3814	.4734	.2506	.3890	.4625	<u>.0133</u>	.0043	<u>.0004</u>
		Katz	.0930	.2302	.3460	.2295	.3569	.4461	.2178	.3399	.4064	<u>.0255</u>	.0028	<u>.0115</u>
		Exclusivity	.0926	.2360	.3515	.2345	.3616	.4504	.2309	.3446	.4137	<u>.0023</u>	<u>.0012</u>	.0014

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

All the experimental datasets and all the recommendation models clearly show this effect.

Another aspect that we want to underline is that in-creasing the number of fake profiles injected into the systems unleashes the potential of different semantic knowledge types. Let us take as an example the <LibraryThing, Average, MF>. With 1% injected fake profiles, we observe the best results with Factual knowledge and *Katz* centrality. With 2%, the best re-sults are with Factual knowledge and cosine similar-ity. Finally, with 5%, the best results come with On-tological knowledge and cosine similarity. This behav-ior suggests that the graph-based similarities have a big impact even in a very sparse scenario. In contrast, with the increase of fake profiles, the cosine similarity starts leveraging interesting correlations. On the other dimension, the factual information is massive by na-ture, and it is crucial in sparse scenarios. However, when the number of fake profiles increases, the knowl-

edge at a higher level of abstraction (Categorical and Ontological) finds its way to improve the attack efficacy further.

RQ2: The most impactful type of semantic infor*mation*. The following essential aspect to investigate is the combined impact of semantic knowledge type and relatedness measure. In detail, we believe this is a straightforward natural evolution of RQ2. We start focusing on Categorical knowledge. The experiments on LibraryThing show that Exclusivity is probably the relatedness that best suits this information type. However, the results are not that clear for the Yahoo! Movies dataset. This behavior suggests that semantic information type and relatedness are not the only members of the equation. Indeed, the extension and the quality of the item descriptions seem to have a role. Afterward, we can focus on Ontological information. Here, we can draw a general consideration since, for both datasets, it is the cosine similarity metric that

V.W. Anelli et al. / Semantics-Aware Shilling Attacks against collaborative recommender systems via Knowledge Graphs

Table 6

Variation of Hit Ratio (HR) when using the features extracted from the second hop with respect to the first hop for both the LibraryThing and Yahoo!Movies datasets.

				Librar	yThing	Yahoo!Movies					
Attack	Feature Type	Similarity	U-kNN	I-kNN	MF	NeuMF	U-kNN	I-kNN	MF	NeuMF	
Random	Categorical	Cosine	-1.28	-1.63	-0.70	-20.07	-0.03	-0.01	-0.01	1.57	
		Katz	-0.77	2.05	-0.20	-6.05	-0.11	-0.10	-0.06	-0.47	
		Exclusivity	-2.12	0.14	-0.26	-21.09	-0.05	-0.04	-0.02	0.08	
	Ontological	Cosine	1.97	0.64	0.35	13.45	0.16	0.12	0.10	1.3	
		Katz	-3.00	-0.24	0.10	-38.28	-0.07	-0.07	-0.04	-0.29	
		Exclusivity	-4.57	-1.92	-0.47	-46.85	-0.13	-0.09	-0.07	-0.6	
	Factual	Cosine	-0.64	-0.62	-0.11	46.94	-0.01	0.02	0.01	-0.6	
		Katz	0.93	2.60	0.07	56.47	-0.12	-0.09	-0.07	-0.7	
		Exclusivity	-0.33	0.25	-0.39	-29.80	-0.16	-0.11	-0.08	-0.2	
Average	Categorical	Cosine	-0.87	-0.86	-0.21	-17.66	-0.03	0.00	-0.01	0.6	
		Katz	0.07	2.13	0.02	36.36	0.03	-0.03	0.05	3.8	
		Exclusivity	-1.82	-0.09	-0.22	52.37	0.02	-0.02	0.03	-0.6	
	Ontological	Cosine	0.47	-0.05	0.22	-8.44	-0.14	-0.12	-0.17	-0.1	
		Katz	-3.92	-0.82	-0.52	-70.51	0.07	0.00	0.06	2.9	
		Exclusivity	-4.49	-2.26	0.32	152.52	0.07	0.02	0.06	-0.7	
	Factual	Cosine	-0.19	0.29	0.06	123.56	-0.04	0.00	-0.04	0.2	
		Katz	0.64	1.73	-0.28	13.12	0.01	-0.02	0.04	-0.7	
		Exclusivity	0.53	0.87	-0.33	-2.11	0.06	0.03	0.09	-0.1	
BandWagon	Categorical	Cosine	-0.02	-0.55	-0.42	-51.24	-0.03	0.00	0.02	-0.0	
		Katz	-1.93	-1.01	-0.04	-68.96	-0.06	0.02	0.00	8.8′	
		Exclusivity	3.25	-0.32	0.07	36.58	0.02	-0.02	0.05	0.0	
	Ontological	Cosine	-1.37	-0.10	0.16	49.05	-0.14	-0.08	-0.20	-0.6	
		Katz	-5.69	-0.18	2.05	-9.28	0.01	-0.01	0.10	0.7	
		Exclusivity	-2.37	-0.45	-0.55	-35.24	-0.02	0.02	0.10	0.6	
	Factual	Cosine	1.80	-0.14	-0.32	5.18	-0.07	-0.02	-0.02	-0.9	
		Katz	1.57	-0.45	1.00	190.44	0.02	0.05	0.07	-0.9	
		Exclusivity	-1.57	-0.61	-1.52	140.00	0.07	0.03	0.08	-0.17	

leads to the best results. Lastly, Factual information respects all the general remarks we have drawn before showing that the relatedness is a better source of adversaries' knowledge to perform more effective attacks.

In detail, we found that with low-knowledge attacks, the best relatedness is Exclusivity for Library-Thing and Katz for Yahoo! Movies. With informed attacks, the best relatedness metric is the cosine sim-ilarity. However, for the sake of electing a similarity that better suits Factual information, we can note that Exclusivity generally leads to better results with LibraryThing.

RQ3: Multiple hop v.s. single-hop. The subsequent analysis focuses on the impact of the 1-hop and 2-hops of the \mathcal{KG} exploration. To support this analysis, we have prepared the summary table. Table 6 firstly shows the average variation of attack efficacy passing from the adoption of single-hop extracted features to the double-hop extraction for LibraryThing and Ya-

hoo!Movies. Regarding Yahoo!Movies, the first and foremost consideration we can draw is that graphbased relatedness measures seem to have no positive impact when exploiting a double-hop exploration. However, it can be observed that those relatedness metrics already achieved impressive results with the firsthop exploration. Hence, further improving the performance is somehow challenging. Indeed, in most cases, we can observe a minimal variation for the doublehop performance. However, in some cases, the attacks witness a more significant decrease, probably due to the injection of some noisy and loosely-related secondhop features. In general, given the high performance achieved with a single-hop exploration, it seems that it is not worth exploring the second-hop, and thus increasing the computational complexity and introducing the new challenge of loosely-related second-hop features. Beyond graph-based relatedness, we observe that cosine vector similarity almost always shows an

improvement when considering second-hop features
(particularly with Ontological and Factual information). Finally, we have to observe that, even here, the
NeuMF model does not benefit from this new information.

6 Table 6 also shows the average attack efficacy variation for LibraryThing. Here, some of the previ-7 ously described behaviors are even more evident. In 8 detail, we note that the cosine similarity takes advan-9 tage of the second-hop information. In this case, we 10 can also observe Katz's improvement, suggesting that 11 this metric did not have unleashed its full potential 12 with only the first-hop features. Finally, in some cases, 13 the second-hop information also improves informed 14 attacks (reaching a peak of 53% improvement for <Av-15 16 erage, Factual, Exclusivity>), confirming a less evident trend we found with Yahoo! Movies. 17

RQ4: The most vulnerable recommendation mod-18 els. The last discussion analyzes the efficacy of the se-19 mantic attacks on the different recommendation fam-20 21 ilies. Since the neighborhood-based models directly exploit a similarity to compute the recommendation 22 lists, they are the privileged victim models to effec-23 tively alter the recommendation performance. Indeed, 24 both user-based and item-based schemes heavily suf-25 26 fer from semantics-aware shilling attacks. The publicly available semantic information can help the at-27 tacker in crafting impactful fake profiles even in the 28 case of complete lack of information about the sys-29 tem, e.g., SAShA-Random results. Even though la-30 tent factor models seem to be more robust to the at-31 tacks, semantic attacks produced an improvement of 32 the attacker's performance. Finally, the most robust 33 model seems to be NeuMF. This result is probably due 34 to the non-linearity of NeuMF that helps the model 35 36 avoid learning from the pretended profiles. In detail, 37 the neural network may learn more sophisticated correlations that the other models do not capture. We be-38 lieve that this ability deserves specific further investi-39 gation since it may lead to developing a new line of 40 research on Deep Learning-based semantics-aware at-41 tacks that might exploit non-linear item-item similari-42 ties to build more impactful attack methods. 43

44 45

46

47

6. Conclusion and Open Challenges

In the last decade, recommendation systems have
 widely shown their effectiveness in alleviating the
 over-choice problem. Indeed, with the most advanced
 Machine Learning techniques, the automated recom-

mendation can support the user by providing them ac-1 curate and tailored recommendation shortlists. Unfor-2 tunately, being the malicious users more aggressive 3 and more technically prepared, the security concerns 4 became more frequent. However, the designer's ability 5 to create a secure recommendation system starts with 6 the awareness of the possible attack the system can suf-7 fer. In this work, we show how the adoption of struc-8 tured and freely-accessible knowledge (i.e., Linked 9 Open Data repositories) further improves malicious 10 agents' ability to attack a recommendation platform. 11 Knowledge Graphs have already extensively shown 12 that they help build more accurate recommendation 13 systems. However, this technical study is one of the 14 first attempts to exploit the external knowledge to al-15 leviate the attacker's lack of system knowledge. Start-16 ing from the state-of-the-art shilling attacks (where 17 the attacker injects fake profiles into the platform to 18 alter the final recommendations), the work proposed 19 a broad spectrum of semantics-aware shilling attacks 20 (SAShA). To study and test these attacks' efficacy, we 21 have investigated the impact of graph-based metrics 22 (Katz centrality and Exclusivity-based relatedness), se-23 mantic information type, and Knowledge Graph ex-24 ploration depth. We have analyzed the attack efficacy 25 along each dimension considering three recommenda-26 tion families: neighborhood-based, latent factor mod-27 els, and Neural Network-based recommendations sys-28 tems, totaling 1440 experiments. The extensive ex-29 perimental evaluation has taught us several important 30 lessons. 31

First, the adoption of structured knowledge generally improves by a large margin the attacker's performance.

Second, the graph-based metrics can efficiently deal with very sparse scenarios capturing similarities that are otherwise imperceptible.

Third, the type of semantic information to feed the attacking system with has a significant function in enhancing the adversaries' effectiveness. With a small number of items/entities, the massive factual information has an important role, but as the number of involved entities grows, more structured information (i.e., categorical and ontological information) leads to better results.

Fourth, the single-hop exploration is already sufficient to outperform the semantics-unaware techniques, and the second-hop information does not introduce significant further improvements.

Fifth, the recommendation systems that rely on a similarity-based algorithm heavily suffer from seman-

17

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

tic attacks, which perfectly suffice the lack of user interaction knowledge. Latent factors models also suffer from the proposed attacks since they exploit dot product similarity. The experiments showed that the sole recommendation technique that to be more robust to *SAShA* is the Neural Network-based one, i.e., NeuMF, probably thanks to the model's non-linearities.

The latter finding suggests that there is still room for improvements for the semantics-aware attacks. Indeed, we plan to investigate Deep Learning-based semantic attacks. Finally, we consider this research direction as an initial investigation to design a new class of semantics-aware recommendation systems that will be robust to all these advanced attacks.

References

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

- [1] G. Linden, B. Smith and J. York, Amazon.com Recommendations: Item-to-Item Collaborative Filtering, *IEEE Internet Computing* 7(1) (2003), 76–80. doi:10.1109/MIC.2003.1167344.
- [2] I. Gunes, C. Kaleli, A. Bilge and H. Polat, Shilling attacks against recommender systems: a comprehensive survey, *Artif. Intell. Rev.* 42(4) (2014), 767–799.
- [3] R. Burke, M.P. O'Mahony and N.J. Hurley, Robust Collaborative Recommendation, in: *Recommender Systems Handbook*, Springer, 2015, pp. 961–995.
- [4] S.K. Lam and J. Riedl, Shilling recommender systems for fun and profit, in: WWW, ACM, 2004, pp. 393–402.
- [5] B. Mobasher, R.D. Burke, R. Bhaumik and C. Williams, Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness, ACM Trans. Internet Techn. 7(4) (2007), 23.
- [6] K. Chen, P.P.K. Chan, F. Zhang and Q. Li, Shilling attack based on item popularity and rated item correlation against collaborative filtering, *Int. J. Machine Learning & Cybernetics* **10**(7) (2019), 1833–1845.
- [7] S. Bhatia, P. Dwivedi and A. Kaur, That's Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships, in: *International Semantic Web Conference (1)*, Lecture Notes in Computer Science, Vol. 11136, Springer, 2018, pp. 250–267.
- [8] N. Shadbolt, K. O'Hara, T. Berners-Lee, N. Gibbins, H. Glaser, W. Hall and m. c. schraefel, Linked Open Government Data: Lessons from Data.gov.uk, *IEEE Intelligent Systems* 27(3) (2012), 16–24.
- [9] M. Cochez, T. Declerck, G. de Melo, L.E. Anke, B. Fetahu, D. Gromann, M. Kejriwal, M. Koutraki, F. Lécué, E. Palumbo and H. Sack (eds), Proceedings of the First Workshop on Deep Learning for Knowledge Graphs and Semantic Technologies (DL4KGS) co-located with the 15th Extended Semantic Web Conerence (ESWC 2018), Heraklion, Crete, Greece, June 4, 2018, in *CEUR Workshop Proceedings*, Vol. 2106, CEUR-WS.org, 2018.

[10] M. Alam, D. Buscaldi, M. Cochez, F. Osborne, D.R. Recupero and H. Sack (eds), Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Colocated with the 16th Extended Semantic Web Conference 2019 (ESWC 2019), Portoroz, Slovenia, June 2, 2019, in *CEUR Workshop Proceedings*, Vol. 2377, CEUR-WS.org, 2019. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

- [11] V.W. Anelli and T. Di Noia, 2nd Workshop on Knowledgeaware and Conversational Recommender Systems - KaRS, in: *CIKM*, ACM, 2019, pp. 3001–3002.
- [12] V.W. Anelli, Y. Deldjoo, T.D. Noia, E.D. Sciascio and F.A. Merra, SAShA: Semantic-Aware Shilling Attacks on Recommender Systems Exploiting Knowledge Graphs, in: *The Semantic Web - 17th International Conference, ESWC* 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings, Lecture Notes in Computer Science, Vol. 12123, Springer, 2020, pp. 307–323. doi:10.1007/978-3-030-49461-2_18.
- [13] F. Ricci, L. Rokach and B. Shapira, Introduction to Recommender Systems Handbook, in: *Recommender Systems Handbook*, F. Ricci, L. Rokach, B. Shapira and P.B. Kantor, eds, Springer, 2011, pp. 1–35. ISBN 978-0-387-85819-7. doi:10.1007/978-0-387-85820-3_1.
- [14] G. Adomavicius and A. Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, *IEEE Trans. Knowl. Data Eng.* 17(6) (2005), 734–749. doi:10.1109/TKDE.2005.99.
- [15] Y. Shi, M.A. Larson and A. Hanjalic, Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future Challenges, *ACM Comput. Surv.* 47(1) (2014), 3:1–3:45. doi:10.1145/2556270.
- [16] Y. Deldjoo, M. Schedl, P. Cremonesi and G. Pasi, Recommender Systems Leveraging Multimedia Content, ACM Comput. Surv. 53(5) (2020), 106:1–106:38. doi:10.1145/3407190.
- [17] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong and Q. He, A Survey on Knowledge Graph-Based Recommender Systems, *IEEE Transactions on Knowledge & Data Engineering* (5555), 1–1. doi:10.1109/TKDE.2020.3028705.
- [18] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, GroupLens: An Open Architecture for Collaborative Filtering of Netnews, in: *CSCW*, ACM, 1994, pp. 175–186.
- [19] Y. Koren, Factor in the neighbors: Scalable and accurate collaborative filtering, *TKDD* 4(1) (2010), 1:1–1:24.
- [20] B.M. Sarwar, G. Karypis, J.A. Konstan and J. Riedl, Itembased collaborative filtering recommendation algorithms, in: *Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001*, V.Y. Shen, N. Saito, M.R. Lyu and M.E. Zurko, eds, ACM, 2001, pp. 285–295. ISBN 1-58113-348-0. doi:10.1145/371920.372071.
- [21] Y. Koren, R.M. Bell and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, *IEEE Computer* 42(8) (2009), 30–37.
- [22] X. Ning and G. Karypis, Sparse linear methods with side information for top-n recommendations, in: *Sixth ACM Conference on Recommender Systems, RecSys '12, Dublin, Ireland, September 9-13, 2012*, P. Cunningham, N.J. Hurley, I. Guy and S.S. Anand, eds, ACM, 2012, pp. 155–162. ISBN 978-1-4503-1270-7. doi:10.1145/2365952.2365983.

[23] L. Backstrom and J. Leskovec, Supervised random walks: predicting and recommending links in social networks, in: *Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, 2011,* 2011, pp. 635–644.

1

2

3

4

5

6

7

8

9

10

11

12

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

- [24] Y. Deldjoo, M.F. Dacrema, M.G. Constantin, H. Eghbalzadeh, S. Cereda, M. Schedl, B. Ionescu and P. Cremonesi, Movie genome: alleviating new item cold start in movie recommendation, *User Model. User-Adapt. Interact.* 29(2) (2019), 291–343.
- [25] V.W. Anelli, V. Bellini, T. Di Noia, W.L. Bruna, P. Tomeo and E. Di Sciascio, An Analysis on Time- and Session-aware Diversification in Recommender Systems, in: UMAP, ACM, 2017, pp. 270–274.
- [26] I. Fernández-Tobías, I. Cantador, P. Tomeo, V.W. Anelli and T.D. Noia, Addressing the user cold start with cross-domain collaborative filtering: exploiting item metadata in matrix factorization, *User Model. User Adapt. Interact.* 29(2) (2019), 443–486. doi:10.1007/s11257-018-9217-6.
 - [27] Y. Huo, D.F. Wong, L.M. Ni, L.S. Chao and J. Zhang, Knowledge modeling via contextualized representations for LSTMbased personalized exercise recommendation, *Inf. Sci.* 523 (2020), 266–278. doi:10.1016/j.ins.2020.03.014.
 - [28] M. Hildebrandt, S.S. Sunder, S. Mogoreanu, M. Joblin, A. Mehta, I. Thon and V. Tresp, A Recommender System for Complex Real-World Applications with Nonlinear Dependencies and Knowledge Graph Context, in: *ESWC*, Lecture Notes in Computer Science, Vol. 11503, Springer, 2019, pp. 179–193.
 - [29] V.W. Anelli, P. Basile, D.G. Bridge, T.D. Noia, P. Lops, C. Musto, F. Narducci and M. Zanker, Knowledge-aware and conversational recommender systems, in: *Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018*, S. Pera, M.D. Ekstrand, X. Amatriain and J. O'Donovan, eds, ACM, 2018, pp. 521–522. doi:10.1145/3240323.3240338.
 - [30] V.W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone and J. Trotta, How to Make Latent Factors Interpretable by Feeding Factorization Machines with Knowledge Graphs, in: *The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October* 26-30, 2019, Proceedings, Part I, C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I.F. Cruz, A. Hogan, J. Song, M. Lefrançois and F. Gandon, eds, Lecture Notes in Computer Science, Vol. 11778, Springer, 2019, pp. 38–56. ISBN 978-3-030-30792-9. doi:10.1007/978-3-030-30793-6_3.
 - [31] G. He, J. Li, W.X. Zhao, P. Liu and J. Wen, Mining Implicit Entity Preference from User-Item Interaction Data for Knowledge Graph Completion via Adversarial Learning, in: WWW '20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Y. Huang, I. King, T. Liu and M. van Steen, eds, ACM / IW3C2, 2020, pp. 740–751. doi:10.1145/3366423.3380155.
- [32] V.W. Anelli, R.D. Leone, T.D. Noia, T. Lukasiewicz and
 J. Rosati, Combining RDF and SPARQL with CP-theories to
 reason about preferences in a Linked Data setting, *Semantic Web* 11(3) (2020), 391–419. doi:10.3233/SW-180339.
- [33] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie
 and M. Guo, Exploring High-Order User Preference on the
 Knowledge Graph for Recommender Systems, *ACM Trans. Inf. Syst.* 37(3) (2019), 32:1–32:26. doi:10.1145/3312738.

- [34] E. Palumbo, D. Monti, G. Rizzo, R. Troncy and E. Baralis, entity2rec: Property-specific knowledge graph embeddings for item recommendation, *Expert Syst. Appl.* **151** (2020), 113235. doi:10.1016/j.eswa.2020.113235.
- [35] J. Li, Z. Xu, Y. Tang, B. Zhao and H. Tian, Deep Hybrid Knowledge Graph Embedding for Top-N Recommendation, in: Web Information Systems and Applications - 17th International Conference, WISA 2020, Guangzhou, China, September 23-25, 2020, Proceedings, G. Wang, X. Lin, J.A. Hendler, W. Song, Z. Xu and G. Liu, eds, Lecture Notes in Computer Science, Vol. 12432, Springer, 2020, pp. 59–70. doi:10.1007/978-3-030-60029-7_6.
- [36] M. Nayyeri, S. Vahdati, X. Zhou, H.S. Yazdi and J. Lehmann, Embedding-Based Recommendations on Scholarly Knowledge Graphs, in: *The Semantic Web - 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings*, A. Harth, S. Kirrane, A.N. Ngomo, H. Paulheim, A. Rula, A.L. Gentile, P. Haase and M. Cochez, eds, Lecture Notes in Computer Science, Vol. 12123, Springer, 2020, pp. 255–270. doi:10.1007/978-3-030-49461-2_15.
- [37] Y. Zhang, X. Xu, H. Zhou and Y. Zhang, Distilling Structured Knowledge into Embeddings for Explainable and Accurate Recommendation, in: WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, J. Caverlee, X.B. Hu, M. Lalmas and W. Wang, eds, ACM, 2020, pp. 735–743. doi:10.1145/3336191.3371790.
- [38] C. Ni, K.S. Liu and N. Torzec, Layered Graph Embedding for Entity Recommendation using Wikipedia in the Yahoo! Knowledge Graph, in: *Companion of The* 2020 Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, A.E.F. Seghrouchni, G. Sukthankar, T. Liu and M. van Steen, eds, ACM / IW3C2, 2020, pp. 811–818. doi:10.1145/3366424.3383570.
- [39] P. Ristoski, J. Rosati, T.D. Noia, R.D. Leone and H. Paulheim, RDF2Vec: RDF graph embeddings and their applications, *Semantic Web* 10(4) (2019), 721–752. doi:10.3233/SW-180317.
- [40] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, S.A. McIlraith and K.Q. Weinberger, eds, AAAI Press, 2018, pp. 1811–1818. https://www.aaai.org/ocs/index.php/ AAAI/AAAI18/paper/view/17366.
- [41] A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko, Translating Embeddings for Modeling Multi-relational Data, in: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, C.J.C. Burges, L. Bottou, Z. Ghahramani and K.Q. Weinberger, eds, 2013, pp. 2787–2795. https://proceedings.neurips.cc/paper/2013/ hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

[42] Y. Cao, X. Wang, X. He, Z. Hu and T. Chua, Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences, in: *The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019*, L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and L. Zia, eds, ACM, 2019, pp. 151–161. doi:10.1145/3308558.3313705.

20

1

2

3

4

5

6

7

8

9

10

11

12

13

30

31

32

33

34

35

36

37

38

39

- [43] G. Piao and J.G. Breslin, Transfer Learning for Item Recommendations and Knowledge Graph Completion in Item Related Domains via a Co-Factorization Model, in: *The Semantic Web 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings,* A. Gangemi, R. Navigli, M. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai and M. Alam, eds, Lecture Notes in Computer Science, Vol. 10843, Springer, 2018, pp. 496–511. doi:10.1007/978-3-319-93417-4_32.
- 14 [44] M.S. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, 15 I. Titov and M. Welling, Modeling Relational Data with 16 Graph Convolutional Networks, in: The Semantic Web - 15th 17 International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, A. Gangemi, R. Nav-18 igli, M. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tor-19 dai and M. Alam, eds. Lecture Notes in Computer Science, 20 Vol. 10843, Springer, 2018, pp. 593-607. doi:10.1007/978-3-21 319-93417-4 38.
- 22 [45] C. Shang, Y. Tang, J. Huang, J. Bi, X. He and B. Zhou, End-23 to-End Structure-Aware Convolutional Networks for Knowledge Base Completion, in: The Thirty-Third AAAI Conference 24 on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-25 vative Applications of Artificial Intelligence Conference, IAAI 26 2019, The Ninth AAAI Symposium on Educational Advances 27 in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 28 January 27 - February 1, 2019, AAAI Press, 2019, pp. 3060-29 3067. doi:10.1609/aaai.v33i01.33013060.
 - [46] X. Wang, X. He, Y. Cao, M. Liu and T. Chua, KGAT: Knowledge Graph Attention Network for Recommendation, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi and G. Karypis, eds, ACM, 2019, pp. 950–958. doi:10.1145/3292500.3330989.
 - [47] Q. Zhang, P. Hao, J. Lu and G. Zhang, Cross-domain Recommendation with Semantic Correlation in Tagging Systems, in: *International Joint Conference on Neural Networks, IJCNN* 2019 Budapest, Hungary, July 14-19, 2019, IEEE, 2019, pp. 1–8. doi:10.1109/IJCNN.2019.8852049.
- [48] T. Köllmer, E. Berndl, T. Weißgerber, P. Aichroth and 40 H. Kosch, A Workflow for Cross Media Recommendations 41 based on Linked Data Analysis, in: Joint Proceedings of the 42 4th International Workshop on Linked Media and the 3rd De-43 velopers Hackshop co-located with the 13th Extended Seman-44 tic Web Conference ESWC 2016, Heraklion, Crete, Greece, 45 May 30, 2016, R. Troncy, R. Verborgh, L.J.B. Nixon, T. Kurz, K. Schlegel and M.V. Sande, eds, CEUR Workshop Pro-46 ceedings, Vol. 1615, CEUR-WS.org, 2016. http://ceur-ws. 47 org/Vol-1615/limePaper1.pdf. 48
- [49] V.W. Anelli, V. Bellini, T.D. Noia and E.D. Sciascio,
 Knowledge-Aware Interpretable Recommender Systems, in:
 Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges, I. Tiddi, F. Lécué

and P. Hitzler, eds, Studies on the Semantic Web, Vol. 47, IOS Press, 2020, pp. 101–124. doi:10.3233/SSW200014. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

- [50] V.W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone and J. Trotta, Semantic Interpretation of Top-N Recommendations, *IEEE Transactions on Knowledge and Data Engineering* (2020), 1–1. doi:10.1109/TKDE.2020.3010215.
- [51] Z. Yang and S. Dong, HAGERec: Hierarchical Attention Graph Convolutional Network Incorporating Knowledge Graph for Explainable Recommendation, *Knowl. Based Syst.* 204 (2020), 106194. doi:10.1016/j.knosys.2020.106194.
- [52] X. Wang, D. Wang, C. Xu, X. He, Y. Cao and T.-S. Chua, Explainable reasoning over knowledge graphs for recommendation, in: *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 33, 2019, pp. 5329–5336.
- [53] R. Ojino, User's profile ontology-based semantic model for personalized hotel room recommendation in the web of things: student research abstract, in: *Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019,* C. Hung and G.A. Papadopoulos, eds, ACM, 2019, pp. 2314–2316. doi:10.1145/3297280.3297661.
- [54] S. Kallumadi and W.H. Hsu, Interactive Recommendations by Combining User-Item Preferences with Linked Open Data, in: Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP 2018, Singapore, July 08-11, 2018, T. Mitrovic, J. Zhang, L. Chen and D. Chin, eds, ACM, 2018, pp. 121–125. doi:10.1145/3213586.3226222.
- [55] Y. Luo, B. Xu, H. Cai and F. Bu, A Hybrid User Profile Model for Personalized Recommender System with Linked Open Data, in: *Enterprise Systems Conference, ES 2014, Shangai, China, August 2-3, 2014*, IEEE, 2014, pp. 243–248. doi:10.1109/ES.2014.16.
- [56] L. Sang, M. Xu, S. Qian and X. Wu, Knowledge graph enhanced neural collaborative recommendation, *Expert Syst. Appl.* 164 (2021), 113992. doi:10.1016/j.eswa.2020.113992.
- [57] T. Wang, D. Shi, Z. Wang, S. Xu and H. Xu, MRP2Rec: Exploring Multiple-Step Relation Path Semantics for Knowledge Graph-Based Recommendations, *IEEE Access* 8 (2020), 134817–134825. doi:10.1109/ACCESS.2020.3011279.
- [58] D. Shi, T. Wang, H. Xing and H. Xu, A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning, *Knowl. Based Syst.* 195 (2020), 105618. doi:10.1016/j.knosys.2020.105618.
- [59] H. Wang, M. Zhao, X. Xie, W. Li and M. Guo, Knowledge Graph Convolutional Networks for Recommender Systems, in: *The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,* L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and L. Zia, eds, ACM, 2019, pp. 3307–3313. doi:10.1145/3308558.3313417.
- [60] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie and M. Guo, RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems, in: *Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018,* A. Cuzzocrea, J. Allan, N.W. Paton, D. Srivastava, R. Agrawal, A.Z. Broder, M.J. Zaki, K.S. Candan, A. Labrinidis, A. Schuster and H. Wang, eds, ACM, 2018, pp. 417–426. doi:10.1145/3269206.3271739.

[61] T. Di Noia, V.C. Ostuni, P. Tomeo and E. Di Sciascio, SPrank: Semantic Path-Based Ranking for Top-*N* Recommendations Using Linked Open Data, *ACM TIST* 8(1) (2016), 9:1–9:34. doi:10.1145/2899005.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

- [62] A.K. Sahu and P. Dwivedi, Knowledge transfer by domainindependent user latent factor for cross-domain recommender systems, *Future Gener. Comput. Syst.* **108** (2020), 320–333. doi:10.1016/j.future.2020.02.024.
- [63] U. Yadav, N. Duhan and K.K. Bhatia, Dealing with Pure New User Cold-Start Problem in Recommendation System Based on Linked Open Data and Social Network Features, *Mob. Inf. Syst.* 2020 (2020), 8912065:1–8912065:20. doi:10.1155/2020/8912065.
- [64] S. Natarajan, S. Vairavasundaram, S. Natarajan and A.H. Gandomi, Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data, *Expert Syst. Appl.* **149** (2020), 113248. doi:10.1016/j.eswa.2020.113248.
- 16 [65] V.W. Anelli, T.D. Noia, P. Lops and E.D. Sciascio, Feature Factorization for Top-N Recommendation: From Item Rating 17 to Features Relevance, in: Proceedings of the 1st Workshop 18 on Intelligent Recommender Systems by Knowledge Trans-19 fer & Learning co-located with ACM Conference on Rec-20 ommender Systems (RecSys 2017), Como, Italy, August 27, 21 2017, Y. Zheng, W. Pan, S.S. Sahebi and I. Fernández, eds, CEUR Workshop Proceedings, Vol. 1887, CEUR-WS.org, 22 2017, pp. 16-21. http://ceur-ws.org/Vol-1887/paper3.pdf. 23
 - [66] T.D. Noia, R. Mirizzi, V.C. Ostuni, D. Romito and M. Zanker, Linked open data to support content-based recommender systems, in: *I-SEMANTICS 2012 - 8th International Conference on Semantic Systems, I-SEMANTICS '12, Graz, Austria, September 5-7, 2012*, V. Presutti and H.S. Pinto, eds, ACM, 2012, pp. 1–8. doi:10.1145/2362499.2362501.
 - [67] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick and J. Han, Personalized entity recommendation: a heterogeneous information network approach, in: WSDM, ACM, 2014, pp. 283–292.
 - [68] L. Gao, H. Yang, J. Wu, C. Zhou, W. Lu and Y. Hu, Recommendation with Multi-Source Heterogeneous Information, in: *IJCAI*, ijcai.org, 2018, pp. 3378–3384.
 - [69] H. Wang, F. Zhang, X. Xie and M. Guo, DKN: Deep Knowledge-Aware Network for News Recommendation, in: WWW, ACM, 2018, pp. 1835–1844.
 - [70] T. Di Noia, C. Magarelli, A. Maurino, M. Palmonari and A. Rula, Using Ontology-Based Data Summarization to Develop Semantics-Aware Recommender Systems, in: *ESWC*, Lecture Notes in Computer Science, Vol. 10843, Springer, 2018, pp. 128–144.
 - [71] S. Angioni, A.A. Salatino, F. Osborne, D.R. Recupero and E. Motta, Integrating Knowledge Graphs for Analysing Academia and Industry Dynamics, in: *ADBIS/TPDI/EDA Workshops*, Communications in Computer and Information Science, Vol. 1260, Springer, 2020, pp. 219–225.
- [72] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
 P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer
 and C. Bizer, DBpedia A large-scale, multilingual knowledge base extracted from Wikipedia, *Semantic Web* 6(2)
 (2015), 167–195. doi:10.3233/SW-140134.
- [73] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z.G. Ives, DBpedia: A Nucleus for a Web of Open Data, in: *The Semantic Web, 6th International Semantic Web Con*-

ference, 2nd Asian Semantic Web Conference, ISWC 2007 + *ASWC 2007, Busan, Korea, November 11-15, 2007,* Lecture Notes in Computer Science, Vol. 4825, Springer, 2007, pp. 722–735. doi:10.1007/978-3-540-76298-0_52.

- [74] D. Vrandecic and M. Krötzsch, Wikidata: a free collaborative knowledgebase, *Commun. ACM* 57(10) (2014), 78–85. doi:10.1145/2629489.
- [75] D. Vrandecic, Wikidata: a new platform for collaborative data collection, in: *Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume)*, A. Mille, F.L. Gandon, J. Misselis, M. Rabinovich and S. Staab, eds, ACM, 2012, pp. 1063–1064. doi:10.1145/2187980.2188242.
- [76] F.M. Suchanek, G. Kasneci and G. Weikum, Yago: a core of semantic knowledge, in: *Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, C.L. Williamson,* M.E. Zurko, P.F. Patel-Schneider and P.J. Shenoy, eds, ACM, 2007, pp. 697–706. doi:10.1145/1242572.1242667.
- [77] T.P. Tanon, G. Weikum and F.M. Suchanek, YAGO 4: A Reason-able Knowledge Base, in: *The Semantic Web - 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings*, A. Harth, S. Kirrane, A.N. Ngomo, H. Paulheim, A. Rula, A.L. Gentile, P. Haase and M. Cochez, eds, Lecture Notes in Computer Science, Vol. 12123, Springer, 2020, pp. 583–596. doi:10.1007/978-3-030-49461-2_34.
- [78] O. Hartig, Foundations of RDF* and SPARQL* (An Alternative Approach to Statement-Level Metadata in RDF), in: Proceedings of the 11th Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017, J.L. Reutter and D. Srivastava, eds, CEUR Workshop Proceedings, Vol. 1912, CEUR-WS.org, 2017. http://ceur-ws.org/Vol-1912/paper12.pdf.
- [79] K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: *Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, J.T. Wang, ed., ACM, 2008, pp. 1247–1250.* doi:10.1145/1376616.1376746.
- [80] D. Liu, T. Bai, J. Lian, X. Zhao, G. Sun, J. Wen and X. Xie, News Graph: An Enhanced Knowledge Graph for News Recommendation, in: Proceedings of the Second Workshop on Knowledge-aware and Conversational Recommender Systems, co-located with 28th ACM International Conference on Information and Knowledge Management, KaRS@CIKM 2019, Beijing, China, November 7, 2019, V.W. Anelli and T.D. Noia, eds, CEUR Workshop Proceedings, Vol. 2601, CEUR-WS.org, 2019, pp. 1–7. http://ceur-ws.org/Vol-2601/ kars2019_paper_01.pdf.
- [81] A. Uyar and F.M. Aliyu, Evaluating search features of Google Knowledge Graph and Bing Satori: Entity types, list searches and query interfaces, *Online Inf. Rev.* 39(2) (2015), 197–213. doi:10.1108/OIR-10-2014-0257.
- [82] A. Carlson, J. Betteridge, R.C. Wang, E.R.H. Jr. and T.M. Mitchell, Coupled semi-supervised learning for information extraction, in: *Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM* 2010, New York, NY, USA, February 4-6, 2010, B.D. Davison,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

T. Suel, N. Craswell and B. Liu, eds, ACM, 2010, pp. 101– 110. doi:10.1145/1718487.1718501.

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

- [83] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun and W. Zhang, Knowledge vault: a web-scale approach to probabilistic knowledge fusion, in: *The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, New York, NY, USA - August 24 - 27, 2014*, S.A. Macskassy, C. Perlich, J. Leskovec, W. Wang and R. Ghani, eds, ACM, 2014, pp. 601–610. doi:10.1145/2623330.2623623.
- [84] F. Belleau, M. Nolin, N. Tourigny, P. Rigault and J. Morissette, Bio2RDF: Towards a mashup to build bioinformatics knowledge systems, *J. Biomed. Informatics* 41(5) (2008), 706–716. doi:10.1016/j.jbi.2008.03.004.
- [85] M.P. O'Mahony, N.J. Hurley, N. Kushmerick and G.C.M. Silvestre, Collaborative recommendation: A robustness analysis, ACM Trans. Internet Techn. 4(4) (2004), 344–377.
 - [86] C.C. Aggarwal, Attack-resistant recommender systems, in: *Recommender Systems*, Springer, 2016, pp. 385–410.
- [87] R. Bhaumik, C. Williams, B. Mobasher and R. Burke, Securing collaborative filtering against malicious attacks through anomaly detection, in: *Proceedings of the 4th Workshop on Intelligent Techniques for Web Personalization (ITWP'06)*, *Boston*, Vol. 6, 2006, p. 10.
- [88] B. Mobasher, R. Burke, R. Bhaumik and C. Williams, Effective attack models for shilling item-based collaborative filtering systems, in: *Proceedings of the WebKDD Workshop*, Citeseer, 2005, pp. 13–23.
- [89] T.D. Noia, D. Malitesta and F.A. Merra, TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems, in: DSN Workshops, IEEE, 2020, pp. 1–8.
 - [90] M. Si and Q. Li, Shilling attacks against collaborative recommender systems: a review, *Artif. Intell. Rev.* 53(1) (2020), 291–319.
- [91] Y. Deldjoo, T.D. Noia and F.A. Merra, Assessing the Impact of a User-Item Collaborative Attack on Class of Users, in: *ImpactRS@RecSys*, CEUR Workshop Proceedings, Vol. 2462, CEUR-WS.org, 2019.
- [92] M.P. O'Mahony, N.J. Hurley and G.C.M. Silvestre, Recommender Systems: Attack Types and Strategies, in: AAAI, AAAI Press / The MIT Press, 2005, pp. 334–339.
- [93] Y. Deldjoo, T.D. Noia, E.D. Sciascio and F.A. Merra, How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models, in: *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, ACM, 2020, pp. 951–960.* doi:10.1145/3397271.3401046.
- [94] J. Cao, Z. Wu, B. Mao and Y. Zhang, Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system, *World Wide Web* 16(5–6) (2013), 729– 748.
- ⁴⁵ [95] W. Zhou, J. Wen, Q. Xiong, M. Gao and J. Zeng, SVM-TIA
 ⁴⁶ a shilling attack detection method based on SVM and target item analysis in recommender systems, *Neurocomputing* 210 (2016), 197–205.
- [96] W. Zhou, J. Wen, Q. Qu, J. Zeng and T. Cheng, Shilling attack
 detection for recommender systems based on credibility of
 group users and rating time series, *PloS one* 13(5) (2018),
 e0196533.

[97] M. Aktukmak, Y. Yilmaz and I. Uysal, Quick and accurate attack detection in recommender systems through user attributes, in: *RecSys*, ACM, 2019, pp. 348–352. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

- [98] Y. Cai and D. Zhu, Trustworthy and profit: A new valuebased neighbor selection method in recommender systems under shilling attacks, *Decision Support Systems* **124** (2019), 113112.
- [99] B. Li, Y. Wang, A. Singh and Y. Vorobeychik, Data Poisoning Attacks on Factorization-Based Collaborative Filtering, in: *NIPS*, 2016, pp. 1885–1893.
- [100] K. Christakopoulou and A. Banerjee, Adversarial attacks on an oblivious recommender, in: *RecSys*, ACM, 2019, pp. 322– 330.
- [101] M. Fang, N.Z. Gong and J. Liu, Influence Function based Data Poisoning Attacks to Top-N Recommender Systems, in: WWW, ACM / IW3C2, 2020, pp. 3019–3025.
- [102] Y. Liu, X. Xia, L. Chen, X. He, C. Yang and Z. Zheng, Certifiable Robustness to Discrete Adversarial Perturbations for Factorization Machines, in: *SIGIR*, ACM, 2020, pp. 419– 428.
- [103] J. Tang, H. Wen and K. Wang, Revisiting Adversarially Learned Injection Attacks Against Recommender Systems, in: *Fourteenth ACM Conference on Recommender Systems*, 2020, pp. 318–327.
- [104] X. He, Z. He, X. Du and T. Chua, Adversarial Personalized Ranking for Recommendation, in: *SIGIR*, ACM, 2018, pp. 355–364.
- [105] F. Yuan, L. Yao and B. Benatallah, Adversarial Collaborative Neural Network for Robust Recommendation, in: *SIGIR*, ACM, 2019, pp. 1065–1068.
- [106] V.W. Anelli, T.D. Noia, D. Malitesta and F.A. Merra, Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual Recommenders (short paper), in: DP@AI*IA, CEUR Workshop Proceedings, Vol. 2776, CEUR-WS.org, 2020, pp. 49–56.
- [107] Y. Deldjoo, T.D. Noia and F.A. Merra, A survey on Adversarial Recommender Systems: from Attack/Defense strategies to Generative Adversarial Networks, ACM Computing Surveys (2021). doi:10.1145/3439729.
- [108] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito and M. Zanker, Linked open data to support content-based recommender systems, in: *Proc. of the 8th Int. Conf. on Semantic Systems*, ACM, 2012, pp. 1–8.
- [109] L. Katz, A new status index derived from sociometric analysis, *Psychometrika* 18(1) (1953), 39–43. doi:10.1007/BF02289026.
- [110] I. Hulpus, N. Prangnawarat and C. Hayes, Path-Based Semantic Relatedness on Linked Data and Its Use to Word and Entity Disambiguation, in: *International Semantic Web Conference* (1), Lecture Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 442–457.
- [111] B.P. Nunes, S. Dietze, M.A. Casanova, R. Kawase, B. Fetahu and W. Nejdl, Combining a Co-occurrence-Based and a Semantic Measure for Entity Linking, in: *The Semantic Web: Semantics and Big Data, 10th International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings*, P. Cimiano, Ó. Corcho, V. Presutti, L. Hollink and S. Rudolph, eds, Lecture Notes in Computer Science, Vol. 7882, Springer, 2013, pp. 548–562. doi:10.1007/978-3-642-38288-8_37.

[112] B. Mobasher, R. Burke, R. Bhaumik and C. Williams, Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness, ACM Transactions on Internet Technology (TOIT) 7(4) (2007).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

- [113] M.P. O'Mahony, N.J. Hurley and G.C. Silvestre, An evaluation of the performance of collaborative filtering, in: 14th Irish Artificial Intelligence and Cognitive Science (AICS 2003) Conference, Citeseer, 2003.
- [114] R. Hu, Y. Guo, M. Pan and Y. Gong, Targeted Poisoning Attacks on Social Recommender Systems, in: 2019 IEEE Global Communications Conference, GLOBECOM 2019, Waikoloa, HI, USA, December 9-13, 2019, IEEE, 2019, pp. 1– 6. doi:10.1109/GLOBECOM38437.2019.9013539.
- [115] H. Chen and J. Li, Data Poisoning Attacks on Cross-domain Recommendation, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, ACM, 2019, pp. 2177–2180. doi:10.1145/3357384.3358116.
- [116] H. Zhang, Y. Li, B. Ding and J. Gao, Practical Data Poisoning Attack against Next-Item Recommendation, in: WWW '20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, 2020, pp. 2458–2464. doi:10.1145/3366423.3379992.
- [117] J. Song, Z. Li, Z. Hu, Y. Wu, Z. Li, J. Li and J. Gao, PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box Recommender Systems, in: *36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020*, IEEE, 2020, pp. 157–168. doi:10.1109/ICDE48307.2020.00021.
- [118] Y. Cao, X. Chen, L. Yao, X. Wang and W.E. Zhang, Adversarial Attacks and Detection on Reinforcement Learning-Based Interactive Recommender Systems, in: *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, ACM, 2020, pp. 1669–1672. doi:10.1145/3397271.3401196.*
 - [119] G. Yang, N.Z. Gong and Y. Cai, Fake Co-visitation Injection Attacks to Recommender Systems., in: *NDSS*, 2017.
- [120] M. Fang, G. Yang, N.Z. Gong and J. Liu, Poisoning Attacks to Graph-Based Recommender Systems, in: ACSAC, ACM, 2018, pp. 381–392.
- [121] L. Chen, Y. Xu, F. Xie, M. Huang and Z. Zheng, Data Poisoning Attacks on Neighborhood-based Recommender Systems, *CoRR* abs/1912.04109 (2019). http://arxiv.org/abs/ 1912.04109.
- [122] N. Akhtar and A.S. Mian, Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey, *IEEE Access* 6 (2018), 14410–14430.
- [123] C. Clavier, Secret External Encodings Do Not Prevent Transient Fault Analysis, in: *Cryptographic Hardware and Embedded Systems CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings*, P. Paillier and I. Verbauwhede, eds, Lecture Notes in Computer Science, Vol. 4727, Springer, 2007, pp. 181–194. doi:10.1007/978-3-540-74735-2_13.
- [124] C. Frederickson, M. Moore, G. Dawson and R. Polikar, Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning, in: 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018, IEEE, 2018, pp. 1–8.
 doi:10.1109/IJCNN.2018.8489495.

- [125] V.W. Anelli, Y. Deldjoo, T.D. Noia, F.A. Merra, G. Acciani and E.D. Sciascio, Knowledge-enhanced Shilling Attacks for Recommendation, in: *SEBD*, CEUR Workshop Proceedings, Vol. 2646, CEUR-WS.org, 2020, pp. 310–317.
- [126] H. Paulheim and J. Fürnkranz, Unsupervised generation of data mining features from linked open data, in: WIMS, ACM, 2012, pp. 31:1–31:12.
- [127] L. Candillier, F. Meyer and M. Boullé, Comparing Stateof-the-Art Collaborative Filtering Systems, in: *MLDM*, Lecture Notes in Computer Science, Vol. 4571, Springer, 2007, pp. 548–562.
- [128] N. Hug, Surprise, a Python library for recommender systems, 2017.
- [129] X. He, L. Liao, H. Zhang, L. Nie, X. Hu and T. Chua, Neural Collaborative Filtering, in: WWW, ACM, 2017, pp. 173–182.
- [130] S. Zhang, L. Yao, A. Sun and Y. Tay, Deep Learning Based Recommender System: A Survey and New Perspectives, ACM Comput. Surv. 52(1) (2019), 5:1–5:38. doi:10.1145/3285029.
- [131] H. Abdollahpouri, R. Burke and B. Mobasher, Controlling Popularity Bias in Learning-to-Rank Recommendation, in: *RecSys*, ACM, 2017, pp. 42–46.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

23

1

2