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Abstract. The field of topic evolution helps the understanding of the current research topics and their histories by automatical-

ly modeling and detecting the set of shared research fields in the academic papers as topics. This paper provides a generalized 

analysis of the topic evolution method for predicting the emergence of new topics, which can operate on any dataset where the 

topics are defined as the relationships of its neighborhoods in the past by extrapolating to the future topics. Twenty sample 

topic networks were built with various fields-of-study keywords as seeds, covering domains such as business, materials, dis-

eases, and computer science from the Microsoft Academic Graph dataset. The binary classifier was trained for each topic net-

work using 15 structural features of emerging and existing topics and consistently resulted in accuracy and F1 over 0.91 for all 

twenty datasets over the periods of 2000 to 2019. Feature selection showed that the models retained most of the performance 

using only one-third of the features used. Incremental learning was tested within the same topic over time and between differ-

ent topics, which resulted in slight performance improvements in both cases. This indicates there is an underlying pattern to the 

neighbors of new topics common to research domains, likely beyond the sample topics used in the experiment. The result 

showed the network-based new topic prediction can be applied to various research domains with different research patterns.  
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1. Introduction 

Scientific knowledge evolves through the contri-

bution of researchers around the globe; discoveries 

are made to expand the existing research topics or to 

contribute towards the creation of new topics. The 

gradual expansion or transition of research topics 

based on the foundation of past knowledge guaran-

tees the validity and soundness of the research. This 

is amplified by the fact that the researchers within a 

community can easily be unaware of research break-

throughs in other related fields [1]. Identifying and 

predicting the emergence of new topics are therefore 

dependent on understanding the related topics repre-

senting the set of shared themes, or research fields. 

They can appear in various forms, including the phil-

osophical category of the research, theoretical devel-

opment of research models, applications of the tech-

nology, and specific algorithms. Identifying such 

topics in the academic papers is therefore a crucial 

part of research activity. Researchers understand the 

topics by first reviewing a multitude of articles, in-

ternalizing the evolution occurring within the re-

searchers’ fields of interest, which in turn allows 

them to ascertain the desirable paths the current and 

future research can take. A better understanding of 

such knowledge allows more targeted research aimed 

at high demand topics, which is needed in both aca-

demic and industrial fields. 

Traditional topic evolution methods mimic the 

process by utilizing text-based topic models to under-

stand the topic in each document collection and track 

topical changes over time. Topic modeling methods 

extract statistical constructs based on word co-

occurrences in the given document collection, where 

changes in topics can only be measured by the differ-

ences between the content of two topics; connections 

and correlations between different topics are not in-



corporated into the traditional topic modeling meth-

ods [2]. Topic evolution methods are therefore most-

ly limited to identifying content transition within a 

given topic, not how it is correlated to other topics. 

Unforeseen topics in the future cannot be modeled 

without having access to the set of future documents 

yet to be written. As a result, topic evolution based 

on traditional topic modeling methods is not suited to 

predict new topics. 

A previously proposed network-based approach 

identified emergence on topic networks where the 

definition of topics based on its neighbors’ previous 

relationships intuitively allows extrapolations to fu-

ture new topic predictions [3]. The definition allowed 

the topics in a certain timeslot to be classified based 

only on the structural data available in previous 

timeslots, showcasing a novel functionality of pre-

dicting topic evolutions solely with the topic co-

occurrences using journal-specific publications as the 

dataset. This paper expands on this research by test-

ing the generalizability of the method, offering a bet-

ter understanding of the network-based topic predic-

tion method.  

The goal of the proposed method is to capture the 

emergence of new topics, which can be explained by 

their correlation to the existing topics. This can be 

formalized as classifying subgraphs in the given topic 

network as to-be-neighbors of new topics in the fu-

ture based on their graphical properties. The topic 

networks are first extracted from an open biblio-

graphical dataset, with each network representing 

publications in a specific research journal with a fo-

cused set of research interests. Each network is di-

vided yearly to generate an evolving network, where 

each topic in timeslot y is either new, appearing for 

the first time in y for the given topic network, or old. 

A binary machine learning algorithm is trained using 

the neighbors of each node in the previous years, 

classifying the neighbor subgraphs in the past having 

new or old topics as their future neighbors. The se-

mantics of publications, topics, and their relation-

ships were not considered in this paper as the effec-

tiveness of semantic-based processing is already 

proven within the research community. To purely 

examine the effects of the topic classification co-

occurrences alone, no textual metadata was used in 

the proposed method. Twenty topic networks evolv-

ing over twenty years were generated from 1.8 mil-

lion publications related to highly used fields-of-

studies from the Microsoft Academic Graph1 dataset. 

 
1https://www.microsoft.com/en-us/research/project/microsoft-

academic-graph/ 

The impact of different features and the number of 

features impactful to the classification performances 

are analyzed. The topic co-occurrence patterns repre-

senting new topics in the scientific bibliographic rec-

ords are incrementally learned over time within a 

single dataset to capture domain-specific knowledge 

and their evolutions. The same process is then tried 

over different datasets to capture underlying common 

patterns throughout the different knowledge domains. 

The experiment results showed that the proposed 

method retains its high classification accuracy with 

all 20 datasets with less than one-third of the 15 fea-

tures while showing relatively small, but statistically 

significant, performance improvement using the in-

cremental learning. 

Section 2 reviews the related work on topic evolu-

tion, previous attempts on the prediction of new top-

ics, as well as background research for the proposed 

method. Section 3 and 4 detail the proposed method 

and experimentation, and the experiment results are 

shown in Section 5.  

2. Related work 

2.1. Identifying the evolution of topics 

Automatically identifying topical changes within 

the document set requires methods to extract ma-

chine-readable topics from the collection. Topic 

modeling provides a statistical approach to discover 

topics within a given corpus, where topics are mod-

eled as the latent semantic structures in the form of 

word-popularity sets based on the statistical distribu-

tion and word co-occurrences.  

Latent Dirichlet Allocation (LDA) [4] finds latent 

topics within a document collection and is one of the 

most widely used topic modeling methods on which 

many other methods are based [5,6]. Word-topic 

links are iteratively assigned with word co-

occurrences between documents; topics, defined as 

word distributions over a corpus dictionary, are then 

assigned to each document [7]. LDA-based topic 

models have also been amalgamated with word em-

beddings to overcome the issue of large and heavy-

tailed vocabulary sets [8], utilizing embedding simi-

larities between words and topics to retain topic in-

terpretability with large corpus. 

Topic evolution aims to identify the evolution of 

such topics in a sequentially ordered document col-

lection. Document collection is first divided either 

uniformly or irregularly [9] into sequentially-ordered 



sub-collections on which topic models independent 

of the neighboring sub-collections are generated. 

Temporal topic models are then connected over time 

with similarity measures, and changes in the topics 

are sequentially analyzed to identify the evolution of 

topics.  

Dynamic topic models [10] are one of the early 

implementations of topic evolution, focusing on cap-

turing the changes within a set of chained topics with 

fixed timeslots where the Kalman filter and wavelet 

regression are used to approximate natural parame-

ters of the topics found at different time slices. Evo-

lutionary theme pattern mining has tried to capture 

not only the changes within each topic but also the 

sequential connections over multiple topics [11]. The 

Kullback-Leibler divergence is used as a distance 

metric between topics, and the topics on different 

timeslots are designated as having an evolutionary 

transition when their distance stays below dataset-

specific thresholds. The collection of such evolution-

ary transitions results in detecting merge and split 

events over time as multiple connections are allowed 

between different topics. A similar approach is made 

by utilizing cross-citations between topic pairs’ 

member documents as well [12]. 

Topic evolution in conjunction with bibliograph-

ical dataset analysis has been tried by numerous re-

searchers to better identify the topic evolution events. 

The citation contexts are used in an iterative topic 

evolution learning framework to increase the perfor-

mance of topic evolution with better topic models 

[13], where the document collection is expanded by 

the documents cited by its members. The inheritance 

topic model [14] is utilized to classify papers into 

autonomous parts with originalities and parts inherit-

ed from cited documents. Differentiating two parts 

allowed the method to overcome the topic dilution 

with cited papers, generating more new topics com-

pared to LDA-based approaches.  

A more recent approach to topic evolution utilizes 

communities of keywords in a dynamic co-

occurrence network [15]. The medical subject head-

ings dataset from PubMed2 was used to build a fil-

tered co-occurrence network of major subjects within 

the medicine domain divided into five-year snap-

shots. Word clusters were found and linked to gener-

ate the evolution of topics over time. Topic evolution 

based on two-tier topic models is tried for a better 

merge and split detection, where topic correlations in 

the same timeslot are used to identify topic evolution 

[16]. Timeslot-specific local topics are extracted 
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from yearly divided sub-collections of documents, 

while time-spanning global topics are retrieved using 

the whole corpus. Global topics stay static, having 

connected to dynamic local topics at each timeslot 

with cosine similarities above a given threshold. 

Changes in the number of local topics connected to 

global topics are then used to define the topic evolu-

tion events; decreased and increased numbers of local 

topics connected to a global topic respectively repre-

sent merging and splitting of the topic.  

2.2. Identifying and predicting new topics 

Topic Detection and Tracking (TDT) [17] aims to 

capture the appearances of new topics in continuous-

ly generated text data in real-time; a topic is defined 

as “a seminal event or activity along with all directly 

related events and activities” [17]. First story detec-

tion (FSD) is one of the parts of TDT research tasks. 

The goal of FSD is to search and organize new topics 

from multilingual news articles, or identify the first 

article introducing the new story [18]. Topic-

conditioned FSD with a supervised learning algo-

rithm first classified news articles into a set of pre-

defined topic categories before identifying novelty 

within each topic [39]. FSD is also used in conjunc-

tion with document clustering to identify the earliest 

report of a certain event in news articles [19].  

Identification of emerging topic trends has led to 

the division of research front and intellectual base, 

where the latter is an established foundation of do-

main knowledge on which the former is built. The 

underlying assumption is that the citation and co-

citation between articles transfer the existing 

knowledge from the intellectual base to the research 

front. The CiteSpace II [20] further utilized a key-

word co-occurrence relationship by employing a bi-

partite graph of keywords and articles. Research front 

terms are identified by the sharp frequency growth, 

and then used to identify research front articles, 

which in turn are absorbed into the intellectual base 

in the next time slice. Burst term detection, in con-

junction with keyword co-word analysis, allows mul-

ti-dimensional exploration of the research front in 

question [21].  

While these approaches allow the detection of 

merging and splitting of time-spanning topics and 

their transitional ratio at the temporal level, the use of 

the text-based topic models inherently limits the pre-

dictive capabilities; the evolutionary events such as 

emerge, merge, or split can only be retrospectively 

analyzed once the topic is captured from the docu-



ment set. Using author groups from a bibliographic 

dataset for determining topics connected over time by 

authors showed that when topics defined by the au-

thors are used instead of NLP-based topic models, 

topic evolution on the temporal network is possible; 

the topic evolution events are defined by the network 

structures, and therefore a predictive analysis is pos-

sible [2]. 

On top of the emergence events detected by the 

appearance of topic models dissimilar to the ones in 

the previous timeslots, there are a number of research 

studies dedicated to identifying new topics with a 

varying definition of the topic. One such field is new 

topic identification, where the topic is defined as the 

entities the user is interested in during the search en-

gine querying session; the query patterns and the 

intervals between queries are used to identify topics 

[22]. Neural network (NN) is introduced to reduce 

the errors in new topic estimations based on typos by 

utilizing the character n-gram method to bypass 

spelling errors in the queries [23]. There are also sev-

eral researches focusing on utilizing the queries’ sta-

tistical characteristics, such as search patterns, fre-

quency of queries, and the relative position in the 

querying sessions [24].  

Technology forecasting [25] is another field of re-

search aiming to predict the characteristics of tech-

nology in the future; the technology, or topic, is de-

fined as a representative keyword instead of a statis-

tical model. Various techniques from simple extrapo-

lation to organization management [26] and fuzzy 

NLP [27] are used to identify and predict changes in 

technology indicators [28]. Multiple applications of 

the predictive topic evolution have been proposed, 

including a semi-manual technology trend analysis 

which was done to identify the roots of new technol-

ogies with their projected impact on the research 

field [29]. 

A previously proposed technology trend analysis 

approach with multiple data sources shows that while 

different data sources exhibit different forecast 

speeds, predicting the growth and shrinking in tech-

nology trends is possible extrapolating on a previous-

ly known technology growth curve [30]. A network-

based approach was proposed to overcome the rigidi-

ty of trend-based forecasting where the prediction is 

dependent on the type and shape of the technology 

growth curve used. Node prediction based on prefer-

ential attachment link prediction is proposed to clas-

sify whether the nodes in citation networks have a 

connection to a new node in the future [31], labeling 

the new nodes by utilizing the metadata of their 

neighboring nodes [32]. This showed that predicting 

nodes in bibliographic networks is possible based on 

the structural properties of the network. More com-

plex contexts of the new nodes in knowledge net-

works were extracted by identifying the neighbors of 

the new node in the past timeslot to formulate the 

context of the new node solely based on the metadata 

of its to-be-neighbors [33]. 

The predictive power of evolutionary topic net-

works is also validated through the use of community 

detection algorithms, where the Advanced Clique 

Percolation Method (ACPM) classification algorithm 

[34] was proposed to identify surging topic correla-

tions. Topic clusters with notable recent collabora-

tions are regarded as the ancestors of a novel topic at 

its embryonic stage [35,36], which are found on the 

semantic-enhanced topic evolutionary networks and 

represented with the core publications and author 

information. Network-based topic emergence identi-

fication is an attempt to detect underlying patterns in 

networks for node emergence, providing a general 

foundation towards a more advanced topic evolution 

research. The proposed method is not tied to a specif-

ic algorithm such as ACPM, which have a scalability 

issue with dense topic networks. The patterns are 

found within the data itself using machine learning 

models. The patterns are then used to automatically 

identify the early topic emergence with only topic 

network data, which are achieved by utilizing ma-

chine-learning approaches. The emergence of new 

topics was identified by capturing the relationships 

between their neighborhoods in the previous years, 

and predictions based on the existing clustering algo-

rithms were made to validate the possibility of proac-

tive topic emergence predictions with the proposed 

method. This paper aims to show the generalizability 

of the proposed method using various datasets with 

different focus and interests, capturing the shared 

knowledge between knowledge domains with an in-

cremental learning method to improve the perfor-

mance. 

3. Network-based new topic identification and 

prediction 

3.1. Generating topic networks 

NLP-based topic modeling can be used on the 

document collection dataset to retrospectively identi-

fy topics already present in the research field but has 

limited capability to prospectively predict the ap-

pearance of previously unused topics in the future 



without the documents to extract topics from. The 

proposed method utilizes a topic network instead, 

where emerging topics in a bibliographic dataset 

equate to new nodes in the topic network. Textual 

metadata is not considered for analysis, and only 

graphical structures are used. 

The topic network Ty = (V, Ry) represents co-

occurrence frequencies Ry within topic set V repre-

senting the list of topics used for the given 

knowledge domain at year y. Topic set V consists of 

the topic node v and Ry is the weighted edge set be-

tween two topic nodes v1 and v2, with wy as co-

occurrence frequencies in y. 

Ty = (V, Ry), and V = {v} Ry = {v1, v2, wy} (1) 

3.2. Extracting gold standards from the common 

neighbors 

The proposed method aims to identify emerging 

topics, which are represented in the form of newly 

added nodes within the topic network, using the 

structural features to classify their projected common 

future neighbor. The nodes in the topic network Ty in 

Eq. (1) are distinguished as new or old to act as a 

gold standard answer set against the classification 

results, where new nodes represent topics newly 

emerged in year y. Neighborhoods neighbors(v, y) of 

each topic v in year y are extracted to build a set of 

neighborhoods Ny from Ty. Each neighborhood is 

then categorized into two groups by the age of v cal-

culated as age(v,y) = y - used(v), where used(v) is the 

year topic v was first observed in the given topic 

network T; when the topic v first appeared in the giv-

en year y, used(v) = y. One cannot assume that the 

given bibliographic dataset contains exhaustive rec-

ords of all the related papers, therefore used(v) repre-

sents the first year v was used within the scope of 

given topic. The state of v, C(v) is then calculated as 

the ceiling of topic age normalized by the oldest top-

ic, where the new topics are denoted by C(v) = 0. 

Any preexisting topics have non-zero ages, and their 

normalized ceiling functions result in C(v) = 1. 

Ny = {neighbors(v, y) | v ∈ Vy}, and 

C(v) = ⌈age(v,y) / (y – maxuϵV(used(u)))⌉ (2) 

More prominent topics are likely to co-occur with 

more topics, and therefore the top 100 topics with the 

largest neighborhoods in Ny are selected for each 

label C(v) = 0 and 1, resulting in a total topic count 

of 200 for each classification task. In case the num-

ber of instances for one label is below 100, then the 

number of v for the other label is reduced further to 

have the same number of instances for both labels.  

Evolution of existing topics such as merge and 

split is not targeted, and hence there is no need to 

train the classifier for the gradual evolution events 

within existing topics. Temporal features are there-

fore not analyzed; only static features are used in the 

experiment. Table 1 shows the list of 15 structural 

features of the neighbor subgraphs used to train the 

binary classifiers. These features characterize the 

subgraph quality in several aspects and are grouped 

by the component they are used to measure, includ-

ing six properties related to the whole subgraphs, 

four average values of member node properties, two 

properties related to the edges, and three properties 

weighted by the topic co-occurrence frequencies.  

3.3. Classifying new topics with incremental learning 

The emergence of new topics is the only event be-

ing searched; therefore the binary classification on 

year y is trained by neighbor subgraphs in previous 

years. Sets of open neighborhoods Trainy,t and Testy 

are generated where t is defined as the number of 

previous topic networks used to build the training set. 

The same set of neighbors n = neighbors(v) is used 

to identify open neighborhood subgraphs of v in mul-

tiple previous timeslots, denoted by Tk(n) where y-t ≤ 

k ≤ y. 

Table 1 Structural features used in the experiment. 

Features used Description 

Subgraph 

Node Count Number of nodes 

Cohesion Number of internal/external edges 

Density Number of observed/possible edges 

Transitivity Number of observed/possible triangles 

Normalized Triangles Number of triangles/nodes 

Mean Shortest Path Mean of all node pairs’ shortest paths 

Nodes 

Mean PageRank Mean PageRank for subgraph nodes  

Mean Degree Cen-
trality 

Mean degree centrality for subgraph 
nodes 

Mean Betweenness 

Centrality 

Mean betweenness centrality for 

subgraph nodes 

Mean Node Age Mean age for subgraph nodes 

Edges 

Edge Count Number of edges in the subgraph 

Mean Degree Mean degree in the subgraph 

Weighted 

Mean Degree 

Weighted 

Mean degree with edge weights 

Mean Edge Weighted Mean edge weights 

Mean Clustering 
Coefficient 

Mean weighted clustering coefficient 



sub(v, y, k) = {(n, {ni, nj}) | n ∈ neighbors(v, y), 

{ni, nj} ∈ Ek }, 

Trainy,t = {sub(v, y, y-t) ∪ … ∪ sub(v, y, y-1) | v 

∈ Vy}, and 

Testy = {sub(v, y, y) | n ∈ Ny} (3) 

Neighbor subgraphs in Eq. (3) represent interac-

tions within direct predecessors of new topics and 

neighbors of preexisting old topics, which are shown 

to have distinguishable structural features in the pre-

vious research [3]. The classification accuracies, pre-

cision, recall, F1, and area under the ROC curve 

(AUC) based on subsets of 15 features are compared 

to show the effect of the number of features as well 

as the features with the most importance. 

The proposed method trains a machine learning 

algorithm to classify new topics by past interactions 

within their neighborhoods for a given knowledge 

domain. The generalizability of the proposed method 

is analyzed by implementing an incremental learning 

approach, with the default proposed method as the 

baseline for performance comparison. The trained 

model is retained for each of the incremental learning 

process instead of being re-initialized. Within-domain 

learning is done over incrementing y within each of 

the knowledge domain to incrementally adapt to the 

continuous topical interactions over time. The num-

ber of trainings is calculated as the number of do-

mains times number of years. Between-domain learn-

ing is done between each of the domain pairs to test 

the possibilities of incremental learning between dif-

ferent knowledge domains. Long chains would result 

in an exponentially large number of trainings re-

quired; therefore, the incremental training is only 

done at the same y with chain length of two, resulting 

in a total of k×(k-1) pairs for k number of domains 

used in the experiment. Changes in its performance, 

when two domains share the same parent domain, are 

observed as well. Increases in the performance when 

incremental learning is applied would suggest that 

the topic networks at different times and under dif-

ferent domains share underlying models. The pro-

posed method would then be generalizable to any 

parts of the knowledge stored in the bibliographic 

records.  

4. Experiments 

4.1. Dataset preprocessing 

Multiple topic networks were generated from bib-

liographic records extracted from the Microsoft Aca-

demic Graph (MAG) [37], which is a heterogeneous 

bibliographic dataset [38]. The MAG is selected as 

the source dataset for two reasons. Firstly, it was 

deemed competitive with major bibliographic search 

engines such as Google Scholar or Scopus, even with 

relatively recent creation [39]. Secondly, the MAG 

has a built-in ontology called fields-of-study (FoS) 

representing each paper with different hierarchical 

concepts [40]. A six-level hierarchy of concept is 

Table 2 Twenty FoS in the February 2020 MAG dataset. 

Rank DisplayName MainType Lv # of Papers # of FoS Avg. Paper Overlap 

9863 usability business.industry 2 93,762 36,859 0.03% 

9299 software development business.industry 3 88,510 23,615 0.03% 

8335 polysaccharide chemistry.chemical_classification 2 89,531 26,968 0.03% 

8494 hydrogen peroxide chemistry.chemical_compound 2 98,278 28,533 0.14% 

8442 ozone chemistry.chemical_compound 2 85,775 23,537 0.29% 

8868 palladium chemistry.chemical_element 3 108,698 17,079 0.06% 

8480 cadmium chemistry.chemical_element 3 86,220 28,369 0.05% 

9749 diamond engineering.material 2 97,743 23,982 0.01% 

9216 drainage basin geography.geographical_feature_category 2 97,829 24,308 0.01% 

9961 calcination law.invention 3 100,643 14,192 0.06% 

8177 fertility media_common.quotation_subject 3 94,294 28,185 0.02% 

9058 unemployment media_common.quotation_subject 2 88,418 19,287 0.01% 

9964 physical examination medicine.diagnostic_test 3 86,363 41,097 0.03% 

8153 malaria medicine.disease 3 92,456 23,499 0.01% 

8349 thrombosis medicine.disease 3 90,431 23,625 0.12% 

7579 air pollution medicine.disease_cause 2 89,059 24,914 0.19% 

9171 activated carbon medicine.drug 3 85,150 18,377 0.14% 

12641 saline medicine.medical_treatment 3 92,560 40,057 0.03% 

9418 stent medicine.medical_treatment 3 86,037 20,000 0.10% 

12338 gaussian symbols.namesake 2 97,147 32,848 0.01% 



generated each month using knowledge base type 

prediction with Wikipedia articles, employing graph 

link analysis and convolutional neural network meth-

ods. The hierarchical concepts are then tagged to the 

papers using a large-scale multi-level text classifica-

tion method on pre-trained word embedding vectors. 

The tagging is done weekly to keep up-to-date con-

cept assignments. Identifying dataset-wide topics in a 

large-scale dataset is by itself a huge task; therefore 

the tagged FoS are defined as the topics for the doc-

ument in this paper. While the author-assigned key-

words in research publications or semantic, ontologi-

cal document topic assignments [41] often produce 

better quality topics, they are often domain specific 

and therefore were disregarded in this research to 

retain the generalizability of the proposed method. 

Using a set of pre-defined topics also keeps the pro-

posed method from getting an undesired performance 

boost from the semantic detection methods shadow-

ing the performance of the network-based topic evo-

lution approach. High classification accuracy with 

the pre-defined topics would indicate even when non-

goal oriented and non-domain specialized topic sets 

were used. 

The MAG dataset snapshot in February 2020 is 

downloaded for preprocessing through Microsoft 

Azure Databricks, containing 197,642,464 publica-

tions, 709,934 FoS, 48,829 journals, more than 1.5 

billion citation links, and 1.3 billion paper-FoS links. 

Analyzing the whole graph would be too complex to 

compute, and therefore data subsets are extracted as 

the bibliographic records related to selected FoS. 

Each selected FoS represents the specific research 

fields that the extracted data subset is focused on. 

FoS with a similar degree of popularity were se-

lected to be used as the seed FoS for data subsets to 

generate topic networks with adequate sizes. The size 

and activity of the datasets are modulated by select-

ing FoS with 100,000 < related publication count < 

120,000 and 1,000,000 < combined citation count < 

1,500,000, counting duplicates for both. FoS without 

the main type data are removed to ensure that each 

dataset’s parent domain is known, selecting two FoS 

from each main type with the highest ranking. The 

selected FoS also shared only a small ratio of com-

mon publications and other FoS between them. Out 

of possible 190 pairs, only three have shown more 

than 1% of publication overlap with 0.06% as an 

average: 3.04% for [ozone, air pollution], 1.77% for 

[stent, thrombosis], and 1.32% for [ozone, hydrogen 

peroxide]. The pairs shared a much higher degree of 

common FoS, respectively showing 32.19%, 28.29%, 

and 31.44%, with the average shared FoS at 14.82% 

over 190 pairs. The differences show that even when 

the direct publication sharing is very limited, there 

are a number of generic topics and interdisciplinary 

research connecting different research fields 

Table 2 shows the resulting 20 FoS with ranks 

measured by the possible importance along with the 

display name of the FoS, their main type within the 

FoS hierarchy, and the level of the FoS in the hierar-

chy tree. 20 distinct FoS-specific datasets are extract-

ed into the SQL databases using a high-performance 

computing service by Alabama Supercomputer Au-

thority3. The raw MAG dataset files contain two rel-

evant tables called FieldsOfStudy and PaperField-

sOfStudy. The PaperFieldsOfStudy table contains 

FoS assignments to research papers. All data rows in 

the table containing the id (FieldOfStudyId) of the 

selected FoS are first retrieved to get all papers relat-

ed to it. The table is then searched again to extract all 

FoS assigned to the filtered papers. Finally, the fil-

tered rows in the PaperFieldsOfStudy and matching 

FoS metadata in the FieldsOfStudy tables are re-

trieved for the selected FoS used in the experiment. 

The dataset is uploaded to the Zenodo repository4 for 

open access. 

4.2. Generating topic networks 

After the dataset preprocessing is done, the topic 

network Ty in Eq. (1) for each FoS is generated for 

y=[1991,…,2020]. The first nine topic networks T1991 

~ T1999 were not used for the testing, but only built to 

be utilized for the training for future topic networks 

while T2020 was only used to identify future new top-

ics for T2019, hence the actual validation is done on T-

2000 ~ T2019. For the calculation convenience, FOS-

neighborCount {Node1, Node2, Year, Frequency} 

table is created to summarize undirected links with 

node pair u, v, year y, and frequency w, where FoS 

are the nodes and the links represent the two FoS 

assigned co-occurring in the same publications. Fre-

quency shows the co-occurrences between two FoS, 

which is divided for each year to distinguish different 

FoS links and weights at different years. The year y is 

ranged to retrieve the detection of newly used topics 

in the 21st century. For each FoS, SQL queries are 

run on the FOSneighborCount table to extract topic 

co-occurrence with FOSneighborCount.Year = y 

where the Year column in the FOSneighborCount 

table represents the year the topics co-occurred. The 

 
3 https://hpcdocs.asc.edu/ 
4 https://zenodo.org/record/5142618 



resulting edge data Ry is used to build a topic network 

using the equation in Eq. (1). 

4.3. Extracting gold standards from the common 

neighbors 

Data downsampling is done on each dataset with 

C(v) as the class variable. This is done to reduce the 

total amount of data while balancing the number of 

labels for the classification. Isolated nodes are ig-

nored as there are no neighbors to analyze. Data 

standardization is also done to remove range differ-

ences between 15 features, where the values of each 

feature are first subtracted by the average value and 

then divided by its standard deviation. 

z = (x – μ) / σ (4) 

Training size t is set to 9 as the increase in the 

classification performance diminishes with large t 

values. Initial experiments showed the Logistic Re-

gression (LR) was one of the best performing algo-

rithms without showing anomalous classification 

patterns over combinations of classification varia-

bles. The L-BFGS algorithm [42] is used as an opti-

mization function for the ML model, with a maxi-

mum training iteration of 100.  

4.4. Classifying new topics with incremental learning 

Feature selection is done for all feature counts f = 

1,…,15. For each f, combinations of features with 

length f are compared by different score functions 

shown in Table 3, utilizing f-values and mutual in-

formation of the classification results. To analyze the 

importance of the features, one classification model 

is trained using the selected features while another is 

trained using the excluded features. 2-dimensional 

principal component analysis (PCA) is also done to 

test the linear separability of the features. 

Incremental learning is implemented in two differ-

ent ways, named after the function names they are 

based on. The warm approach retains the coefficients 

of the trained model which are used as the initial co-

efficient in the subsequent training, while the partial 

Table 3 Descriptions of four score functions used in classification. 

Score Function Description 

f_classif ANOVA F-value between labels 

f_regression F-value for univariate regression 

mutual_info_classif Estimated mutual information be-

tween labels 

mutual_info_regression Estimated mutual information for  

continuous target 

approach incrementally trains the model with addi-

tional data. Sklearn Python library’s warm_start at-

tribute and partial_fit function are used respectively. 

Both approaches have limitations; the warm ap-

proach risks overwriting the initial training result 

when there are major shifts in the new training data, 

while the partial approach would suffer performance 

losses in such case as it would try to search for the 

solution covering both datasets. These are compared 

against the non-incremental cold approach, where the 

training occurs on each individual dataset without 

retaining the result. This is used as a baseline to 

compare incremental learning results from both 

warm and partial approaches. 

To analyze the possible differences between dif-

ferent classification algorithms, a linear support vec-

tor machine (SVM) algorithm is used in addition to 

the logistic regression used in the previous section. 

Different epoch values are tested to show the effect 

of the epoch sizes. The partial_fit function only 

trains the model one generation at a time while the 

model with warm_start attribute is trained over mul-

tiple epochs; hence it is repeated epoch number of 

times to mimic the incremental learning with multi-

ple epochs. The number of data rows affects the in-

cremental learning performances; hence a different 

number of topics is also tested. 

epochs = [10, 50, 100], and 

num_topics = [10, 50, 100, 200]a (5) 

 a200 for between-domain. 

Within-domain learning is done over y from 2000 

to 2019 for each FoS dataset testing the incremental 

adaptation to the continuous topical interactions over 

time. Between-domain learning is done between each 

of the FoS pairs at the same y, instead. This results in 

a total of 380 pairs for FoS used in the experiment; 

only topic=200 is used for between-domain learning 

with y=[2000,2005,2010,2015]. The codes used for 

the experiments are shared through Github5. 

5. Results 

5.1. Classifying new topics using FoS datasets 

The classification results were measured excluding 

y=2020 as the performance is significantly lower for 

all FoS datasets in the last year with Acc = 0.4068, 

AUC = 0.8028, and F1 = 0.5589. This is because the 

 
5 https://github.com/raphael-jung/swj2021 



MAG dataset used in the experiment has only partial 

records of the 2020 publications up to February. This 

is supported by the retained high recall value for 

y=2020. The model failed to distinguish between 

new and old topics based on their incomplete neigh-

borhoods, classifying all candidates as a single label 

resulting in the high recall but low precision values. 

Excluding the last year, the average of the 20 FoS on 

the remaining 20 timeslots results in Acc = 0.9287, 

and AUC = 0.9815, and F1 = 0.9287 as shown in 

Table 4 with the data standardization. 

The model successfully captured the formation of 

new topics in various fields. A few cases were found 

in the year 2010 to showcase the examples of emerg-

ing topics. Application of the skin barrier was seen 

within the field of polysaccharide, which is support-

ed by topics such as nanotechnology, green algae, 

human growth hormone, and materials science. Ap-

plication of being used as metamaterial was shown 

for diamond in the form of aqueous solution or nano-

composite, with possible invisibility using its photo-

luminescence properties. Sometimes, topics with con-

trasting interest are joined to produce new topics. In 

the ozone topic network, enhanced coal bed methane 

recovery became known as the topics such as casing 

string and petroleum engineering were used with 

waste management and environmental science. 

The classification performance for the FoS dataset 

showed slightly higher performance compared to the 

result based on the journals in the previous research 

which had an average accuracy of 0.9053 and aver-

age AUC score of 0.9809 [3]. Table 4 shows that the 

same holds even when the original data without 

standardization are used during the training. This 

shows that the proposed method is capable of gener-

ating highly accurate results with bibliographic da-

tasets built with different criteria and the perfor-

mance improves when datasets with more focused 

research interest are used. 

Linear regression analysis was done on communi-

ties found with clustering algorithms to analyze the 

differences between the existing and the proposed 

method. One-to-one connections between the sub-

graphs and emerging topics are not guaranteed; hence 

Table 4 Summary of new topic classification results, using stand-

ardized data and original data during the training. 

Data used Standardized Original 

Acc 0.9287 0.9240 

AUC 0.9815 0.9792 

F1 0.9287 0.9243 

Precision 0.9522 0.9452 

Recall 0.9114 0.9098 

0.88

0.9

0.92

0.94

0.96

0.98

1

Acc ROCscore F1score Precision Recall
 

Fig. 1. Binary classification accuracy of logistic regression with 

y=[2000, 2019] over 20 FoS datasets. 

the predictions were done for the following proper-

ties: the number of emerging topics connected to 

each community (NewTopicCount), the frequency of 

connection to the emerging topics (NewTopicFreq), 

the number of direct ancestors (AncestorCount), and 

the ratio between the ancestors and the community 

members (AncestorRatio). Table 5 shows the result 

for two clustering algorithms with low scalability 

problems: the unweighted variant of Clauset-

Newman-Moore algorithm maximizing the modulari-

ty of clusters (Greedy) [43] and a density-stable 

propagation mimicking the fluid interactions (Fluid) 

[44]. The modularity-based Greedy algorithm was 

unable to find an adequate number of communities in 

the densely connected topic networks and resulted in 

a very poor result. The Fluid algorithm was able to 

predict the number of emerging topics and their an-

cestors with more precision, but the scores were not 

high enough to be comparable with the proposed 

method’s accuracy over 0.9. 

The overall performance metrics do not show sig-

nificant changes in the trend over the years. Accura-

cy, AUC, and F1 in Figure 1 all share the same pat-

tern over the years, with AUC having a higher aver-

age. The sudden drop in y=2010 can be attributed to 

the sudden increase in the false positives, having 

0.0405 compared to 0.0088 in the previous year. This 

is reflected in the precision values showing the 

sharpest change. 

Table 5 Average R2 score for Greedy and Fluid communities over 

the 20 topic networks. 

Dependent Variable Greedy Fluid 

NewTopicCount 0.0363 0.4757 

NewTopicFreq 0.0353 0.4777 

AncestorCount 0.1775 0.5421 

AncestorRatio 0.0270 0.0243 



The precision and recall intersect around y=2016 

with the changes in the average values of false posi-

tive (FP) and false negative results (FN) lowering the 

precision while increasing recall. There are clear dif-

ferences in the average FP and FN values before and 

after y=2016 over all tested topic networks as shown 

in Table 6. True positives (TP) increase along with 

the increase in FP, indicating that the trained model 

classifies more topics as new in recent years. This 

average result over 20 datasets suggests a possible 

shift in the overall topic co-occurrence patterns in a 

specific year, where the neighborhoods of existing 

topics become more structurally similar to those of 

new topics over time. 

Experimenting on a different number of features 

showed that four feature selection functions are sta-

tistically similar. ANOVA test was run on the Acc, 

AUC, precision, recall, and F1 of the classification 

results with f=1,…,14 using four functions. All 70 

ANOVA tests resulted in p=value > 0.9, indicating 

the differences between the four functions are statis-

tically nonexistent. The result from the mutu-

al_info_classif function is used for further analysis. 

Table 6 Changes in the average TP, FP, FN, precision, and recall 

of the classification results before and after y=2016. 

 Year TP FP FN Precision Recall 

< 2016 91.21 7.27 8.79 0.9588 0.9028 

2016 95.13 11.25 4.87 0.9371 0.9480 

> 2016 89.04 12.75 4.98 0.9221 0.9450 

 

Figure 2 shows the performance changes with var-

ying number of features selected f as blue bars, while 

the training done on the features excluded by the fea-

ture selection process are shown as an orange line. 

The number of features used during the training im-

proves the classification performance by a small 

margin while providing F1 over 0.91 using only one 

feature. The most significant features are Mean Pag-

eRank and Node Count, which were selected for 49% 

and 50.5% of the 400 classification runs in the exper-

iment. These two features were selected for runs with 

f >1, as well. 
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Fig. 2. Changes in the F1 of the classification results using mutu-
al_info_classif as the scoring function with f=[1,…,15] in the x-

axis, with the results of classifications using the excluded features 

shown in the second y-axis. 
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Fig. 3. Ten sample visualizations for the 2-dimensional PCA results with y=2010 and f=15, x-axis and y-axis respectively showing the first and 

second PCA feature values. Each dot within a figure represents one of the classified topics within each topic network with color-coded labels 

(green = true, red = false), showing horizontal separations between the different labels. 



Table 7 Ratio of variance explained by 2-dimensional PCA with 

different f selected using mutual_info_classif. 

f 5 10 15 

Explained by 1st component 0.8696 0.6613 0.4925 

Explained by 2nd component 0.0742 0.2104 0.2719 

Variance Unexplained 0.0562 0.1283 0.2356 

 

 

The classification results also showed that the re-

sult is not dependent on the features. F1 remained at 

0.9289 with using only one feature during the train-

ing, and F1 only reaches below 0.9 when 9 out of 15 

most significant features were excluded during the 

training. This indicates that the majority of the topic 

subgraph features are closely correlated to the emer-

gence of a new topic among them, and significant 

dimension reduction can be done without perfor-

mance loss.  

The PCA results also indicate the possibility of 

dimension reduction; with 2-dimensional PCA on all 

15 features, the first component was able to explain 

49.25% of the result while 27.19% were explained by 

the second component alone. PCA results of all 20 

FoS topics showed more horizontal separations with 

the first component as the x-axis, with ten randomly 

selected topics from various fields shown in Figure 3 

where each topic is colored by its classification re-

sult. Clusters of binary labels can be seen in all ten 

scatterplots. 23.56% of the result remains unex-

plained by either component, which is likely due to 

the inclusion of the features with weaker classifica-

tion strengths. This is shown by the PCA results in 

Table 7 with feature selections, where lower f result 

in more variance explanations.  

5.2. Classifying new topics with incremental learning 

Figure 4 shows that one of the within-domain in-

cremental learning model resulted in consistently 

better results compared to the baseline cold approach 

with the LR algorithm, where the model is re-

initialized each year. The partial approach resulted in 

an average of 0.0101 higher F1, showing that there is 

a temporal consistency over the topic networks for 

new topic identification. The performance gain in-

creases rapidly during the first 2 years of incremental 

learning from 0.0078 in y=2001 to 0.0127 in y=2002, 

and an average of 0.0117 differences was observed 

until 2015 before being reduced to 0.0072 on average 

afterward. The performance increase validates the 

incremental learning within a single dataset, while 

the degree of improvement can vary over time. 
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Fig. 4. F1 of classification results for within-domain incremental 

learning over the years. 

The warm approach showed very similar results to 

the cold approach, on the other hand. No apparent 

performance increase can be attributed to the evolv-

ing nature of the topic networks; the connections 

between predefined topic subsets change every year. 

The initial training results were overwritten when the 

ML model is re-trained with such datasets with major 

shifts, losing any previous training in the process. 

Using SVM instead of LR resulted in the same out-

come, with partial with 0.0114 higher F1 and warm 

showing similar values to the baseline, showing sta-

tistically insignificant differences for other metrics as 

well, as shown in Table 8. The warm approach is 

statistically identical to the non-incremental learning 

and hence was removed from further analysis. 

Table 8 P-values between within-domain incremental learning 

approach and the baseline. 

 
LR 

 
SVM 

 

Pairs cold/ 
partial 

cold/ 
warm 

cold/ 
partial 

cold/ 
warm 

F1 1.76E-09 6.92E-01 2.37E-11 7.37E-01 

Acc 2.76E-08 6.84E-01 5.98E-09 7.11E-01 

Precision 1.80E-05 7.43E-01 7.46E-10 7.44E-01 

Recall 3.02E-02 7.09E-01 9.56E-03 6.50E-01 
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Fig. 5. Changes in the F1 between partial and cold for different 

combinations of epochs and num_topics with the averaged F1 for 

partial as the bar graph in the second axis. 
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Fig. 6. F1 improvements over the cold baseline for individual FoS 

datasets trained using LR, with F1 in the second axis. 
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Fig. 7. F1 Improvements over the cold baseline for individual FoS 

datasets trained using SVM, with F1 in the second axis. 

Analysis of the different combinations of epochs 

and num_topics in Eq. (5) showed the incremental 

learning can be done with sample sizes smaller than 

200. num_topics as low as 10 resulted in similar per-

formance improvements with 5 true and 5 false data 

rows with both classification algorithms as shown by 

Figure 5, indicating the method can be used even 

with knowledge domains with sparse topic correla-

tions. The differences were more pronounced with 

smaller epochs, showing higher improvement with 

lower epoch. This can be attributed to the fact that 

inadequately trained models have more performance 

enhancement available to them. More epochs resulted 

in higher absolute performance scores including ac-

curacies and F1, indicating it is still beneficial to 

train with a larger number of epochs. 

Different FoS datasets resulted in different incre-

mental learning performances. Figure 6 and Figure 7 

show the relative F1 improvement of partial ap-

proach using epochs=100 and num_rows=200, each 

reaching p = 0.000 for statistical significance. F1 and 

improvements are reversely correlated, showing 

moderate to weak correlation with coefficient corr = 

-0.5848 for LR and corr = -0.2758 for SVM. This is 

in sync with the higher performance gains with lower 

epochs; more improvements are made when possible. 

While SVM resulted in a higher average improve-

ment of 0.0072 over LR’s 0.0055, two of the key-

words cadmium and air_polution showed negative 

results. LR showed a more consistent performance 

improvement for all FoS datasets, making it a more 

generalizable one compared to more dataset sensitive 

SVM. Consistent improvement for 20 datasets span-

ning across 14 domains ranging from business, chem-

istry, law to medicine indicates the sequential incre-

mental learning can be done on any field of research 

to improve new topic identifications. 

Table 9 Differences in F1 of between-domain incremental learning 

approach and the baseline. 

Alg epochs 

Year 

2000 2005 2010 2015 

Within the same MainType 

SVM  10 0.0018 0.0033 0.0022 0.0006 

50 0.0023 0.0026 0.0012 0.0018 

100 0.0054 0.0037 0.0035 0.0039 

LR 10 0.0047 0.0041 0.0016 0.0028 

50 0.0037 0.0030 0.0028 0.0020 

100 0.0058 0.0052 0.0046 0.0025 

Between different MainTypes 

SVM  10 0.0055 0.0003 0.0017 0.0028 

50 0.0029 0.0013 0.0000 0.0027 

100 0.0059 0.0027 0.0029 0.0057 

LR 10 0.0029 0.0105 0.0011 -0.0006 

50 0.0040 0.0029 0.0038 0.0012 

100 0.0020 0.0045 0.0035 0.0031 

 

 

The between-domain showed that incremental 

learning can be done over different topics as well. 

The F1 differences in Table 9 show the performance 

gain from between-domain learning is smaller than 

that of within-domain learning, with one negative 

value for 48 of the experiment iterations. The per-

formance improvement is also not as statistically 

significant because of the larger variance in F1 be-

tween 380 domain pairs. The t-test between the do-

main pairs F1 showed an average p-value of 0.6623 

for all experiment iterations with baseline cold ap-

proach (epochs=[10,10,500] with alg=[SVM, LR]), 

indicating that there is no inherent difference be-

tween the domain pairs. The partial approach 

showed significant differences between the domain 

pairs with a lower number of epochs, reaching an 

average p-value of 2.1481e10-5 using SVM and 

6.1439e10-9 using LR each with epochs=10.  

The statistical significance diminished with larger 

epochs, with p = 0.0076 for SVM and 0.0523 for LR 



with epochs=50 to p > 0.1 for both with epochs=100. 

Such changes in the p-values indicate that the incre-

mental learning over different knowledge domains is 

harder than the incremental learning done within a 

single domain; the common knowledge between-

domain can be acquired with less training compared 

to the more detailed underlying knowledge within-

domain. This is supported by the observation that 

there are no significant differences between the in-

cremental learning done over the domain pairs shar-

ing the same MainType and the ones which do not. 

The common knowledge captured by the partial ap-

proach is the basic knowledge common to different 

domains. 

6. Conclusion 

Topic models derived from processing unstruc-

tured documents can capture the number of topics 

shared throughout a given document collection and 

can be used to detect and track changes in such topics 

over time. The text-based approaches however have 

an innate limitation of requiring the textual data for 

modeling topics, inhibiting the effective prediction of 

topic evolutions where such data are nonexistent. The 

network-based topic emergence identification is an 

alternative approach utilizing the network structure to 

model topics, validating the assumption that the new 

topics can be distinguished by the structural proper-

ties of their neighborhoods in the past with classifica-

tion accuracy up to 0.9.  

Binary classification on 20 FoS showed that the 

proposed method can be applied to bibliographic 

datasets representing a specific subset of the 

knowledge domains. The proposed method per-

formed better on topic-specific publications com-

pared to the publications with varying topics of inter-

ests. The proposed method is independent of the da-

taset, and the scheduled retirement of the MAG at the 

end of 2021 would not affect this approach. Concept 

or topic assignment to document is a well-studied 

field, and the method can be applied to any form of 

dataset containing topic-assigned publications. Series 

of feature selections showed that the proposed meth-

od retained F1 over 0.9 with only 6 features; the ma-

jority of the 15 topic subgraph features were found to 

be closely correlated to the emergence of a new topic 

within them. Analysis of the temporal changes in the 

classification results showed an underlying topic co-

occurrence pattern across diverse research domains; 

the neighborhoods of existing topics become more 

structurally similar to those of new topics in more 

recent years.  

Incremental learning is shown to positively affect 

the results of the proposed method. Consistent per-

formance improvements were observed for incremen-

tal learning within each of the 20 FoS over time, 

showing the method can adapt to various knowledge 

domains, such as business, chemistry, law, and medi-

cine. Iterations of the experiment also revealed that 

the proposed method can be used even with 

knowledge domains with sparse topic correlations, 

retaining similar performance and performance im-

provements with 10 data instances. The knowledge 

between different datasets was also found to be trans-

ferable with incremental learning between different 

datasets, albeit to a smaller degree. The common 

knowledge spanning across different research do-

mains was captured in the early stages of the training, 

resulting in significant performance improvements 

only with a smaller number of epochs run during the 

training. 

Future work will include the validation of the 

method’s generalizability with incremental learning 

results. The shifts in the structural patterns over time 

can be captured to add explainability to the results, 

and underlying common structural properties of new 

topics’ neighborhoods will be identified to be incor-

porated into the prospective new topic prediction, 

along with the feature selection results. A set of ap-

proaches will be made to generate likely neighbor-

hood candidates for the new topic in the future, in-

cluding community detections and deep neural net-

work optimizations conscious of the properties corre-

lated to the new topic prediction. Amalgamation with 

semantic detection methods would allow a more ac-

curately tagged document set, resulting in a higher 

quality topic network generation. 
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