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Abstract. Although several large knowledge graphs have been proposed in the scholarly field, such graphs are limited with
respect to several data quality dimensions such as accuracy and coverage. In this article, we present methods for enhancing the
Microsoft Academic Knowledge Graph (MAKG), a recently published large-scale knowledge graph containing metadata about
scientific publications and associated authors, venues, and affiliations. Based on a qualitative analysis of the MAKG, we address
three aspects. First, we adopt and evaluate unsupervised approaches for large-scale author name disambiguation. Second, we
develop and evaluate methods for tagging publications by their discipline and by keywords, facilitating enhanced search and
recommendation of publications and associated entities. Third, we compute and evaluate embeddings for all 254 million authors,
210 million papers, 49,000 journals, and 16,000 conference entities in the MAKG based on several state-of-the-art embedding
techniques. Finally, we provide statistics for the updated MAKG. Our final MAKG is publicly available at https://makg.org and
can be used for the search or recommendation of scholarly entities, as well as enhanced scientific impact quantification.

Keywords: Knowledge Graph, Scholarly Data, Publications, Digital Libraries

1. Introduction

In recent years, knowledge graphs have been pro-
posed and made publicly available in the scholarly
field, covering information about entities such as pub-
lications, authors, and venues. They can be used for a
variety of use cases: (1) Using the semantics encoded
in the knowledge graphs and RDF as a common data
format, which allows an easy data integration from dif-
ferent data sources, scholarly knowledge graphs can be
used for providing advanced search and recommender
systems [1] in academia (e.g., recommending publi-
cations and citations [2, 3]). (2) The representation of
knowledge as a graph and the interlinkage of entities
of various entity types (e.g., publications, authors, in-

*Corresponding author. E-mail: michael.faerber@kit.edu.

stitutions) allows us to propose novel ways to scientific
impact quantification [4]. (3) If scholarly knowledge
graphs model the key content of publications, such as
data sets, methods, claims, and research contributions
[5], they can be used as a reference point for scientific
knowledge (e.g., claims) [6], similar to DBpedia and
Wikidata in the case of cross-domain knowledge. In
the light of the FAIR principles [7] and the overload
of scientific information resulting from the increasing
publishing rate in the various fields [8], one can envi-
sion that researchers’ working styles will change con-
siderably over the next few decades [9, 10] and that,
in addition to PDF documents, scientific knowledge
might be provided manually or semi-automatically via
appropriate forms [5] or automatically based on infor-
mation extraction on the publications’ full-texts [4].

The Microsoft Academic Knowledge Graph (MAKG)
[11], AMiner [12], OpenCitations [13], AceKG [14],

1570-0844/0-1900/$35.00© 0 – IOS Press and the authors. All rights reserved
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and OpenAIRE [15] are examples of large domain-
specific knowledge graphs with millions or some-
times billions of facts about publications and associ-
ated entities, such as authors, venues, and fields of
study. In addition, scholarly knowledge graphs edited
by the crowd [5] and providing scholarly key content
[5, 16] have been proposed. Finally, freely available
cross-domain knowledge graphs such as Wikidata1

provide an increasing amount of information about
the academic world, although not as systematic as the
domain-specific offshoots.

The Microsoft Academic Knowledge Graph (MAKG)
[11] was published in its first version in 2019 and is
peculiar in the sense that (1) it is one of the largest
freely available scholarly knowledge graphs (over 8
billion RDF triples as of 2019-09), (2) it is linked to
other data sources in the Linked Open Data cloud, and
(3) it provides metadata for entities that are – particu-
larly in combination – often missing in other scholarly
knowledge graphs (e.g., authors, institutions, journals,
fields of study, in-text citations). As of June 2020, the
MAKG contains metadata for more than 239 million
publications from all scientific disciplines, as well as
over 1.38 billion references between publications. As
outlined in Sec. 2.2, since 2019, the MAKG has al-
ready been used in various scenarios, such as recom-
mender systems [17], data analytics, bibliometrics and
scientific impact quantification [4, 18–20], as well as
knowledge graph query processing optimization [21].

Despite its data richness, the MAKG suffers from
data quality issues arising primarily due to the applica-
tion of automatic information extraction methods from
the publications (see further analysis in Section 2). We
highlight as major issues (1) the containment of author
duplicates in the range of hundreds of thousands, (2)
the inaccurate and limited tagging (i.e., assignment) of
publications with keywords given by the fields of study
[11], and (3) the lack of embeddings for the majority
of MAKG entities, which hinders the development of
machine learning approaches based on the MAKG.

In this article, we present methods for solving these
issues and apply them to the MAKG, resulting in an
enhanced MAKG.

First, we perform author name disambiguation on
the MAKG’s author set. To this end, we adopt an unsu-
pervised approach to author name disambiguation that
uses the rich publication representations in the MAKG

1https://wikidata.org/

and that scales for hundreds of millions of authors. We
use ORCID iDs to evaluate our approach.

Second, we develop a method for tagging all publi-
cations with fields of study and with a newly generated
set of keywords based on the publications’ abstracts.
While the existing field of study labels assigned to pa-
pers are often misleading (see [22] and Sec. 4) and,
thus, often not beneficial for search and recommender
systems, the enhanced field of study labels assigned to
publications can be used, for instance, to search for and
recommend publications, authors, and venues, as our
evaluation results show.

Third, we create embeddings for all 239 million
publications, 243 million authors, 49,000 journals, and
16,000 conference entities in the MAKG. We exper-
imented with various state-of-the-art embedding ap-
proaches. Our evaluations show that the ComplEx em-
bedding method [23] outperforms other embeddings in
all metrics. To the best of our knowledge, RDF knowl-
edge graph embeddings have not yet been computed
for such a large (scholarly) knowledge graph.2

Finally, we provide statistics concerning the au-
thors, papers, and fields of study in the newly cre-
ated MAKG. For instance, we analyze the authors’ cit-
ing behaviors, the number of authors per paper over
the time, and the distribution of fields of study us-
ing the disambiguated author set and the new field
of study assignments. We incorporate the results of
all mentioned tasks into a final knowledge graph,
which we provide online to the public at https://
makg.org (formerly: http://ma-graph.org) and http:
//doi.org/10.5281/zenodo.4617285. Thanks to the en-
tity embeddings, the new paper tags, and the disam-
biguated author set, the enhanced MAKG opens the
door to improved scholarly search and recommender
systems and advanced scientific impact quantification.

Overall, our contributions are as follows:

– We present and evaluate an approach for large-
scale author name disambiguation, which can
deal with the peculiarities of large knowledge
graphs, such as heterogeneous entity types and
243 million author entries.

– We propose and evaluate transformer-based meth-
ods for classifying publications according to their
fields of study based on the publications’ ab-
stracts.

2For instance, RDF2Vec [24] was trained on 17 million Wiki-
data entities. Even DGL-KE [25], a recently published package op-
timized for training knowledge graph embeddings at a large scale,
was evaluated on a benchmark with only 86 million entities.

https://wikidata.org/
https://makg.org
https://makg.org
http://ma-graph.org
http://doi.org/10.5281/zenodo.4617285
http://doi.org/10.5281/zenodo.4617285
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– We apply state-of-the-art entity embedding ap-
proaches to provide entity embeddings for 243
million authors, 239 publications, 49,000 jour-
nals, and 16,000 conferences, and evaluate them.

– We provide a statistical analysis of the newly cre-
ated MAKG.

Our implementation for enhancing scholarly knowl-
edge graphs can be found online for further use.3

The remainder of this article is structured as follows.
In Sec. 2, we describe the MAKG, along with typi-
cal application scenarios and its wide usage in the real
world. We also outline the MAKG’s limitations regard-
ing its data quality, thereby providing our motivation
for enhancing the MAKG. Subsequently, in Sec. 3, 4,
and 5, we describe in detail our approaches to author
name disambiguation, paper classification, and knowl-
edge graph embedding computation. In Sec. 6, we de-
scribe the schema of the updated MAKG, information
regarding the knowledge graph provisioning and statis-
tical key figures of the enhanced MAKG. We provide
a conclusion and give an outlook in Sec. 7.

2. Overview of the Microsoft Academic
Knowledge Graph

2.1. Schema and Key Statistics

The MAKG is derived from the Microsoft Aca-
demic Graph (MAG)4, a database consisting of tab-
separated text files [26]. The MAKG uses the infor-
mation provided by the MAG as its basis and enriches
the content by modeling the data according to linked
data principles to generate a Linked Open Data source
(i.e., an RDF knowledge graph with resolvable URIs,
a public SPARQL endpoint, and links to other data
sources). As of June 2020, the MAKG contains meta-
data for more than 239 million publications (139 mil-
lion publications with an abstract), 243 million au-
thors, and more than 1.38 billion references between
publications.

Table 1 shows the distribution of the entities among
the most important entity types. Surprisingly, the
MAKG contains more authors than publications. In
addition, the number of affiliations (about 26,000) is
relatively low, given that all research institutions in all
fields should be represented.

3https://github.com/lin-ao/enhancing_the_makg
4https://www.microsoft.com/en-us/research/project/microsoft-

academic-graph/

Table 1
General statistics for MAG entities (as of 2020-06)

Key Value

Papers 238,670,900
Papers with Link 224,325,750
Papers with Abstract 139,227,097
Authors 243,042,675
Affiliations 25,767
Journals 48,942
Conferences 4,468
Conference Instances 16,142
Fields of Study 740,460

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>

PREFIX magc: <https://makg.org/class/>
PREFIX magp: <https://makg.org/property/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX fabio: <http://purl.org/spar/fabio/>
PREFIX org: <http://www.w3.org/ns/org#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?affilName ?citCountAffil
WHERE {
?field rdf:type magc:FieldOfStudy .
?field foaf:name "Machine learning"^^xsd:string .
?paper fabio:hasDiscipline ?field .
?paper dcterms:creator ?author .
?author org:memberOf ?affiliation .
?affiliation foaf:name ?affilName .
?affiliation magp:citationCount ?citCountAffil . }
GROUP BY ?affilName ?citCountAffil
ORDER BY DESC(?citCountAffil)
LIMIT 100

List. 1: Querying the top 100 institutions in the area of
machine learning according to their overall number of
citations.

Compared to a previous analysis of the MAG in
2016 [27], the number of instances has increased for all
entity types, except for the number of conference in-
stances, which has dropped from 50,202 to 16,142. An
obvious reason for this reduction is the data cleaning
process. Although the number of journals, authors, and
papers have doubled in size compared to the 2016 ver-
sion [27], the number of conference series and fields
of study have nearly quadrupled.

Figure 1 shows how many publications represented
in the MAKG have been published per discipline (i.e.,
level-0 field of study). Medicine, materials science,
and computer science occupy the top positions. This
was not always the case. According to the analysis
of the MAG in 2016 [27], physics, computer science,

https://github.com/lin-ao/enhancing_the_makg
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/


4 M. Färber and L. Ao / Enhancing the Microsoft Academic Knowledge Graph

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0

5

10

15

20

25

30

35

N
u
m

b
e
r 

o
f 
p
u
b
lic

a
ti
o
n
s

in
 m

ill
io

n

Figure 1. Number of publications per discipline.
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Figure 2. Paper citation count per discipline (i.e., level-0 field of
study).

and engineering were the disciplines with the highest
numbers of publications. We assume that additional
and changing data sources of the MAG resulted in this
change.

Figure 2 presents the overall number of publication
citations per discipline. Although the descending order
of the disciplines is similar to the descending order in
terms of the publication count per discipline (see Fig-
ure 1), the disciplines biology, medicine, and chem-
istry have the highest publication citation count. The
paper citation count per discipline is not provided by
the 2016 MAG analysis [27].

Table 2 shows the frequency of instances per sub-
class of mag:Paper, generated by means of a SPARQL
query using the MAKG SPARQL endpoint. List. 1
shows an example of how the MAKG can be queried
using SPARQL.

2.2. Current Usage and Application Scenarios

The MAKG RDF dumps on Zenodo have been
viewed more than 5,000 times and downloaded more
than 41,000 times (as of 2021-03-04). As the RDF
dumps were also available directly at https://makg.org/

rdf-dumps/ (formerly: http://ma-graph.org/rdf-dumps/)

Table 2
Number of publications by document type

Document Type Number

Journal 85,759,950
Patent 52,873,589
Conference 4,702,268
Book chapter 2,713,052
Book 2,143,939
No type given 90,478,102
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until January 2021, the 21,725 visits (since 2019-04-
04) to this web page are also relevant.

Figure 3, 4, and 5 were created based on the log files
of the SPARQL endpoint. They show the number of
SPARQL queries per day, the number of unique users
per day, and which user agents were used to which ex-
tent. Overall, the following facts are observable:

– Except for in two months, the number of daily
requests increased steadily.

– The number of unique user agents remained fairly
constant, apart from a period between October
2019 and January 2020.

– The frequency of “more complex” queries (based
on query length) is increasing.

https://makg.org/rdf-dumps/
https://makg.org/rdf-dumps/
http://ma-graph.org/rdf-dumps/
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Figure 5. User agents.

Within only one year of its publication in Novem-
ber 2019, the MAKG has been used in diverse ways
from various third-parties. Below we list some of them
based on the citations of the MAKG publication [11].

Search and recommender systems and data ana-
lytics.

– The MAKG has been used for recommender sys-
tems, such as paper recommendation [17].

– Scholarly data is becoming increasingly impor-
tant for businesses. Due to its large number of
items (e.g., publications, researchers), the MAKG
has been discussed as a data source in enterprises
[28].

– The MAKG has been used by non-profit orga-
nizations for data analytics. For instance, Nesta
uses the MAKG in its business intelligence tools.5

– As a unique data source for scholarly data, the
MAKG has been used as one of several pub-
licly available knowledge graphs to build a cus-
tom domain-specific knowledge graph that con-
siders specific domains of interest [29].

Bibliometrics and scientific impact quantifica-
tion.

– The Data Set Knowledge Graph [16] provides
information about data sets as linked open data
source and contains links to MAKG publications
in which the data sets are mentioned. Utilizing
the publications’ metadata in the MAKG allows
researchers to employ novel methods for scien-
tific impact quantification (e.g., working on an “h-
index” for data sets).

5See https://www.nesta.org.uk and https://github.com/

michaelfaerber/MAG2RDF/issues/1.

– SoftwareKG [18] is a knowledge graph that links
about 50,000 scientific articles from the social
sciences to the software mentioned in those arti-
cles. The knowledge graph also contains links to
other knowledge graphs, such as the MAKG. In
this way, the SoftwareKG provides the means to
assess the current state of software usage.

– Publications modeled in the MAKG have been
linked to the GitHub repositories containing the
source code associated with the publications
[19]. For instance, this facilitates the detection of
trends on the implementation level and monitor-
ing of how the FAIR principles are followed by
which people (e.g., considering who provides the
source code to the public in a reproducible way).

– According to Tzitzikas et al. [20], the scholarly
data of the MAKG can be used to measure insti-
tutions’ research output.

– In [4], an approach for extracting scientific meth-
ods and data sets used by the authors is presented.
The extracted methods and data sets are linked to
the publications in the MAKG enabling novel sci-
entific impact quantification tasks (e.g., measur-
ing how often which data sets and methods have
been reused by researchers) and the recommen-
dation of methods and data sets. Overall, linking
the key content of scientific publications as mod-
eled in knowledge graphs or integrating such in-
formation into the MAKG can be considered as a
natural extension of the MAKG in the future.

– The MAKG has inspired other researchers to use
it in the context of data-driven history of science,6

i.e., for science of science [30].
– Daquino et al. [31] present the OpenCitations data

model and evaluate the representation of citation
data in several knowledge graphs, such as the
MAKG.

Benchmarking.

– As very large RDF knowledge graph, the MAKG
has served as a data set for evaluating novel ap-
proaches to streaming partitioning of RDF graphs
[21].

2.3. Current Limitations

Based on the statistical analysis of the MAKG and
the analysis of the usage scenarios of the MAKG so
far, we identified the following shortcomings:

6https://www.downes.ca/post/69870.

https://www.nesta.org.uk
https://github.com/michaelfaerber/MAG2RDF/issues/1
https://github.com/michaelfaerber/MAG2RDF/issues/1
https://www.downes.ca/post/69870
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– Author name disambiguation is apparently one
of the most pressing needs for enhancing the
MAKG.

– The assigned fields of study associated with the
papers in the MAKG are not accurate (e.g., archi-
tecture), and the field of study hierarchy is quite
erroneous.

– The use cases of the MAKG show that the MAKG
has not been used extensively for machine learn-
ing tasks. So far, only entity embeddings for the
MAKG as of 2019 concerning the entity type pa-
per are available, and these have not been evalu-
ated. Thus, we perceive a need to provide state-
of-the-art embeddings for the MAKG covering
many instance types, such as papers, authors,
journals, and conferences.

3. Author Name Disambiguation

3.1. Motivation

The MAKG is a highly comprehensive data set con-
taining more than 243 million author entities alone.
As is the case with any large database, duplicate en-
tries cannot be easily avoided [32]. When adding a new
publication to the database, the maintainers must de-
termine whether the authors of the new paper already
exist within the database or if a new author entity is to
be created. This process is highly susceptible to errors,
as certain names are common. Given a large enough
sample size, it is not rare to find multiple people with
identical surnames and given names. Thus, a plain
string-matching algorithm is not sufficient for detect-
ing duplicate authors. Table 3 showcases the ten most
frequently occurring author names in the MAKG7 to
further emphasize the issue. All author names are of
Asian origin. Whilst it is true that romanized Asian
names are especially susceptible to cause duplicate en-
tries within a database [33], the problem is not limited
to any geographical or cultural origin and is, in fact,
a common problem shared by Western names as well
[34].

The goal of the author-name disambiguation task is
to identify the maximum number of duplicate authors,
while minimizing the number of “false positives;” that
is, it aims to limit the number of authors classified as

7We used the December 2019 version of the MAKG for this anal-
ysis.

Table 3
Most frequently occurring author names in the MAKG

Author Name Frequency

Wang Wei 20,235
Zhang Wei 19,944
Li Li 19,049
Wang Jun 16,598
Li Jun 15,975
Li Wei 15,474
Wei Wang 14,020
Liu Wei 13,578
Zhang Jun 13,553
Wei Zhang 13,366

duplicates even though they are distinct persons in the
real world.

In Sec. 3.2, we dive into the existing literature con-
cerning author name disambiguation and, more gener-
ally, entity resolution. In Sec. 3.3, we define our prob-
lem formally. In Sec. 3.4, we introduce our approach,
and we present our evaluation in Sec. 3.5. Finally, we
conclude with a discussion of our results and lessons
learned in Sec. 3.6.

3.2. Related Work

Entity Resolution. Entity resolution is the task
of identifying and removing duplicate entries in a
data set that refer to the same real-world entity. This
problem persists across many domains and, ironically,
is itself affected by duplicate names: “object iden-
tification” in computer vision, “coreference resolu-
tion” in natural language processing, “database merg-
ing,” “merge/purge processing,” “deduplication,” “data
alignment” or “entity matching” in the database do-
main, and “entity resolution” in the machine learning
domain [55]. The entities to be resolved are either part
of the same data set or may reside in multiple data
sources.

Newcombe et al. were the first ones to define the
entity linking problem [56], which was later modeled
mathematically by Fellegi and Sunter [57]. They de-
rived a set of formulas to determine the probabilities of
two entities being “matching” based on given precon-
ditions (i.e., similarities between feature pairs). Later
studies refer to the probabilistic formulas as equivalent
to a naïve Bayes classifier [58, 59].

Generally speaking, there exists two approaches to
dealing with entity resolution [60]. In statistics and
machine learning, the task is formulated as a clas-
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Table 4
Approaches to author name disambiguation in the last 10 years (2011–2021)

Authors Year Approach Supervised

[35] 2020 Graph-based combination of author similarity and topic graph 7

[36] 2020 Adversarial representation learning 3

[37] 2019 Matching e-mail address, self-citation and co-authorship with iterative clustering 7

[38] 2019 Hierarchical clustering with edit distances 7

[39] 2019 Graph-based approach 7

[40] 2019 Deep neural network 3

[41] 2019 Graph-based approach and clustering 7

[38] 2019 Molecular cross clustering 7

[42] 2018 Combination of single features 3

[43] 2018 Rule-based clustering 7

[34] 2017 Multi-level clustering 7

[44] 2017 Hierarchical clustering with combination of similarity metrics 7

[45] 2017 Neural network using embeddings 3

[46] 2016 DBSCAN with random forest 7

[47] 2016 Clustering based on co-authorship 7

[48] 2016 Rule-based heuristic, linear regression, support vector machines and AdaBoost 3

[49] 2015 Support vector machines 3

[50] 2014 Deep neural network 3

[51] 2014 Rule-based scoring 7

[52] 2014 Pairwise comparison and clustering 7

[53] 2013 Random forest, support vector machines and clustering 3

[54] 2011 Single layer perceptron 3

sification problem, in which all pairs of entries are
compared to each other and classified as matching or
non-matching by an existing classifier. In the database
community, a rule-based approach is usually used to
solve the task. Rule-based approaches can often be
transformed into probabilistic classifiers, such as naïve
Bayes, and require certain previous domain knowledge
for its setup.

Author name disambiguation. Author name dis-
ambiguation is a subcategory of entity resolution and
is performed on collections of authors. Table 4 pro-
vides an overview of papers specifically approaching
the task of author name disambiguation in the schol-
arly field in the last decade.

Ferreira et al. surveyed existing methods for author
name disambiguation [61]. They categorized existing
methods by their types of approach, such as author
grouping or author assignment methods, as well as
their clustering features, such as citation information,
web information, or implicit evidence.

Caron and van Eck applied a strict set of rules for
scoring author similarities, such as 100 points for iden-
tical e-mail addresses [51]. Author pairs scoring above
a certain threshold are classified as identical. Although

the creation of such a rule set requires specific do-
main knowledge, the approach is still very simplistic
in nature compared to other supervised learning ap-
proaches. In addition, it outperforms other clustering-
based unsupervised approaches significantly [62]. For
these reasons, we base our approach on the one pre-
sented in their paper.

3.3. Problem Formulation

Existing papers usually aim to introduce a new fun-
damental approach to author name disambiguation and
do not focus mainly on the general applicability of
their approaches. As a result, these approaches are of-
ten impractical when applied to a large data set. For ex-
ample, some clustering-based approaches require the
prior knowledge of the number of clusters [34] and
other approaches require the pairwise comparison of
all entities [49], whereas some require external infor-
mation gathered through web queries [43], which can-
not be feasibly done when dealing with millions of en-
tries, as the inherent bottleneck of web requests greatly
limits the speed of the overall processes. Therefore, in-
stead of choosing a single approach, we aim to select
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Figure 6. Author name disambiguation process.

features from different models and combine them to
fit to our target data set containing millions of author
names.

We favor the use of unsupervised learning for the
reasons mentioned above: lack of training data, lack of
need for maintaining and updating of training data, and
generally more favorable time and space complexity.
Thus, in our approach, we chose the hierarchical ag-
glomerative clustering algorithm (HAC). We formu-
late the problem as follows:

Given a set of n authors A = {a1, a2, a3, . . . , an}

where ai represents an individual entry in the data set.
Furthermore, each individual author ai consists of k
features (i.e., ai = {ai1, ai2, ai3, . . . , aik}). aik is the k-th
feature of the i-th author. The goal of our approach is to
eliminate duplicate entries in the data set that describe
the same real-world entity, in this case the same per-
son. To this end, we introduce a matching function f
which determines whether two given input entities are
“matching,” i.e., describe the same real-world person,
or “non-matching,” i.e., describe two distinct people.
Given an input of two authors ai and a j, the function
returns the following:

f (ai, a j) =



1 if ai and a j refer to the
same real world entity, i.e.,
are “matching”

0 if ai and a j refer to different
real world entities, i.e., are
“non-matching”

The goal of our entity resolution task is therefore to
reduce the given set of authors A into a subset Ã where
∀ai, a j ∈ Ã, f

(
ai, a j

)
= 0.

3.4. Approach

We follow established procedures from existing re-
search for unsupervised author name disambiguation

[51, 61] and utilize a two-part approach consisting
of pairwise similarity measurement using author and
paper metadata and clustering. Additionally, we use
blocking (see Sec. 3.4.3) to reduce the complexity con-
siderably. Figure 6 shows the entire system used for
the author name disambiguation process. The system’s
steps are as follows:

1. Preprocessing. We preprocess the data by aggre-
gating all relevant information (e.g., concerning
authors, publications, and venues) into one single
file for easier access. We then sort our data by au-
thor name for the final input.

2. Disambiguation. We apply blocking to signifi-
cantly reduce the complexity of the task. We then
use hierarchical agglomerative clustering with a
rule-based binary classifier as our distance func-
tion to group authors into distinct disambiguated
clusters.

3. Postprocessing. We aggregate the output clusters
into our final disambiguated author set.

Below, the most important aspects of these steps are
outlined in more detail.

3.4.1. Feature Selection
We use both author- and publication metadata for

disambiguation. We choose the features based on their
availability in the MAKG and on their previous use
in similar works from Table 4. Overall, we use the
following features:

– Author name: This is not used explicitly for dis-
ambiguation, but rather as a feature for blocking
to reduce the complexity of the overall algorithm.

– Affiliation: This determines whether two authors
share a common affiliation.

– Co-authors: This determines whether two au-
thors share common co-authors.

– Titles: This calculates the most frequently used
keywords in each author’s published titles in or-
der to determine common occurrences.
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– Years: This compares the time frame in which au-
thors published works.

– Journals and conferences: These compare the
journals and conferences where each author pub-
lished.

– References: This determines whether two authors
share common referenced publications.

Although e-mail has proven to be a highly effective
distinguishing feature for author name disambigua-
tion [63][52][51], this information is not available to
us directly and therefore omitted from our setup. Co-
authorship, on the other hand, is one of the most im-
portant features for author name disambiguation [64].
Affiliation could be an important feature, though we
could not rely solely on it as researchers often change
their place of work. In addition, as the affiliation in-
formation is automatically extracted from the publi-
cations, it might be on varying levels (e.g., depart-
ment vs. university) and written in different ways (e.g.,
full name vs. abbreviation). Journals and conferences
could be effective features, as many researchers tend to
publish in places familiar to them. For a similar reason,
references can be an effective measure as well.

3.4.2. Binary Classifier
We adapt a rule-based binary classifier as seen in

the work of Caron and van Eck [51]. We choose a
simple rule-based classifier because of its simplicity,
interpretability, and scalability. The unsupervised ap-
proach does not require any training data and is there-
fore well suited for our situation. Furthermore, it is
easily adapted and fine-tuned to achieve the best per-
formance based on our data set. Its lack of necessary
training time, as well as fast run time, makes it ideal
when working with large-scale data sets containing
millions of authors.

The binary classifier uses as input two feature
vectors representing two author entities. Given two
authors ai, a j, each consisting of n features ai =

{ai1, ai2, ai3, . . . , ain}, the similarity sim
(
ai, a j

)
between

these two authors is the sum of similarities between
each of their respective features where simn is the sim-
ilarity between the n-th feature of two authors.

sim
(
ai, a j

)
=

n∑
k=1

simk

(
aik, a jk

)
The classifier then compares the similarity sim

(
ai, a j

)
with a predetermined threshold θmatching in order to de-

termine whether two authors are “matching” or “non-
matching.” Our classifier function takes the following
shape:

f
(
ai, a j

)
=

1, if d
(
ai, a j

)
> θmatching

0, if d
(
ai, a j

)
< θmatching

For each feature, the similarity function consists of
rule-based scoring. Below, we briefly describe how
similarities between each individual feature are calcu-
lated.

1. For features with one individual value, as is the
case with affiliations for the MAG because it
does not record historical data, the classifier de-
termines whether both entries match and assigns
a fixed score saffiliation.

simaffiliation

(
ai, a j

)
=


saffiliation if ai,affiliation

= a j,affiliation

0 else

2. For other features consisting of multiple values
such as co-authors, the classifier determines the
intersection of both value sets. Here, we assign
scores using a stepping function, i.e., fixed scores
for an intersection of one, two, three, etc.
The following formula represents the similarity
function for calculating similarities between two
authors for the feature co-authors, though the
same formula holds for features journals, confer-
ences, titles, and references with their respective
values.

simco−authors

(
ai, a j

)
=



sco−authors1 if ai,co−authors

∩ a j,co−authors = 1
sco−authors2 if ai,co−authors

∩ a j,co−authors = 2
sco−authors3 if ai,co−authors

∩ a j,co−authors > 3
0 else

Papers’ titles are a special case for scoring, as
they must be numericalized to allow a compari-
son. Ideally, we would use a form of word em-
beddings to measure the true semantic similarity
between two titles, but, based on the results of
preliminary experiments, we did not find it worth,
as the added computation necessary would be sig-
nificant and would most likely not translate di-
rectly into huge performance increases. We there-
fore adapt a plain surface form string compari-
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son. Specifically, we extract the top ten most fre-
quently used words from the tokenized and lem-
matized titles of works published by an author
and calculate their intersection with the set of an-
other author.

3. A special case exists for the references feature. A
bonus score ssel f−reference is applied to the case of
self-referencing, that is if two compared authors
directly reference each other in their respective
works, as can be seen in the work of Caron and
van Eck [51].

– For some features, such as journals and confer-
ences, a large intersection between two authors
may be uncommon. We only assign a non-zero
value if both items share a common value.

simjournals

(
ai, a j

)
=


sjournals, if ai,journals

∩ a j,journals > 1
0, else

5. Other features such as publication year also con-
sist of multiple values, though we interpret them
as extremes of a time span. Based on their fea-
ture values, we construct a time span for each au-
thor in which they were active and check for over-
lap in active years when comparing two authors
(similar to [49]). Again, a fixed score is assigned
based on the binary decision. For example, if au-
thor A published papers in 2002, 2005, and 2009,
we extrapolate the active research period for au-
thor A as 2002–2009. If another author B was
active during the same time period or within 10
years of both ends of the time span, i.e., 1992–
2019, we assign a score syears as the output. We
expect most author comparisons to share an over-
lap in research time span and thus receive a score
of greater than zero. Therefore, this feature is
more aimed at “punishing” obvious non-matches.
The scoring function takes the following shape:

simyears

(
ai, a j

)
=


syears if ai and a j were active

within 10 years of one
another

0 else

3.4.3. Blocking
Due to the high complexity of traditional clustering

algorithms (e.g., O
(
n2

)
), there is a need to implement

a blocking mechanism to improve scalability of the al-
gorithm to accommodate large amounts of input data.
We implement sorted neighborhood [65] as a blocking

mechanism. We sort authors based on their names as
provided to us by the MAKG and measure the simi-
larity using the Jaro-Winkler distance [66], as Winkler
[67] provides good performances for name-matching
tasks on top of being a fast heuristic [68].

The Jaro-Winkler similarity returns values between
0 and 1, where a greater value signifies a closer match.
We choose 0.95 as the threshold θblocking, based on per-
formance on our evaluation data set, and we choose 0.1
as the standard value for the scaling factor p. Similar
names will be formed into blocks where we perform
pair-wise comparison and cluster authors which were
classified as similar by our binary classifier.

3.4.4. Clustering
The final step of our author name disambiguation

approach consists of clustering the authors. To this
end, we choose the traditional hierarchical agglom-
erative clustering approach. We generate all possi-
ble pairs between authors for each block and apply
our binary classifier to distinguish matching and non-
matching entities. We then aggregate the resulting dis-
ambiguated blocks and receive the final collection of
unique authors as output.

3.5. Evaluation

3.5.1. Evaluation Data
The MAKG contains bibliographical data on scien-

tific publications, researchers, organizations, and their
relationships. We use the version published in Decem-
ber 2019 for evaluation, though our final published
results were performed on an updated version (with
only minor changes) from June 2020 consisiting of
243,042,675 authors.

3.5.2. Evaluation Setup
For the evaluation, we use the ORCID iD, a persis-

tent digital identifier for researchers, as a ground truth,
following [69]. ORCID iDs have been established as
a common way to identify researchers. Although the
ORCID iD is still in the process of being adopted, it
is already widely used. More than 7,000 journals al-
ready collect ORCID iDs from authors.8 Our ORCID
evaluation set consists of 69,742 author entities.

Although using ORCID as a ground truth, we are
aware that this data set may be characterized by im-
balanced metadata. First of all, ORCID became widely
adopted only a few years ago. Thus, primarily author

8https://info.orcid.org/requiring-orcid-in-publications/

https://info.orcid.org/requiring-orcid-in-publications/


M. Färber and L. Ao / Enhancing the Microsoft Academic Knowledge Graph 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Hyperparameter values for high precision setup

Hyperparameter Value

saffiliation 1
sco−authors1 3
sco−authors2 5
sco−authors3 8
stitles1 3
stitles2 5
stitles3 8
sjournals 3
sconferences 3
syears 3
sreferences1 2
sreferences2 3
sreferences3 5
ssel f−references 8
θmatching 10
θblocking 0.95
p 0.1

names from publications published in recent years are
considered in our evaluation. Furthermore, we can as-
sume that ORCID is more likely to be used by ac-
tive researchers with a comparatively higher number of
publications and that the more publications’ metadata
we have available for one author, the higher the proba-
bility is for a correct author name disambiguation.

We set the parameters as given in Table 5. We refer
to these as the high precision configuration. These val-
ues were chosen based on choices in other similar ap-
proaches [51] and adjusted through experimentations
with our evaluation data as well as analysis of the rel-
evancy of each individual feature (see Sec. 3.5.3).

We rely on the traditional metrics of precision, re-
call and accuracy for our evaluation.

3.5.3. Evaluation Results
Due to blocking, the total number of pairwise com-

parisons was reduced from 2,431,938,411 to 1,475.
Out of them, 49 pairs were positive according to our
ORCID labels; i.e., they refer to the same real-world
person; the other 1,426 were negative. Full classifica-
tion results can be found in Table 6. We have a heav-
ily imbalanced evaluation set, with a majority of pair-
ings being negative. Nevertheless, we were able to cor-
rectly classify the majority of negative labels (1,424
out of 1,426). The great number of false negative clas-
sifications is immediately noticeable. This is due to
the selection of features or lack of distinguishing fea-

Table 6
Diffusion matrix of high precision setup

Positive
Label

Negative
Label

Total

Positive Classification 37 2 39
Negative Classification 12 1424 1436

Total 49 1426 1475

Table 7
Average disambiguation score per feature for high precision
setup (TP=True Positive; TN=True Negative; False Positive; False
Negative)

TP TN FP FN

score_affiliation 0.0 0.004 0.0 0.083
score_coauthors 0.0 0.0 0.0 0.0
score_titles 0.162 0.0 0.0 0.25
score_years 3.0 2.89 3.0 3.0
score_journals 3.0 0.034 3.0 1.75
score_conferences 3.0 2.823 3.0 3.0
score_self_reference 0.0 0.0 0.0 0.0
score_references 2.027 0.023 2.0 0.167

tures overall to classify certain difficult pairings. We
have therefore chosen to opt for a high percentage of
false negatives to minimize the amount of false pos-
itive classifications, as those are tremendously more
damaging to an author disambiguation result.

Table 7 showcases the average scores for each fea-
ture separated into each possible category of outcome.
For example, the average score for the feature titles
from all comparisons falling under the true positive
class was 0.162, and the average score for the fea-
ture years for comparisons from the true negative class
was 2.899. Based on these results, journals and ref-
erences play a significant role in identifying duplicate
author entities within the MAKG; that is, they con-
tribute high scores for true positives and true negatives.
Every single author pair from the true positive classifi-
cation cluster shared a common journal value, whereas
almost none from the true negative class did. Similar
observations can be made for the feature references as
well.

Our current setup results in a precision of 0.949, re-
call of 0.755 and an accuracy of 0.991.

By varying the scores assigned by each feature level
distance function, we can affect the focus of the entire
system from achieving a high level of precision to a
high level of recall.
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Table 8
Updated disambiguation scores for high recall setup

High Precision High Recall

sa f f iliation 1 5
sco−authors1 3 3
sco−authors2 5 5
sco−authors3 8 8
stit les1 3 3
stit les2 5 5
stit les3 8 8
syears 3 3
s journals 3 4
sconferences 3 4
ssel f−re ferences 8 8
sre ferences1 2 2
sre ferences2 3 3
sre ferences3 5 5

To improve our relatively poor recall value, we have
experimented with different setups for distance scores.
At high performance levels, a trade-off persists be-
tween precision and recall. By applying changes to
score assignment as seen in Table 8, we arrive at the
following results in Table 9.

We were able to increase the recall from 0.755 to
0.918. At the same time, our precision plummeted
from the original 0.949 to 0.776. As a result, the accu-
racy stayed at a similar level of 0.988. The exact dif-
fusion matrix can be found in Table 9. With our new
setup, we were able to identify the majority of all du-
plicates (45 out of 49), though at the cost of a signif-
icant increase in the number of false positives (from
2 to 13). By further analyzing the exact reasoning be-
hind each type of classification through analysis of in-
dividual feature scores in Table 10, we found that the
true positive and false positive classifications from the
same feature similarities, therefore creating a theoret-
ical upper limit to the performance of our specific ap-
proach and data set. We hypothesize that additional ex-
ternal data may be necessary to exceed this upper limit
of performance.

We must consider the heavily imbalanced nature of
our classification labels when evaluating the results in
order to avoid falling into the trap of the “high ac-
curacy paradox.” That is the resulting high accuracy
score of a model on highly imbalanced data sets, where
negative labels significantly outnumber positive labels.
The model’s favorable ability to predict the true nega-
tives outweigh its shortcomings for identifying the few
positive labels.

Table 9
Diffusion matrix for high recall setup

Positive
Label

Negative
Label

Total

Positive Classification 45 13 58
Negative Classification 4 1413 1417

Total 49 1426 1475

Table 10
Average disambiguation score per feature for the high recall setup
(TP=True Positive; TN=True Negative; FP = False Positive; FN =

False Negative). As we consider the scores for disambiguation and
not the confusion matrix for the classification, values can be greater
than one

TP TN FP FN

score_affiliation 0.111 0.004 1.538 0.0
score_coauthors 0.0 0.0 0.0 0.0
score_titles 0.133 0.0 0.0 0.75
score_years 3.0 2.89 3.0 3.0
score_journals 3.911 0.023 3.077 0.0
score_conferences 4.0 3.762 4.0 4.0
score_self_reference 0.0 0.0 0.0 0.0
score_references 1.667 0.023 0.308 0.5

Ultimately, we decided to use the high-precision
setup to create the final knowledge graph, as precision
is a much more meaningful metric for author name dis-
ambiguation as opposed to recall. It is often preferable
to avoid removing non-duplicate entities rather than
identifying all duplicates at the cost of false positives.

We also analyzed the average feature density per au-
thor in the MAKG and the ORCID evaluation data set
to gain deeper insight into the validity of our results.
Feature density here refers to the average number of
data entries within an individual feature, such as the
number of papers for the feature “published papers.”
The results can be found in Table 11.

As we can observe, there is a variation in “fea-
ture richness” between the evaluation set and the over-
all data set. However, for the most important fea-
tures used for disambiguation—namely journals, con-
ferences and references—the difference is not as pro-
nounced. Therefore, we can assume that the disam-
biguation results will not be strongly affected by this
variation.

Performing our author name disambiguation ap-
proach to the whole MAKG containing 243,042,675
authors (MAKG version from June 2020) resulted in
a reduced set of 151,355,324 authors. This is a reduc-
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Table 11
Comparison between the overall MAG data set and the evaluation
set

MAG Evaluation

AuthorID 1.0 1.0
Rank 1.0 1.0
NormalizedName 1.0 1.0
DisplayName 1.003 1.0
LastKnownAffiliationID 0.172 0.530
PaperCount 1.0 1.0
CitationCount 1.0 1.0
CreateDate 1.0 1.0
PaperID 2.612 1.196
DOI 1.240 1.0
Coauthors 11.187 4.992
Titles 2.620 1.198
Year 1.528 1.107
Journal 0.698 0.819
Conference 0.041 0.025
References 20.530 26.590
ORCID 0.0003 1.0

tion by 37.7% and shows that applying author name
disambiguation is highly beneficial.

Importantly, we introduced a maximum block size
of 500 in our final approach. Without it, the number
of authors grouped into the same block would theo-
retically be unlimited. The introduction of a limit to
block size further improves performance significantly,
reducing the run-time from over a week down to about
48 hours.9 We have therefore opted to keep the limit,
as the tradeoff in performance decrease is manageable
and as we aimed to provide an approach for real ap-
plication rather than a proof of concept. However, the
limit can be easily removed or adjusted.

3.6. Discussion

Due to the high number of authors with identi-
cal names within the MAG, our blocking algorithm
sometimes still generates large blocks with more than
20,000 authors. The number of pairwise classifica-
tions necessary equates to the number of combinations,

namely
(

n
2

)
, leading to high computational complex-

ity for larger block sizes. One way of dealing with this
issue would be to manually limit the maximum num-
ber of entities within one block, as we have done. Do-

9Using an Intel Xeon E5-2660 v4 processor and 128 GB of RAM

Table 12
Largest author name blocks during disambiguation

Author Name Block size

Wang Wei 20,235
Zhang Wei 19,944
Li Li 19,049
Wang Jun 16,598
Li Jun 15,975
Li Wei 15,474
Wei Wang 14,020
Liu Wei 13,580
Zhang Jun 13,553
Wei Zhang 13,366

ing so will split potential duplicate entities into distinct
blocks, meaning they will never be subject to compar-
ison by the binary classifier, although the entire pro-
cess may be sped up significantly depending on the
exact size limit selected. To highlight the challenge,
Table 12 showcases the author names with the largest
block sizes created by our blocking algorithm, i.e., au-
thor names generating the most complexity. The differ-
ence in total comparisons for the name block of “Wang
Wei” would be 204,717,495 comparisons10 with no
block size limit, compared to 5,017,495 comparisons11

for a block limit of 500 authors. We have found the
difference in performance to be negligible compared to
the total amount of duplicate authors found, as it differs
by less than 2 million authors compared to the almost
100 million duplicate authors found.

Our approach can be further optimized through
hand-crafted rules for dealing with certain author
names. Names of certain origins such as Chinese or
Korean names possess certain nuances. While the al-
phabetized Romanized forms of two Chinese names
may be similar or identical, the original language text
often shows a distinct difference. Furthermore, under-
standing the composition of surnames and given names
in this case may also help further reduce the complex-
ity. As an example, the names “Zhang Lei” and “Zhang
Wei” only differ by one single character in their Ro-
manized forms and would be classified as potential du-
plicates or typos due to their similarity, even though

10Total comparisons for 20,235 authors with no block size limit:(
20, 235

2

)
= 204, 717, 495

11Total comparisons for 20,235 authors with a block size limit of

500: 40 ∗
(

500
2

)
+

(
235
2

)
= 5, 017, 495
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Table 13
Overview of MAG field of study hierarchy

Level # of fields of study

0 19
1 292
2 138,192
3 208,368
4 135,913
5 167,676

for native Chinese speakers, such names signify two
distinctly separate names, especially when written in
the original Chinese character form. Chinese research
publications are rising in number in the past years [8].
Given their susceptibility to creating duplicate entries
as well as their significant presence in the MAKG al-
ready, future researchers might be well suited to isolate
this problem as a focal point.

Additionally, there is the possibility to apply multi-
ple classifiers and combine their results in a hybrid ap-
proach. If we were able to generate training data of suf-
ficient volume and quality, we would be able to apply
certain supervised learning approaches such as neural
networks or support vector machines using our gener-
ate feature vectors as input.

4. Field of Study Classification

4.1. Motivation

Publications modeled in the MAKG are assigned to
specific fields of study. Additionally, the fields of study
are organized in a hierarchy. In the MAKG as of June
2020, 709,940 fields of study are organized in a multi-
level hierarchical system (see Table 13). Both the field
of study paper assignments and the field of study hier-
archy in the MAKG originate from the MAG data pro-
vided by Microsoft Research. The entire classification
scheme is highly comprehensive and covers a huge va-
riety of research areas, but the labeling of papers con-
tains many shortcomings. Thus, the second task in this
article for improving the MAKG is the revision of field
of study assignment of individual papers.

Many of the higher-level fields of study in the hi-
erarchical system are highly specific, and therefore
lead to many misclassifications purely based on certain
matching keywords in the paper’s textual information.
For instance, papers on the topic of machine learn-
ing architecture are sometimes classified as “Architec-

ture.” Since the MAG does not contain any full texts
of papers, but is limited to the titles and abstracts only,
we do not believe that the information provided in the
MAG is comprehensive enough for effective classifi-
cation on such a sophisticated level.

On top of that, an organized structure is highly rigid
and difficult to change. When introducing a previously
unincorporated field of study, we have to not only mod-
ify the entire classification scheme, but ideally also re-
label all papers in case some fall under the new label.

We believe the underlying problem to be the com-
plexity of the entire classification scheme. We aim to
create a simpler structure that is extendable. Our idea
is not aimed at replacing the existing structure and field
of study labels, but rather enhancing and extending
the current system. Instead of limiting each paper to
being part of a comprehensive structured system, we
(1) merely assign a single field of study label at the top
level (also called “discipline” in the following, level 0
in the MAKG), such as computer science, physics, or
mathematics. We then (2) assign to each publication
a list of keywords (i.e., tags), which are used to de-
scribe the publication in further detail. Our system is
therefore essentially descriptive in nature rather than
restrictive.

Compared to the classification scheme of the origi-
nal MAKG and the MAG so far, our proposed system
is more fluid and extendable since its labels or tags are
not constrained to a rigid hierarchy. New concepts are
freely introduced without affecting existing labels.

Our idea therefore is to classify papers on a basic
level, then extract keywords in the form of tags for
each paper. These can be used to describe the con-
tent of a specific work, while leaving the structuring
of concepts to domain experts in each field. We clas-
sify papers into their respective fields of study using a
transformer-based classifier and generate tags for pa-
pers using keyword extraction from the publications’
abstracts.

In Sec. 4.2, we introduce related work concern-
ing text classification and tagging. We describe our
approach in Sec. 4.3 and our evaluation of the field
of study classification in Sec. 4.4. In Sec. 4.4.5, we
describe our approach for extracting paper keywords
for publication tagging. Finally, we conclude with
Sec. 4.5.

4.2. Related Work

Text classification. The tagging of papers based on
their abstracts can be regarded as a text classification
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task. Text classification aims to categorize given texts
into distinct subgroups according to predefined char-
acteristics. As with any classification task, text classi-
fication can be separated into binary, multi-label and
multi-class classification.

Kowsari et al. [70] provide a recent survey of text
classification approaches. Traditional approaches in-
clude techniques such as the Rocchio algorithm [71],
boosting [72] and bagging [73], and logistic regres-
sion [74], as well as naïve Bayes. Clustering-based ap-
proaches include k-nearest neighbor and support vec-
tor machines [75]. More recent approaches mostly uti-
lize deep learning. Recurrent neural networks [76] and
long short-term memory networks (LSTMs) [77] had
been the predominant approaches for representing lan-
guage and solving language-related tasks until the rise
of transformer-based models.

Transformer-based models can be generally sep-
arated into autoregressive and autoencoding mod-
els. Autoregressive models such as Transformer-XL
[78] learn representations for individual word tokens
sequentially, whereas autoencoding models such as
BERT [79] are able to learn representations in parallel
using the entirety of the document, even words found
after the word token. Newer autoregressive models
such as XLNet [80] combine features from both cat-
egories and are able to achieve state-of-the-art perfor-
mance. Additionally, other variants of the BERT model
exist, such as ALBERT [81] and RoBERTa [82]. Fur-
thermore, specialized BERT variants have been cre-
ated. One such variant is SciBERT [83], which spe-
cializes in academic texts.

Tagging. Tagging—based on extracting the tags
from a text—can be considered synonymous with key-
word extraction. To extract keywords from publica-
tions’ full texts, several approaches and challenges
have been proposed [84–86], exploiting publications’
structures, such as citation networks [87]. In our sce-
nario, we use publications’ abstracts, as the full texts
are not available in the MAKG. Furthermore, we fo-
cus on keyphrase extraction methods requiring no ad-
ditional background information and not designed for
specific tasks, such as text summarization.

TextRank [88] is a graph-based ranking model for
text processing. It performs well for tasks such as key-
word extraction as it does not rely on local context to
determine the importance of a word, but rather uses the
entire context through a graph. For every input text,
the algorithm splits the input into fundamental units
(words or phrases depending on the task) and struc-
tures them into a graph. Afterward, an algorithm simi-

lar to PageRank determines the relevance of each word
or phrase in order to extract the most important ones.

Another popular algorithm for keyword extraction is
RAKE, which stands for rapid automatic keyword ex-
traction [89]. In RAKE, the text is split by a previously
defined list of keywords. Thus, a less comprehensive
list would lead to longer phrases. In contrast, TextRank
splits the text into individual words first and combines
words which benefit from each other’s context at a later
stage in the algorithm. Overall, RAKE is more suitable
for text summarization tasks due to its longer extracted
key phrases, whereas TextRank is suitable for extract-
ing shorter keywords used for tagging, in line with our
task. In their original publication, the authors of Tex-
tRank applied their algorithm for keyword extraction
from publications’ abstracts. Due to all these reasons,
we use TextRank for publication tagging.

4.3. Approach

Our approach is to fine-tune a state-of-the-art trans-
former model for the task of text classification. We use
the given publications’ abstracts as input in order to
classify each paper into one of 19 top-level field of
study labels (i.e., level 0) predefined by the MAG (see
Table 11). After that, we apply TextRank to extract
keyphrases and assign them to papers.

4.4. Evaluation

4.4.1. Evaluation Data
For the evaluation, we produce three labeled data

sets in an automatic fashion. Two of the data sets are
used to evaluate the current field of study labels in the
MAKG (and MAG) and the given MAKG field of study
hierarchy, while the last data set acts as our source for
training and evaluating our approach for the field of
study classification.

In the following, we describe our approaches for
generating our three data sets.

1. For our first data set, we select field of study la-
bels directly from the MAKG. As mentioned pre-
viously, the MAKG’s fields of study are provided
in a hierarchical structure, i.e., fields of study
(e.g., research topics) can have several fields of
study below them. We filter the field of study la-
bels associated with papers for level-0 labels only,
that is we consider only the 19 top-level labels
and their assignments to papers. Table 14 lists all
19 level-0 fields of study in the MAG; these, as-
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Table 14
List of level-0 fields of study from the MAG

MAG ID Field of Study

41008148 Computer Science
86803240 Biology
17744445 Political Science

192562407 Materials Science
205649164 Geography
185592680 Chemistry
162324750 Economics

33923547 Mathematics
127313418 Geology
127413603 Engineering
121332964 Physics
144024400 Sociology
144133560 Business

71924100 Medicine
15744967 Psychology

142362112 Art
95457728 History

138885662 Philosophy
39432304 Environmental Science

sociated with the MAG papers, are also our 19
target labels for our classifier.
This data set will be representative of the field of
study assignment quality of the MAKG overall
as we compare its field of study labels with our
ground truth (see Sec. 4.4.4).

2. For our second data set, we extrapolate field of
study labels from the MAKG/MAG using the
field of study hierarchy—that is, we relabel the
papers using their associated top-level fields of
study on level 0. For example, if a paper is cur-
rently labeled as “neural network,” we identify
its associated level-0 field of study (the top-level
field of study in the MAKG). In this case, the pa-
per would be assigned the field of study of “com-
puter science.”
We prepare our data set by first replacing all
field of study labels using their respective top-
level fields of study. Each field of study assign-
ment in the MAKG has a corresponding confi-
dence score. We thus sort all labels by their corre-
sponding level-0 fields of study and calculate the
final field of study of a given paper by summariz-
ing their individual scores. For example, consider
a paper that originally has the field of study la-
bels “neural network” with a confidence score of
0.6, “convolutional neural network” with a confi-

dence score of 0.5 and “graph theory” with a con-
fidence score of 0.8. The labels “neural network”
and “convolutional neural network” are mapped
back to the top-level field of study of “computer
science”, whereas “graph theory” is mapped back
to “mathematics.” In order to calculate the final
score for each discipline, we totaled the weights
of every occurrence of a given label. In our ex-
ample, “computer science” would have a score of
0.5 + 0.6 = 1.1, and “mathematics” a score of 0.8,
resulting in the paper being labeled as “computer
science.”
This approach can be interpreted as an addition
of weights on the direct labels we generated for
our previous approach. By analyzing the differ-
ences in results from these two data sets, we aim
to gather some insights into the validity of the hi-
erarchical structure of the fields of study found in
the MAG.

3. Our third data set is created by utilizing the pa-
pers’ journal information. We first select a spe-
cific set of journals from the MAKG for which
the journal papers’ fields of study can easily be
identified. This is achieved through simple string
matching between the names of top-level fields of
study and the names of journals. For instance, if
the phrase “computer science” occurs in the name
of a journal, we assume it publishes papers in the
field of computer science.
We expect the data generated by this approach to
be highly accurate as the journal is an identifying
factor of the field of study. We cannot rely on this
approach to match all papers from the MAKG as
a majority of papers were published in journals
whose main disciplines could not be discerned di-
rectly from their names. Also, there exists a por-
tion of papers that do not have any associated
journal entries in the MAKG.
We are able to label 2,553 journals in this fash-
ion. We then label all 2,863,258 papers from these
given journals using their journal-level field of
study labels. We use the resulting data set to eval-
uate the fields of study in the MAKG as well as
to generate training data for the classifier.
In the latter case, we randomly selected 20,000
abstracts per field of study label, resulting in
a total of 333,455 training samples (i.e., paper-
field-of-study assignment pairs). The mismatch
compared to the theoretical training data size of
380,000 comes from the fact that some labels had
fewer than 20,000 papers available to select from.
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Our data for evaluating the classifier comes from our
third approach, namely the field of study assignment
based on journal names. We randomly drew 2,000
samples for each label from the labeled set to form our
test data set. Note that the test set does not overlap in
any way with the training data set generated through
the same approach, as both consist of distinctly sep-
arate samples (covering all scientific disciplines). In
total, the evaluation set consists of 38,000 samples
spread over the 19 disciplines.

4.4.2. Evaluation Setup
All our implementations use the Python module

Simple Transformers12 (based on Transformers13),
which provides a ready-made implementation of trans-
former-based models for the task of multi-class classi-
fication. We set the number of output classes to 19, cor-
responding to the number of top-level fields of study
we are trying to label. As mentioned in Section 4.4.1,
we prepare our evaluation data set based on labels gen-
erated via journal names. We also prepare out training
set from the same data set.

We choose the following model variants for each ar-
chitecture:

1. bert-large-uncased for BERT,
2. scibert_scivocab_uncased for SciBERT,
3. albert-base-v2 for ALBERT,
4. roberta-large for RoBERTa, and
5. xlnet-large-cased for XLNet.

All transformer models were trained on the bwUni-
cluster using GPU nodes containing 4 Nvidia Tesla
V100 GPUs and an Intel Xeon Gold 6230 processor.

4.4.3. Evaluation Metrics
We evaluate our model performances using two spe-

cific metrics, the micro-F1 score and Mathews correla-
tion coefficient.

The Matthews correlation coefficient (MCC), also
known as the phi coefficient, is another standard met-
ric used for multi-class classifications. It is often pre-
ferred for binary classification or multi-class classifi-
cation with unevenly distributed class sizes. The MCC
only achieves high values if all four classes of the dif-
fusion matrix are classified accurately, and is there-
fore preferred for evaluating unbalanced data sets [90].
Even though our evaluation set is balanced, we nev-
ertheless provide MCC as an alternative metric. The
MCC is calculated as follows:

12https://github.com/ThilinaRajapakse/simpletransformers
13https://github.com/huggingface/transformers

Table 15
Evaluation results of existing field of study labels

Label # labels # matching % matching

Computer Science 21,157 15,056 71.163
Biology 212,356 132,203 62.255
Political Science 12,043 4,083 33.904
Materials Science 23,561 18,475 78.413
Geography 4,286 575 13.416
Chemistry 339,501 285,569 84.114
Economics 91,411 62,482 68.353
Mathematics 109,797 92,519 84.264
Geology 22600 18,377 81.314
Engineering 731,505 187,807 25.674
Physics 694,631 500,723 72.085
Sociology 10,725 9,245 86.200
Business 141,498 33,641 23.775
Medicine 311,197 186,194 59.832
Psychology 36,080 31,834 88.232
Art 23,728 4,336 18.274
History 39,938 5,161 12.923
Philosophy 19,517 6,363 32.602
Environm. Science 17,727 936 5.280

Total 2,863,258 1,595,579 55.726

MCC =
T P ∗ T N − FP ∗ FN

√
(T P + FP) ∗ (T P + FN) ∗ (T N + FP) ∗ (T N + FN)

with TP = true positives, FP = false positives, TN =

true negatives, and FN = false negatives.

4.4.4. Evaluation Results
Evaluation of Existing Field of Study Labels
In the following, we outline our evaluation concern-

ing the validity of the existing MAG field of study la-
bels. We take our two labeled sets generated by our di-
rect labeling (1st data set; 2,863,258 papers) as well
as labeling through journal names (3rd data set) and
compare the associated labels on level 0.

As we can see from the results in Table 15, the qual-
ity of top-level labels in the MAG can be improved.
Out of the 2,863,258 papers, 1,595,579 matching la-
bels were found, corresponding to a 55.73% match,
meaning 55.73% of fields of study were labeled cor-
rectly according to our ground truth. Table 15 also
showcases an in-depth view of the quality of labels for
each discipline. We show the total number of papers
for each field of study and the number of papers which
are correctly classified according to our ground truth,
followed by the percentage.

https://github.com/huggingface/transformers
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Table 16
Evaluation results of the field of study hierarchy

Label # labels # matching % matching

Computer Science 21,157 13,055 61.705
Biology 212,356 145,671 68.598
Political Science 12,043 8,035 66.719
Materials Science 23,561 13,618 57.799
Geography 4,286 285 6.650
Chemistry 339,501 239,576 70.567
Economics 91,411 62,025 67.853
Mathematics 109,797 79,959 72.824
Geology 22600 15,777 69.810
Engineering 731,505 207,063 28.306
Physics 694,631 464,083 66.810
Sociology 10,725 4,418 41.193
Business 141,498 26,095 18.442
Medicine 311,197 192,397 61.825
Psychology 36,080 25,548 70.809
Art 23,728 4,901 20.655
History 39,938 3,391 8.491
Philosophy 19,517 8,641 44.274
Environm. Science 17,727 302 1.704

Total 2,863,258 1,514,840 52.906

Evaluation of MAKG Field of Study Hierarchy
To determine the validity of the existing field of

study hierarchy, we compare the indirectly labeled data
set (2nd data set) with our ground truth based on jour-
nal names (3rd data set). The indirectly labeled data set
is labeled using inferred information based on the over-
all MAKG field of study hierarchy (see Sec. 4.4.1).
Here, we want to examine the effect the hierarchical
structure would have on the truthfulness of field of
study labels. The results can be found in Table 16.

Our result based on this approach is very similar to
the previous evaluation. Out of the 2,863,258 papers,
we found 1,514,840 labels matching those based on
journal names, resulting in a 52.91% match (compared
to 55.73% in the previous evaluation). Including the
MAKG field of study hierarchy did not improve the
quality of labels. For many disciplines, the number of
mislabelings increased significantly, further devaluing
the quality of existing MAG labels.

Evaluation of Classification
In the following, we evaluate the newly created

field of study labels for papers determined by our
transformer-based classifiers.

We first analyze the effect of training size on the
overall results. Although we observe a steady increase

Table 17
Result comparison of various transformer-based classifiers

Model MCC F1-Score

BERTbase 0.7452 0.7584
BERTlarge 0.6853 0.7014
SciBERT 0.7552 0.7678
Albert 0.7037 0.7188
RoBERTa 0.7170 0.7316
XLNet 0.6755 0.6920

in performance with each increase in size of our train-
ing set, the marginal increment deteriorates after a cer-
tain value. Therefore, with training time in mind, we
decided to limit the training input size to 20,000 sam-
ples per label, leading a theoretical training data size of
390,000 samples. The number is slightly smaller in re-
ality, however, due to certain labels having fewer than
20,000 training samples in total.

We then compared the performances of various
transformer-based models for our task. Table 17 shows
performances of our models trained on the same train-
ing set after one epoch. As we can see, SciBERT and
BERTbase outperform other models significantly, with
SciBERT slightly edging out in comparison. Surpris-
ingly, the larger BERT variant performs significantly
worse than its smaller counterpart.

We then compare the effect of training epochs on
performance. We limit our comparison to the SciBERT
model in this case. We choose SciBERT as it achieves
the best performance after one epoch of training. We
fine-tune the same SciBERT model using an identical
training set (20,000 samples per label) as well as the
same evaluation set. We observe a peak in performance
after two epochs (see Table 18). Although performance
for certain individual labels keep improving steadily
afterward, the overall performance starts to deteriorate.
Therefore, training was stopped after two epochs for
our final classifier. Note that we have perform similar
analysis with some other models in a limited fashion
as well. The best performance was generally achieved
after two or three epochs depending on the model.

Table 19 showcases the performance per label for
our SciBERT model after two training epochs on the
evaluation set. On average, the classifier achieves an
macro average F1 score of 0.78. In the detailed re-
sults for each label, we highlighted labels that achieved
scores one standard deviation above and below the av-
erage.
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Table 18
Comparison between various number of training epochs

# of epoch MCC F1-Score

1 0.7552 0.7678
2 0.7708 0.7826
3 0.7665 0.7787
4 0.7615 0.7739
5 0.7558 0.7685

Table 19
Detailed evaluation results per label.

Label Prec. Recall F1 # samples

Computer Science 0.77 0.83 0.80 2,000
Biology 0.83 0.84 0.84 2,000
Political Science 0.83 0.81 0.82 2,000
Materials Science 0.78 0.83 0.80 2,000
Geography 0.96 0.67 0.79 2,000
Chemistry 0.79 0.80 0.80 2,000
Economics 0.66 0.68 0.67 2,000
Mathematics 0.79 0.81 0.80 2,000
Geology 0.90 0.94 0.92 2,000
Engineering 0.58 0.49 0.53 2,000
Physics 0.84 0.81 0.83 2,000
Sociology 0.81 0.70 0.75 2,000
Business 0.65 0.69 0.67 2,000
Medicine 0.84 0.84 0.84 2,000
Psychology 0.85 0.89 0.87 2,000
Art 0.68 0.76 0.72 2,000
History 0.70 0.75 0.72 2,000
Philosophy 0.81 0.81 0.81 2,000
Environm. Science 0.79 0.86 0.82 2,000

macro average 0.78 0.78 0.78 38,000

Classification performances for the majority of la-
bels are similar to the overall average, though some
outliers can be found.

Overall, the setup is especially adept at classifying
papers from the fields of geology (0.94), psychology
(0.87), medicine (0.84), and biology (0.84); whereas it
performs the worst for engineering (0.53), economics
(0.67), and business (0.67). The values in parentheses
are the respective F1-scores achieved during classifica-
tion.

We suspect the performance differences to be a re-
sult of the breadth of vocabularies used in each dis-
cipline. Disciplines for which the classifier performs
well usually use highly specific and technical vocabu-
laries. Engineering especially follows this assumption,

as engineering is an agglomeration of a multitude of
disciplines, such as physics, chemistry, biology, and
would encompass their respective vocabularies as well.

4.4.5. Keyword Extraction
As outlined in Sec. 4.3, we apply TextRank to ex-

tract keywords from text and assign them to publica-
tions. We use “pytextrank,”14 a Python implementa-
tion of the TextRank algorithm as our keyword extrac-
tor. Due to the generally smaller text size of an ab-
stract, we limit the number of keywords/key phrases to
five. A greater number of keywords would inevitably
introduce additional “filler phrases,” which are not
conducive for representing the content of a given ab-
stract. Further statistics about the keywords are given
in Sec. 6.

4.5. Discussion

In the following, we discuss certain challenges
faced, lessons learned and future outlooks.

Our classification approach relied on the existing
top-level fields of study (level 0) found in the MAKG.
Instead, we could have established an entirely new se-
lection of disciplines as our label set. It is also possible
to adapt an establish classification scheme such as the
ACM Computing Classification System15 or the Com-
puter Science Ontology16 [91]. However, to the best of
our knowledge, there is not an equivalent classification
scheme covering the entirety of research topics found
in the MAKG, which was a major factor leading us to
adapt the field of study system.

On the side of keyword extraction, grouping of ex-
tracted keywords and key phrases and building a tax-
onomy or ontology are natural continuations of the
work. We suggest categories to be constructed on an
individual discipline level, rather than having a fixed
category scheme for all possible fields of study. For in-
stance, within the discipline of computer science, we
could try to categorize tasks, data sets, approaches and
so forth from the list of extracted keywords. Brack et
al. [92] and Färber et. al. [4] recently published such
an entity recognition approach. Both have also adapted
the SciBERT architecture to extract scientific concepts
from paper abstracts.

Future researchers can expand our extracted tags by
enriching them with additional relationships to recre-

14https://github.com/DerwenAI/pytextrank/
15https://dl.acm.org/ccs
16https://cso.kmi.open.ac.uk/home

https://github.com/DerwenAI/pytextrank/
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ate a similar structure to the current MAKG field of
study hierarchy. Approaches such as the Scientific In-
formation Extractor [93] could be applied to categorize
or to establish relationships between keywords, build-
ing an ontology or rich knowledge graph.

5. Knowledge Graph Embeddings

5.1. Motivation

Embeddings provide an implicit knowledge repre-
sentation for otherwise symbolic information. They
are often used to represent concepts in a fixed low di-
mensional space. Traditionally, embeddings are used
in the field of natural language processing to represent
vocabularies, allowing computer models to capture the
context of words and, thus, the contextual meaning.

Knowledge graph embeddings follow a similar prin-
ciple, in which the vocabulary consists of entities and
relation types. The final embedding encompasses the
relationships between specific entities but also gener-
alizes relations for entities of similar types. The em-
beddings retain the structure and relationships of infor-
mation from the original knowledge graph and facili-
tate a series of tasks, such as knowledge graph comple-
tion, relation extraction, entity classification, question
answering and entity resolution [94].

Färber [11] published pretrained embeddings for
MAKG publications using RDF2Vec [95] as an “add-
on” to the MAKG. Here, we provide an updated ver-
sion of embeddings for a newer version of the MAG
data set and for a variety of entity types instead of pa-
pers alone. We experiment with various types of em-
beddings and provide evaluation results for each ap-
proach. Finally, we provide embeddings for millions
of papers and thousands of journals and conferences,
as well as millions of disambiguated authors.

In the following, we introduce related work in
Sec. 5.2. Sec. 5.3 describes our approach to knowl-
edge graph embedding computation, followed by our
evaluation in Sec. 5.4. We conclude in Sec. 5.6.

5.2. Related Work

Generally, knowledge graphs are described using
triplets in the form of (h, r, t), referring to the head en-
tity h ∈ E, the relationship between both entities r ∈ R,
and the tail entity t ∈ E. Nguyen [96] and Wang et al.
[94] provide overviews of existing approaches for cre-

ating knowledge graph embeddings, as well as differ-
ences in complexity and performance.

Within existing literature, there have been numerous
approaches to train embeddings for knowledge graphs.
Generally speaking, the main difference between the
approaches lies in the scoring function used to cal-
culate the similarity or distance between two triplets.
Overall, two major families of algorithms exist, ones
using translational distance models and ones using se-
mantic matching models.

Translational distance models use distance function
scores to determine the plausibility of specific sets of
triplets existing within a given knowledge graph con-
text [94]. More specifically, the head entity of a triplet
is projected as a point in a fixed dimensional space;
the relationship entity is herein, for example, a direc-
tional vector originating from the head entity. The dis-
tance between the end point of the relationship en-
tity and the tail entity in this given fixed dimensional
space describes the accuracy or quality of the embed-
dings. One such example is the TransE [97] algorithm.
The standard TransE model does not perform well on
knowledge graphs with one-to-many, many-to-one, or
many-to-many relationships [98] because the tail en-
tities’ embeddings are heavily influenced by the rela-
tions. Two tail entities that share the same head entity
as well as relation are therefore similar in the embed-
ding space created by TransE, even if they may be dif-
ferent concepts entirely in the real world. As an effort
to overcome the deficits of TransE, TransH [98] was
introduced to distinguish the subtleties of tail entities
sharing a common head entity as well as relation. Later
on, TransR was introduced to further model relations
as separate vectors rather than hyperplanes, as is the
case with TransH. The efficiency was later improved
with the TransD [99] model.

Semantic matching models compare similarity scores
in order to determine the plausibility of a given triplet.
Here, relations are not modeled as vectors similar to
entities, but rather as matrices describing interactions
between entities. Such approaches include RESCAL
[100], DistMult [101], HolE [102], ComplEx [23] and
others.

More recent approaches use neural network archi-
tectures to represent relation embeddings. ConvE, for
instance, represents head entity and relations as in-
put and tail entity as output of a convolutional neural
network [103]. ParamE extends the approach by rep-
resenting relations as parameters of a neural network
used to “translate” the input of head entity into the cor-
responding output of tail entity [104].
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Table 20
Hyperparameters for training embeddings

Hyperparameter Value

Embedding size 100
Max training step 1,000,000
Batch size 1,000
Negative sampling size 1,000

In addition, there are newer variations of knowledge
graph embeddings, for example using textual informa-
tion [105] and literals [106, 107]. Overall, we decided
to use established methods to generate our embeddings
for stability in results, performance during training and
compatibility with file formats and graph structure.

5.3. Approach

We experiment with various embedding types and
compare their performances on our data set. We in-
clude both translational distance models and seman-
tic matching models of the following types: TransE
[97], TransR [108], DistMult [101], ComplEx [23],
and RESCAL [102] (see Sec. 5.2 for an overview
how these approaches differ from each other). The rea-
soning behind the choices is as follows: the embed-
ding types need to be state-of-the-art and widespread,
therein acting as the basis of comparison. In addition,
there needs to be an efficient implementation to train
each embedding type, as runtime is a limiting factor.
For example, the paper embeddings by Färber [11]
were trained using RDF2Vec [95] and took two weeks
to complete. RDF2Vec did not scale well enough using
all authors and other entities in the MAKG.17

5.4. Evaluation

5.4.1. Evaluation Data
Our aim is to generate knowledge graph embeddings

for the entities of type papers, journals, conferences,
and authors to solve machine learning-based tasks,
such as search and recommendation tasks. The RDF

17Also current implementations of RDF2Vec, such as
pyRDF2Vec, are not designed for such a large scale: “Load-
ing large RDF files into memory will cause memory is-
sues as the code is not optimized for larger files.”https:
//github.com/IBCNServices/pyRDF2Vec. This turned out to be true
when running RDF2Vec on the MAKG. For the difference between
RDF2Vec and other algorithms, such as TransE, we can refer to
[109].

representations can be downloaded from the MAKG
website.18

We first select the required data files containing the
entities of our chosen entity types and combine them
into a single input. Ideally, we would train paper and
author embeddings simultaneously, such that they ben-
efit from each other’s context. However, the required
memory space proved to be a limiting factor given the
more than 200 million authors and more than 200 mil-
lion papers. Ultimately, we train embeddings for pa-
pers, journals, and conferences together;we train the
embeddings for authors separately.

Due to the large number of input entities within the
knowledge graph, we try to minimize the overall input
size and thereby the memory requirement for training.
We first filter out the relationships we aim to model. To
further reduce memory consumption, we “abbreviate”
relations by removing their prefixes.

Furthermore, we use a mapping for entities and rela-
tions to further reduce memory consumption. All enti-
ties and relations are mapped to a specific index in the
form of an integer. In this way, all statements within
the knowledge graph are reduced to a triple of integers
and used as input for training together with the map-
ping files.

5.4.2. Evaluation Setup
We use the Python package DGL-KE [25] for our

implementation of knowledge graph embedding algo-
rithms. DGL-KE is a recently published package opti-
mized for training knowledge graph embeddings at a
large scale. It outperforms other state-of-the-art pack-
ages while achieving linear scaling with machine re-
sources as well as high model accuracies. We set the
dimension size of our output embeddings to 100. We
set the limit due to greater memory constraints for
training higher dimensional embeddings. We experi-
ment with a dimension size of 150 and did not ob-
serve any improvements to our metrics. Embedding
sizes any higher will result in out of memory errors
on our setup. The exact choices of hyperparameters
are in Table 20. We perform evaluation through ran-
domly masking entities and statements and trying to
re-predict the correct missing part.

We perform training on the bwUnicluster using
GPU nodes with 8 Nvidia Tesla V100 GPUs and
752GB of RAM.

We use standard ranking metrics Hit@k, mean rank
(MR), and mean reciprocal rank (MRR).

18https://makg.org/

https://github.com/IBCNServices/pyRDF2Vec
https://github.com/IBCNServices/pyRDF2Vec
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Table 21
Evaluation results of various embedding types

TransR* TransE RESCAL ComplEx DistMult

average MR 105.598 15.224 4.912 1.301 2.094
average MRR 0.388 0.640 0.803 0.958 0.923
average HITS@1 0.338 0.578 0.734 0.937 0.893
average HITS@3 0.403 0.659 0.851 0.975 0.945
average HITS@10 0.474 0.769 0.920 0.992 0.977
training time 10 hours 8 hours 18 hours 8 hours 8 hours

Table 22
Evaluation of final embeddings

Author Paper/Journal/Conf.

average MR 2.644 1.301
average MRR 0.896 0.958
average HITS@1 0.862 0.937
average HITS@3 0.918 0.975
average HITS@10 0.960 0.992

5.5. Evaluation Result

Evaluation results can be found in Table 21. Results
are based on embeddings trained on paper, journal,
and conference entities. We observed an average mean
rank of 1.301 and a mean reciprocal rank of 0.958 for
the best performing embedding type.

Interestingly, TransE and TransR greatly outperform
other algorithms during fewer training steps (1,000).
For higher training steps, the more modern models,
such as ComplEx and DistMult, achieve state-of-the-
art performance. Across all metrics, ComplEx, which
is based on complex embeddings instead of real-valued
embeddings, achieves the best results (e.g., MRR of
0.958 and HITS@1 of 0.937) while having competi-
tive training times to other methods. Due to our focus
on the MAKG and not on machine learning and lim-
ited resources, we were unable to perform a full-scale
analysis of the effect of hyperparameters on the em-
bedding quality. It is important to note that we train
the TransR embedding type on 250,000 max training
steps compared to 1,000,000 for all others embedding
types. This is due to the extremely long training time
for this specific embedding; we were unable to finish
training in 48 hours, and, therefore, had to adjust the
training steps manually. The effect can be seen in its
performance; though for lower training steps, TransR
performed similarly to TransE.

Table 22 showcases the quality of our final embed-
dings, which we published on our website.19

5.6. Discussion

The main challenge of the task lies in the hardware
requirement for training embeddings on such a large
scale. For publications, for instance, even after the ap-
proaches we have carried out for reducing memory
consumption, it still required a significant amount of
memory. For example, we were not able to train pub-
lications and author embeddings simultaneously given
750 GB of memory space. Given additional resources,
future researchers could increase the dimensionality of
embeddings, which might increase performance.

Other embedding approaches may be suitable for
our case as well, though the limiting factor here is the
large file size of the input graph. Any approach needs
to be scalable and perform efficiently on such large
data sets. One of the limiting factors for choosing em-
bedding types (e.g., TransE) is the availability of an
efficient implementation. The DGL-KE provides such
implementations, but only for a select number of em-
bedding types. In the future, as other implementations
become publicly available, further evaluations may be
performed. Alternatively, custom implementations can
also be developed, though such tasks are not subject to
our paper.

Future researchers might further experiment with
various combinations of hyperparameters. We have no-
ticed a great effect of training steps on embedding
qualities of various models. Other effects might be
learnable with additional experimentations.

19https://makg.org/

https://makg.org/


M. Färber and L. Ao / Enhancing the Microsoft Academic Knowledge Graph 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fi
gu

re
7.

:U
pd

at
ed

M
A

K
G

sc
he

m
a.



24 M. Färber and L. Ao / Enhancing the Microsoft Academic Knowledge Graph

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 23
Properties added to the MAKG using the prefixes shown in Figure 7

Property Domain Range

https://makg.org/property/paperFamilyCount :Author xsd:integer

:Affiliation xsd:integer

:Journal xsd:integer

:ConferenceSeries xsd:integer

:ConferenceInstance xsd:integer

:FieldOfStudy xsd:integer

https://makg.org/property/ownResource :Paper :Resource

https://makg.org/property/citedResource :Paper :Resource

https://makg.org/property/resourceType :Resource xsd:integer

http://www.w3.org/1999/02/22-rdf-syntax-ns#type :Resource fabio:Work

http://purl.org/spar/fabio/hasURL :Resource xsd:anyURI

https://makg.org/property/familyId :Paper xsd:integer

https://makg.org/property/isRelatedTo :Affiliation :Affiliation

:Journal :Journal

:ConferenceSeries :ConferenceSeries

:FieldOfStudy :FieldOfStudy

https://makg.org/property/recommends :Paper :Paper

http://prismstandard.org/namespaces/basic/2.0/keyword :Paper xsd:string

http://www.w3.org/2003/01/geo/wgs84_pos#lat :Affiliation xsd:float

http://www.w3.org/2003/01/geo/wgs84_pos#long :Affiliation xsd:float

http://dbpedia.org/ontology/location :ConferenceInstance dbp:location

http://dbpedia.org/ontology/publisher :Paper dbp:Publisher

http://dbpedia.org/ontology/patent :Paper epo:EPOID

justia:JustiaID

http://purl.org/spar/fabio/hasPatentNumber :Paper xsd:string

http://purl.org/spar/fabio/hasPubMedId :Paper pm:PubMedID

http://purl.org/spar/fabio/hasPubMedCentrialId :Paper pmc:PMCID

http://www.w3.org/2000/01/rdf-schema#seeAlso :FieldOfStudy gn:WikipediaArticle

nih:NihID

6. Knowledge Graph Provisioning and Statistical
Analysis

In this section, we outline how we provide the en-
hanced MAKG. Furthermore, we show the results of a
statistical analysis on various aspects of the MAKG.

6.1. Knowledge Graph Provisioning

For creating the enhanced MAKG, we followed the
initial schema and data model of Färber [11]. How-
ever, we introduced new properties to model novel re-
lationships and data attributes. A list of all new proper-
ties to the MAKG ontology can be found in Table 23.
An updated schema for the MAKG is in Figure 7 and

on the MAKG homepage,20 together with the updated
ontology.

Besides the MAKG, Wikidata models millions
of scientific publications. Thus, similar to the ini-
tial MAKG [11], we created mappings between the
MAKG and Wikidata in the form of owl:sameAs

statements. Using the DOI as unique identifier for pub-
lications, we were able to create 20,872,925 links be-
tween the MAKG and Wikidata.

The MAKG RDF files—containing 8.7 billion RDF
triples as the core part—are available at http://doi.org/

10.5281/zenodo.4617285. The updated SPARQL end-
point is available at https://makg.org/sparql.

20https://makg.org/

http://doi.org/10.5281/zenodo.4617285
http://doi.org/10.5281/zenodo.4617285
https://makg.org/sparql
https://makg.org/
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Table 24
General author and paper statistics

Metric Value

Average Author per Paper 2.6994
Maximum Author per Paper 7,545
Average Paper per Author 2.6504
Maximum Paper per Author 8,551
Average Coauthors per Author 10.6882
Maximum Coauthors per Author 65,793

6.2. General Statistics

Similar to analyses performed by Herrmannova &
Knoth [110] and Färber [11], we aim to provide some
general data set statistics regarding the content of the
MAKG. Since the last publication, the MAG has re-
ceived many updates in the form of additional data en-
tries, as well as some small to moderate data schema
changes. Therefore, we aim to provide some up-to-date
statistics of the MAKG and further detailed analyses
of other areas.

We carried out all analysis using the MAKG based
on the MAG data as of June 2020 and our modified
variants (i.e., custom fields of study and enhanced au-
thor set).

6.2.1. Authors
The original MAKG encompasses 243,042,675 au-

thors, of which 43,514,250 had an affiliation given in
the MAG. Our disambiguation approach reduced this
set to 151,355,324 authors.

Table 24 showcases certain author statistics with re-
spect to publication and cooperation. The average pa-
per in the MAG has 2.7 authors with the most having
7,545 authors. On average, an author published 2.65
papers according to the MAKG. The author with the
highest number of papers published 8,551 papers. The
average author cooperated with 10.69 other authors in
their combined work, with the most “connected” au-
thor having 65,793 coauthors overall, which might be
plausible, but is likely misleading due to unclean data
to some extent.

6.2.2. Papers
We first analyze the composition of paper entities by

their associated type (see Table 2 on page 4). The most
frequently found document type is journal articles, fol-
lowed by patents. A huge proportion of paper entities
in the MAKG do not have a document type.

Table 25
General reference and citation statistics

Key statistics Value

Average references 6.8511
At least one reference 78,684,683
Average references (filtered) 20.7813
Median references (filtered) 12
Most references 26,690
Average citations 6.8511
At least one citation 90,887,343
Average citations (filtered) 17.9912
Median citations (filtered) 4
Most citations 252,077

In the following, we analyze the number of citations
and references for papers within the MAKG. The re-
sults can be found in Table 25.

The average paper in the MAKG references 6.85 pa-
pers and received 6.85 citations. The exact match in
numbers here seems too unlikely to be coincidental.
Therefore, we suspect these numbers to be a result of a
closed referencing system of the original MAG, mean-
ing references for a paper are only counted if they ref-
erence another paper within the MAG; and citations
are only counted if a paper is cited by another paper
found in the MAKG. When we remove papers with
zero references, we are left with a set of 78,684,683 pa-
pers. The average references per paper from the filtered
paper set is now 20.78. In the MAKG, 90,887,343 pa-
pers are cited at least once, with the average among
this new set being 17.99. As averages are highly sus-
ceptible to outliers, which were frequent in our data set
due to unclean data and due to the power law distribu-
tion of scientific output, we also calculated the median
of references and citations. These values should give
us a more representative picture of reality. The paper
with the most references from the MAG has 26,690
references, whereas the paper with the most citations
received 252,077 citations as of June 2020.

Table 26 showcases detailed reference and citation
statistics for each document type found in our (en-
hanced) MAKG. Unsurprisingly, books have the most
amount of references on average due to their signif-
icant lengths, followed by journal papers (and book
sections). However, the median value for books is less
than for journals, likely due to outliers. Citation wise,
books and journal papers again are the most cited doc-
ument types on average. Again, journal papers have
fewer citations on average but a higher median value.
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Table 26
Detailed reference and citation statistics

Journal Conference Patent Book BookSection Repository Data Set No Data

Average references 13.089 10.309 3.470 2.460 3.286 11.649 0.063 2.782
At least one reference 42,660,071 3,913,744 19,023,288 93,644 339,439 1,305,000 130 11,349,367
Average references (filtered) 26.313 12.400 9.643 56.315 26.268 14.988 18.969 21.758
Median references (filtered) 20 10 5 15 6 7 7 10
Most references 13,220 4,156 19,352 5,296 7,747 2,092 196 26,690
Average citations 14.729 9.024 3.225 29.206 0.813 2.251 0.188 1.019
At least one citation 50,599,935 3,063,123 22,591,991 1,299,728 351,448 549,526 1,187 12,430,405
Average citations (filtered) 24.963 13.869 7.547 48.177 6.277 6.878 6.240 7.274
Median citations (filtered) 8 4 3 7 2 2 1 2
Most citations 252,077 34,134 32,096 137,596 4,119 20,503 633 103,540
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Figure 8. Number of papers published per year (starting with 1900).

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

1900 1920 1940 1960 1980 2000 2020

M
ill

io
n

s

# Papers Avg. # references

Figure 9. Average number of references of a paper per year

Figure 8 shows the number of papers published each
year in the time span recorded by the MAKG (1800
– present). The number of publications has been on a
steady exponential trajectory. This is, of course, partly
due to advancements in the digitalization of libraries
and journals, as well as the increasing ease of access-
ing new research papers. However, we can certainly
attribute a large part of the growth to the increasing
number of publications every year [8].

Interestingly, the average number of references per
paper has been on a steady increase (see Figure 9 and
[8]). This could be due to a couple of reasons. First,
as scientific fields develop and grow, novel work be-
comes increasingly rare. Rather, researchers publish
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Figure 10. Average number of citations of a paper per year

work built on top of previous research (“on the shoul-
ders of giants”), leading to a growing number of refer-
ences for new publications. Furthermore, the increas-
ing number of research papers further contribute to
more works being considered for referencing. Second,
development in technology, such as digital libraries,
enable the spread of research and ease the sharing of
ideas and communication between researchers (see,
e.g., the open access efforts [111]). Therefore, a re-
searcher from the modern age has a huge advantage
in accessing other papers and publications. The ease
of access could contribute to more works being refer-
enced in this way. Third, as the MAKG is (most likely)
a closed reference system, meaning papers referenced
are only included if they are part of the MAKG, and
as modern publications are more likely to be included
in the MAKG, newer papers will automatically have a
higher number of recorded references in the MAKG.
Although this is a possibility, we do not suspect it to
be the main reason behind the rising number of refer-
ences. Most likely, the cause is a combination of sev-
eral factors.

Surprisingly, the average number of citations a pa-
per receives has increased as shown in Figure 10. Intu-
itively, one would assume older papers to receive more
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Figure 11. Average number of authors per paper and paper type over the years including standard deviation.
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Figure 12. Number of papers per field of study.

citations on average purely due to longevity. However,
as our graph shows, the number of citations an average
paper receives has increased since the turn of the last
century. We observe a peak of growth around 1996,
which might be where the age of a paper exhibits its
effect. Coupled with the exponential growth of publi-
cations, the average citations per paper plummets.

Figure 11 shows the average number of authors per
paper per year and publication type, using the MAKG
paper’s publication year. As we can observe, there has
been a clear upward trend for the average number of
authors per paper specifically concerning journal arti-
cles, conference papers, and patents since the 1970s.
The level of cooperation within the scientific commu-
nity has grown, partly led by the technological devel-
opments that enable researchers to easily connect and
cooperate. This finding reconfirms the results from the
STM report 2018 [8].

6.2.3. Fields of Study
In the following, we analyze the development of

fields of study over time. First, Figure 12 showcases
the current number of publications per top-level field
of study within the MAKG. Each field of study here
has two distinct values. The blue bars represent the
field of study as labeled by the MAKG, whereas the
red bars are labels as generated by our custom classi-
fier. Importantly, there is a discrepancy between the to-
tal number of paper labels between the original MAKG
field of study labels and our custom labels. The orig-
inal MAG hierarchy includes labels for 199,846,956
papers. Our custom labels are created through clas-
sification of paper abstracts and are therefore limited
by the number of abstracts available in the data set;
thus, we only generated labels for 139,227,097 papers.
Rather surprisingly, the disciplines of medicine and
materials science are the most common fields of study
within the MAG, according to the original MAG field
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Figure 13. Interdisciplinary researchers in form of authors who pub-
lish in multiple fields of study.

of study labels. According to our classification, engi-
neering and medicine are the most represented disci-
plines.

Evaluating the cumulative number of papers associ-
ated to the different fields of study over the years, we
can confirm the exponential growth of scientific out-
put shown by Larsen and von Ins [112]. In many areas,
our data shows greater rates of growth than previously
anticipated.

Figure 13 showcases the interdisciplinary works of
authors. Here, we modeled the relationships between
fields of study in a chord graph. Each chord between
two fields of study represents authors who have pub-
lished papers in both disciplines. The thickness of each
chord is representative of the number of authors who
have done so. We observe strong relationships between
the disciplines of biology and medicine, materials sci-
ence and engineering, and computer science and en-
gineering. Furthermore, there is a moderately strong
relationship between the disciplines of chemistry and
medicine, biology and engineering, and chemistry and
biology. The multitude of links between engineering
and other disciplines could be due to mislabeling of en-
gineering papers, as our classifier is not adept at classi-
fying papers from engineering in comparison to other
fields of study, as shown in Table 19.

7. Conclusion and Outlook

In this paper, we developed and applied several
methods for enhancing the Microsoft Academic Knowl-

edge Graph (MAKG), a large-scale scholarly knowl-
edge graph. First, we performed author name disam-
biguation on the set of 243 million authors using back-
ground information, such as the metadata of 239 mil-
lion publications. Our classifier achieved a precision of
0.949, a recall of 0.755, and an accuracy of 0.991. We
managed to reduce the number of total author entities
from 243 million to 151 million.

Second, we reclassified existing papers from the
MAKG into a distinct set of 19 disciplines (i.e., level-
0 fields of study). We performed an evaluation of ex-
isting labels and determined 55% of the existing la-
bels to be accurate, whereas our newly generated la-
bels achieved an accuracy of approximately 78%. We
then assigned tags to papers based on the papers’ ab-
stracts to create a more suitable description of paper
content in comparison to the preexisting rigid field of
study hierarchy in the MAKG.

Third, we generated entity embeddings for all paper,
journal, conference, and author entities. Our evaluation
showed that ComplEx was the best performing large-
scale entity embedding method that we could apply to
the MAKG.

Finally, we performed a statistical analysis on key
features of the enhanced MAKG. We updated the
MAKG based on our results and provided all data
sets, as well as the updated MAKG, online at https://
makg.org and http://doi.org/10.5281/zenodo.4617285.

Future researchers could further improve upon our
results. For author name disambiguation, we believe
the results could be further improved by incorporating
additional author information from other sources. For
field of study classification, future approaches could
develop ways to organize our generated paper tags into
a more hierarchical system. For the trained entity em-
beddings, future research could generate embeddings
at a higher dimensionality. This was not possible be-
cause of the lack of existing efficient scalable imple-
mentations of most algorithms. Beyond these enhance-
ments, the MAKG should be enriched with the key
content of scientific publications, such as research data
sets [16], scientific methods [4], and research contri-
butions [5].
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