
Semantic Web 1 (2009) 1–5 1
IOS Press

Transition of Legacy Systems to Semantically
Enabled Applications: TAO Method and
Tools
Editor(s): Krzysztof Janowicz, Pennsylvania State University, USA
Solicited review(s): Patrick Maué, University of Münster, Germany; Todd Pehle, Orbis Technologies, USA

Hai H. Wang a,∗, Danica Damljanovic d, Terry Payne b, Nicholas Gibbins c, and Kalina Bontcheva d

a Aston University, Birmingham, UK, E-mail: H.WANG10@aston.ac.uk
b University of Liverpool Liverpool, UK, E-mail: T.R.Payne@liverpool.ac.uk
c University of Southampton, UK, E-mail: nmg@ecs.soton.ac.uk
d University of Sheffield, UK, E-mail: {D.Damljanovic, bontcheva}@dcs.shef.ac.uk

Abstract. Despite expectations being high, the industrial take-up of Semantic Web technologies in developing services and
applications has been slower than expected. One of the main reasons is that many legacy systems have been developed without
considering the potential of the Web in integrating services and sharing resources. Without a systematic methodology and proper
tool support, the migration from legacy systems to Semantic Web Service-based systems can be a tedious and expensive process,
which carries a significant risk of failure. There is an urgent need to provide strategies, allowing the migration of legacy systems
to Semantic Web Services platforms, and also tools to support such strategies. In this paper we propose a methodology and
its tool support for transitioning these applications to Semantic Web Services, which allow users to migrate their applications
to Semantic Web Services platforms automatically or semi-automatically. The transition of the GATE system is used as a case
study.

Keywords: Semantic Web Services, Annotation

1. Introduction

Semantic Web (SW) and Semantic Web Service
(SWS) technologies [19] have been recognised as very
promising emerging technologies that exhibit huge
commercial potential and have attracted significant at-
tention from both industry and the research commu-
nity [2]. Despite this promise, the resulting industrial
take-up of SW and SWS technologies has been slower
than expected. This is mainly due to the fact that many
legacy systems have been developed without consid-
ering the potential of the Web for integrating ser-
vices and sharing resources. The migration of legacy
systems into semantic-enabled environments involves

*Corresponding author. E-mail: H.WANG10@aston.ac.uk

many recursive operations that have to be executed
with rigour due to the magnitude of the investment in
systems, and the technical complexity inherent in such
projects. In this context, there are three main issues
to be considered, namely: 1) Web Accessibility, deal-
ing with the transformation of components of a legacy
system that are exposed as Web services; 2) Service
Transformation, where the exposed Web services are
mapped to the corresponding Semantic Web Service
representations; and 3) Semantic Annotation, where
the service representations and software artefacts are
annotated using the relevant domain ontology. Without
a systematic methodology and proper tool support, the
migration from legacy systems to semantically enabled
applications could be a very tedious and expensive pro-
cess, which carries a definite risk of failure. There is

1570-0844/09/$27.50 c© 2009 – IOS Press and the authors. All rights reserved

2 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

an urgent need to therefore provide strategies that sup-
port the construction of ontologies which facilite the
migration of legacy systems to Semantic Web Services
platforms, and also tools to support such strategies.

This paper reports on a new methodology and the
related tool support for addressing the above issues,
which in turn could lead to an automatic platform
transformation. This work is part of the Transition-
ing Applications to Ontologies (TAO) project1, which
was part of the European Sixth Framework Program.
In TAO, we created an open source infrastructure to
aid transitioning of legacy applications to ontologies,
through automatic ontology bootstrapping, semantic
content augmentation, and generation of Semantic
Web service descriptions. The work is grounded in the
TAO transitioning methodology and the tool – TAO
Suite. In this way, TAO enables a much larger group
of companies to exploit semantics without having to
re-implement their applications. All the related mate-
rials about TAO (e.g., the TAO softwares, source code,
manuals, demos and deliverables) are publicly avail-
able at http://www.tao-project.eu/.

The remainder of this paper is organised as follows.
Section 2 presents a set of cookbook-style guidelines
for the TAO methodology and the usage of the sup-
porting tools. Section 3 discusses the evaluation of the
work. Finally Section 4 and 5 present the related work,
conclusions of this paper and future work.

2. Methodology cookbook, tool support and case
study

The methodology presented in this section provides
a detailed view of the important phases to be per-
formed as part of the transition process of legacy sys-
tems to semantic-enabled applications following the
TAO scenario. It is fully supported by the TAO Suite,
which is integrated from several software components.
Figure 2 presents the architecture of the transition-
ing environment. In it, the ontology learning tool is
used to derive an ontology from legacy application
documentation (specifications, UML diagrams, code
documentations, software manuals, including images).
The content augmentation tool automatically identi-
fies key concepts within legacy contents, which can
go beyond textual sources, and annotates them using
the domain ontology concepts. The distributed hetero-

1http://www.tao-project.eu/

geneous knowledge repositories are developed to ef-
ficiently index, query, and retrieve legacy content (in-
cluding code, documentation, transcripts taken from
discussion forums, etc), domain ontology and seman-
tic annotations. An Integrated Development Environ-
ment (IDE) has been developed to provide an one-stop
transition support for users.

One important novelty for the TAO transitioning
methodology is that it provides a logical approach for
connecting the traditional ontology and service design
through the following main points.

– Learning ontologies from service descriptions.
In a normal ontology design lifecycle, the On-
tology Learning process attempts to automati-
cally or semi-automatically derive a knowledge
model from a document corpus. In our transition-
ing methodology, we refine and extend this to
emphasis the contribution made by the descrip-
tion of a broader and more heterogeneous collec-
tion of documentation resources that relate to ex-
isting legacy applications (including application
APIs, developer documentation, SOA design doc-
umentation, etc). We call this refinement Service-
Oriented Ontology Learning.

– Using domain ontologies to augment semantic
content and service descriptions. The service an-
notation process described in many existing SOA
design methodologies refers to the description of
services at the signature level in languages such
as WSDL. While these allow rudimentary ser-
vice matchmaking and brokerage on the basis of
the types of the inputs and outputs of a service,
these types are typically expressed syntactically
using traditional data-types, rather than exploiting
a semantically richer and more expressive repre-
sentation grounded by an ontological characteri-
sation of the relevant domain. Thus, these inter-
faces need to be mapped to equivalent concepts
within Semantic Web frameworks (such as OWL-
S, WSMO or WS-WSDL) and annotated using
the relevant domain ontologies.

In the next subsection, we present a set of cookbook-
style guidelines for the usage of TAO tools. Note that
this paper only focuses on the usage of TAO tools, due
to the limited space2.

2For more technical details on various tool components, please re-
fer to the respective reports, which can be downloaded from http:
//www.tao-project.eu/.

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 3

Fig. 1. Cookbook methodology overview.

To better illustrate the idea, we use as a case study
the transition of the GATE3 system to a collection of
semantic-enhanced services. GATE is a leading open-
source architecture and infrastructure for the building
and deployment of Human Language Technology ap-
plications, used by thousands of users at hundreds of
sites. After many years of developing, revising and ex-
tending, GATE developers and users find that it be-
comes difficult to understand, maintain and extend the
system in a systematic way, due the large amount of
heterogeneous information that cannot be accessed via
a unified interface [3].

The advantages of transitioning GATE to semantic-
enhanced services are two-fold. Firstly, GATE compo-
nents and services will be easier to discover and inte-
grate within other applications due to the use of Se-
mantic Web Service technology. Secondly, the transi-
tion should facilitate better search results for queries
over a given GATE concept due to the enhanced
knowledge based searches that span a broader set of
heterogeneous sources and corpora including the com-
plete GATE document corpus, XML configuration

3http://gate.ac.uk

files, video tutorials, screen shots, user discussion fo-
rum, etc. The development team of GATE consists at
present of over 15 people, but over the years more
than 30 people have been involved in the project. To
be used for evaluating TAO tools, GATE exhibits all
the specific problems that large software architectures
encounter, which enables us to evaluate the methodol-
ogy and tools intensively. Bontcheva et. al. [3] discuss
the advantages and possibilities arising from building
domain ontology and application for semantic enrich-
ment of software artefacts in the GATE case study.

2.1. Transitioning cookbook

The TAO methodology has three main phases: the
data acquisition phase, the ontology learning phase and
the semantic content and service augmentation phase.
Each phase contains a set of tasks which may interact
with each other. Figure 1 presents a UML diagram that
illustrates the main transitioning process; details of the
major activities are presented below.

To transition a legacy application to a number of
semantically enabled services, a software engineer
should first check whether previously developed on-

4 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

Existing Application Docs

Specifi-

cations
Code

APIs

Video

and Text

Manuals

...

Legacy Application Content

Content

Mgnt.

Systems

DBs
Service

Descript

-ion

...

Ontology
Learning tool

Content
Augment tool

Distributed
Heterogeneous
Knowledge
Repository

Transition
Support IDE

Application

Developer

Semantic
Application
Services

Fig. 2. Transitioning Process

tologies exist for the application domain. Public on-
tology search engines or ontology libraries may be
used, such as Swoogle4 or SWSE5. If no such ontol-
ogy is found, users have to derive the domain ontol-
ogy from the legacy software. If a related ontology
is found, previous methodologies, such as the NEON
methodology6, could be used to directly adapt and ex-
tend the discovered ontology. However, given past ex-
perience in ontology development, these approaches
are not ideal for many use cases. The main reason is
that in most cases, it is difficult to find an existing on-
tology that is perfectly matched to the requirements
of annotating and describing legacy applications. Re-
using complex domain ontologies built for the domain
in similar projects could be a tedious task. The more
complex an ontology, and the more tied it is to its orig-
inal context of development and use, the less likely it
will fit another context. It can be as difficult and costly
to trim such ontologies in order to keep only the rele-
vant parts as it is to re-build those parts completely.

Building domain ontologies with a “top-down” ap-
proach as extensions of a “foundational ontology” is
another popular approach. Foundational ontologies are
often highly abstract, or include strong constraints that
are rarely part of the requirements of the target system.
In the TAO approach, if a related ontology is found, it
is saved into the knowledge store developed by TAO
and used as training data for the ontology learning tool

4http://swoogle.umbc.edu
5http://swse.deri.org
6http://www.neon-project.org/

together with other software artefacts. For the GATE
case study, the ontology was developed from scratch
with the assistance of the TAO tools.

2.1.1. Data acquisition
To derive the domain ontology from a legacy appli-

cation using the TAO tools, users first need to collect
relevant resources about the legacy application.
– Resources collection

In the TAO cookbook, we have identified various
data sources which are commonly relevant to the de-
scription of a legacy application, such as application
source code, APIs, and JavaDocs7. For the GATE
case study, the application’s Java source code and cor-
responding JavaDoc files are identified and assem-
bled8. These are then deposited in the the TAO reposi-
tory [24] – a component of the TAO tools.
– Save the resource corpora to the TAO Repository

The TAO repository [24] is a heterogeneous knowl-
edge store designed and developed for efficient man-
agement of different types of knowledge: unstructured
content (documents), structured data (databases), on-
tologies, and semantic annotations, which augment the
content with links to machine-interpretable metadata.
The query and reasoning capabilities of this repository
are based on the Ontology Representation and Data In-
tegration (ORDI) framework [24].

7For more information about the potential data sources which may
be related to the description of legacy systems and their classifica-
tion, please refer to the report [1].

8Those documents can be downloaded from http://gate.
ac.uk/download/index.html.

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 5

2.1.2. Ontology Learning
The process of ontology learning from software

artefacts is essentially one of discovering concepts and
relations from various learning resources identified in
the previous steps, including the source code, accom-
panying documentation, and external sources (such as
the Web). Ontology learning is one of the most signif-
icant approaches proposed to date for developing on-
tologies from existing domain-related resources. Pre-
viously, we have presented a detailed review of dif-
ferent ontology learning approaches [1]. Gomez-Perez
et. al. [9] also reviewed the major methods for semi-
automatically building ontologies from texts.

Two learning components were used for ontology
learning within this case study: LATINO was used to
build feature vectors from documentation; and On-
toGen, was used to build an ontology from the re-
sulting feature vectors. LATINO9 is a general data-
mining framework that unites text mining and link
analysis for the purpose of (semi-automated) ontol-
ogy construction. LATINO is novel with respect to
other existing ontology learning methods in several
ways. LATINO constructs the ontologies from implicit
knowledge contained within the documents and data
that form the set of learning resources (identified in
the previous stages). Concepts and their inter/intro-
relationships are selected and used in the ontology con-
struction process. We introduce the term “application
mining” to denote the process of extracting this knowl-
edge from application-related resources. In addition,
LATINO is not only limited to textual data sources;
additional data resources that can be used for ontol-
ogy learning, including structured documents such as
database schema, UML models, existing source code,
APIs, etc., or textual documents that include require-
ment documents, manuals, forum discussions etc.
– Identify content and structure of software artefacts

To use LATINO, a selection of the learning re-
sources relevant to the intended ontology (and that
were identified in the previous data acquisition stage)
should be selected. Given a concrete TAO scenario,
the first question to be answered by a software engi-
neer is – what are the text-mining instances (i.e. pieces
of data to be used for text-mining)10, in this partic-
ular case. The user needs to study the data at hand

9http://www.tao-project.eu/
researchanddevelopment/demosanddownloads/
ontology-learning-software.html

10To avoid confusing the term INSTANCE in the text-mining sense
with the term INSTANCE from the ontological perspective, we will

and decide which data entities will play the role of in-
stances in the transitioning process. It is impossible
to answer this question in general - it depends on the
available sources. The cookbook offers users some po-
tential choices including Java/C++ classes, methods,
and database entities. In the GATE case study, the in-
stances are all Java classes.

Next, we need to assign a textual document (de-
scription) to each text-mining instance. This step is not
obligatory, as there is no universal standard for which
text should be included. However, it is important that
only relevant elements of text are included to avoid
the text-mining algorithms generating poor or mislead-
ing results. Users should develop several (reasonable)
rules for what to include and what to leave out, and
evaluate each of them in the given setting, choosing
the rule that will perform best. Some of the more com-
monly used rules are given in the cookbook. Given
that the GATE Java classes were used as text-mining
instances for the GATE case study, the assigned tex-
tual documents included the Java classes’ class com-
ment, class name, field names, field comments, method
names and method comments.

The user may also identify any structural informa-
tion evident from the data. This step is also not oblig-
atory, provided that textual documents have been at-
tached to the instances. The user should consider any
kind of relationships between the instances (e.g. links,
references, computed similarities, and so on). Note
that it is sometimes necessary to define the instances
in a way that makes it possible to exploit the rela-
tionships between them. For Java/C++ classes, the po-
tential links that can be extracted include inheritance
and interface implementation graphs, type reference
graphs, class and operation name similarity graphs,
comment reference graphs, etc. After this step, the data
pre-processing phase is complete. More information
about those types of links and the different calculations
of link weight can be found in [11].
– Creating feature vectors from contents and structures

The text-mining algorithms employed by LATINO
(and also by many other data-mining tools) work with
feature vectors. Therefore, once the text-mining in-
stances have been enriched with the textual docu-
ments, they need to be converted into feature vectors.
LATINO is able to compute the feature vectors from a
document network, based on the source code. In such
networks, classes generally contain methods that have

talk about TEXT-MINING INSTANCES to emphasise the text-mining
context.

6 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

some return value which may in turn correspond to in-
stances of another class. Comments within the source
code may also refer to other classes. For each of these
cases, a graph can be created, where vertices represent
Java classes and edges represent references between
these classes. This may result in the construction of
several graphs which all share the same set of vertices.
Different weights (ranging from 0 to 1) are assigned
to each graph. To help the user set the parameters,
the TAO Suite application OntoSight [10] provides the
user with an insight into the resulting document net-
works and semantic spaces via interactive visualisation
tools. These feature vectors are further used as an input
for OntoGen11 which is a semi-automatic data-driven
ontology construction tool that creates suggestions for
new concepts for the ontology automatically. OntoGen
is also integrated with LATINO and the TAO Suite.
– Create domain ontology from feature vectors.

The most important step of ontology development
is to identify the concepts in a domain. Using Onto-
Gen, this can be performed by using either a fully au-
tomated approach such as unsupervised learning (e.g.
clustering), or a semi-automated supervised learning
(e.g. classification) approach.

The main advantage of unsupervised methods is that
they require very little input from the user. The unsu-
pervised methods provide well-balanced suggestions
for sub-concepts based on the instances and are also
good for exploring the data. The supervised method
provided by OntoGen, however, requires more input.
The user has to initially identify the desired sub-
concept, and then describe it through a query before
engaging in a sequence of questions to clarify that
query. This is intended for the cases where the user
has a clear idea of the desired sub-concept that should
be added to the ontology, but where this sub-concept
is not automatically discovered by the unsupervised
method. For the GATE case study, the unsupervised
approach has proven to be sufficient for this learning
task, as there is little prior knowledge regarding the de-
sired concepts for inclusion within the ontology. Fur-
ther details on using OntoGen/LATINO can be found
in [11].

It is important to note that the automated meth-
ods are not intended to extract the perfect ontology,
they only offer support to domain experts in acquiring
this knowledge. This help is especially useful in situ-
ations such as in the Gate scenario, where the knowl-

11http://ontogen.ijs.si/

edge is distributed across several documents. There-
fore, the automatically acquired knowledge is post-
edited, using an existing ontology editor, to remove ir-
relevant concepts and add missed ones. This activity
occurs during the Design Ontology stage within the
TAO cookbook (as illustrated in Figure 1). Hence, on-
tology learning tools are seen as a support for generat-
ing ontologies, and using them makes sense only in the
context of large legacy applications (i.e. where “thou-
sands” of documents are used). These tools can of-
fer guidance in these cases, when building ontologies
from scratch might be impractical.

After creating the domain ontology, it is saved
within the TAO repository for later use. It is only now
possible to augment the existing content of a legacy
application (including any service definitions) seman-
tically. We present the details in the following subsec-
tion.

2.1.3. Service and content augmentation
Content Augmentation is a specific metadata gener-

ation task that facilitates new information access meth-
ods. It enriches the augmented text with semantic in-
formation, linked to a given ontology, thus enabling
semantic-based search over the annotated content. For
legacy software applications, the key parts are the ser-
vice descriptions, software code and the documenta-
tion. While there has been a significant body of re-
search on semantic annotation of textual content (in the
context of knowledge management applications), only
limited attention has been paid to processing legacy
software artefacts, and in general, to the problem of
semantic-based software engineering. As part of the
TAO Suite, a tool known as the Key Concept Iden-
tification Tool (KCIT) was developed to assist users
in annotating heterogeneous software artefacts semi-
automatically. In essence, KCIT is capable of perform-
ing two tasks: 1) semantic annotation, whereby dif-
ferent elements within a document (such as phrases,
n-grams or terms) are identified using various infor-
mation extraction techniques, and linked to concepts
within an ontology; and 2) document query, whereby
the annotated documents are first stored within a per-
sistent storage repository (i.e. the TAO Repository),
and then retrieved using a relevance-query mechanism
which exploits a selected set of semantic annotations
to find relevant documents, rathe than using keyword-
lookup techniques. More information about KCIT can
be found at [5].

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 7

To use KCIT, we first need to identity which Web
services users want to provide, and also which types of
related content that need to be annotated.
– Identify services and other content to be annotated.

The first step in creating a Web service is to design
and implement the application that represents the Web
service. This step includes the design and coding of the
service implementation, and the verification of all of
its interfaces (to determine whether or not they work
correctly). Once the Web service has been developed,
the service interface definition can be generated from
the implementation of the service (i.e. the service inter-
face can be derived from the application’s Application
Programming Interface (API)). Web service interfaces
are usually described as WSDL documents that define
the interface and binding of the corresponding Web
service implementations. In this paper, we assume that
the Web services and the corresponding WSDL defini-
tions for a legacy application have already been devel-
oped. As various methods and tools for wrapping the
existing functionalities of a legacy application as ser-
vices currently exist [16,8], we focus here on assisting
users in the annotation of existing WSDL definitions
to generate SA-WSDL definitions12.
– Annotate automatically and manually

KCIT identifies key concepts from software-related
legacy content by preprocessing ontology lexicalisa-
tions (e.g. replacing dashes and underlines with spaces,
splitting camelCased words, etc.) and finally extract-
ing the root from each ontology lexicalisation. It is this
root that is matched against the roots of the words in
text. Hence, KCIT performs more than an exact text
match, like many other existing approaches. It can also
be configured to better adopt different use cases. For
example, when preparing a document such as WSDL,
it can be configured so that the tags’ processing is en-
abled. Users then just click a button and KCIT goes
through the WSDL file or other legacy content and au-
tomatically identifies the pieces of text or tag, which
are related to concepts or relations defined in the do-
main ontology by using NLP techniques. After the
process of automatic annotation is finished, users can
validate results by visualising them (by using GATE
GUI for example), correcting annotations if necessary,
and adding new ones by manually selecting the text
they want to link to the relevant concept from the on-
tology. Figure 3(a) shows an example of annotated

12Semantic Annotations for WSDL (SA-WSDL) [15] is the latest
W3C recommendation for describing Semantic Web Services.

GATE WSDL file. We can see details of the high-
lighted annotation over the clie string, where it shows
the instance URI (which refers to clie) and the clas-
sURI (which refers to Corpus Pipeline). By automat-
ically processing WSDL files using the TAO Suite,
we produce the SWS descriptions represented using
SA-WSDL. The TAO Suite can also be used to an-
notate other software artefacts including user guides,
developer guides, forum posts, source code, etc. Fig-
ure 3(b) shows the results of processing the GATE
class FlexibleGazetteer.java. The popup table de-
picts annotation features created by KCIT for the an-
notated term ‘Niraj Aswani’. From these features, it
can be concluded that this name is referring to a GATE
developer as, according to the features, this name is a
value (property-Value) of the property rdfs:label (prop-
ertyURI) for an instance (type) that is of type GATE
developer (classURI). The automatically annotated re-
sults could contain some flaws, and we need to ensure
that this semantic metadata is correctly asserted. The
TAO Suite allows domain experts to manually check
the correctness of the annotations.
– Storing and Querying Annotations

In order to access the semantic knowledge, the re-
sulting annotation features, together with document-
level metadata, are read and exported in a format which
can be easily queried via a formal language such as
SPARQL. More specifically, this extracted information
needs to ‘connect’ a document with different ‘men-
tions’ of the ontology resources inside the documents.
For example, if a document contains mentions of the
class Sentence Splitter, the output should be mod-
elled in a way that preserves this information during
query time (i.e. the URLs of all documents mention-
ing this class should be found easily). For this purpose,
the PROTON Knowledge Management ontology13 has
been used in our repository, through which the infor-
mation about the type and address of a document, the
position (the start and end offset) of a ‘mention’ within
a document can be represented in a standard way.

The extracted annotations are stored in our OWL-
compatible knowledge repository (OWLIM [14]), and
accessible for querying using formal SW query lan-
guages (e.g. SPARQL). The exported annotations rep-
resented using OWL are stored separately from the ac-
tual GATE ontology (used for content augmentation).
This way, we can easily keep the annotations and the
text syncronized.

13http://proton.semanticweb.org/2005/04/protonkm

8 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

(a) Annotate WSDL file

(b) Annotate Java code

Fig. 3. CA interface

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 9

Languages for querying OWL such as SPARQL,
while having a strong expressive power, require de-
tailed knowledge of their formal syntax and under-
standing of ontologies. One of the ways to lower the
learning overhead and make semantic-based queries
more straightforward is through text-based queries.
In order to enable advanced semantic-based access
through text-based queries, a Question-based Inter-
face to Ontologies – QuestIO has been developed and
integrated in the TAO Suite. QuestIO is a domain-
independent system which translates text-based queries
into the relevant SeRQL queries, executes them and
presents the results to the user. QuestIO first recog-
nises key concepts inside the query, detects any poten-
tial relations between them, and then creates the re-
quired semantic query. An example query with results
is shown in Figure 4; for the query ‘niraj’, a list of doc-
uments mentioning this term is returned, among which
the last link points to the documentation about Flexi-
ble Gazetteer. This is inline with the Figure 3(b), from
which it can be concluded that Niraj is the author
of the class FlexibleGazetteer.java. The advantage
of the semantic query is that queries are observed as
concepts, rather than as a set of characters – as is the
case in traditional search engines. I.e., Niraj, Niraj
Aswani, or NA (as initials) would all return the same
results as soon as the ontology encodes that these terms
refer to the same concept.

3. Evaluation and discussion

3.1. Evaluation

Ontology Learning from Software Artefacts.
Most ontology evaluation approaches that have been
proposed in the literature rely on the opinions and
common sense of domain experts. For example, [18]
proposed an approach whereby an expert ontology en-
gineer was asked to model a gold standard for the task
and compare it with the generated ontology. Another
study proposed that domain experts should use the on-
tology in an application and then evaluate the results
[21]. A set of ontology criteria have been designed
[17], which need to be assessed manually by domain
experts, based on common sense and domain knowl-
edge.

In our evaluation, we have used a combination of
these approaches. After the ontology has been learned
from the software artefacts, we asked GATE devel-
opers to refine it in order to create a gold standard

for the comparison. The final ontology with populated
instances is available from http://gate.ac.uk/
ns/gate-kb.

A questionnaire was designed to collect the gen-
eral opinion from engineers about the learned ontol-
ogy. The feedback from experts is encouraging and
details can be found in the reports [4,23]. To mea-
sure the quality of the GATE ontology that is created
by the TAO method, we took a sample of 36 ques-
tions collected at random from the GATE mailing list
and measured what percentage can be answered us-
ing the developed ontology. In these questions, numer-
ous GATE users enquired about GATE modules, plug-
ins, processing resources, and problems they encounter
while using these components. After examining these
questions, we identified that out of these 36 questions,
61.1% (22 questions) were answerable: the GATE do-
main ontology that was developed following the TAO
methodology contained the answers to these questions.
The questions were mainly factual questions enquiring
about GATE components such as What are the runtime
parameters of the ANNIE POS Tagger?. The remain-
ing 14 questions (38.9%) were unanswerable: the an-
swer was not in the ontology/knowledge base. Most of
unanswerable questions tended to enquire about spe-
cific features that were not included in user manuals
and documentation, but were only known by experi-
enced GATE developers. In additon, some questions
enquired about personal problems without enough ex-
plicit information such as I cannot get Wordnet plugin
to work.

Content Augmentation. To evaluate the CA com-
ponent, we have selected 20 documents to serve as a
representative corpus of GATE software artefacts, in-
cluding forum posts, java classes, and the user man-
ual. We have first manually annotated these documents
to create a gold standard corpus. Next, we ran KCIT
to automatically annotate these 20 artefacts, and then
we compared the results using precision and recall;
we have achieved an average precision of 94.28% pre-
cision and a recall of 96.99%. For more information
about this experience and the evaluation for other soft-
ware components such as Heterogeneous Knowledge
Store and QuestIO, please refer to the report [4].

User-centric Evaluation of the Transitioning Re-
sults. In order to conduct a user-centric evaluation and
investigate benefits of the TAO transitioning tools, we
chose to test an integrated testbed containing user-
understandable content. In other words, we asked a
group of GATE developers and users to carry out a
set of tasks involving the source code, software doc-

10 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

Fig. 4. List of results for the query ‘niraj’

umentation, and other human-readable software arte-
facts (e.g. to ‘Find which forum posts are related to the
Learning PR’), excluding the semantically annotated
services, as the latter are aimed at automatic processes
and are hard to work with for non-specialists. How-
ever, the same TAO tools can be used for discovering
semantically annotated services. In fact, being able to
handle these diverse types of legacy services and data
with the same toolset was one of the original objectives
of the project.

The aim of this qualitative evaluation is to vali-
date whether software developers, who are not experi-
enced in Semantic Web technologies and formalisms,
are able to find easily all information relevant to their
tasks by using the semantic-based testbed. This new
semantic-based system was evaluated with developers
and users of the GATE open-source platform, in or-
der to compare their working practices at present and
with the new technology. In a nutshell, we carried out
a repeated measure: task-based evaluation design (also
called within-subjects design), i.e., the same users in-
teract with our prototype (further referred as new) and

also use their current working practices and tools (fur-
ther referred as traditional), in order to complete a
given set of tasks.

From the study, we measured:

– Efficiency: time spent to complete the tasks
using the two approaches – traditional and
new. On average, it took 46.61% longer to finish
all the set tasks using the traditional methods in
comparison to the new semantic-based prototype
(107.1375 seconds vs. 157.075 seconds).

– Efficiency: the percentage of completed tasks
using the two approaches. Overall, the success
rate for performing tasks using the prototype was
152.11% better in comparison to the success rate
using the legacy system (0.355 in comparison to
0.895, on a scale from 0 to 2).

– User satisfaction: the SUS questionnaire as a
standard satisfaction measure. We chose the
SUS questionnaire as our principal measure of
software usability because it is a de facto standard
in this field. SUS scores range from 0 (very little

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 11

satisfaction) to 100 (very high satisfaction). Total
score in our evaluation was 69.38.

Detailed study results are in the report [4]. With re-
gards to justification of using the TAO tools in com-
parison to other available ones, we refer the reader to
[20].

3.2. Impact and exploitation

The TAO method and tools offer a low-cost migra-
tion path for legacy applications to knowledge tech-
nologies and is accessible to both SMEs (which are
cost sensitive) and large enterprises (with huge invest-
ments in complex and critical IS). The results have
been validated in two high-profile case studies: a com-
prehensive open source platform (with thousands of
users) and a data-intensive business process applica-
tion (managing a multi-million business). More infor-
mation about these case studies is in [5,6].

TAO project partners have obtained over e750,000
in follow-up commercial funding from the Austrian
company Matrixware to apply two of the TAO tools
to the problem of Large-Scale Semantic Annotation of
Patents. The goal is to exploit this TAO technology
and annotate terabytes of data in several days of su-
percomputer time. The TAO Suite is also now used by
the company behind http://videolectures.
net for the automatic classification of video materials
posted to their web site.

TAO has delivered a series of tutorials focused
around the TAO Suite and also organised an industry-
oriented workshop in January 2009 which attracted
strong interest and produced very positive feedback
on the technological achievements of the project; one
company commented that they had been waiting for
such enabling technology for their business cases,
and another company noted that it was the first time
that they had seen complementary solutions (ontol-
ogy learning, content augmentation, knowledge stor-
age and queries, WSDL annotations, SOA architecture
etc.) harnessed together to facilitate the overall process
of transitioning. In other words, from this external in-
dustrial perspective, TAO has been successful in devel-
oping and integrating the necessary enabling technolo-
gies for transitioning legacy applications to ontologies,
without making too rigid a stance on what software
architectures or semantic service formalisms must be
adopted.

3.3. License status and the latest development

The TAO Suite is open source and Eclipsed-based
and can be freely downloaded from the project’s web
site14. The ontology learning tool LATINO, the content
augmentation tool KCIT and the knowledge store HKS
are available under LGPL license.

The TAO project partners are currently maintain-
ing and will further develop these software compo-
nents. LATINO will be developed further by one of
the TAO project partners (the Jozef Stefan Institute -
JSI)15, as part of several ongoing EU projects. KCIT
and the other related components have been integrated
into GATE16, and are being further developed as part
of the GATE development process. The latest version
of GATE 6.0 was released in November 2010 and a
new release is planned for May 2011. HKS is further
developed as part of the OWLIM Semantic Repository
(OWLIM)17 by Ontotext18.

4. Related work

A number of ontology-design methodologies that
have been proposed to date to guide the process of
ontology development from scratch have been listed
in a comprehensive survey in [13,9]. While [7] has
identified seven of the most commonly used method-
ologies for designing ontologies from scratch, [12,22]
have outlined a set of principles and design criteria that
have been proved useful in developing domain ontolo-
gies. During the last decade several ontology-learning
systems have been developed such as ASIUM, On-
toLearn, Text2Onto, OntoGen, and others. Most of
these systems depend on linguistic analysis and ma-
chine learning algorithms to find potentially interest-
ing concepts and relations between them.

Whilst several methodologies exist to develop do-
main ontologies either from scratch or from text, there
is no widely accepted method for transitioning existing
applications to SOA based on domain ontologies. [16]
proposed the use of black-box wrapping techniques to
migrate functionalities of existing Web applications to
traditional Web services. In our methodology, the do-

14http://www.tao-project.eu/
researchanddevelopment/demosanddownloads/
tao-suite.html

15http://www.ijs.si/ijsw/JSI
16http://gate.ac.uk/
17http://www.ontotext.com/owlim/
18http://www.ontotext.com/

12 H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools

main ontology plays a key role in the transition process
as it contains all the semantics required for annotating
the services of the new SOA. Our method and tools
are focused on legacy application transitioning. We use
various kinds of function related resources to derive
the domain ontology. Since most existing applications
tend to have documentation describing their function-
ality and APIs, it is possible to use automatic process-
ing tools to abstract domain concepts from those terms
used in such documentation and build the domain on-
tology. Our methodology is also fully supported by an
integrated tool studio.

5. Conclusion and future work

A key requirement of transitioning applications to
Semantic Web Services has promoted the urgent need
of systematic methodologies and tools to assist the
migration process. In this paper we present the TAO
methodology and tool suite for transitioning legacy ap-
plications to SWS, which allows users to migrate their
applications to SWS platform automatically or semi-
automatically. In the future, more case studies will be
applied to further evaluate the system. We also plan to
integrate some third party tools to our framework, such
as WSDL generation tool, to make TAO Suite more
complete and flexible.

References

[1] Florence Amardeilh, Bernard Vatant, Nicholas Gib-
bins, Terry R. Payne, and Hai H.Wang. Sws boot-
strapping methodology. Technical Report D1.2.2,
TAO Project Deliverable, 2009. http://www.tao-
project.eu/resources/publicdeliverables/d1-2-2.pdf.

[2] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer. MIT Press, Cambridge, MA, 2. edition, 2008.

[3] Kalina Bontcheva, Ian Roberts, Milan Agatonovic, Julien
Nioche, and James Sun. Case study 1: Requirement analysis
and application of tao methodology in data intensive applica-
tions. Technical Report D6.1, TAO Project Deliverable, 2007.
http://www.gate.ac.uk/projects/tao/webpage/deliverables/d6-
1.pdf.

[4] Damljanovic D. and Bontcheva K. Gate case study:
Experiments and evaluation of testbed. Technical
Report D6.4, TAO project, 2009. http://www.tao-
project.eu/resources/publicdeliverables/d6-4.pdf.

[5] Damljanovic D., Bontcheva K., Tablan V., Roberts I.,
Agatonovic M., Andrey S., and Sun J. Gate case study: Do-
main ontology and semantic augmentation of legacy content.
Technical Report D6.2, TAO project, 2008. http://www.tao-
project.eu/resources/publicdeliverables/d6-2.pdf.

[6] Cerbah F. Case study 2: Domain ontology building
and semantic augmentation of legacy content. Techni-
cal Report D7.2, TAO project, 2008. http://www.tao-
project.eu/resources/publicdeliverables/d7-2.pdf.

[7] Mariano Fernandez-Lopez, Asun Gomez-Perez, Jerome Eu-
zenat, Aldo Gangemi, Y. Kalfoglou, D. Pisanelli, M. Schor-
lemmer, G. Steve, Ljilajana Stojanovic, Gerd Stumme, and
York Sure. A survey on methodologies for developing,
maintaining, integration, evaluation and reengineering ontolo-
gies. Ontoweb deliverable, Universidad Politecnia de Madrid,
2002. http://www.aifb.uni-karsruhe.de/WBS/
ysu/publications/OntoWeb_Del_1-4.pdf.

[8] Gerald C. Gannod, Huimin Zhu, and Sudhakiran V. Mudiam.
On-the-fly wrapping of web services to support dynamic inte-
gration. In WCRE ’03: Proceedings of the 10th Working Con-
ference on Reverse Engineering, page 175, Washington, DC,
USA, 2003. IEEE Computer Society.

[9] Asunción Gómez-Pérez and David Manzano-Macho. An
overview of methods and tools for ontology learning from
texts. Knowl. Eng. Rev., 19(3):187–212, 2004.

[10] Miha Grcar. Ontology learning services library. Tech-
nical Report D2.2.2, TAO Project Deliverable, 2008.
http://www.gate.ac.uk/projects/tao/webpage/deliverables/d2-
2-2.pdf.

[11] Miha Grcar, Dunja Mladenic, Marko Grobelnik, Blaz For-
tuna, and Janez Brank. Ontology learning implementation.
Technical Report D2.2, TAO Project Deliverable, 2007.
http://www.gate.ac.uk/projects/tao/webpage/deliverables/d2-
2.pdf.

[12] Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowl. Acquis., 5(2):199–220, 1993.

[13] Dean Jones, Trevor Bench-Capon, and Pepijn Visser. Method-
ologies for ontology development. In Proceedings of
IT&KNOWS Conference of the 15 th IFIP World Computer
Congress, pages 62–75. Chapman and Hall Ltd, 1998.

[14] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov.
Owlim – a pragmatic semantic repository for owl. In Int.
Workshop on Scalable Semantic Web Knowledge Base Systems,
pages 182–192, New York City, USA, 2005. Springer-Verlag.

[15] Holger Lausen and Joel Farrell. Semantic annotations for
WSDL and XML schema. W3C recommendation, W3C, Au-
gust 2007.

[16] Giusy Di Lorenzo, Anna Rita Fasolino, Lorenzo Melcarne,
Porfirio Tramontana, and Valeria Vittorini. Turning web appli-
cations into web services by wrapping techniques. In WCRE
’07: Proceedings of the 14th Working Conference on Reverse
Engineering, pages 199–208, Washington, DC, USA, 2007.
IEEE Computer Society.

[17] A. Lozano-Tello and A. Gómez-Pérez. ONTOMETRIC: A
Method to Choose the Appropriate Ontology. Journal of
Database Management, 15(2), April-June 2004.

[18] Alexander Maedche and Steffen Staab. Measuring similar-
ity between ontologies. In EKAW ’02: Proceedings of the
13th International Conference on Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web,
pages 251–263, London, UK, 2002. Springer-Verlag.

[19] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Seman-
tic web services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[20] Tomás Pariente, Germán Herrero, Danica Damljanovic, and
Farid Cerbah. D1.3.2 case study reports on evaluating the
methodology. Technical Report D1.3.2, TAO project, 2009.

H. Wang et al. / Transition of Legacy Systems to Semantic Enabled Applications: TAO Method and Tools 13

http://www.tao-project.eu/resources/publicdeliverables/d1-3-
2-final.pdf.

[21] Robert Porzel and Rainer Malaka. A task-based approach for
ontology evaluation. In Proceedings of ECAI 2004 Workshop
on Ontology Learning and Population, Valencia, Spain, 2004.
Springer-Verlag.

[22] Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russ. To-
ward distributed use of large-scale ontologies. In 10th Work-
shop on Knowledge Acquisition, Canada, June 1996.

[23] Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva.
A natural language query interface to structured information.
In Proceedings of the 5th European semantic web conference
on The semantic web: research and applications, ESWC’08,
pages 361–375, Berlin, Heidelberg, 2008. Springer-Verlag.

[24] Marinova Z. Heterogeneous knowledge store. Tech-
nical Report D4.2, TAO Project Deliverable, 2008.
http://www.gate.ac.uk/projects/tao/webpage/deliverables/d4-
2.pdf.

