Undefined 1 (2009) 1-5 1
10S Press

A Fine-Grained Evaluation of SPARQL
Endpoint Federation Systems

Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Muhammad Saleem®*, Yasar Khan®, Ali Hasnain® Ivan Ermilov®, Axel-Cyrille Ngonga Ngomo®@

& Universitdt Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig

E-mail: {saleem,ngonga,iermilov} @informatik.uni-leipzig.de

b Digital Enterprise Research Institute, National University of Ireland, Galway
E-mail: {yasar.khan,ali.hasnain}@deri.org

Abstract. The Web of Data has grown enormously over the last years. Currently, it comprises a large compendium of interlinked
and distributed datasets from multiple domains. The abundance of datasets has motivated considerable work for developing
SPARQL query federation systems, the dedicated means to access data distributed over the Web of Data. However, the granularity
of previous evaluations of such systems has not allowed deriving of insights concerning their behavior in different steps involved
during federated query processing. In this work, we perform extensive experiments to compare state-of-the-art SPARQL endpoint
federation systems using the comprehensive performance evaluation framework FedBench. We extend the scope of the performance
evaluation by considering additional criteria to the commonly used key criterion (i.e. the query runtime). In particular, we consider
the number of sources selected, total number of SPARQL ASK requests used, and source selection time, the criteria which have
not received much attention in the previous studies. Yet, we show that they have a significant impact on the overall query runtime
of existing systems. Also, we extend FedBench to mirror a highly distributed data environment and assess the behavior of existing
systems by using the same four criteria. As the result we provide a detailed analysis of the experimental outcomes that reveal
novel insights for improving current and future SPARQL federation systems.

Keywords: SPARQL federation, Web of Data, RDF

1. Introduction a virtual integrated fashion is becoming increasingly
popular. Given the importance of federated query pro-
The transition from the Web of Documents to the cessing over web of Linked Data, it is critical to pro-

Web of Data has resulted in a large compendium of
interlinked datasets from diverse domains. Currently,
the Linked Open Data (LOD) Cloucﬂ contains over 60
billion triples available from 928 different datasets with
large datasets [24] being added frequently. Due to the

vide fine-grained evaluations to assess the quality of
state-of-the-art implementations of federated SPARQL
query engines by comparing them against common cri-
teria through an open benchmark. Such fine-grained

decentralized and linked architecture of LOD, answer- evaluation results are valuable when positioning new
ing complex queries often requires accessing and com- federation systems against existing ones, and help ap-
bining information from multiple datasets. Processing plication developers to choose appropriate systems by
such queries, called federated queries [T1200127/23], in analyzing against given criteria of interest. Moreover,
such fine-grained results provide useful insights for sys-

*Corresponding author. E-mail: saleem @informatik.uni-leipzig.de tem developers and empower them to improve current
"nttp://stats.lod2.eu/ federation systems as well as to develop better systems.

0000-0000/09/$00.00 (©) 2009 — IOS Press and the authors. All rights reserved

http://stats.lod2.eu/

2 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

Current evaluations [7W142702 111712213 1]] of SPARQL
query federation systems compare some of the feder-
ation systems based on the central criterion of overall
query runtime. While optimizing the query runtime of
federation systems is the ultimate goal of the research
performed on this topic, the granularity of current eval-
uations fails to provide results that allow understanding
why the query runtimes of systems can differ drasti-
cally and thus insufficient to detect the components of
systems that need to be improved. For example, key
metrics such as smart source selection in terms of the
total number of data sources selected, total number
of SPARQL ASK requests used, and source selection
time which has a direct impact on the overall query
performance are not addressed in the existing evalua-
tions. Furthermore, as pointed out by [18]], the current
testbeds [6426125l19] to evaluate, compare, and eventu-
ally improve SPARQL query federation systems still
have some limitations. Especially, the partitioning of
data as well as the SPARQL clauses used cannot be
tailored sufficiently, although they are known to have
a direct impact on the behaviour of SPARQL query
federation systems.

The aim of this paper is to experimentally evaluate
a large number of SPARQL query federation systems
in a more fine-granular setting in which we can mea-
sure the time required to complete different steps of
the SPARQL query federation process. Moreover, we
want to address two weaknesses that is data partition-
ing and SPARQL clauses addressed in [18]]. To achieve
this goal, we first conducted a public surveyE] and col-
lected information regarding 14 existing federated sys-
tem implementations, their key features, and supported
SPARQL clauses. Eight of the systems which partic-
ipated in this survey are publicly available. However,
two out of the eight with public implementation do not
make use of the SPARQL endpoints and were thus not
considered further in this study.

However, two out of the eight with public implemen-
tation do not make use of the SPARQL endpoints and
were thus not considered further in this study. Given
that we had to extend the systems to return their source
selection time as well as the number of sources they
selected, we only considered the six open-source sys-
tems in our fine-granular evaluation. Like in previous
evaluations, we begin by comparing the remaining six
systems [ZU20027I1131I16] with respect to an important

2Survey: http://goo.gl/iXvKVT, Results: http://goo.

g1/CNW5UC

unchanged performance criterion (i.e., the query exe-
cution time) using the commonly used benchmark Fed-
Bench. In addition, we also compared these six systems
with respect to their source selection approach in terms
of the total number of sources selected, total number of
SPARQL ASK requests used, and the source selection
time. For the sake of completeness, we also performed
a comparative analysis (based on the survey outcome)
of the key functionality of the 14 systems which partic-
ipated in our survey. The most important outcomes of
this survey are presented in Section 3|/’

To provide a quantitative analysis of the effect of
data partitioning on the systems at hand, we extended
both FedBench [25] and SP?Bench [26]] by distributing
the data upon which they rely. To this end, we used
the slice generation tooﬂ described in [23]]. This tool
allows creating any number of subsets of a given dataset
(called slices) while controlling the number of slices,
the amount of overlap between the slices as well as
the size distribution of these slices. The resulting slices
were distributed across various data sources (SPARQL
endpoints) to simulate a highly federated environment.
In our experiments, we made use of both FedBench [25]]
and SP?Bench [26] queries to ensure that we cover the
majority of the SPARQL query types and clauses. Our
aim here was to address the two weaknesses of current
evaluations mentioned in previous works. Note that we
used a dedicated network of local SPARQL endpoints
to minimize the network latency.

Our main contributions are summarized as follow:

— We present the results of a public survey which
allows us to provide a crisp overview of categories
of SPARQL federation systems as well as pro-
vide their implementation details, features, and
supported SPARQL clauses.

— We present (to the best of our knowledge) most
comprehensive experimental evaluation of open-
source SPARQL federations systems in terms of
their source selection and overall query runtime
using in two different evaluation setups.

— Along with the central evaluation criterion (i.e.,
the overall query runtime), we measure three sub-
criteria, i.e., the total number of sources selected,
the total number of SPARQL ASK requests used,
and the source selection time. By these means,

3All survey responses can be found at http://goo.gl/
CNW5UC|

4https://code.google.com/p/fed-eval/
wiki/SliceGenerator

http://goo.gl/iXvKVT
http://goo.gl/CNW5UC
http://goo.gl/CNW5UC
http://goo.gl/CNW5UC
http://goo.gl/CNW5UC
https://code.google.com/p/fed-eval/wiki/SliceGenerator
https://code.google.com/p/fed-eval/wiki/SliceGenerator

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 3

we obtain deeper insights into the behaviour of
SPARQL federation systems.

— We extend both FedBench and SPZBench, well-
known federated engines benchmarks, to mir-
ror highly distributed data environments and test
SPARQL endpoint federation systems for their
parallel processing capabilities.

— We provide a detailed discussion of experimental
results and reveal novel insights for improving
existing and future federation systems.

— Our survey results provide useful research oppor-
tunities in the area of federated semantic data pro-
cessing.

The rest of this paper is structured as follows: In
Section 2, we provide an overview of state-of-the-art
SPARQL federated query processing approaches. Sec-
tion 3| provides a detailed description of the design of
and the responses to our public survey of the SPARQL
query federation. Section [4] provides an introduction
to SPARQL query federation and selected approaches
for experimental evaluation. Section [5] describes our
evaluation framework and experimental results, includ-
ing key performance metrics, a description of the used
benchmarks (FedBench, SP?Bench, SlicedBench), and
the data slice generator. Section [§| provides our further
discussion of the results. Finally, Section [7]concludes
our work and gives an overview of possible future ex-
tensions.

2. Related work

In this section, we give an overview of existing works
that are related to the two main areas of research cov-
ered in this paper: federates SPARQL query processing
systems and benchmarks for SPARQL query processing
engines.

2.1. Federation Systems

Rakhmawati et. al. [21] presents a survey of
SPARQL endpoint federation systems, explaining the
details of the query federation process and with a com-
parison of the query evaluation strategies used in these
systems. Olaf et. al [10] provides a general overview
of Linked Data federation. In particular, they introduce
the specific challenges that need to be addressed and
focus on possible strategies for executing Linked Data
queries. However, both of these survey do not provide
an experimental evaluation of the discussed SPARQL

query federation systems. Umbrich et. al. [12] provides
a detailed study of the recall and effectiveness of Link
Traversal Querying for the Web of Data. Schwarte et.
al. [28] present an experimental study of large-scale
RDF federations on top of the Bio2RDF data sources us-
ing a particular federation system, i.e., FedX [27]]. They
focus on design decisions, technical aspects, and expe-
riences made in setting up and optimizing the Bio2RDF
federation. 5] identifies various drawbacks of feder-
ated Linked Data query processing. The authors pro-
pose that Linked Data as a service that has a potential
to solve some of the identified problems. [9]] presents
limitations in Linked Data federated query processing
and implications of these limitations. Moreover, this
paper presents a query optimization approach based on
semi-joins and dynamic programming. [14] identifies
various strategies while processing federated queries
over Linked Data. [30] provides an experimental evalu-
ation of the different data summaries used in live query
processing over Linked Data. [18] provides a detail dis-
cussion of the limitations of the existing testbeds used
for the evaluation of SPARQL query federation systems.
Some other experimental evaluations [ZU1127U3 1I17122]]
of SPARQL query federation systems compare some
of the federation systems based on their overall query
runtime. Gorlitz et. al. [7] compare their approach
with three other approaches ([27,20], AliBab:ﬂ and
RDF-3X 0.3.4.22ﬂ An extension of ANAPSID pre-
sented in [[17] compare ANAPSID with FedX using
10 FedBench-additional complex queries. FedX [27]]
compare its performance with AliBaba and DARQ us-
ing a subset of FedBench queries. LHD [31]] compare
its performance with FedX, SPLENDID using Berlin
SPARQL Benchmark (BSBM) [6].

All experimental evaluations (of SPARQL endpoint
federation systems) above compare only a small num-
ber of SPARQL query federation systems using a sub-
set of the queries available in current benchmarks with
respect to a single performance criterion (query execu-
tion time). Consequently, they do not provide deeper
insights into the behavior of these systems in differ-
ent steps (e.g. source selection) required during the
query federation. In this work, we evaluate six federated

JSesameAliBaba:http://www.openrdf.org/
alibaba. jsp) using a subset of the queries from FedBench.
Furthermore, they measure the effect of the information in Voi]f]
description on accuracy of their source selection. Acosta et. al. [[1]
compare their approach performance with respect to Virtuoso
SPARQL endpoints, ARQ 2.8.8. BSD-style21['|

Shttp://www.mpi-inf.mpg.de/neumann/rdf3x/

Sesame AliBaba: http://www.openrdf.org/alibaba.jsp
Sesame AliBaba: http://www.openrdf.org/alibaba.jsp
http://www.mpi-inf.mpg.de/ neumann/rdf3x/

4 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

SPARQL query engines experimentally on two different
evaluation frameworks. To the best of our knowledge,
this is the largest evaluation of open-source SPARQL
query federation systems. Furthermore, along with cen-
tral performance criterion of query runtime, we com-
pare these systems for their efficient source selection in
terms of: (1) the total number of sources selected, (2)
the total number of SPARQL ASK requests used, and
(3) their source selection time. Our results show (sec-
tion [3)) that these criteria greatly affect the overall query
runtime. Thus, the insights gained through our evalua-
tion w.r.t to these criteria provide valuable insights for
optimizing SPARQL query federation.

2.2. Benchmarks

Benchmarks for comparing SPARQL query process-
ing systems have a rich literature as well. These include
Berlin SPARQL Benchmark (BSBM), SP?Bench, Fed-
Bench, Lehigh University Benchmark (LUBM), and
the DBpedia Spargl Benchmark (DBPSB). Both BSBM
and SP2Bench are mainly designed for the evaluation
of triple stores that keep their data in a single large
repository. BSBM [6] was developed for comparing the
performance of native RDF stores with the performance
of SPARQL-to-SQL re-writers. SP2Bench [26] mirrors
vital characteristics (such as power law distributions
or Gaussian curves) of the data in the DBLP biblio-
graphic database. This benchmark comprises both a
data generator for creating arbitrarily large DBLP-like
documents and a set of carefully designed benchmark
queries. FedBench [25] is designed explicitly to sim-
ulate SPARQL query federation tasks on real-world
datasets with queries resembling typical requests on
these datasets. Furthermore, this benchmark also in-
cludes a dataset and queries from SP2Bench. LUBM [8]
is designed to facilitate the evaluation of Semantic Web
repositories in a systematic way. It is based on a cus-
tomizable and repeatable synthetic data. DBPSB [19]
includes queries from the DBpedia query log and aims
to reflect the behavior of triple stores when confronted
with real queries aiming to access native RDF data.

FedBench is the only (to the best of our knowledge)
benchmark that encompasses real-world datasets, com-
monly used queries and distributed data environment.
Furthermore, it is commonly used in the evaluation of
SPARQL query federation systems [27I7U17423]]. There-
fore, we choose this benchmark as a main evaluation
benchmark in this paper. We also decided on using
SP?Bench in parts of our experiments to ensure that our
queries cover most of SPARQL.

3. Federated engines public survey

In order to provide a comprehensive overview of ex-
isting SPARQL federation engines, we designed and
conducted a survey of SPARQL query federation en-
gines. In this section, we present the principles and
ideas behind the design of the survey as well as its
results and their analysis.

3.1. Survey Design

The aim of the survey was to compare the existing
SPARQL query federation engines, regardless of their
implementation or code availability. To reach this aim,
we interviewed domain experts and designed a survey
with three sections: system information, requirements,
and supported SPARQL clausesﬂ

The system information section of the survey includes
implementation details of the SPARQL federation en-
gine such as:

— URL of the paper, engine implementation: Pro-
vides the URL of the related scientific publication
or URL to the engine implementation binaries/-
code.

— Code availability: Indicates the disclosure of the
code to the public.

— Implementation and licensing: Defines the pro-
gramming language and specific license.

— Type of source selection: Defines the source se-
lection strategy used by the underlying federation
system.

— Type of join(s) used for data integration: Shows
the type of joins used to integrate sub-queries
results coming from different data sources.

— Use of cache: Shows the usage of cache for per-
formance improvement.

— Support for catalog/index update: Indicates the
support for automatic index/catalog update.

The questions from the requirements section assess
SPARQL query federation engines for the key fea-
tures/requirements that a developer would require from
such engines. These include:

— Result completeness: Given a SPARQL 1.0
query, can the federation engine retrieve all so-
lutions for the given query (100% recall) or is it
possible that it misses some of the solutions (for
example due to the source selection or using an
out-of-date index)?.

9The survey can be found athttp://goo.gl/iXvKVT

http://goo.gl/iXvKVT

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 5

— Privacy: Most federation approaches target open
data and do not provide means to take restrictions
(according to different user access rights) on data
access into account. Does the federation engine
have the capability of taking privacy information
(e.g., authentication, different graph-level access
rights for different users, etc.) into account?
Support for partial results retrieval: In some
cases the query results can be too large and result
completeness (i.e., 100% recall) may not be de-
sired, rather partial but fast and/or quality query
results are acceptable. Does the federation engine
provide such functionality where a user can spec-
ify a desired recall (less than 100%) as a thresh-
old for fast result retrieval? It is worth noticing
that this is different from limiting the results using
SPARQL LIMIT clause as it restricts the number
of results to some fixed value while in partial re-
sult retrieval the number of retrieved results are
relative to the actual total number of results.
Support for no-blocking operator/adaptive
query processing: SPARQL endpoints are some-
times blocked or down or exhibit high latency.
Does the federation engine support non-blocking
joins (where results are returned based on the or-
der in which the data arrives, not in the order in
which data being requested)?

Support for provenance information: Usually,
SPARQL query federation systems integrate re-
sults from multiple SPARQL endpoints without
any provenance information, such as how many
results were contributed by a given SPARQL end-
point or which of the results are contributed by
each of the endpoint. Does the federation engine
provide such provenance information?

Query runtime estimation: In some cases a
query may have a longer runtime (e.g., in the order
of minutes). Does the federation engine provide
means to approximate and display (to the user) the
overall runtime of the query execution in advance?
Duplicate detection: Due to the decentralized
architecture of Linked Data Cloud, a sub-query
might retrieve results that were already retrieved
by another sub-query. For some applications, the
former sub-query can be skipped from submission
(federation) as it will only produce overlapping
triples. Does the federation engine provide such a
duplicate-aware SPARQL query federation? Note
that this is the duplicate detection before sub-query
submission to the SPARQL endpoints and the aim

is to minimize the number of sub-queries submit-
ted by the federation engine.

— Top-K query processing: Is the federation engine
able to rank results based on the user’s preferences
(e.g., his/her profile, his/her location, etc.)?

The supported SPARQL clauses section assess exist-
ing SPARQL query federation engines w.r.t. the list of
supported SPARQL clauses. The list of the SPARQL
clauses is mostly based on the characteristics of the
BSBM benchmark queries [6]. The summary of the
used SPARQL clauses can be found in Table 3]

The survey was open and free for all to participate
in. To contact potential participants, we used Google
Scholar to retrieve papers that contained the keywords
SPARQL4nd query federation: After a manual filter-
ing of the results, we contacted the main authors of
the papers and informed them of the existence of the
survey while asking them to participate. Moreover, we
sent messages to the W3C Linked Open Data mailing
lis and Semantic Web mailing lis with a request to
participate. The survey was opened for two weeks.

3.2. Discussion of the survey results

Based on our survey results[ﬂ existing SPARQL
query federation approaches can be divided into three
main categories (see Table|I])

Query federation over multiple SPARQL endpoints:
In this type of approaches, RDF data is made available
via SPARQL endpoints. The federation engine makes
use of endpoint URLSs to federate sub-queries and col-
lect results back for integration. The advantage of this
category of approaches is that queries are answered
based on original, up-to-date data with no synchroniza-
tion of the copied data required [L0]. Moreover, the ex-
ecution of queries can be carried out efficiently because
the approach relies on SPARQL endpoints. However,
such approaches are unable to deal with the data pro-
vided by the whole of LOD Cloud because sometimes
data is not exposed through SPARQL endpoints.

Query federation over Linked Data: This type of ap-
proaches relies on the Linked Data principleﬂ for
query execution. The set of data sources which can
contribute results is determined by using URI lookups

]Opublic—lod@w3.org

Wsemantic-web@w3.org

12 Available at/ht tp: //goo.gl/CNWSUC

Bhttp://www.w3.org/DesignIssues/LinkedData.
html

public-lod@w3.org
semantic-web@w3.org
http://goo.gl/CNW5UC
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

6 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

Table 1

Overview of implementation details of federated SPARQL query
engines (SEF = SPARQL Endpoints Federation, DHTF = DHT Fed-
eration, LDF = Linked Data Federation, C.A. = Code Availability,
A.G.PL. Affero General Public License, L.G.P.L. = Lesser General
Public License, S.S.T. = Source Selection Type, L.U. = Index/cat-
alog Update, (A+I) = SPARQL ASK and Index/catalog, (C+L) =
Catalog and online discovery via Link-traversal), VENL = Vectored
Evaluation in Nested Loop, NA = Not Applicable

Systems Category | C.A | Implementation Licencing S.S.T Join Type Cache | LU
FedX [27] SEF v Java GNU A.G.PL index-free bind (VENL) v NA
LHD [31] SEF v Java MIT hybrid (A+I) hash/ bind X X
SPLENDID [7] SEF v Java L.G.PL hybrid (A+I) hash/ bind X X
FedSearch [3] SEF X Java GNU A.G.PL | hybrid (A+D) bind, pull based rank v NA
GRANATUM ([11] SEF X Java yet to decide index only nested loop X X
Avalanche [4] SEF X Python, C, C++ yet to decide index only distributed, merge v X
DAW [23] SEF X Java GNU G.PL hybrid (A+I) | based on underlying system v X
ANAPSID [1] SEF v Python GNU G.PL hybrid (A+I) AGJ, ADJ X v
ADERIS [16] SEF v Java Apache Index only index-based nested loop X X
DARQ [20] SEF v Java GPL Index only nested loop, bound X X
LDQPS [14] LDF X Java Scala hybrid (C+L) symmetric hash X X
SIHJoin [15] LDF X Java Scala hybrid (C+L) symmetric hash X X
WoDQA [2] LDF v Java GPL hybrid (A+I) nested loop, bound v v
Atlas [13] DHTF v Java GNU L.G.PL Index only SQLite X X

during the query execution itself. Query federation over
Linked Data does not require the data providers to pub-
lish their data as SPARQL endpoints. Instead, the only
requirement is that the RDF data follows the Linked
Data principles. A downside of these approaches is that
they are less time-efficient than the previous approaches
due to the URI lookups they perform.

Catalog/index-free solutions: In these approaches,
the query federation is performed without using any
stored data summaries. The data source statistics can be
collected on the fly before the query federation starts.
This approach promises that the results retrieved by the
engine are complete and up-to-date. However, it may
increase the query execution time, depending on the
extra processing required for collecting and processing
Query federation on top of Distributed Hash Tables: on-the-fly statistics.
This type of federation approaches stores RDF data on
top of Distributed Hash Tables (DHTs) and use DHT
indexing to federate SPARQL queries over multiple
RDF nodes. This is a space-efficient solution and can
reduce the network cost as well. However, many of the

LOD datasets are not stored on top of DHTSs.

Hybrid solutions: In these approaches, some of the
data source statistics are pre-stored while some are
collected on the fly, e.g., using SPARQL ASK queries.

Table[T]provides a classification along with the imple-
mentation details of the 14 systems which participated
in the survey. Overall, we received responses mainly for

SPARQL query federation approaches can be further
divided into three sub-categories that are orthogonal to
the ones used above (see Table|[T).

Catalog/index-assisted solutions: These approaches
utilize dataset summaries that have been collected in
a pre-processing stage. These approaches may lead to
more efficient query federation. However, the index
needs to be constantly updated to ensure complete re-
sults retrieval. The index size should also be kept to
a minimum to ensure that it does not significantly in-
crease the overall query processing costs.

systems which implemented the SPARQL endpoint fed-
eration and hybrid query processing paradigms in Java.
Only Atlas [13]] implements DHT federation whereas
WoDQA [2]], STHJoin [[15] and LDQPS [14]] implement
federation over linked data (LDF). Most of the surveyed
systems provides "General Public Licences" with the
exception of [14] and [15] which provides "Scala" li-
cence whereas the authors of [11] and [4] have not yet
decided which licence type will hold for their tools.
Only 36% of the surveyed systems implement cashing
mechanisms including [27]], [3]], [4], [23] and [2]. Only
[L] and [2] (14% of the considered systems) provide

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 7
Table 2
Survey outcome: System’s features (R.C. = Results Completeness, P.R.R. = Partial Results Retrieval, N.B.O. = No Blocking Operator, A.Q.P. =
Adaptive Query Processing, D.D. = Duplicate Detection, Q.R.E. = Query Runtime Estimation, Top-K.Q.P = Top-K query processing)
Systems R.C. P.R.R. N.B.O/A.Q.P. D. D. Privacy Provenance Q.R.E Top-K.Q.P
FedX v X v X X X X X
DHT X X P partial X X X X
LHD X X v X X X X X
SPLENDID x X X X X X X X
FedSearch v X v X X X X X
GRANATUM X X v X partial partial X X
Avalanche X v v partial X X X X
DAW X v v v X X X X
LDQPS X X v X X X X X
SIHJoin X X v X X X X X
ANAPSID X X v X X X X X
ADERIS X X v X X X X X
QWIDVD v X X X X X X X
DARQ X X X X X X X X
Table 3
Survey outcome: System’s Support for SPARQL Query Constructs (QP=Query Predicates, QS=Query Subjects)
SPARQL Cluase | FedX | DHT | LHD | SPLENDID | FedSearch | GRANATUM | Avalanche | DAW | LDQPS | SIHJoin | ANAPSID | ADERIS | QWIDVD | DARQ
SERVICE v X X X v v v v X X v X v X
FILTER v 4 v v v v X 4 X X 4 v v v
Unbound QP v v v v v v v v v v v v v X
Unbound QS v v v v v v v 4 v v 4 v v 4
OPTIONAL v X v v v v X v X X v X v v
DISTINCT v v v v v v v v X X v X v v
ORDER BY v X v v v v X 4 X X 4 X v v
UNION v v v v v v X v X X v X v v
NEGATION v X v v v v X 4 X X X X v v
REGEX v X v X v v X v X X v v v v
LIMIT v X v v v v v v X X v X v v
CONSTRUCT v X v X v v X v X X X X v X
DESCRIBE X X X X X v X X X X X X 4 X
ASK v X v X v 4 X v X X X X v X

support for catalog/index update whereas 14% do not
require this mechanism by virtue of being index/catalog-
free approaches.

Table [2] summarizes the survey outcome w.r.t. differ-
ent features supported by systems. Only 21% of the sys-
tems ([27]], [3] and QWIDVD) claim the completeness
of the results and only Avalanche [4] and DAW [23]]
support partial results retrieval for their implementa-
tions. 71% of the considered systems support adaptive
query processing with DHT, SPLENDID, QWIDVD
and DARQ being the only systems that do not support
this paradigm. Only DAW [23]] supports Duplicate De-
tection Mechinism whereas DHT and Avalanche [4]
claim to support partial duplicate detection. Granatum
[[L1]] is the only system that implements privacy and
provenance. None of the considered systems implement
top-k query processing or query runtime estimation.

Table [3]lists SPARQL clauses supported by the each
of 14 systems. GRANATUM and QWIDVD are only
two systems that support all of the query constructs

used in our survey. It is important to note that most of
these query constructs are based on query characteris-
tics defined in BSBM.

4. Details of selected systems

After having given a general overview of SPARQL
query federation systems, we present six SPARQL end-
points federation engines [[74200270131)16[] with public
implementation that were used within our experiments.
We begin by presenting an overview of key concepts
that underpin federated query processing and are used
in the performance evaluation. We then use these key
concepts to present the aforementioned six systems
used in our evaluation in more detail.

4.1. Federated query processing

Given a SPARQL query g € @, where @ is a set
of queries, the first step of federated SPARQL query

8 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

processing is to perform triple pattern-wise source se-
lection or source selection for short. The goal of the
triple pattern-wise source selection is to identify the set
of data sources that contain relevant results against in-
dividual triple patterns of the query [23]]. We call these
sources relevant (also called capable) for the given
triple pattern. The total number of triple pattern-wise
selected sources /N, is the sum of the number of sources
selected for individual query triple pattern. Later, in
our evaluation, we will see that N, has a direct impact
on the query execution time. The source selection in-
formation is then used to decompose ¢ into multiple
sub-queries. Each sub-query is optimized to generate
an execution plan. The sub-queries are forwarded to
the relevant data sources according to the optimization
plan. The results of each sub-query execution are finally
joined to generate the result set of q.

4.2. Overview of the selected approaches

DARQ [20] makes use of an index known as ser-
vice description to perform source selection. Each ser-
vice description provides a declarative description of
the data available in a data source, including the corre-
sponding SPARQL endpoint along with statistical in-
formation. The source selection is performed by using
distinct predicates (for each data source) recorded in the
index as capabilities. The source selection algorithm
used in DARQ for a query simply matches all triple
patterns against the capabilities of the data sources.
The matching compares the predicate in a triple pat-
tern with the predicate defined for a capability in the
index. This means that DARQ is only able to answer
queries with bound predicates. DARQ combines ser-
vice descriptions, query rewriting mechanisms and a
cost-based optimization approach to reduce the query
processing time and the bandwidth usage.

SPLENDID [7] makes use of VoiD descriptions as
index along with SPARQL ASK queries to perform the
source selection step. A SPARQL ASK query is used
when any of the subject or object of the triple pattern is
bound. This query is forwarded to all of the data sources
and those sources which pass the SPARQL ASK test
are selected. A dynamic programming strategy [29] is
used to optimize the join order of SPARQL basic graph
patterns.

FedX [27] is an index-free SPARQL query federa-
tion system. The source selection relies completely on
SPARQL ASK queries and a cache. The cache is used
to store recent SPARQL ASK operations for relevant
data source selection. As shown by our evaluation, the

use of this cache greatly reduces the source selection
and query execution time.

The publicly available implementation of LHD [31]]
only makes use of the VoiD descriptions to perform
source selection. The source selection algorithm is sim-
ilar to DARQ. However, it also supports query triple
patterns with unbound predicates. In such cases, LHD
simply selects all of the available data sources as rele-
vant. This strategy often overestimates the number of
capable sources and can thus lead to high overall run-
times. LHD performs a pipeline hash join to integrate
sub-queries in parallel.

ANAPSID [1]] is an adaptive query engine that adapts
its query execution schedulers to the data availability
and runtime conditions of SPARQL endpoints. This
framework provides physical SPARQL operators that
detect when a source becomes blocked or data traffic
is bursty. The operators produce results as quickly as
data arrives from the sources. ANAPSID makes use of
both a catalog and ASK queries along with heuristics
defined in [17] to perform the source selection step.
This heuristic-based source selection can greatly reduce
the total number of triple pattern-wise selected sources.

Finally, ADERIS [16] is an index-only approach for
adaptive integration of data from multiple SPARQL
endpoints. The source selection algorithm is similar
to DARQ’s. However, this framework also selects all
of the available data sources for triple patterns with
unbound predicates. ADERIS does not support several
SPARQL 1.0 clauses such as UNION and OPTIONAL.
For the data integration, the framework implements the
pipelined index nested loop join operator.

5. Evaluation

In this section we present the data and hardware used
in our evaluation. Moreover, we explain the key metrics
underlying our experiments as well as the correspond-
ing results.

5.1. Experimental setup

We used two settings to evaluate the selected feder-
ation systems. Within the first evaluation, we used the
query execution time as central evaluation parameter
and made use of the FedBench [25] federated SPARQL
querying benchmark. In the second evaluation, we ex-
tended both FedBench and SP?Bench to simulate a
highly federated environment. Here, we focused espe-
cially on analyzing the effect of data partitioning on the

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 9

Table 4

our knowledge) the first evaluation of SPARQL query

SPARQL endpoints specification used in both FedBech and SlicedBench federation systems on the complete benchmark data of

EP CPU(GHz) RAM Hard Disk
1 2.2,i3 4GB 300 GB

2 2.9,i7 16 GB 256 GB SSD
3 2.6,i15 4GB 150 GB

4 2.53,i5 4GB 300 GB

5 23,15 4GB 500 GB

6 2.53,i5 4GB 300 GB

7 2.9,i7 8 GB 450 GB

8 2.6,15 8 GB 400 GB

9 2.6,15 8 GB 400 GB

10 29,17 16 GB 500 GB

performance of federation systems. We call this exten-
sion SlicedBench as we created slices of each original
datasets and distributed them among data sources. All
of the selected performance metrics (explained in Sec-
tion[5.2) remained the same for both evaluation frame-
works. All experiments were carried out on a system
with a 2.60 GHz i5 processor, 4GB RAM and 500GB
hard disk. We executed each query 10 times and present
the average values in the results. All of the data used in
both evaluations can be downloaded from the project
websiteE'] The specification of the SPARQL endpoints
used in both evaluations is given in Table]

5.1.1. First setting: FedBench

FedBench is commonly used to evaluate performance
of the SPARQL query federation systems [2707I17/23]].
The benchmark is explicitly designed to represent
SPARQL query federation on a real-world datasets. The
datasets can be varied according to several dimensions
such as size, diversity and number of interlinks. The
benchmark queries resemble typical requests on these
datasets and their structure ranges from simple star [23]]
and chain queries to complex graph patterns. The de-
tails about the FedBench datasets used in our evalua-
tion along with some statistical information are given
in Table

The queries included in FedBench are divided into
three categories: Cross-domain (CD), Life Sciences
(LS), and Linked Data (LD). The distribution of the
queries along with the result set sizes are given in Ta-
ble [6l Details on the datasets and various advanced
statistics are provided at the FedBench project pageE]

In this evaluation setting, we selected all queries
from CD, LS, and LD, thus performing (to the best of

Ynttps://code.google.com/p/fed-eval/
http://code.google.com/p/fbench/

FedBench. To ensure the reproducibility of our results
as well as the reliability of the endpoints, we conducted
our experiments on local copies of Virtuoso (version
20120802) SPARQL endpoints using the infrastructure
provided by FedBench. For each dataset, a separate
physical virtuoso server was created. To minimise the
network latency we used a dedicated local network. All
federation engines accessed the data sources via the
SPARQL protocol.

5.1.2. Second setting: Sliced Bench

As pointed out in [18]] the data partitioning can af-
fect the overall performance of SPARQL query feder-
ation engines. To quantify this effect, we created 10
slices of each of the 10 datasets given in Table[5]and
distributed this data across 10 local virtuoso SPARQL
endpoints (one slice per SPARQL endpoint). Thus, ev-
ery SPARQL endpoint contained one slice from each
of the 10 datasets. This creates a highly fragmented
data environment where a federated query possibly had
to collect data from all of the 10 SPARQL endpoints.
This characteristic of the benchmark stands in contrast
to FedBench where the data is not highly fragmented.
Moreover, each of the SPARQL endpoint contained a
comparable amount of triples (load balancing). To facil-
itate the distribution of the data, we used the Slice Gen-
erator tool employed in [23]]. This tool allows setting a
discrepancy across the slices, where the discrepancy is
defined as the difference (in terms of number of triples)
between the largest and smallest slice:

discrepancy = max |S;| — min |[S; 1
pancy 1§1',§M| d 1§j§M| il M

where S; stands for the i slice. The dataset D is

partitioned randomly among the slices in a way that
218 = |D| and Vivji # j — ||Si| =[Sl <

discrepancy.

Table [7|shows the discrepancy values used for slice
generation for each of the 10 datasets. Our discrepancy
value varies with the size of the dataset. For the query
runtime evaluation, we selected all of the seven queries
both from CD and LS. Furthermore, we selected five
queries from LD (2,4,6,10,11) and five from SP2Bench
given in Table [6} the reason for this selection was to
cover majority of the SPARQL query clauses and types
along with variable results size (from 1 to 40 million).
For each of the CD, LS, and LD queries used in Sliced-

https://code.google.com/p/fed-eval/
http://code.google.com/p/fbench/

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

Table 5
Datasets statistics used in our benchmarks. (*only used in
SlicedBench)
Collection Dataset version #triples | #subjects | #predicates | #objects | #types | #links
DBpedia subset 35.1 43.6M 9.50M 1063 13.6M 248 61.5k
GeoNames 2010-10-06 108M 7.48M 26 35.8M 1 118k
Cross LinkedMDB 2010-01-19 | 6.15M 694k 222 2.05M 53 63.1k
Domain Jamendo 2010-11-25 1.05M 336k 26 441k 11 1.7k
New York Times 2010-01-13 335k 21.7k 36 192k 2 31.7k
SW Dog Food 2010-11-25 104k 12.0k 118 37.5k 103 1.6k
KEGG 2010-11-25 1.09M 34.3k 21 939k 4 30k
Life ChEBI 2010-11-25 | 7.33M 50.5k 28 772k 1 -
Sciences Drugbank 2010-11-25 767k 19.7k 119 276k 8 9.5k
DBpedia subset 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k | 61.5k
SP2Bench* | SP2Bench 10M v1.01 10M 1.7M 77 5.4M 12 -
Table 6
Query characteristics, (#TP = Total number of Triple patterns, #Res = Total number of query results, *only used in SlicedBench).
Linked Data (LD) Cross Domain (CD) Life Science (LS) SP2Bench*
Query #TP #Res | Query #TP #Res | Query #TP #Res | Query #TP #Res
LD1 3 309 CDl1 3 90 LS1 2 1159 | SP2B-1 3 1
LD2 3 185 CD2 3 1 LS2 3 333 SP2B-2 10 500k
LD3 4 162 CD3 5 2 LS3 5 9054 | SP2B-4 8 40M
LD4 5 50 CD4 5 1 LS4 7 3 SP2B-10 656
LDS5 3 10 CD5 4 2 LS5 6 393 SP2B-11 1 10
LD6 5 11 CD6 4 11 LS6 5 28
LD7 2 1024 | CD7 4 1 LS7 5 144
LD8 5 22
LD9 3 1
LDI10 3 3
LDI11 5 239
Bench, the number of results remained the same as | Table7
given in Table [6] Analogously to FedBench, each of Dataset slices used in SlicedBench
the SlicedBench data source is a virtuoso SPARQL Collection #Slices Discrepancy
endpoint. DBpedia subset 3.5.1 10 280,000
GeoNames 10 600,000
5.2. Evaluation criteria LinkedMDB 10 100,000
Jamendo 10 30,000
We selected four metrics for our evaluation: (1) total New York Times 10 700
triple pattern-wise sources selected, (2) total number of SW Dog Food 10 200
SPARQL ASK requests used during source selection, KEGG 10 35,000
(3) source selection time (i.e. the time taken by the ChEBI 10 50,000
process in the first metric), and (4) query execution Drugbank 10 25,000
SP2Bench 10 150,000

time.

The total number of triple pattern-wise selected
sources for a query is calculated as follows: Let D; =
{81, 82 ...8m} be the set of sources capable of answer-
ing a triple pattern ¢tp; and M is the total number of

available (physical) sources. Then, for a query ¢ with
n triple patterns, {tp1, tps, ...tp, }, the total number
of triple pattern-wise sources is the sum of the magni-

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 11

SELECT o1, 02 D, = {sy, S, 54}
WHERE D, = {51, 53 S5 591
{ [Dy] =3

?s pl ?0l. //tp, | |D,|= 4

?s p2 ?02. //tp, | Total TP. Sources
}

[D,| +|D,]
7

Fig. 1. Total triple pattern-wise selected sources example. (TP. =
triple pattern-wise selected)

tude (] D;]) of capable sources set for individual triple
patterns. An example of the triple pattern-wise source
selection is given in Figure[T|considering there are three
sources capable of answering the first triple pattern ¢p,
and four sources capable of answering ¢ps summing up
to a total triple pattern-wise selected sources equal to
seven.

An overestimation of triple pattern-wise selected
sources increases the source selection time and thus the
the query execution time. Furthermore, such an over-
estimation increases the number of irrelevant results
which are excluded after joining the results of the dif-
ferent sources, therewith increasing both the network
traffic and query execution time. In the next section we
explain how such overestimations occur in the selected
approaches.

5.3. Experimental results

5.3.1. Triple pattern-wise selected sources

Table [§] shows the total number of triple pattern-
wise sources (TP sources for short) selected by each
approach both for the FedBench and SlicedBench
queries. ANAPSID is the most accurate system in terms
of TP sources followed by both FedX and SPLEN-
DID whereas similar results are achieved by the other
three systems, i.e., LHD, DARQ, and ADERIS. Both
FedX and SPLENDID select the optimal number of
TP sources for individual query triple patterns. This is
because both make use of ASK queries when any of the
subject or object is bound in a triple pattern. However,
they do not consider whether a source can actually con-
tribute results after performing a join between results
with other query triple patterns. Therefore, both can
overestimate the set of capable sources that can actually
contribute results. ANAPSID uses a catalog and ASK
queries along with heuristics [[17] about triple pattern
joins to reduce the overestimation of sources. LHD (the
publicly available version), DARQ, and ADERIS are
index-only approaches and do not use SPARQL ASK

queries when any of the subject or object is bound. Con-
sequently, these three approaches tend to overestimate
the TP sources per individual triple pattern. It is im-
portant to note that DARQ does not support queries
where any of the predicates in a triple pattern is un-
bound (e.g., CD1, LS2) and ADERIS does not support
queries which feature FILTER or UNION clauses (e.g.,
CD1, LS1, LS2, LS7). In case of triple patterns with
unbound predicates (such as CD1, LS2) both LHD and
ADERIS simply select all of the available sources as
relevant. This overestimation can significantly increase
the overall query execution time.

The effect overestimation can be clearly seen by tak-
ing a fine-granular look at how the different systems
process FedBench query CD3 given in Listing[I] The
optimal number of TP sources for this query is 5. This
query has a total of five triple patterns. To process this
query, FedX sends a SPARQL ASK query to all of the
10 benchmark SPARQL endpoints for each of the triple
pattern summing up to a total of 50 (5%10) SPARQL
ASK operations. As a result of these operations, only
one source is selected for each of the first four triple pat-
tern while eight sources are selected for last one, sum-
ming up to a total of 12 TP sources. SPLENDID utilizes
its index and ASK queries for the first three and index-
only for last two triple pattern to select exactly the same
number of sources selected by FedX. LHD, ADERIS,
and DARQ only makes use of predicate lookups in their
catalogs to select nine sources for the first, one source
each for the second, third, fourth, and eighth for the last
triple pattern summing up to a total of 20 TP sources.
The later three approaches overestimate the number of
sources for first triple pattern by 8 sources. This is due
to the predicate rdf : type being likely to be used in
all of RDF datasets. However, triples with rdf : type
as predicate and the bound object dbp : President
are only contained in the DBpedia subset of FedBench.
Thus, the only relevant data source for the first triple
pattern is DBpedia subset. Interestingly, even FedX and
SPLENDID overestimate the number of data sources
that can contribute for the last triple pattern. There are
eight FedBench datasets which contain ow! : sameAs
predicate. However, only one (i.e., New York Times)
can actually contribute results after a join of the last two
triple patterns is carried out. ANAPSID makes use of a
catalog and SPARQL-ASK-assisted Star Shaped Group
Multiple (SSGM) endpoint selection heuristic [[17] to
select the optimal (i.e., five) TP sources for this query.
However, ANAPSID also overestimates the TP sources
in some cases. For query CD6 of FedBench, ANAPSID
selected a total of 10 TP sources while only 4 is the

12 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

Table 8

Comparison of triple pattern-wise total number of sources selected
for FedBench and SlicedBench. NS stands for “not supported”, RE
for “runtime error”, SPL for SPLENDID, ANA for ANAPSID and
ADE for ADERIS. Key results are in bold.

FedBench SlicedBench

Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE
CD1 11 11 28 NS 3 NS CD1 17 17 30 NS 8 NS
CD2 3 3 10 10 3 10 CD2 12 12 24 24 12 24
CD3 12 12 20 20 5 20 CD3 31 31 38 38 31 38
CD4 19 19 20 20 5 20 CD4 32 32 34 34 32 34
CD5 11 11 11 11 4 11 CD5 19 19 19 19 9 19
CDé6 9 9 10 10 10 10 CD6 31 31 40 40 31 40
CD7 13 13 13 13 6 13 CD7 40 40 40 40 40 40
LS1 1 1 1 1 1 NS LS1 3 3 3 3 3 NS
LS2 11 11 28 NS 12 NS LS2 16 16 30 NS 16 NS
LS3 12 12 20 20 5 20 LS3 19 19 26 26 19 26
LS4 7 7 15 15 7 15 LS4 25 25 27 27 14 27
LS5 10 10 18 18 7 18 LS5 30 30 37 37 20 37
LS6 9 9 17 17 5 17 LS6 19 19 27 27 17 27
LS7 6 6 6 6 7 NS LS7 13 13 13 13 13 NS
LDl 8 8 11 11 3 11 LD2 20 20 28 28 20 28
LD2 3 3 3 3 3 3 LD4 30 30 47 47 5 47
LD3 16 16 16 16 4 16 LD6 38 38 38 38 38 38
LD4 5 5 5 5 5 LDI10 23 23 23 23 23 23
LD5 5 5 13 13 3 13 LDI11 31 31 32 32 31 32
LD6 14 14 14 14 14 14 SP2B-1 10 10 28 28 RE 28
LD7 3 3 4 4 2 4 SP2B-2 90 90 92 92 RE NS
LD8 15 15 15 15 9 15 SP2B-4 62 62 66 66 RE NS
LD9 3 3 6 6 3 6 SP2B-10 7 7 12 NS RE 12
LDI10 10 10 11 11 3 11 SP2B-11 10 10 10 10 RE NS
LDI11 15 15 15 15 5 15

Total 242 242 336 283 134 273 628 628 764 692 382 520

optimal sources that actually contributes to the final
result set. This behavior leads us to our first insight:
Optimal TP source selection is not sufficient to detect
the optimal set of sources that should be queried.

In the SlicedBench results, we can clearly see the TP
values are increased for each of the FedBench queries
which mean a query spans more data sources, thus sim-
ulating a highly fragmented environment suitable to }

SELECT ?president ?party ?page
WHERE {

?president rdf:type dbp:President
?president dbp:nationality dbp:US
?president dbp:party ?party

?7x nyt:topicPage ?page

7x owl#sameAs ?president

test the federation system for effective parallel query
processing. The highest number of TP sources are re-
ported for the second SP?Bench query where up to a
total of 92 TP sources are selected. This query con-
tains 10 triple patterns and index-free approaches (e.g.,
FedX) need 100 (10*10) SPARQL ASK queries to per-

Listing 1: FedBench CD3. Prefixes are ignored for sim-
plicity

form the source selection operation. Using SPARQL
ASK queries with no caching for such a highly fed-
erated environment can be very expensive. From the

results shown in Table [§] it is noticeable that hybrid
(catalog + SPARQL ASK) source selection approaches
(ANAPSID, SPLENDID) perform an more accurate

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 13

Table 9

Comparison of number of SPARQL ASK requests used for source selection both in FedBench and SlicedBench. NS stands for “not supported”,
RE for “runtime error”, SPL for SPLENDID, ANA for ANAPSID and ADE for ADERIS. Key results are in bold.

FedBench SlicedBench
Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE
CD1 27 27 0 NS 20 NS CD1 30 30 0 NS 25 NS
CD2 27 18 0 0 1 0 CD2 30 20 0 0 29 0
CD3 45 18 0 0 2 0 CD3 50 20 0 0 46 0
CD4 45 9 0 0 3 0 CD4 50 10 0 0 34 0
CD5 36 9 0 0 1 0 CD5 40 10 0 0 14 0
CD6 36 9 0 0 11 0 CD6 40 10 0 0 40 0
CD7 36 9 0 0 5 0 CD7 40 10 0 0 40 0
LS1 18 0 0 0 0 NS LS1 20 0 0 0 3 NS
LS2 27 27 0 NS 30 NS LS2 30 30 0 NS 30 NS
LS3 45 9 0 0 13 0 LS3 50 10 0 0 30 0
LS4 63 18 0 0 1 0 LS4 70 20 0 0 15 0
LS5 54 9 0 0 4 0 LS5 60 10 0 0 27 0
LS6 45 18 0 0 13 0 LS6 50 20 0 0 26 0
LS7 45 0 0 2 NS LS7 50 10 0 0 12 NS
LDl 27 0 0 1 0 LD2 30 10 0 0 29 0
LD2 27 0 0 0 0 LD4 50 20 0 0 25 0
LD3 36 0 0 2 0 LD6 50 10 0 0 38 0
LD4 45 18 0 0 0 0 LDI10 30 10 0 0 23 0
LD5 27 18 0 0 2 0 LDI11 50 10 0 0 32 0
LD6 45 0 0 12 0
LD7 18 0 0 4 0 SP2B-1 30 20 0 0 RE 0
LD8 45 0 0 7 0 SP2B-2 100 10 0 0 RE NS
LD9 27 18 0 0 3 0 SP2B-4 80 20 0 0 RE NS
LDI10 27 0 0 4 0 SP2B-10 10 10 0 NS RE 0
LDI11 45 0 0 2 0 SP2B-11 10 0 0 RE NS
Total 918 315 0 0 143 0 1050 330 0 518 0

source selection than index/catalog-only approaches
(i.e., DARQ, LHD, and ADERIS).

5.3.2. Number of SPARQL ASK requests

Table 9] shows the total number of SPARQL ASK
requests used to perform source selection for each of
the queries of FedBench and SlicedBench. Index-only
approaches (DARQ, ADERIS, LHD) only make use of
their index to perform source selection. Therefore, they
do not necessitate any ASK requests to process queries.
As mention before, FedX only makes use of ASK re-
quests (along with a cache) to perform source selection.
The results presented in Table [0 are for FedX(cold or
first run), where the FedX cache is empty. This is basi-
cally the lower bound of the performance of FedX. For
FedX(100% cached), the complete source selection is
performed by using cache entries only. Hence, in that
case, the number of SPARQL ASK requests is zero for
each query. This is the upper bound of the performance

of FedX on the data at hand. The results clearly shows
that index-free (e.g., FedX) approaches can be very ex-
pensive in terms of SPARQL ASK requests used. This
can greatly affect the source selection time and over-
all query execution time if no cache is used. For Fed-
Bench, ANAPSID is the most efficient hybrid approach
in terms of SPARQL ASK requests consumed during
source selection. On the other hand, SPLENDID is the
most efficient hybrid approach for SlicedBench. The
reason for higher number of ASK requests is due to the
logic behind SSGM heuristics [17] used in ANAPSID’s
source selection algorithm. This heuristic computes the
set of namespaces and predicates used in data sources
(SPARQL endpoints in our case). For SlicedBench, all
data sources are likely contains the same set of distinct
predicates and namespaces (because each data source
contains at least one slice from each data dump). SSGM
heuristics are bound to perform poorly when faced with
such a data distribution.

14 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

It is important to note that ANAPSID combines more
than one triple pattern into a single SPARQL ASK
query. The time required to execute these more complex
SPARQL ASK operations are generally higher than
SPARQL ASK queries having a single triple pattern
as used in FedX and SPLENDID. Consequently, even
though ANAPSID require less SPARQL ASK requests,
its source selection time is greater than all other selected
approaches. This behavior will be further elaborated
upon in the subsequent section. Tables [§ and 0] clearly
show that using SPARQL ASK queries for source selec-
tion leads to an efficient source selection in terms of TP
sources selected. However, in the next section we will
see that they increase both source selection and over-
all query runtime. A smart source selection approach
should select fewer number of TP sources while using
minimal number of SPARQL ASK requests.

5.3.3. Source selection time

Figure [2] shows the source selection time for each
of the selected approach and for both FedBench and
SlicedBench. For ANAPSID, the results presented in
this figure shows the query decomposition time instead
of pure source selection time. This is because the source
selection and query decomposition phases are intermin-
gled in ANAPSID. Thus, it was not possible to get the
pure source selection tim

Compared to the TP results, the index-only ap-
proaches require less time than the hybrid approaches
even though they overestimated the TP sources in com-
parison with the hybrid approaches. This is due to index-
only approaches not having to send any SPARQL ASK
queries during the source selection process. The index
being usually pre-loaded into the memory before the
query execution means that the runtime the predicate
look-up in index-only approaches is minimal. Conse-
quently, we observe a trade-off between the intelligent
source selection and the time required to perform this
process. To reduce the costs associated with ASK oper-
ations, FedX implements a cache to store the results of
the recent SPARQL ASK operations. Figure [2] shows
that source selection time of FedX with cached entries
is significantly smaller than FedX’s first run with no
cached entries.

As expected the source selection time for FedBench
queries is smaller than that for SlicedBench, particu-
larly in hybrid approaches. This is because the number
of TP sources for SlicedBench queries are increased

16This issue was confirmed by the corresponding authors of ANAP-
SID.

due to data partitioning. Consequently, the number of
SPARQL ASK requests grows and increases the overall
source selection time. As mentioned before, an overesti-
mation of TP sources in highly federated environments
can greatly increase the source selection time. For ex-
ample, consider query LD4. SPLENDID selects the
optimal (i.e., five) number of sources for FedBench and
the source selection time is 218 ms. However, it over-
estimates the number of TP sources for SlicedBench
by selecting 30 instead of 5 sources. As a result, the
source selection time is significantly increased to 1035
ms which directly affects the overall query runtime. The
effect of such overestimation is even worse in SP2B-2
and SP2B-4 queries for the SlicedBench.

Lessons learned from the evaluation of the first three
metrics is that using ASK queries for source selec-
tion leads to smart source selection in term of total TP
sources selected. On the other hand, they significantly
increase the overall query runtime where no caching is
used. FedX makes use of an intelligent combination of
parallel ASK query processing and caching to perform
the source selection process. This parallel execution
of SPARQL ASK queries is more time-efficient than
the ASK query processing approaches implemented
in both ANAPSID and SPLENDID. Nevertheless, the
source selection of FedX could be improved further
by using heuristics such as ANAPSID’s to reduce the
overestimation of TP sources.

5.3.4. Query execution time

Figure [3[shows the query execution time for both
experimental setups. FedX(cached) outperforms all of
the remaining approaches in majority of the queries.
FedX(cached) is followed by FedX(first run) which
is further followed by SPLENDID, LHD, ANAPSID,
ADERIS, and DARQ. Deciding between DARQ and
ADRERIS is a difficult task because the latter does not
produce results for most queries. Several factors can in-
fluence the overall query execution time of a federated
engine, including the join type, the join order selection,
the level of parallelism as well as block and buffer sizes.
However, one of the main reasons for FedX’s small
query execution times is the source selection caching
which leads to 49% improvement in the average query
execution for FedBech and 52% in SlicedBench. Hence,
our results suggest that a smart source selection, both
in term of TP sources and execution time, is a key met-
ric to be considered while developing SPARQL query
federation systems. This point is further supported by a
comparison of the the pure (excluding source selection

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 15

® FedX(first run) ® FedX (cached) ® SPLENDID MLHD m DARQ ® ANAPSID B ADERIS FedX(first run) M FedX (cached) ® SPLENDID MLHD ®DARQ M ANAPSID M ADERIS
1.E+03 1.E404
o o
& $ 1.E+03
B1E+02 ®
m =
< £ 1p02
£ 3
£
S 1E+01 - g -
5 ol o k-1 2l e
g £fE 2 18001 SHE
a = 3 ag
H B 2
L.E+00 1.E+00
€1 €b2 co3 €4 €5 coé o7 b1 cp2 o3 cD4 s D6 cp7
(a) FedBench: CD queries (b) SlicedBench: CD queries
= FedX(first run) ® FedX (cached) & SPLENDID ®LHD ®DARQ & ANAPSID ® ADERIS m FedX(first run) M FedX (cached) ® SPLENDID WLHD mDARQ ®ANAPSID M ADERIS
1.E+03 1.E+04
o 2
a 8 1E+03
& 1E+02 K
= £ 1402
2 @
£ £
= B
§ 16401 . < 5 o i
3 £ £ £ 2 1E01 £ e £
3 g a g 2 A ER g
I Hil=: : JE ik Al i E
1] k] S 5 ol s i
1.E+00 = = = 1.E+00 == =
Ls1 Ls2 Ls3 Ls4 LS5 LS6 Ls7 Is1 Ls2 L3 Ls4 LS5 Ls6 Ls7
(c) FedBench: LS queries (d) SlicedBench: LS queries
m FedX(first run) M FedX (cached) ® SPLENDID M LHD ®DARQ ® ANAPSID M ADERIS = FedX(first run) M FedX (cached) = SPLENDID ®LHD ®DARQ = ANAPSID M ADERIS
1.E+04 1.E+04
o K
8 1.E+03 8 1.£+03
] H
& &
Eirm £
o 3
£ £
c <
H H 5 53 53 s 53
3 1.E+01 3 1.E+01 2 S 2L gc eg
% 2 M o8 °2 20 o2
B E £5 gs st g
I‘E H 2 2t i
> S50 =E<} > =1
1E+00 1E+00 « == 2= 2 22
LD2 LD4 LD6 LD10 LD11 SP2B-1 SP2B-2 SP2B-4 SP2B-10 SP2B-11
(e) SlicedBench: LD queries (f) SlicedBench: SP>Bench queries
o FedX(first run) ® FedX (cached) ®mSPLENDID ®LHD ®DARQ ® ANAPSID ®mADERIS
1.E+04
1.E+03
<
©
Q
w
g
T 1E+02
w
£
Q
£
=]
§ 1E+01
: I
=]
o
[
X
1.E+00
LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10 LD11

(g) FedBench: LD queries

Fig. 2. Comparison of source selection time for FedBench and SlicedBench. The results for ANAPSID are based on query decomposition phase

16 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

m FedX(first run) M FedX (cached) ®SPLENDID MLHD mDARQ & ANAPSID M ADERIS 1 Ems'FEG’((fifSt run) ® FedX (cached) = SPLENDID mLHD ®DARQ = ANAPSID ® ADERIS
1.E+06 '
1.E405
LE+05
@ 3 1E+04
8 16+04 g LB
g 2
3 1E403 ; g LEw03
£ 2 £ £
o 2 0 2
E 16402 . £ E 1E+02 S
= s g £ g £ B S o2
£ 5 " s e LS 2 s, 5 - No
g LEs01 2 E 3 (|| E 3 3 e 13 g s 3E
x = ¢ k=1 = o o P = E=2
a 3 g H (|| E H || E 4 55 5 H || 5E
1.E+00 = = = . E LE+00 = = =
D2 D3 cpa D5 D6 co7 D2 D3 cD4 D5 D6 o7
(a) FedBench: CD queries (b) SlicedBench: CD queries
& FedX(first run) m FedX (cached) ® SPLENDID M LHD m DARQ & ANAPSID M ADERIS e OS'FE"X(""S‘ run) M FedX (cached) = SPLENDID MLHD DARQ =ANAPSID M ADERIS
+
1.E+07 .
1.E+06 1.E405
o
s 1.E+05 8 1e00
2 0
= LE04 2
= 9 1.E+03
5 H
% 16403 E
E, o
g o L - L £ 1E+02 .
£ 1E+02 2 S S S 2 pd i 38 s s 5 3
= £ = = = I H = i £ £ £ £
5 2 5 o o © 2 5 2 &g = H o o B E
£ 16201 S 3 £ £ E g gleo BB 3 £ £ ecls
¢ 5 g 5 5 5 - : ¢ £ E 2 R
£ £ S S E
“ 1400 = = = L6400 2 = 2 2 E 5
Ls1 Ls3 Ls4 Lss Lse Ls7 Ls1 Ls2 Ls3 Ls4 LS5 L6 Ls7
(c) FedBench: LS queries (d) SlicedBench: LS queries
m FedX(first run) m FedX (cached) m SPLENDID m LHD ® DARQ & ANAPSID ® ADERI o FedX(first run) ® FedX (cached) ® SPLENDID m LHD ® DARQ ® ANAPSID m ADERIS
1.E+06 1.E+06
1.E+05 1.E+05
@
] 2
216404 8 1E+04
=]
= g o
) = . 5 2
El,E+03 © 1.E+03 2 I = o]
1 £ o o 2 s e
et Q fy
£ @ £ sE v . £
S1LE+02 _ _ - o ELE+02 = ot E £ S5
S S S S e T 25 828 2% 25 32
= 5 5 5 s L 5 [} e 25 2
81.6401 o o =1 5 g 3 o 5 g 523 = g
2t +0 £ £ 3lE 3 3 31.E+01 g 3 2 3 g.w 3 g 3
E £ 4 5 g g | | g 2k gz 5
= = = = oz = 2 =
1.E+00 = 16400 MEEEE < HEN- HEE- = HESE- - EEEES
LD2 LD4 LD6 LD10 LD11 SP2B-1 SP2B-2 SP2B-4 SP2B-10 SP2B-11
(e) SlicedBench: LD queries (f) SlicedBench: SP?Bench queries
1.E+05 o FedX(first run) ®FedX (cached) mSPLENDID mLHD mDARQ mANAPSID mADERIS

1.E+04

1.E+03

1.E+02
1.E+01
1.E+00
LD1 LD2 LD3 LD4

Execution time (msec) log scale

I]

[

| —

[—

N

| —

I]
Runtlme error

LD5 LD LD7 LD8 LD9

" "

s s

@ @ =

[= 3

£ S £ 5

g = B £

o = =

6 LD10 LD11

(g) FedBench: LD queries

Fig. 3. Comparison of query execution time for FedBench and SlicedBench

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 17

o FedX(first run) ® FedX (cached)

1000000
@

8 100000 1

1]

)

g 10000

£

@ 1000

£

=

c

0 100

-

=3

o

2

:) || | | |
(]

[T

I

g 1

< CD LS LD Overall

FedBench

WSPLENDID ®LHD ®ANAPSID mDARQ
S
]
[}
€
€
p=}
oc
CcD LS LD SP2Bench Overall
SlicedBench

Fig. 4. Overall performance evaluation (ms)

time) query execution time of FedX and SPLENDID
(ref. Section[6).

The effect of the overestimation of the TP sources
on query execution can be observed in majority of the
queries for different systems. For instance, for LD4
query during FedBench SPLENDID selects optimal
number of TP sources (i.e., five) and the query execu-
tion time is 231 ms of which 218 ms are used for se-
lecting sources. For SlicedBench, SPLENDID overesti-
mates the TP sources by 25 (i.e., selects 30 instead of
5 sources), resulting in a query execution of 2155 ms,
of which 1035 ms are spent in source selection process.
Consequently, the pure query execution time of this
query is only 13 ms for FedBench (231-218) and 1120
ms (2155-1035) for SlicedBench. This means that an
overestimation of TP sources does not only increase the
source selection time but also produces results which
are excluded after performing join operation between
query triple patterns. These retrieval of irrelevant re-
sults increases the network traffic and thwarts the query
execution plan. For example, both FedX and SPLEN-
DID considered 285412 irrelevant triples due to the
overestimation of 8 TP sources only for owl : sameAs
predicate in CD3 of FedBench. Another example of TP
source overestimation can seen in CD1, LS2. LHD’s
overestimation of TP sources on SlicedBench (e.g., 22
for CD1, 14 for LS2) leads to its query execution time
jumping from 141 ms to 40738 ms for CD1 and 211 ms
to 33868 ms for LS2.

In queries such as CD4, CD6, LS3, LD11 and SP2B-
11 we observe that the query execution time for DARQ
is more than 2 minutes. In some cases, it even reaches

the 30 minute timeout used in our experiments. The rea-
son for this behaviour is that the simple nested loop join
it implements overfloods SPARQL endpoints by submit-
ting too many endpoint requests. FedX overcomes this
problem by using a block nested loop join where the
number of endpoints requests are dependent upon the
block size. Furthermore, we can see that many systems
do not produce results for SP2Bench queries. A pos-
sible reason for this is the fact that SP2Bench queries
contain up to 10 triple patterns with different SPARQL
clauses such as DISTINCT, ORDER BY, and complex
FILTERS.

5.3.5. Overall performance evaluation

The comparison of overall performance of each ap-
proach is summarised in Figure i} where we show the
average query execution time for the queries in CD, LS,
LD, and SP?Bench sub-groups. As an overall perfor-
mance evaluation based on FedBench, FedX(cached)
outperformed FedX first run) in all of the 25 queries
which in turn outperformed SPLENDID in 16 out of
25 queries. SPLENDID is better than LHD in 19 of the
FedBench queries. LHD outperformed ANAPSID in 16
out of 24 queries while ANAPSID outperforms DARQ
in 13 out of 22 commonly supported queries. For Sliced-
Bench, FedX(cached) outperformed FedX(first run) in
all 25 queries. In turn FedX(first run) outperformed
SPLENDID in 23 out of 25 queries. SPLENDID is bet-
ter than LHD in 15 out of the total SlicedBench queries.
LHD outperformed ANAPSID in 14 out of 17 which
in turn outperformed DARQ in 13 out of 17 commonly
supported queries. We do not include ADERIS into this
section because we could not retrieve results for the ma-

18 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

700

D
o
o

& FedX (cached)

m SPLENDID

w
o
o

B

o

o
!

w

o

o
!

N

o

o
!

Execution time (msec)

[y

o

o
!

o
!

CD1 CD2 CD3 CD4 CD5 CD6 CD7

LS1LS2LS3LS4LS51LS6LS7

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9LD10LD11

(a) Query execution time including source selection time

8 FedX (cached)

m SPLENDID

Execution time (msec)

CD1 CD2 CD3 CD4 CD5 CD6 CD7

LS1LS2LS3LS4LS5LS61LS7

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9LD10LD11

(b) Query execution time excluding source selection time

Fig. 5. Effect of the source selection time on overall query execution time: FedX(cached) vs SPLENDID on FedBench

jority of the queries. For complete results, please visit
the downloads section of the project’s home pageEl
The most noticeable fact here is that caching improves
FedX’s performance by decreasing the total query exe-
cution time by approximately half in both experimental
setups as shown in Figure [}

6. Discussion

The subsequent discussion of our findings can be
divided into two main categories.

6.1. Effect of the source selection time

To the best of our knowledge, the effect of the source
selection runtime has not been considered in SPARQL

https://code.google.com/p/fed-eval/

query federation system evaluations [[7[1127\21l17] so
far. However, after analysing all of the results presented
above, we noticed that this metric greatly affects the
overall query execution time. To show this effect, we
compared SPLENDID and FedX on FedBench w.r.t.
their (1) overall query execution time including source
selection time and their (2) pure query execution time
excluding source selection time. To calculate the pure
query execution time, we simply subtracted the source
selection time from the overall query execution and plot
the execution time (without including source selection
time) in Figure[5b}

In Figure [5a] we can see that the overall query exe-
cution time (including source selection) of FedX is bet-
ter than SPLENDID in all of the 25 FedBench queries.
However, Figure[5b]suggests that SPLENDID is better
in 17 out of the 25 queries in terms of the pure query
execution time. This means that the use of a cache

https://code.google.com/p/fed-eval/

M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems 19

® FedX (first run) FedBench
m FedX (first run) SlicedBench

@ FedX (cached) FedBench
W FedX (cached) SlicedBench

& SPLENDID FedBench
M SPLENDID SlicedBench

«
=]
5]
w
o
1S}

N
G
=)

1600

<1400
o

H
E1200
v

w
S
5}

BN
@ o
o °

Average execution time (msec)
= ~
1) &
5} S

Average execution time (msec)
-
G
3

«
S

o

(o] LS LD Average cD

£ 1000

> o ®
S o ©
& & o

Average execution

N
=3
5}

o

LD Average cD LS LD Average
(a) FedX(first run) (b) FedX(cached) (c) SPLENDID
2 LHD FedBench % ANAPSID FedBench % DARQ FedBench
® LHD SlicedBench i m DARQ SlicedBench
14000 80000 H ANAPSID SlicedBench 350000
g S 70000 v
ngUOU g é 300000
3 10000 - 60000 5 250000
£ £ £
= = 50000 =
5 8000 £ S 200000
] £ 40000 2
$ 6000 - 2 g 150000
H % 30000 %
¢ 4000 © 4
§1 $ 20000 g,moooo
2 2000 - £ 10000 2 50000 -
0 - 0 . . -) 0
cDb LS LD Average cD LS LD Average

(d) LHD

(e) ANAPSID

(f) DARQ

Fig. 6. Effect of the data partitioning

in FedX greatly improves the overall query execution.
Furthermore, our results also suggest that the use of
SPARQL ASK queries for source selection is very ex-
pensive without caching. On average, SPLENDID’s
source selection time is 66.44% of the overall query
runtime for FedBench and 35.5% for SlicedBench. On
the other hand, FedX (cached)’s source selection time
is only 5.5% resp. 3.5% of the total query runtime for
FedBench resp. SlicedBench.

6.2. Effect of the data partitioning

In our SlicedBench experiments, we extended Fed-
Bench to test the federation systems behaviour in highly
federated data environment. This extension can also
be utilized to test the capability of parallel execution
of queries in SPARQL endpoint federation system. To
show the effect of data partioning, we calculated the
average for the query execution time of LD, CD, and
LS for both the benchmarks and compared the effect
on each of the selected approach. The performance of
FedX(cached) and DARQ is improved with partition-
ing while the performance of FedX(first run), SPLEN-
DID, ANAPSID, and LHD is reduced. As an overall
evaluation result, FedX(first run)’s performance is re-
duced by 34%, FedX(cached)’s is improved by 37%,
SPLENDID’s is reduced by 240%, LHD’s is reduced by

492%, ANAPSID’s is reduced by 477%, and DARQ’s
is improved by 48%. The performance improvement
for DARQ occurs due to the fact that the overflooding
of endpoints with too many nested loop requests to a
particular endpoint is now reduced. This reduction is
due to the different distribution of the relevant results
among many SPARQL endpoints. The increase in FedX
(cached)’s performance is simply due to the use of a
cache. One of the reasons for the performance reduction
in LHD is its significant overestimation of TP sources
in SlicedBench. The reduction of both SPLENDID’s
and ANAPSID’s performance is due to an increase in
ASK operations in SlicedBench and due to the increase
in triple pattern-wise selected sources which greatly
affects the overall performance of the systems when no
cache used.

7. Conclusion

In this paper, we evaluated six SPARQL endpoint
federation systems based on extended performance met-
rics and evaluation framework. We kept the main exper-
imental metric (i.e. query execution time) unchanged
and showed that the three other metrics (i.e. total triple
pattern-wise selected sources, total number of SPARQL
ASK request used during source selection, and source

20 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

selection time), which did not receive much attention
so far, can significantly affect the main metric. We also
measured the effect of the data partitioning on these sys-
tems to test the effective parallel processing in each of
the federation system. Overall, our results suggest that
a combination of caching and ASK queries with accu-
rate heuristics for source selection (as implemented in
ANAPSID) has the potential to lead to a significant im-
provement of the overall runtime of federated SPARQL
query processing systems.

In future work, we will aim to get access to and
evaluate the systems from our survey which do not
provide a public implementation. We will also measure
the effect of a range of various features (e.g., result
completeness and duplicate detection) on the overall
runtime of federated SPARQL engine. Furthermore, we
will assess these systems on big data SPARQL query
federation benchmark.

References

[1] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruck-
haus. Anapsid: an adaptive query processing engine for sparql
endpoints. In ISWC, 2011.

[2] Z. Akar, T. G. Halag, E. E. Ekinci, and O. Dikenelli. Querying
the web of interlinked datasets using void descriptions. In
LDOW at WWW, 2012.

[3] C.H. Andriy Nikolov, Andreas Schwarte. Fedsearch: efficiently
combining structured queries and full-text search in a sparql
federation. In ISWC. 2013.

[4] C.Bascaand A. Bernstein. Avalanche: putting the spirit of the
web back into semantic web querying. In SSWS, pages 64-79,
November 2010.

[5] H. Betz, F. Gropengiefer, K. Hose, and K.-U. Sattler. Learning
from the history of distributed query processing - a heretic view
on linked data management. In COLD, 2012.

[6] C. Bizer and A. Schultz. The berlin sparql benchmark. ZJSWIS,
5(2):1-24, 2009.

[7] O. Gorlitz and S. Staab. Splendid: Sparql endpoint federation
exploiting void descriptions. In COLD at ISWC, 2011.

[8] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl
knowledge base systems. Web Semantics: Science, Services and
Agents on the World Wide Web, 3(2):158-182, 2005.

[9] O. Gorlitz and S. Staab. Federated data management and query
optimization for linked open data. In A. Vakali and L. Jain,
editors, New Directions in Web Data Management 1, volume
331 of Studies in Computational Intelligence, pages 109-137.
Springer Berlin Heidelberg, 2011.

[10] O. Hartig. An overview on execution strategies for linked data
queries. Datenbank-Spektrum, pages 1-11, 2013.

[11] A. Hasnain, R. Fox, S. Decker, and H. F. Deus. Cataloguing
and linking life sciences lod cloud. In OEDW at EKAW, 2012.

[12] U. Juergen, H. Aidan, P. Axel, and D. Stefan. Link traversal
querying for a diverse web of data. Semantic Web Journal,
2013.

[13] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Ma-
giridou, and A. Papadakis-Pesaresi. Atlas: Storing, updating
and querying rdf(s) data on top of dhts. Web Semantics: Science,
Services and Agents on the World Wide Web, 8(4), 2010.

[14] G.Ladwig and T. Tran. Linked data query processing strategies.
In ISWC, pages 453-469. 2010.

[15] G. Ladwig and T. Tran. Sihjoin: Querying remote and local
linked data. In The Semantic Web: Research and Applications,
volume 6643, pages 139-153. 2011.

[16] S.Lynden, I. Kojima, A. Matono, and Y. Tanimura. Aderis: An
adaptive query processor for joining federated sparql endpoints.
In OTM, pages 808-817.2011.

[17] G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based
approach for planning federated sparql queries. In COLD, 2012.

[18] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, and C. Buil-
Aranda. Benchmarking federated sparql query engines: are
existing testbeds enough? In ISWC, pages 313-324. 2012.

[19] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo.
Dbpedia sparql benchmark - performance assessment with real
queries on real data. In International Semantic Web Conference,
pages 454-469, 2011.

[20] B. Quilitz and U. Leser. Querying distributed rdf data sources
with spargl. In ESWC, pages 524-538, 2008.

[21] N. A. Rakhmawati, J. Umbrich, M. Karnstedt, A. Hasnain, and
M. Hausenblas. Querying over federated sparql endpoints - a
state of the art survey. volume abs/1306.1723, 2013.

[22] M. Saleem, R. Maulik, I. Aftab, S. Shanmukha, H. Deus, and
A.-C. Ngonga Ngomo. Fostering serendipity through big linked
data. In SWC at ISWC2013, 2013.

[23] M. Saleem, A.-C. Ngonga Ngomo, J. X. Parreira, H. F. Deus,
and M. Hauswirth. Daw: Duplicate-aware federated query
processing over the web of data. In ISWC, pages 561-576,
2013.

[24] M. Saleem, S. Shanmukha, A.-C. Ngonga Ngomo, J. S.
Almeida, S. Decker, and H. F. Deus. Linked cancer genome
atlas database. In I-Semantics 2013, 2013.

[25] M. Schmidt, O. Gorlitz, P. Haase, G. Ladwig, A. Schwarte, and
T. Tran. Fedbench: a benchmark suite for federated semantic
data query processing. In ISWC, pages 585-600. 2011.

[26] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp” 2bench:
a sparql performance benchmark. In ICDE, pages 222-233,
2009.

[27] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt.
Fedx: Optimization techniques for federated query processing
on linked data. In ISWC, pages 601-616. 2011.

[28] A. Schwarte, P. Haase, M. Schmidt, K. Hose, and R. Schenkel.
An experience report of large scale federations. CoRR,
abs/1210.5403, 2012.

[29] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In SIGMOD, pages 23-34, 1979.

[30] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres.
Comparing data summaries for processing live queries over
linked data. World Wide Web, 14(5-6):495-544, 2011.

[31] X. Wang, T. Tiropanis, and H. C. Davis. Lhd: Optimising linked
data query processing using parallelisation. In LDOW at WWW,
2013.

