LinkedDataOps: Quality Oriented End-to-end Geospatial Linked Data Production Pipelines

Beyza Yaman\(^a,\)\(^*\), Kevin Thompson\(^b\), Fergus Fahey\(^b\) and Rob Brennan\(^c\)

\(^a\) ADAPT Centre, Trinity College Dublin, Dublin, Ireland
E-mail: beyza.yaman@adaptcentre.ie
\(^b\) Ordnance Survey Ireland, Dublin, Ireland
E-mails: kevin.thompson@osi.ie, fergus.fahey@osi.ie
\(^c\) ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland
E-mail: rob.brennan@adaptcentre.ie

Abstract. This work describes the application of semantic web standards to data quality governance in the architectural, engineering, and construction (AEC) domain for Ordnance Survey Ireland (OSi). It illustrates an approach based on establishing a unified knowledge graph for data quality measurements across a complex, quality-centric data production pipeline. It provides a series of new mappings between semantic models of the heterogeneous data quality standards applied by different tools and business units. The overall scope of this work is to improve the quality and service outcomes of an organization while conforming to the standards and support good decision-making through enabling an end-to-end data governance approach. Current industrial practice tends towards stove-piped, vendor-specific and domain-dependent tools to process data quality observations however there is a lack of open techniques and methodologies for combining quality measurements derived from different data quality standards to provide end-to-end data quality reporting, root cause analysis or visualization. This work demonstrated that it is effective to use a knowledge graph and semantic web standards to unify distributed data quality monitoring in an organization and present the results in an end-to-end data dashboard in a data quality standards agnostic fashion for the Ordnance Survey Ireland data publishing pipeline. This paper provides the first comprehensive mapping of standardized generic information systems data quality dimensions and geospatial data quality dimensions into a unified semantic model of data quality.

Keywords: Geospatial Linked Data, Data Quality, Data Governance

1. Introduction

Architectural, engineering, and construction (AEC) industries has been rising recently with a high number of impact areas such as Building Information Modelling (BIM), smart construction, smart cities and digital twin applications. Digital technologies has played a significant role the way the products are designed, modelled and maintained due to its benefits such as ease of usage, powerful design, sustainability and data sharing within different domains.

With the advancements of the technology and requirements from the industry, AEC systems are evolving to a more automated and interchangeable management of data, such as, Industry 4.0 communications among heterogeneous industrial assets [32] sustainable buildings for environment-friendly construction structures [15], sensors embedded smart city applications [16]. There is a common feature of all these systems that these applications need unification of high quality.

\(^*\)Corresponding author. E-mail: beyza.yaman@adaptcentre.ie.
geospatial data, computer methods and domain knowl-
edge to provide high quality results [16].

Given these circumstances, structured and inter-
linked characteristics of Semantic Web technology
lay the foundations for seamless integration of dif-
ferent knowledge domains into AEC domain such as
geospatial information systems (GIS), built systems,
energy performance related systems which provides
highly connected structure [25]. In addition, current
standardization efforts have promoted interoperabil-
ity among Linked Open Data (LOD), and community ini-
tiatives have focused decentralized data lakes among
datasets. This allowed location-based AEC applica-
tions to gain more prominence in the domain by incor-
porating geospatial semantics into the data.

Geospatial information systems has long been con-
sidered a high value resource for different domains -as
well as AEC domain- due to its rich semantics. How-
ever, Geospatial Linked Data (GLD) has been even
more crucial with the rise of the knowledge graphs.
The process of producing and transforming geospatial
linked data is prone to errors and high demand is re-
quired on quality. Thus, data governance is required
for the effective and efficient use of data, as well as
the management and tracking of data, in order to pro-
vide high quality. However, due to multi-standards (re-
gional or international) proposed for various data for-
mats, a lack of metadata, or diverse and siloed data
storage in the organizations, achieving efficient data
governance is not always trivial. Those cases lead to a
situation where data governance is hard to administer.

Effective data management is needed for high qual-
ity geospatial data but when the data is ingested and
transformed from several sources, the manual pro-
cess becomes harder to maintain. Data has a life-cycle
which is subject to analysis. In case these processes
are performed manually, provenance of this data would
be even more critical to track. Thus, tracking data re-
quires an automatic approach to manage the data in a
pipeline.

Taking into account the above challenges, this pa-
er paper answers the question “To what extent can seman-
tic web-based methods and tools provide effective data
quality governance for end-to-end production of AEC-
ready geospatial linked data?”. In order to solve this problem, we propose a data
governance approach to ensure the consistent oper-
ations of data production pipelines and monitoring
quality. LinkedDataOps approach [35] is employed to
achieve this goal as merging data from multiple per-
sperspectives of data by uplifting or transforming data from
various formats by leveraging the flexibility of se-
monic web tools. A knowledge graph that integrates
geospatial data aspects with a standards-based data
quality and data lineage models into data catalogs was
consolidated to generate a uniform data quality knowl-
dge graph.

LinkedDataOps Approach The overall scope of this work is to improve the quality and service outcomes of
an organization while conforming to the standards and
supporting good decision-making through end-to-end
data governance. The following approach is employed
in order to achieve this goal: i) Quality assessment re-
results are gathered from relational geospatial data by
uplifting to Linked Data automatically. The tool is in-
tegrated with the Luzzu framework (Fig.1, Step 1).
ii) Geospatial data quality metrics are implemented.
Aligned with the OSI’s standard compliance objec-
tives, relevant metrics are defined for the geospatial
data at hand and then they are integrated with Luzzu
framework to measure the quality and standards con-
formance. Existing quality metadata definition of the
Luzzu are extended by those metrics in both dataset
and triple levels via standard vocabularies (Fig.1, Step
2). iii) The integration of the data was performed using
a unified data quality knowledge graph for interoper-
ability of the data (Fig.1, Step 3). iv) Different quality
assessment results are saved as a W3C data cube with
different versions of the assessment and quality meta-
data along with their assessment date and time (Fig.1,
Step 4).

The contributions of this paper are i) creating a data
lineage model to track the workflow of the data based
on unified data quality knowledge graph1 ii) identifi-
cation of the geospatial data quality standards iii) a
set of semantic data quality models using the W3C
DQV standard for ISO 25012 and ISO 80002 iv) a
set of comprehensive inter-dimensional mappings be-
tween data quality dimensions defined in all relevant
standards3, v) a set of data quality metrics to measure
geospatial data quality4 vi) semantic uplift mappings
using R2RML for the 1Spatial 1Integrate tools5 vii)

1 https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/
DataCatalog.git
2 https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/
StandardsMappings.git
3 https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/
StandardGeospatialQualityMetrics.git
4 https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/
StandardGeospatialQualityMetrics.git
5 https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/
R2RMLmappings.git
an open source dashboard for e2e data quality management based on a unified quality graph\(^6\) and \(\textit{viii})\) a case study describing our deployment of this system in Ordnance Survey Ireland and lessons learned from this process.

The remainder of this paper is structured as follows: Section 2 describes the OSI use case, section 3 summarizes employed quality standards and tools as well as the R2RML mapping language. Section 4 discusses the unified data quality knowledge graph approach including architecture, data quality metrics, the mappings between standards, semantic uplifting and data lineage. We present the evaluation based on case study and results in Section 5 followed by lessons learned Section 6. Finally, conclusions and future work are discussed in Section 7.

2. Use Case: OSI Data Production Pipeline

National mapping agencies such as Ordnance Survey Ireland (OSI) are now geospatial data publishers more than cartographic institutions. The data in the OSI use case comes from numerous sources and is heterogeneous in terms of types, transformations, and versions. It was also discovered that data requires multi-dimensional, diverse quality measures in order to meet the needs of stakeholders and internal departments, making the process of tracking data flow and data management in a dynamic environment more difficult. Each stakeholder requires a set of different quality metrics for their specific data. On the other side, the lack of a real, high-quality pipeline and various, non-standardized data sources prevents the organization from effectively seeing the entire pipeline. Concrete data analysis and, as a result, data-driven data decisions are required for business plans to succeed.

These requirements need an automatic end-to-end data pipeline solution which will allow the reproducibility of the processes with standardized approaches and methodologies. Thus, in the scope of this work, a data pipeline was established throughout the data lifecycle, allowing for a series of data processing steps and the flow of data operations from the data source to the last task.

Ordnance Survey Ireland (OSi) is the national mapping agency of Ireland and it manages the national geospatial digital infrastructure. OSI is producing maps for planning, construction and engineering purposes which provides a detailed database of roads, rivers, buildings and various features which might be found in a map. These maps are used for different occasions including emergency situations. In a fire alarm situation, fire services i) require to know the exact location of the incident, ii) need to arrive to the location in the shortest possible time. Quality of the data in the database is highly important to save lives of people and to stop the fire as soon as possible. On the other hand, necessary assets such as hydrants should be recorded on the database following an intelligent engineering and construction process along with a good planning on a common geographic dataset. Government departments and public-sector bodies under the National Mapping Agreement (NMA) (an Irish agreement) have unrestricted access to the most of OSI’s geospatial data. With the NMA, one can request access to other datasets such as buildings and infrastructure [22]. On the other hand, this scenario is relevant in every country [34].

The OSI dataset encompasses surveying and data capture, image processing, translation to the PRIME2 object-oriented spatial model of over 50 million spatial objects tracked in time and provenance, conversion to the multi-resolution data source database for printing as cartographic products at a wide range of scales or onto other data sales and distribution channels such as Irish Geospatial Linked Data available

\(^6\)https://opengogs.adaptcentre.ie/OrdnanceSurveyIreland-OSi/OSiDashboard.git
through data.geohive.ie [13, 22]. All of these services run on a state of the art Oracle Spatial and Graph installation that supports both relational and RDF models using dedicated exadata hardware.

Data is collected, maintained and consumed by various levels of an organisation which results as data being distributed over disparate departments. Distributed data introduces a challenge of discovering the occurring data quality problems. Moreover, the data is often stored in different formats in different departments which makes the challenge even more difficult. Therefore, it is utmost importance to have an end-to-end data quality portal.

Managing data quality throughout the data pipeline and lifecycle is at the core of OSi operating practices (Fig. 3) and there are already quality checks at various stages that focus on the data quality dimensions. Current data quality assessment within OSi depends on i) two automated tools: the rules-based 1Spatial 1Integrate and Luzzu for linked data and ii) manual or semi-automated techniques by domain experts.

In addition, standardization approaches are more significant more than ever to create an interoperable and standard tool for the organizations. Frameworks such as the UN-GGIM (United Nations Secretariat: Global Geospatial Information Management) publishes a set of advises managing data quality and developing Integrated Geospatial Information systems at the national and international level [33]. It is required to conform with such standards for monitoring and reporting of the data at different levels. This will provide assurances for OSi’s customers, help inform appropriate uses for their data; enable upward reporting to the Irish government, European Commission and UN; enable more sophisticated data quality monitoring within the organisation and provide feedback to managers within OSi for teams involved in data collection, modelling and transformation. Over 600 staff will be impacted by the new system and 10% of those staff will interact directly with the system.

Through a series of internal workshops with stakeholders the following requirements were identified:

- **Req 1**: Monitoring, analyzing and reporting the data quality using an unified end-to-end data quality knowledge graph.
- **Req 2**: Ability to report quality in arbitrary format for different stakeholders.
- **Req 3**: Aligning diverse standards to provide a uniform view for data quality results.
- **Req 4**: Ability to combine, query, visualise and report on quality results of diverse tools at many stages of the data production pipeline.
- **Req 5**: Tracking data to provide the back tracing for spotting the location of the errors occurring in the data.
- **Req 6**: Classification of the data to provide contextualization for statistical purposes.

3. Background

This study especially aims at providing a unified solution for the enterprise quality pipelines which is easily solved by a semantic approach using e2e knowledge graph. To the best of our knowledge this is not performed prior to this study.

3.1. International Data Quality Standards for Geospatial Data

Quality models are important for providing consistent terminology and guidance for quality assessment and are the basis for the evaluation of any product or service [27]. All the above mentioned standards aim at filling the gap for a specific area e.g. software quality, geospatial data quality. Thus, a standard might not be able to meet the all the requirements needed by a data pipeline.

This section identifies, evaluates and compares a set of relevant standards and recommendations for GLD quality proposed by the OGC, ISO and W3C. The ISO/TC 211 Geographic information/Geomatics committee defines geographic technology standards in the ISO 19000 series [1] as well as the OGC creates open geospatial standards. The both organizations have close connections such that some documents prepared by OGC are adopted by ISO or implemented
by the collaboration of both parties. The standards are evaluated in 3 main groups:

Geospatial datasets: ISO 19103, 19107, 19108, 19109, 19112, 19123, 19156[1] are published to describe the data, in particular the schema, spatial referencing by geospatial data, and methods for representing geographical data and measurements. OGC equivalence of the documents can be seen on the right hand side of the table. Old ISO 19113/19114/19138 are combined to 19157 data quality standards. Thus, while ISO 8000 defines data quality concepts and processes for generic information systems, ISO 19157 and ISO 19158 provide more detailed guidance on data quality practices for geospatial data. ISO 19158 specifies metrics and measurements for evaluation of data quality elements at different stages of the geospatial data lifecycle. It also defines quality metric evaluation by using aggregation methods and thresholds. ISO 19157 defines a set of data quality measures when evaluating and reporting data quality of geospatial data.

Geospatial metadata: ISO 19111 and 19115 describe the metadata standards for geospatial data. While ISO 19115 focuses on metadata for cataloging and profiling purposes with the extensions for imagery and gridded data; ISO 19111 describes appropriate metadata for a Coordinate Reference System.

Geospatial Linked Data: There are three relevant types of documents for data quality. i) ISO 19150 which guides high level ontology schema appropriate for geospatial data and rules for using OWL-DL. ii) OGC’s GeoSPARQL standard that define a set of SPARQL extension functions for geospatial data, a set of RIF rules and a core RDF/OWL vocabulary for geographic information based on the General Feature Model, Simple Features, Feature Geometry and SQL MM [26]. iii) W3C has two documents, first the Data on the Web Best Practices recommendation for improving the consistency of data management and secondly the Spatial Data On the Web Best Practices which complements the earlier recommendation but is specialized for geospatial data.

There are many standard ways to represent quality metadata proposed for managing quality data. This papers focuses on the 3 main quality standards as well as W3C Best Practices to present quality reports:

ISO 8000 7 defines characteristics of information and data quality applicable to all types of data. The document also provides methods to manage, measure and improve the quality of information and data which can be used in conjunction with quality management systems. The standard has 3 main categories namely semantic, syntactic and pragmatic quality including 16 dimensions.

ISO 19157 8 is published to understand the concepts of data quality related to geographic data including data quality conformance levels in data product specifications, schemas, evaluating and reporting data quality with geospatial focus. The standard describes 6 dimensions to define the quality of geospatial data.

ISO 25012 9 is one of the SQuaRE (Software product Quality Requirements and Evaluation) series of International Standards, which defines a general data quality model for data retained in a structured format within a computer system. In this study we consider this standard as our main standard due to its high coverage of the wide range of dimensions. The standard includes 17 dimensions to describe generic data quality.

W3C Best Practices DQV [2] to publish and usage of high quality data on the web. The practice has 14 recommendations and one include to provide data quality information with published datasets. Amrapali etal. [40] proposes 18 quality dimensions spread into 4 categories for the Linked Data environment thus in the scope of this work we use these categories and dimensions to sketch middleware standard mappings.

Data Quality Tools for Geospatial Data

Several quality assessments of GLD have previously been conducted [19, 21, 24] but one of them relies on

1. By the collaboration of both parties. The standards are evaluated in 3 main groups:

2. Geospatial datasets: ISO 19103, 19107, 19108, 19109, 19112, 19123, 19156[1] are published to describe the data, in particular the schema, spatial referencing by geospatial data, and methods for representing geographical data and measurements. OGC equivalence of the documents can be seen on the right hand side of the table. Old ISO 19113/19114/19138 are combined to 19157 data quality standards. Thus, while ISO 8000 defines data quality concepts and processes for generic information systems, ISO 19157 and ISO 19158 provide more detailed guidance on data quality practices for geospatial data. ISO 19158 specifies metrics and measurements for evaluation of data quality elements at different stages of the geospatial data lifecycle. It also defines quality metric evaluation by using aggregation methods and thresholds. ISO 19157 defines a set of data quality measures when evaluating and reporting data quality of geospatial data.

3. Geospatial metadata: ISO 19111 and 19115 describe the metadata standards for geospatial data. While ISO 19115 focuses on metadata for cataloging and profiling purposes with the extensions for imagery and gridded data; ISO 19111 describes appropriate metadata for a Coordinate Reference System.

4. Geospatial Linked Data: There are three relevant types of documents for data quality. i) ISO 19150 which guides high level ontology schema appropriate for geospatial data and rules for using OWL-DL. ii) OGC’s GeoSPARQL standard that define a set of SPARQL extension functions for geospatial data, a set of RIF rules and a core RDF/OWL vocabulary for geographic information based on the General Feature Model, Simple Features, Feature Geometry and SQL MM [26]. iii) W3C has two documents, first the Data on the Web Best Practices recommendation for improving the consistency of data management and secondly the Spatial Data On the Web Best Practices which complements the earlier recommendation but is specialized for geospatial data.

5. There are many standard ways to represent quality metadata proposed for managing quality data. This papers focuses on the 3 main quality standards as well as W3C Best Practices to present quality reports:

6. ISO 8000 7 defines characteristics of information and data quality applicable to all types of data. The document also provides methods to manage, measure and improve the quality of information and data which can be used in conjunction with quality management systems. The standard has 3 main categories namely semantic, syntactic and pragmatic quality including 16 dimensions.

7. ISO 19157 8 is published to understand the concepts of data quality related to geographic data including data quality conformance levels in data product specifications, schemas, evaluating and reporting data quality with geospatial focus. The standard describes 6 dimensions to define the quality of geospatial data.

8. ISO 25012 9 is one of the SQuaRE (Software product Quality Requirements and Evaluation) series of International Standards, which defines a general data quality model for data retained in a structured format within a computer system. In this study we consider this standard as our main standard due to its high coverage of the wide range of dimensions. The standard includes 17 dimensions to describe generic data quality.

9. W3C Best Practices DQV [2] to publish and usage of high quality data on the web. The practice has 14 recommendations and one include to provide data quality information with published datasets. Amrapali etal. [40] proposes 18 quality dimensions spread into 4 categories for the Linked Data environment thus in the scope of this work we use these categories and dimensions to sketch middleware standard mappings.

3.2. Data Quality Tools for Geospatial Data

Several quality assessments of GLD have previously been conducted [19, 21, 24] but one of them relies on

7. ISO 8000: https://www.iso.org/standard/50798.html
crowdsourced evaluations rather than automated metrics [19], another one provides a generic Linked Data re-engineering tasks. Compliance of the data is achieved by creating and managing multiple rule sets for the datasets. Using rules-based automation, the tool aims at ensuring the accuracy, inviolability and validity of the data and it is in the publishable state. The 1Integrate system performs over 200 rules on the relational data to ensure the compliance of the data with model prerequisites and to maintain the consistency of the data. The system produces statistical summaries, map view of the results or GIS files for the analysis on the data.

Luzzu [8] is an open-source Java based Linked Data quality assessment framework which allows user to use custom quality metrics to produce quality based statistics about the data. This is an interoperable tool allowing ontology driven backend to produce machine readable quality reports and metadata about the assessment results. After the processor streams all the triples quality metadata is produced by provenance information and problematic triples are described in the problem report. The quality metadata is represented by domain independent daQ (Dataset Quality) core ontology based on W3C RDF Data Cube and PROV-O vocabularies [11]. The data can be processed either from bulk data or SPARQL endpoints.

3.3. R2RML

R2RML [7] is a language to define mapping rules from relational data to RDF data so that they can be processed by a compliant mapping engine. It is a W3C recommendation. The mappings and any metadata are expressed in RDF. An R2RML mapping is written for a particular database schema and target vocabulary e.g. DQV, the W3C standard data quality vocabulary. A set of mapping rules and a relational database or tabular data in CSV (comma-separated value) format is used as an input to produce RDF data with the corresponding schema. R2RML mappings refer to logical tables to convert data from the given database, hence database views or actual tables can be mapped to RDF. The result of the R2RML process is a graph representation to the input database. Once a set of mapping rules is written, data can be rapidly and reliably transformed between relational and RDF formats. For example, the Oracle Spatial and Graph database product can naively load a set of R2RML rules into the database to dynamically create an RDF view of the underlying data.

3.4. Data Lineage for Geospatial Data

Data lineage can be used for data validation and verification as well as data auditing. These features are proven to be practical to store and track an enterprise metadata repository for data governance and data quality monitoring [14]. This subsection investigates the data lineage approaches for geospatial data.

Chen et al. [3] define a domain-specific provenance model and a tracking approach to represent and track provenance information for remote sensing observations in a Sensor Web enabled environment. Closa et al. [4] analyses the potential for representing geospatial provenance in a distributed environment at the three levels of granularity (dataset, feature and attribute levels) using ISO 19115 and W3C PROV models. Another work of Closa et al. [5] present a provenance engine (PE) that captures and represents provenance information using a combination of the Web Processing Service (WPS) standard and the ISO 19115 geospatial lineage model. Di et al. [14] capture the provenance information in a standard lineage model defined in ISO 19115:2003 and ISO 19115-2:2009 standards (geographic metadata). Also, the authors extend both workflow language and service interface between provenance and geo-processing workflow by making it possible for the automatic capture of prove-
Fig. 4. Technical Architecture for a Unified Quality Graph Supporting End to End Data Quality Views

Sadiq et al. [29] present ontologies for land administration workflows in the spatial information life cycle to determine record and allow access to provenance information. Sun et al. [30] present an ontological framework for geospatial data integration and sharing called GeoDataOnt which is divided into three compound modules: essential ontology, morphology ontology, and provenance ontology. Yuan et al. [39] propose to publish geospatial data provenance into the Web of Data extending the Provenir ontology.

To the best of our knowledge there are not any proposals to catalogue the quality of data in an e2e pipeline providing comparative results w.r.t. the different standards.

4. A Unified Data Quality Knowledge Graph

This section describes the knowledge graph to present and visualize the data quality in different steps of the end-to-end pipeline.

4.1. End-to-End Data Quality Views for Data Governance

A unified quality graph is a knowledge graph which is implemented to enable data governance and to manage all the data controls from one place. It has been designed to handle data quality outcomes from multiple sources with heterogeneous data formats, transformations, and versions.

Figure 4 illustrates the layered technical architecture needed to support end to end data quality for an e2e pipeline. Starting from the OSI data publishing pipeline in Fig. 4, layers are created incrementally to build an end-to-end management of the existing pipeline. The first step was to enable dataset monitoring through the lifecycle of the data. Since data format changes throughout the pipeline, it is not a trivial process to detect the step where a problem occurs in the data. Thus, uplifting existing data quality results to the RDF format enables tracking the evaluation of the dataset in different formats along the pipeline. For tools that do not naively publish as RDF quality assessment data, this requires the creation of an uplift or data transformation workflow using R2RML.

In the second layer, quality assessment was performed for each dataset presented in various formats (e.g., rdf,rdb) to obtain an integrated quality assessment result for different sources. While the assessment of Linked Data was performed using Luzzu tool, relational data was assessed using 1Spatial tool. Following quality assessment, the existing 1Spatial quality results in relational tables were uplifted using R2RML-F tool. This tool is specifically chosen due its extension of R2RML’s vocabulary with predicates for declaring specific functions (functions, function calls and parameter bindings) during conversion.

Third layer presents a unified quality graph with measurement results employing standardized tools such as ISO standards, OGC recommendation, and W3C best practises. As it was mentioned in Section 2 different standardization approaches are required from various OSI departments and its stakeholders. Geospatial data quality standards are mapped into one another to present measurement results according to the requested standardization tool and the results were presented using RDF Data Cube approach. The metadata model was also added to provide the data lineage in this layer.

15https://github.com/chrdebru/r2rml
Finally, in the upper layer the results are visualized using time series and bars which are enabled by posing Sparql queries.

4.2. Data Uplifting for Traditional Data

This task was performed to map the computation results of the relational data into Linked Data format by uplifting the quality rules defined for the PRIME2 dataset. There are two types of data quality results for the PRIME2 data which are uplifted: i) 1Spatial data assessment results ii) OGC data validation results.

Listing 1: Example R2RML Mapping for Schema Uplifting

```xml
<#TriplesMapForMetricClass>
  rr:logicalTable <#Class-ValidationRule-View> ;
  rr:subjectMap [ rr:template
    "http://data.example.com/metric/{ORA_ERROR_ID}" ;
    rr:column rdfs:Class ;
  ];
  rr:predicateObjectMap [
    rr:predicate rdfs:label ;
    rr:objectMap [ rr:column "ORA_ERROR_ID" ];
  ];
  rr:predicateObjectMap [
    rr:predicate rdfs:subClassOf ;
    rr:objectMap [ rr:constant daq:Metric ] ;
  ];
  rr:predicateObjectMap [
    rr:predicate rdfs:comment ;
    rr:objectMap [ rr:column "ERROR_DESCRIPTION" ] ;
  ];
  rr:predicateObjectMap [
    rr:predicate daq:expectedDataType ;
    rr:objectMap [ rr:constant xsd:double ] ;
  ] .
</#TriplesMapForMetricClass>
```

Listing 2: Produced triples for R2RML Mapping

```
<http://data.example.com/metric/13356ERROR>
  a
  <http://www.w3.org/2000/01/rdf-schema#Class> ;
  <http://www.w3.org/2000/01/rdf-schema#comment>
  "Adjacent points in a geometry are redundant" ;
  <http://www.w3.org/2000/01/rdf-schema#label>
  "13356ERROR" ;
  <http://www.w3.org/2000/01/rdf-schema#subClassOf>
  <http://purl.org/eis/vocab/daq#Metric> ;
  <http://purl.org/eis/vocab/daq#expectedDataType> ;
  <http://www.w3.org/2001/XMLSchema#double> .
```

Listing 3

R2RML Mappings for Data Uplifting

```
<#CalculateValue>
  rrf:functionName "calculateValue" ;
  rrf:functionBody ***
  function calculateValue (numInstances, totalInstances)
  {
    return 1-(numInstances/totalInstances);
  }*** ;
</#CalculateValue>
```

Uplifting 1Spatial Results: In order to achieve this goal, 1Spatial data quality results were analyzed and then R2RML mappings were created to enable creation of a Linked Data representation of the quality results and schema. Each 1Spatial rule is defined as a quality metric which are defined by description. These metrics are classified into a dimension and a category by using Linked Data and ISO Standards.

The PRIME2 data stored in Oracle tables which are extracted from 1Spatial 1Integrate observations into daQ-specific instances [11] are two fold: i) A schema highlighting the category, dimension and metric, extending the daQ meta-schema was created and 186 different metric descriptions are extracted from the tables. Since 1Spatial 1Integrate tool did not have dimensions and categories, these metrics are mapped to the 7 different dimensions and 2 categories based on the ISO 19157 Standard using previous classification. ii) The quality observations are produced using the metadata extracted in the first step i.e. the quality metadata. The observations are produced for each PRIME2 sub-dataset by extracting and inferring quality values from both tables. In the 1Spatial 1Integrate database, the results are given in terms of the number of failing instances and the number of total instances. These are used to define a comparable [0.0 - 1.0] value across all metrics. More formally, value m_v is calculated as follows: $m_v = 1 - \frac{\text{number of failing instances}}{\text{total number of instances}}$. Nonetheless, the raw data provided during uplifting is stored in the various provenance and profiling properties defined by the daQ meta-model.

Uplifting OGC Validation Results: OSi uses Oracle’s Spatial & Graph Database to manage geospatial data, perform spatial analytic operations with the spatial features. OSi creates links between the national authoritative geospatial platform PRIME2 and semantic web using this tool. The

Listing 1 demonstrates the R2RML snippet for mapping an OGC validation metric into RDF. The metric describes an Oracle validation error numbered as
ORAI3349 which identifies crossed polygon boundaries among spatial objects. As a result the relational schema is materialized as RDF views demonstrated in Listing 2. On the other hand, materialized data is presented in Listing 3. This is a “BUILDING” dataset in PRIME2 which is assessed on the day of “31-JAN-20 00:00:00”. The quality measurement is computed using R2RML function demonstrated in Listing 4. As a result of this computation the score was found as “0.9999997209017775”.

4.3. Geospatial Data Quality Metrics for Linked Data

This section describes the geospatial data quality metrics in order to assess a dataset in terms of standards conformance including metadata, spatial reference systems and geometry classes. In order to create these metrics, a list of requirements were determined with the help and feedback from the OSI data quality team. Following the identification of these requirements the most important metrics are created for OSI. The details are described in our previous papers [36, 37]. We summarize the metric description and formula in Table 1. Metric computations are given as follows:

Geometry Extension Property Check (CS-M1):

If the entity in the dataset is a member of class `geo:Geometry` then this metric checks the rate of employed `geo:asWKT` or `geo:asGML` properties in the dataset. This is evaluated using functions as `hasWKT(e)` or `hasGML(e)` which return a boolean value. The metric is computed as a rate over the whole dataset as follows (Note that the following metrics also compute their rate over the whole dataset and thus Equation 1 will not be repeated in each metric definition):

\[
\sum_{i=1}^{e} \frac{\bar{E}(i)}{\text{size}(e)}
\]

(1)

Geometry Extension Object Consistency Check (CS-M2):

This metric checks the conformance of the dataset to the serialization requirement of OGC GeoSPARQL by checking the conformance of objects in terms of the order of use of coordinate system URI, spatial dimension and literal URI. Geometry data should consist of an optional URI identifying the coordinate reference system (e.g., CRS84, WGS 84) followed by WKT describing a geometric value. Spatial dimension may include polygon, multipolygon, line, point, or multilinearring shapes. Finally, the syntax should include the `geo:wktLiteral` URI declaring the object is a literal.

Geometry Classes and Properties Check (CS-M3, CS-M4):

This metric checks the rate of declaration of geometry classes and properties in the datasets. The `hasGeometry(e)` and `hasDefaultGeometry(e)` functions check each entity and return a boolean value for property existence. The metric checks each entity which is an individual of the `geo:Geometry` class.

Spatial Dimension Existence Check (CS-M5):

This metric assesses the rate of spatial dimension properties related to each entity in the dataset. It compares the to-
Table 1

New Geospatial Standards Conformance Quality Metrics

<table>
<thead>
<tr>
<th>ID</th>
<th>Metric Name</th>
<th>Dimension</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-M1</td>
<td>Geometry Extension Property Check</td>
<td>Completeness</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasWKT}(e) \lor \text{hasGML}(e) })</td>
</tr>
<tr>
<td>CS-M2</td>
<td>Geometry Extension Object Consistency Check</td>
<td>Completeness</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasCRSURI}(e) \land \text{hasSpatialDimension}(e) \land)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasWKTLiteral}(e) } }</td>
</tr>
<tr>
<td>CS-M3</td>
<td>Geometry Classes and Properties Check</td>
<td>Completeness</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasGeometry}(e) } }</td>
</tr>
<tr>
<td>CS-M4</td>
<td>Geometry Classes and Properties Check</td>
<td>Completeness</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasDefaultGeometry}(e) } }</td>
</tr>
<tr>
<td>CS-M5</td>
<td>Spatial Dimensions Existence Check</td>
<td>Completeness</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{isMultipolygon}(e) } }</td>
</tr>
<tr>
<td>I-M6</td>
<td>Links to Spatial Things (internal&external)</td>
<td>Interlinking</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasST}(e) } }</td>
</tr>
<tr>
<td>I-M7</td>
<td>Links to Spatial Things from popular repositories</td>
<td>Interlinking</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{isDBpedia}(e) \lor \text{isWikidata}(e) \lor \text{isGeonames}(e) } }</td>
</tr>
<tr>
<td>CY-M8</td>
<td>Polygon and Multipolygon Check</td>
<td>Consistency</td>
<td>(\tau := { e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{hasClosedPolygon}(e) } }</td>
</tr>
<tr>
<td>T-M9</td>
<td>Freshness Check</td>
<td>Timeliness</td>
<td>(\tau := (\max (1 - c/v, 0)))</td>
</tr>
</tbody>
</table>

Total number of spatial dimensions (multipolygon, polygon, line, point, multilinestring) described for each entity in the dataset to the overall number of entities.

Links to Spatial Things Check (I-M6, I-M7): W3C SDOTW suggests two types of links for Spatial things: i) links to other spatial things using an object with its own URI within dataset or to other datasets decreasing the computational complexity and enriching the data semantically ii) links to spatial things from popular repositories which increases the discoverability of the dataset. However, the challenge in this metric is that it is not possible to understand if a link has spatial extent without visiting the other resource. Thus, first a set of different pay-level-domains are detected manually and according to the used schema, the ratio of the links are computed as an efficient approximation.

I-M6 Metric Computation: First the metric detects the rate of entities having links to external spatial things in other datasets and internal spatial links within dataset. In I-M6, the \(\text{hasST}(e) \) function checks the entities with these links and later this number is divided into the overall number of entities.

I-M7 Metric Computation: This metric detects the rate of entities having links to external spatial links in popular and highly referenced datasets. In this work, we specifically looked at the usage of DBpedia, Wikidata and Geonames datasets. We counted the entities with these links and divided to the overall entity number.

Consistent Polygon and Multipolygon Usage Check (CY-M8): This metric checks the equality of the starting and end points of polygons. Each polygon in a multipolygon must be checked. We measure the rate of correctly described polygons and multipolygons in a dataset. In metric CY-M8 the function \(\text{hasClosedPolygon}(e) \) detects the correct usage for each entity in the dataset.

Freshness Check (T-M9): This metric checks the age of the data (t) by looking at the creation time and when it was last updated to the recent version. This metric was used as an updated version from [12]. In this formula, Volatility (v) is “the length of time the data remains valid” which is analogous to the shelf life of perishable products; Currency (c) is “the age of the data when it is delivered to the user” [17]. This metric is computed at the dataset and not instance level level due to lack of information in the entity level.

4.4. Uniform view for diverse standards using Mapping

This section introduces the mapping of all relevant data quality ontologies by defining semantic links according to the W3C OWL recommendation among standard ontologies namely those defined by ISO/TC 211, ISO/TC 184, ISO/IEC JTC 1/SC 7 and the W3C Data on the Web Best Practices recommendation data quality vocabulary with the goal of creating a uniform quality graph view. This approach is an extension of the correspondences between quality dimensions in ISO/IEC 25012 and Zaveri et al. [2, 31].

The followed steps are: i) discovering and investigating the quality standards relevant to the data requirements ii) comparing the data quality dimensions employed in different standards to discover the intersections or the similarities between them. iii) creating missing RDF models for the quality standards. It was seen that some standardization bodies already imple-
mented the RDF models of the their standards such as ISO 1915716 or W3C Data Quality Vocabulary17. Thus non-existing models are implemented by us based on the daQ model of Luzzu framework to be integrated into the end-to-end knowledge graph. iv) creating mappings between the standards.

Table 3 presents the standards and dimensions which are corresponding to each other18. ISO 25012 standard was employed as the main object of mapping due to its broad inclusiveness of the quality dimensions and, thus, other standards were mapped to this standard. 3 types of relations were accommodated for the quality dimensions: equality (concept unification) relationship \texttt{owl:sameAs}19, inclusion relationship \texttt{rdfs:subClassOf}20 and similarity relationship \texttt{ov:similarTo}21. A part of the mapping can be seen for Completeness dimension in Table 2. The predicates are shortened for the sake of space.

In many cases, standards use the same term in subtly differing ways, leading to more complex mappings. For example, the standards descriptions of the Completeness dimensions are given below:

Completeness (ISO 25012) The degree to which subject data associated with an entity has values for all expected attributes and related entity instances in a specific context of use.

Complete (ISO 8000) Information is perceived to be mapped completely to entities in the domain of interest in a reliable 1:1 mapping.

16https://def.isotc211.org/ontologies/iso19157/
17https://www.w3.org/TR/vocab-dqv/
18Following dimensions are omitted from the table due to not having mappings with other standards Flexible content, Flexible layout (ISO 8000), Recoverability, Precision (ISO 25012), Relevancy, Interpretability (Linked Data)
19@prefix http://www.w3.org/2002/07/owl#
20@prefix http://www.w3.org/2000/01/rdf-schema#
21@prefix http://open.vocab.org/terms#

Given example shows that two different types of system properties are described in the descriptions even though as a word they seem to be describing the same notion. In this specific example, while Complete has a narrow definition, Completeness has a more general definition, thus, \texttt{rdfs:subClassOf} logical relation was created between these dimensions.

4.5. Data Lineage Model

A data lineage model was needed to structure the metadata repository and provide effective data quality monitoring. The conceptual model was created based on Khatri \textit{et al.}’s data governance model including data principles, data quality, lifecycle, access and metadata \cite{Khatri} as presented in Fig. 5. The created model demonstrates high-level structure of the data origin and the evolution of data over time, as well as, describing the datasets and their relationships in the end-to-end data quality pipeline. Each dataset is described using the metadata model of the Data Catalog Vocabulary (DCAT)22. The data lineage model consists of several components:

- **Provenance**: This W3C standard is used to create the links between datasets through DCAT de-

22https://www.w3.org/TR/vocab-dcat-2/
Comparison of Standards Conformance Quality Dimensions. Bold dimension is the subject of the mapping triple (usually an ISO 25012 dimension as it has the widest coverage), the predicate is defined in the mapping column, the object is defined in the non-bold column.

<table>
<thead>
<tr>
<th>ISO 25012</th>
<th>ISO 19157</th>
<th>ISO 8000</th>
<th>Linked Data</th>
<th>Suggested Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td>Completeness</td>
<td>-</td>
<td>-</td>
<td>Completeness</td>
</tr>
<tr>
<td>Compliance</td>
<td>-</td>
<td>-</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Consistency</td>
<td>-</td>
<td>Consistency</td>
<td>-</td>
<td>Consistency</td>
</tr>
<tr>
<td>Consistency</td>
<td>Logical consistency</td>
<td>-</td>
<td>Entity integrity</td>
<td>-</td>
</tr>
<tr>
<td>Accuracy</td>
<td>-</td>
<td>Accuracy</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>Positional accuracy</td>
<td>Thematic accuracy</td>
<td>-</td>
<td>Semantic</td>
</tr>
<tr>
<td>Currentness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Timeliness</td>
</tr>
<tr>
<td>Currentness</td>
<td>Temporal quality</td>
<td>-</td>
<td>-</td>
<td>rdfs:subClassOf</td>
</tr>
<tr>
<td>Compliance</td>
<td>-</td>
<td>Compliance</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compliance</td>
<td>-</td>
<td>Domain integrity</td>
<td>Referential int.</td>
<td>Representational Consencness</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Security</td>
</tr>
<tr>
<td>Traceability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Security</td>
</tr>
<tr>
<td>Traceability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ov:similarTo</td>
</tr>
<tr>
<td>Credibility</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Trustworthiness</td>
</tr>
<tr>
<td>Efficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Performance</td>
</tr>
<tr>
<td>Understandability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Understandability</td>
</tr>
<tr>
<td>Understandability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ov:similarTo</td>
</tr>
<tr>
<td>Availability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Availability</td>
</tr>
<tr>
<td>Accessibility</td>
<td>-</td>
<td>-</td>
<td>Accessibility</td>
<td>-</td>
</tr>
<tr>
<td>Accessible</td>
<td>-</td>
<td>-</td>
<td>Interlinking</td>
<td>ov:similarTo</td>
</tr>
<tr>
<td>Accessible</td>
<td>-</td>
<td>-</td>
<td>Licensing</td>
<td>ov:similarTo</td>
</tr>
<tr>
<td>Portability</td>
<td>-</td>
<td>-</td>
<td>Interoperability</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Usability element</td>
<td>-</td>
<td>Useful</td>
<td>ov:similarTo</td>
</tr>
</tbody>
</table>

Table 3

- Data Quality: Describing data quality at different points of the end-to-end data pipeline allows users to track the quality of subdatasets during their historical evolution. The quality of the data is tracked through that specific data point in the data lineage which allows discovering the source of the problems. We present data quality with different aspects: i) Spatial / temporal resolution (data granularity) ii) Quality assessments expressed with quantitative test results.
- Geospatial information: This type of metadata is necessary to have a high level summary of the geospatial information covered by the datasets.
- UN-GGIM Data Themes: OSi data governance and quality reporting must be according to priority national data themes, which are aligned to the globally endorsed fundamental geospatial data themes. Including this metadata in the model allows OSi to analyze the data according to the main geospatial themes and the stakehold-
ers to visualize it according to their requirements. This vocabulary is created using Simple Knowledge Organization System (SKOS) concepts \cite{23}. The details of the vocabulary was described in our previous paper \cite{38}.

The OSi business data lineage view of the OSi data pipeline model 6 defines the structure to describe the datasets (GMS [Sensor Data], PRIME2, MRDS, and Linked Data) and subdatasets (Buildings, Core, etc.), of the OSi Geospatial Data Publishing Pipeline through metadata vocabularies. The metadata information is described based on the W3C standards DCAT, PROV ontology, DQV and UN-GGIM data themes. The DCAT properties \texttt{dcat:hasTheme} defines the data theme(s), from the list provided in the UN-GGIM, for each dataset and subdataset (Fig. 6 purple arrows), respectively. The \texttt{prov:wasDerivedFrom} property from the PROV ontology defines a dataset or subdataset as the result of a derivation or transformation from a pre-existing source dataset or subdataset (Fig. 6 orange arrow).

Listing 5 presents a piece of data catalog created for Data Quality Pipeline. This code snippet shows the provenance data (\texttt{prov:wasDerivedFrom}, \texttt{dct:created}, \texttt{dct:modified}), quality data (\texttt{dqv:hasQualityMetadata}), standardization data (\texttt{dct:conformsTo}), data themes (\texttt{dcat:theme}) and spatial aspect (\texttt{dct:spatial}) of the data in one place using DCAT\cite{6}. The metadata is created for various granularity and hierarchical layers to analyze the query results in various levels. The query results performed on this piece of data is presented in Figure 8.

4.6. A Unified Quality Knowledge Graph Interface for Data Pipeline

In order to deliver meaningful insights into data by displaying noteworthy correlations, a dashboard is implemented consisting of four main parts:

Pipeline: The pipeline page serves as the dashboard’s home screen. The pipeline page displays a high-level depiction of OSi’s data flow pipe and graphs are connected to these tiles when the dashboard is first opened. After connecting a graph to a node, the overall data quality of that data is displayed, and the details of that data can be viewed by clicking into the node.

Pipeline Node: After clicking into a pipeline node, you may see a high-level summary of the dataset’s content. This page displays the overall dataset quality, as well as a bar chart depicting past assessment results and a list of dimensions with aggregate quality results compared to a threshold. These attributes are divided into categories. When you click on any of the dimensions, you’ll be taken to a new screen that displays the dimension’s assessment quality as well as a list of the
metrics that have been applied to it. These metrics also include a quality assessment result, a success threshold, and a statement that explains the metric’s purpose.

Data Quality Analysis: The reporting page enables tracking the data quality of an OSI data pipeline node over time, as well as see a unified view of quality dimensions: ISO 19157 vs Linked Data, and see how these quality dimensions have changed over time. The data quality analysis page in Fig. 7 is divided into three parts: a bar chart depicting the data quality over time of the pipeline nodes, a second bar chart depicting the quality dimensions of the pipeline nodes, and a navigation bar on the left with a slider for changing standards and checkboxes for selecting/deselecting dimensions. The toggle can be clicked to swap between quality dimensions whereas yellow ones present the data standards and red filters present the data lineage. The selection can be performed with different variations from the existing filter types. The dashboard is an attempt to present a comprehensive perspective of the data, including the flow and connections of the many datasets.

Reporting: The reporting options on this page are based on the OSI data catalog, which is linked to data theme, provenance and data quality metadata. The dashboard page has several filters on the left side of the page which allows users to click interactively. By clicking on the filters, the user can pose numerous questions with different views and semantically display the dataset relations. The dashboard is an attempt to present a comprehensive perspective of the data, including the flow and connections of the many datasets. The end-to-end view allows users to see the various quality findings and where data quality issues occur across the process. Blue filters show data quality dimensions whereas yellow ones present the data standards and red filters present the data lineage. The selection can be performed with different variations from the existing filter types. The datasets are displayed on the right of the dashboard panel based on the left-hand selections.

5. Evaluation

This section describes a first study showing our new metrics in operation with experimental set-up in Sec-
Fig. 7. End to end Dashboard for Data Quality Analysis. Showing data lineage information over time according to ISO 25012 Linked Data Quality Model. An ISO 19157 view of data quality can be displayed by changing the “dimension Standard” toggle switch.

Fig. 8. End to end Dashboard Reporting.

5.1. Experimental Setup

Experiments were executed to measure the metrics’ ability to detect the standards compliance of GLD datasets, as well as, the extent of standards compliance of published Open GLD to meet OSI’s requirements. Investigation was performed by implementing new metrics as scalable Luzzu plug-ins in Java and assessing a set of four open GLD datasets. We used a computer with Intel i7 8th generation processor and 8GB memory.

Datasets: Major open topographical geospatial datasets describing political or administrative boundaries were chosen to ensure geometrical features were repre-
sented in each dataset. Despite this selection, there
is considerable variation in the datasets in number
of triples, size, languages and used coordinate refer-
ence systems (CRS) as depicted in Table 4. Ordnance
Survey Ireland (OSi) is the national mapping agency
of Ireland and they publish a subset of their data as
Linked Open Data. The OSi boundaries dataset de-
scribes political and administrative boundaries in Ire-
land. Ordnance Survey UK is the national mapping
agency of the United Kingdom and they also publish
their data partially as Linked Data. LinkedGeoData
is provided by the University of Leipzig by convert-
ing OpenStreetMap data to Linked Data. Greece LD
is provided by the University of Athens as part of the
TELEIOS project.

Method: Assessments were performed on each
dataset using the Luzzu framework. In addition to as-
sessing the full datasets, subset were also assessed to
provide a common baseline for comparison between
datasets. Observations for the nine metrics presented
in our previous paper [37] were collected as quality
metadata using the daQ vocabulary[10]. This paper
further presents the evaluation of the metrics for the
OSi use case.

By applying a suite of over 500 quality rules to the
PRIME2 topographic dataset it is possible to assure
very high levels of compliance with these rules. How-
ever execution of the explicit rules over 50 million spa-
tial objects can take days, even on custom high end
hardware like a state of the art Oracle exadata platform.
This does not pose a problem when a regular flow of
localised transactions is used to update the PRIME2
model but when large-scale data transformations must
be carried out (for example for schema updates or to
fix systematic errors identified in older releases) then
the time required is unsustainable. In this case the use
of probabilistic (sampling-based) metrics as deployed
in Luzzu for computationally expensive metrics is an
advantage.

5.2. A Hierarchical Data Quality Knowledge Graph

Aggregated Results for Completeness: Average ag-
ggregated results shows around 50% completeness for
the overall data at most for these datasets. It should
be noted that the Greek LGD and OS UK datasets
were created before the standardization efforts so they
have lower rates. However, an important question to
ask is how publishers could be encouraged to migrate
their data to new approaches and standards, especially,
when conformance is a straightforward change in the
prefixes in the data. Given that datasets are not updated
for a long period, indeed, LOD cloud is about to be-
come a museum for the datasets [12].

Aggregated Results for Interlinking: This metric is
very similar to the Debattista etal. [12] external link
data providers metric which calculates all the datasets
in the LOD cloud where LOD cloud has average 27%
external links to other datasets. Our results show that
compared to the LOD cloud, these datasets have a
higher rate of external spatial links but a much lower
rate of links to popular datasets. If we consider the ag-
ggregated result for the Interlinking dimension, the rate
is similar to LOD cloud rate with a mean of 27%.

5.3. Metric Design Evaluation

Heinrich et al. [18] have defined a set of five design
requirements for effective data quality metrics for both
decision making under uncertainty and economically
oriented data quality management. This section eval-
uates our new metrics against these five requirements
(summarised in Table 5).

Existence of minimum and maximum metric values
(MR1): As defined by Heinrich et al., data qual-
ity metrics should take values only within a specified
range. The minimum values should represent poorest
data quality and the maximum representing highest
data quality. Each value within this range should rep-
resent different data quality levels. All our metrics are
defined over the bounded interval [0-1] representing
gradually increasing quality levels. Thus all the met-
rics fulfill this requirement.

Interval-scaled metric values (MR2): The data
quality metric must represent the computation results
as interval-scaled or ratio-scaled values. This avoids
metrics with arbitrary scales such as poor, good, or
best. Metric values (except T-M9) are interval scaled,
the impact of a data quality improvement measure can
thus be assessed precisely.

Quality of the Configuration Parameters and the
Determination of the Metric Values (MR3): The
scientific quality criteria (i.e., objectivity, reliability,
and validity) must be satisfied by any metric config-
uration parameters. The provided metrics have for-
mal, mathematical formulae for calculating the scores
that allow for an objective and reliable determination
based on defined data quality dimensions (complete-
ness, consistency, interlinking). All metrics fulfill this

24https://openggs.adaptcentre.ie/OrdnanceSurveyIreland-OSi
Table 4

Dataset Summary

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Triple</th>
<th>Size</th>
<th>Languages</th>
<th>Coordinate System</th>
<th>CRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSI</td>
<td>1936763</td>
<td>274M</td>
<td>EN, GA</td>
<td>GEOsparql, Open Vocab, RDF, RDFS, OSI</td>
<td>IRENET95 / ITM</td>
</tr>
<tr>
<td>OS UK</td>
<td>64641</td>
<td>224.1M</td>
<td>EN</td>
<td>RDF, RDFS, OS UK</td>
<td>WGS 84</td>
</tr>
<tr>
<td>LinkedGeoData</td>
<td>464193</td>
<td>1.5G</td>
<td>EN, Various</td>
<td>NeoGeo, RDF, RDFS, LinkedGeoData</td>
<td>WGS 84</td>
</tr>
<tr>
<td>Greece LD</td>
<td>24583</td>
<td>183M</td>
<td>EN, GR</td>
<td>RDF, RDFS, Greece LD</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

Table 5

Heinrich et al. Metric Requirement Testing Results (Y=yes, P=partial)

<table>
<thead>
<tr>
<th>Requirement Metric</th>
<th>CS-M1</th>
<th>CS-M2</th>
<th>CS-M3</th>
<th>CS-M4</th>
<th>CS-M5</th>
<th>I-M6</th>
<th>I-M7</th>
<th>CY-M8</th>
<th>T-M9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum and maximum values (MR1)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Interval-scale (MR2)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Parameters and determination (MR3)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>P</td>
</tr>
<tr>
<td>Sound aggregation (MR4)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Economic efficiency (MR5)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>P</td>
</tr>
</tbody>
</table>

except for T-M9 as it is not possible to determine a fixed value for the configuration parameter shelf life of the metric.

Sound Aggregation of the Metric Values (MR4):
A data quality metric must be applicable to single data values as well as to sets of data values. The metric should be performed in different levels of data with consistent aggregation values. In all cases, we propose normalised metrics that are scaled to the number of triples or geospatial terms they assess. Thus this requirement is satisfied.

Economic Efficiency of the Metric (MR5): This requirement addresses the metric’s utility from an economic perspective. Application of the data quality metric should provide a cost beneficial effect on the business, thus computation time should not be excessive. The metric should support effective decision making. All of the metrics can be calculated with mathematical formulations automatizing the computations in an effective way at low cost. They have proved effective for decision making in OSI. All the metrics fulfill this requirement except perhaps T-M9 since it depends on knowledge of the dataset creation date, which is not always available.

6. Lessons learned

The ADAPT Centre developed this work over two years collaboration with the Geospatial Services, Data Governance & Quality department in OSI and knowledge exchange was a key outcome. This was facilitated by quarterly workshops with senior stakeholders as well as regular weekly meetings between the design and implementation teams. Key lessons learned from the deployment of semantic web technologies and standards for unified data governance are described below.

It is essential to ensure the quality of the data to make informed and effective decisions. This depends on selecting, designing data quality metrics and thresholds. Despite the rapid advances on general purpose linked data metrics in the last decade\cite{9, 28, 40}, domain-specific metrics needed to developed for the AEC domain. If they are not defined effectively, these metrics can lead to poor decisions and economic losses. An open, standards-based quality metric definition language such as is found in the semantic knowledge model underlying the Luzzu framework and R2RML uplifting is useful as it generates self-describing plug and play metrics and quality observation metadata that can be combined or transformed in applications and manipulated in views for presentation to specific audiences. Furthermore, employing metric requirement testing to evaluate these metrics allowed us to assess if they were appropriate for the organization.

Despite the broad adoption of Linked Data standards are still transitioning to Linked Data implementation e.g. ISO/TC 211 (specifies methods, tools and services for geographic data management) a continuous effort to create the Linked Data ontologies required, whereas some standards do not have any initiative for this. On the other hand, there is a great poten-
tial for semantic modeling of data quality standards. Another challenge was to decide the correct type of relation between the dimensions. Despite the fact that some quality dimensions have the same name in different standards, it was necessary to analyze the definitions in depth in order to prevent making mistakes in the mapping. Getting validation of the mapping results by OSI domain experts was also important to the success of our approach.

We’ve learned that putting together a useful data quality dashboard isn’t easy. Because the dashboard should be able to efficiently and clearly manage and visualize various data concepts. The appropriate level of abstraction should be determined and provided to the user, and it should be tailored to the requirements of various stakeholders who may think about quality in terms of different standards depending on the domain of application (e.g. surveying vs sales vs economic and statistical modelling) but also in terms of different goals (e.g. process improvement vs customer-facing data quality certification). However, Linked Data offers a great level of flexibility, which aids in the unification of quality assessments and the flexible processing and presentation of data.

We combined numerous concepts, such as data themes to classify data based on the needs of the company and provenance to monitor data evaluation. Furthermore, the mix of diverse standards and concepts allowed us to create rich queries which combine quality results with provenance metadata and standards compliance, allowing us to display them at various levels of granularity visualizing on the dashboard. The provenance information was especially important to show data flows within the organisation and support temporal queries that highlighted the evolution of the datasets. The Semantic Web approach enabled rich data fusion across different organisational contexts into a unified data governance system without requiring any loss to the underlying data which connects multiple data collection systems. The use of data quality dimensions as a unifying concept was particularly important for the final system as it allowed us to combine different metrics, collected in different systems to get a global view of the evolution of user-centric perspectives on data quality that were previously not correlated. It also provided an important mechanism for abstracting the reports of quality rule failures into single numbers that were easy for staff to interpret or drill down into.

Overall, we received very positive feedback from the OSI staff and stakeholders. They especially liked the ability to dynamically present the same quality data from multiple quality standards’ perspectives. This was especially important as at the beginning of this work it was unknown which standards were the most important ones to comply with and this will vary as more stakeholders and use cases are introduced to the system. OSI gained an advantage by creating and classifying metrics based on 1Spatial rule-based data validation into the ISO 19157 data quality framework, since they were previously limited to reviewing the raw outputs of validation rules, which was difficult to track over time for trends. This work was also necessary to ensure quality traceability along the data pipeline, in addition to our mappings.

7. Conclusions and Future Work

This research looked into how an uniform semantic information space for data quality measures may be used to give end-to-end views of data quality from disparate quality assessment instruments by providing a set of mappings between standard semantic models of data quality. In the OSI use case (Section 2), this unified quality graph allowed us to present the heterogeneous data with different formats and assessment of different tools (Luzzu and 1Spatial 1Integrate) to be presented in a homogeneous way (Section 4). A new web-based dashboard was designed and implemented to visualize the quality analysis and changes through time (Section 4.6). It was seen even though there is a lot of standards representation in Linked Data that it is still in the transforming phase and they are mostly disconnected (Section 4.4). However, it is hoped that this study could be a starting point for researchers who would like to interlink their data and present in a homogeneous way and perform a standards-based assessment for its own datasets. On the other hand, this work might have an impact on the standardization approaches and evolve the way they are implemented for instance with the RDF data model.

In future work, we intend to add more standards to our compliance governance dashboard and more features that are functional to the users. The next steps will expand the data quality model to include FAIR principles, data value dimensions, include R2RML mappings support for more quality tools.
Acknowledgements

This research received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 801522, by Science Foundation Ireland and co-funded by the European Regional Development Fund through the ADAPT Centre for Digital Content Technology [grant number 13/RC/2106_2] and Ordnance Survey Ireland. We would like to thank Jeremy Debattista for his contribution to the work and architecture.

References

