
Undefined 0 (0) 1 1
IOS Press

Ontop: Answering SPARQL Queries over
Relational Databases
Diego Calvanese a, Benjamin Cogrel a, Sarah Komla-Ebri a, Roman Kontchakov b, Davide Lanti a,
Martin Rezk a, Mariano Rodriguez-Muro c, and Guohui Xiao a

a Free University of Bozen-Bolzano
{calvanese,bcogrel, sakomlaebri,dlanti,mrezk,xiao}@inf.unibz.it
b Birkbeck, University of London
roman@dcs.bbk.ac.uk
c IBM TJ Watson
mrodrig@us.ibm.com

Abstract. In this paper we present Ontop, an open-source Ontology Based Data Access (OBDA) system that allows for querying
relational data sources through a conceptual representation of the domain of interest, provided in terms of an ontology, to which
the data sources are mapped. Key features of Ontop are its solid theoretical foundations, a virtual approach to OBDA that avoids
materializing triples and that is implemented through query rewriting techniques, extensive optimizations exploiting all elements
of the OBDA architecture, its compliance to all relevant W3C recommendations (including SPARQL queries, R2RML mappings,
and OWL 2 QL and RDFS ontologies), and its support for all major relational databases.

Keywords: Ontop, OBDA, Databases, RDF, SPARQL, Ontologies, R2RML, OWL

1. Introduction

Over the past 20 years we have moved from a
world where most companies had one all-knowing
self-contained central database to a world where com-
panies buy and sell their data, interact with several
data sources, and analyze patterns and statistics com-
ing from all of them. The challenge is shifting from
obtaining information to finding the right informa-
tion. It has always been the case that information is
power but today attention rather than information be-
comes the scarce resource, and those who can distin-
guish valuable information from background clutter
gain power [16]. To separate the wheat from the chaff,
the companies need a comprehensive understanding of
their data and the ability to cope with diversity in the
data.

Since the mid 2000s, Ontology-Based Data Access
(OBDA) has become a popular approach to tackling
this problem [27]. In OBDA, a conceptual layer is
given in the form of an ontology that defines a shared

vocabulary, models the domain, hides the structure of
the data sources, and can enrich incomplete data with
background knowledge. Then, queries are posed over
this high-level conceptual view, and the users no longer
need an understanding of the data sources, the relation
between them, or the encoding of the data. Queries are
translated by the OBDA system into queries over po-
tentially very large (usually relational and federated)
data sources. The ontology is connected to the data
sources through a declarative specification given in
terms of mappings that relate symbols in the ontol-
ogy (classes and properties) to (SQL) views over data.
The W3C standard R2RML [12] was created with the
goal of providing a language for the specification of
mappings in the OBDA setting. The ontology together
with the mappings exposes a virtual RDF graph, which
can be queried using SPARQL, the standard query lan-
guage in the Semantic Web community. These vir-
tual RDF graphs can be materialized, generating RDF
triples that can be used with RDF triplestores, or al-
ternatively they can be kept virtual and queried only

0000-0000/0-1900/$00.00 c© 0 – IOS Press and the authors. All rights reserved

2 Ontop

during query execution. The virtual approach avoids
the cost of materialization and can profit from more
than 30 years’ maturity of relational systems (efficient
query answering, security, robust transaction support,
etc.).

To illustrate these concepts and the different notions
in this paper, we will use the following running exam-
ple. All the material needed to run this example in the
OBDA system Ontop (and a complementary tutorial)
can be found online1.

Example 1.1 (Hospital Database). We consider a hos-
pital database with a single table tbl_patient that
contains information about lung cancer patients. The
table has 4 attributes: the patient identifier (pid),
his/her name, the type of cancer (tumor) and its stage.
The lung cancer can be of two types: Non-Small Cell
Lung Carcinoma (NSCLC) and Small Cell Lung Car-
cinoma (SCLC), which are encoded in the table by a
boolean value type as follows:

– false for NSCLC and true for SCLC.

The stage of the cancer is encoded by a positive integer
value stage as follows:

– 1–6 for NSCLC stages I, II, III, IIIa, IIIb and IV,
– 7–8 for SCLC stages Limited and Extensive.

Finally, our sample table contains the following data:

pid name type stage

1 ’Mary’ false 4
2 ’John’ true 7

Suppose we need a simple piece of information from
this database: “Give me the names of patients with a
tumor of stage IIIa”. Even this simple query in this
tiny database already presents some challenges, since
to create the query and to understand and analyze the
results we need to know how the information is en-
coded in the data. In the following sections we describe
how to use the Ontop system to address this challenge
by enhancing the database with a semantic layer.

In this paper we present the OBDA system Ontop2,
a mature open-source system, which is currently being
used in a number of projects. Ontop supports all the
W3C recommendations related to OBDA: OWL 2 QL,
R2RML, SPARQL, SWRL, and the OWL 2 QL entail-

1https://github.com/ontop/ontop-examples/
tree/master/swj-2015

2http://ontop.inf.unibz.it/

ment regime in SPARQL. The system is available as a
Protégé 4 plugin, a SPARQL endpoint through Sesame
Workbench, and a Java library supporting OWL API
and Sesame API.

The structure of the paper is as follows. Section 2
presents a high-level overview of the architecture of
Ontop. Section 3 describes the SPARQL query answer-
ing techniques implemented in Ontop. Section 4 out-
lines the applications of Ontop, in particular the Sta-
toil and Siemens use cases in the context of the Op-
tique project. Related SPARQL query answering sys-
tems are surveyed in Section 5. Section 6 is a retro-
spective on the development of Ontop over the past five
years. Finally, Section 7 concludes the paper.

2. Architecture of Ontop

Ontop is an open-source3 OBDA system released
under the Apache license, developed at the Free Uni-
versity of Bozen-Bolzano. The Ontop system exposes
relational databases as virtual RDF graphs by linking
the terms (classes and properties) in the ontology to
the data sources through mappings. This virtual RDF
graph can then be queried using SPARQL, by translat-
ing the SPARQL queries into SQL queries over the re-
lational databases. This translation process is transpar-
ent to the user.

The architecture of Ontop, which is illustrated in
Fig. 1, can be divided in four different layers: (i) the
inputs, i.e., the domain-specific artifacts such as the
ontology, database, mappings, and queries; (ii) the core
of the system in charge of query translation, optimiza-
tion, and execution; (iii) the APIs exposing standard
Java interfaces to users of the system; and (iv) the
applications that allow end-users to execute SPARQL
queries over databases.

We explore each of these components in turn.

2.1. Inputs: Ontology, Mappings, Queries, and
Databases

To the best of our knowledge, Ontop is the first
OBDA system that supports all the W3C recom-
mendations related to OBDA: OWL 2 QL, R2RML,
SPARQL, SWRL, and the OWL 2 QL entailment
regime in SPARQL4. In addition, it supports all

3http://github.com/ontop/ontop/
4SWRL and the OWL 2 QL entailment regime are currently sup-

ported experimentally.

Ontop 3

Ontop SPARQL Query Answering Engine (Quest)

OWL-API Sesame Storage And Inference Layer (SAIL) API

R2RML APIOWL-API
(OWL Parser)

Sesame API
(SPARQL Parser)JDBC

Protege Optique
Platform

Sesame Workbench &
SPARQL Endpoint

Application
Layer

API
Layer

Ontop
Core

Inputs Relational
Databases

R2RML
Mappings

OWL 2 QL
Ontologies

SPARQL
Queries

Fig. 1. Architecture of the Ontop system

the major commercial and open-source relational
databases.

Ontology. Ontop allows for RDFS [6] and
OWL 2 QL [24] as ontology languages. OWL 2 QL is
based on the DL-Lite family of lightweight description
logics [9,2], which guarantees that queries over the
ontology can be rewritten into equivalent queries over
the databases. Recently Ontop has been extended to
support also a fragment of SWRL [43].

Example 2.1. The following ontology captures the do-
main knowledge of our running example. It describes
the concepts of cancer and cancer patient with the fol-
lowing OWL axioms:

:NSCLC rdfs:subClassOf :LungCancer .
:SCLC rdfs:subClassOf :LungCancer .

:LungCancer rdfs:subClassOf :Neoplasm .
:hasNeoplasm rdfs:domain :Patient .
:hasNeoplasm rdfs:range :Neoplasm .

:hasName rdf:type owl:DatatypeProperty .
:hasStage rdf:type owl:ObjectProperty .

In particular, classes :NSCLS and :SCLC are both
subclasses of :LungCancer (that is, they both are
types of lung cancer), which in turn is a subclass of
:Neoplasm. The object property :hasNeoplasm has
class :Patient as its domain and :Neoplasm as its
range (in other words, it relates patients to neoplasms).
We also have a datatype property :hasName and an
object property :hasStage.

Mappings. Ontop supports two mapping languages:
the W3C RDB2RDF Mapping Language (R2RML),
which is a widely used standard; and the native Ontop

mapping language, which is easier to learn and use.
Ontop allows users to convert native mappings into
R2RML mappings and vice-versa. Intuitively, a map-
ping assertion consists of a source (an SQL query re-
trieving values from the database) and a target (defin-
ing RDF triples with values from the source).

Example 2.2. The ontology in Example 2.1 can be
populated from the database in Example 1.1 by means
of the following mappings:

:db1/{pid} rdf:type :Patient .
← SELECT pid FROM tbl_patient

:db1/neoplasm/{pid} rdf:type :NSCLC .
← SELECT pid, stage FROM tbl_patient

WHERE type = false

:db1/neoplasm/{pid} rdf:type :SCLC .
← SELECT pid, stage FROM tbl_patient

WHERE type = true

:db1/{pid} :hasName {name} .
← SELECT pid, name FROM tbl_patient

:db1/{pid} :hasNeoplasm :db1/neoplasm/{pid} .
← SELECT pid FROM tbl_patient

:db1/neoplasm/{pid} :hasStage :stage-IIIa .
← SELECT pid FROM tbl_patient

WHERE stage = 4

(To ease readability we use a slightly simplified
version of the Ontop native mappings syntax.) In this
example, IRIs like :hasStage and rdf:type repre-
sent the constant components of the RDF triples. IRIs
:db1/{pid} and :db1/neoplasm/{pid} are con-
structed using values from the database: in both cases
{pid} is the value of the attribute pid in the respec-
tive SQL query. Similarly, {name} is the literal whose
value is taken from the attribute name in the SQL

4 Ontop

query of the mapping. Note that there are individuals
that represent patients, :db1/{pid}, and individuals
that represent their tumors, :db1/neoplasm/{pid}.
This allows for a better modeling of the domain and
allows the user to query specific properties of the
tumor independently of the patient.

Queries. Ontop supports essentially all features of
SPARQL 1.0 and the OWL 2 QL entailment regime
of SPARQL 1.1 [21]. Support for other features of
SPARQL 1.1 (e.g., aggregates, property path queries
and negation) is ongoing work.

Example 2.3. Recall our information need in Exam-
ple 1.1: the names of all the patients who have a neo-
plasm (tumor) at stage IIIa. This can be represented by
the following SPARQL query:

SELECT ?name WHERE {
?p rdf:type :Patient .
?p :hasName ?name .
?p :hasNeoplasm ?tumor .
?tumor :hasStage :stage-IIIa .}

The query would return ’Mary’ on our sample
database. Observe that the vocabulary is more domain-
oriented and independent of the encoding done in the
database, e.g., there is no need anymore to use the spe-
cific values that encode types or stages.

Databases. Ontop supports many relational database
engines via JDBC. These include all major commer-
cial relational databases (DB2, Oracle, and MS SQL
Server) and the most popular open-source databases
(PostgreSQL, MySQL, H2, and HSQL). In addition,
Ontop can be used with federated databases (e.g.,
Teiid5 or Exareme, formerly called ADP [42]) to sup-
port multiple data sources (e.g., relational databases,
XML, CSV, and Web Services).

2.2. Ontop Core

The core of Ontop is the SPARQL engine Quest,
which is in charge of rewriting SPARQL queries over
the virtual RDF graph into SQL queries over the rela-
tional database (see Section 3).

5http://teiid.jboss.org/

2.3. API Layer

To allow developers build systems using Ontop as a
Java library, Ontop implements two widely used Java
APIs, which are also available as Maven artifacts:

– OWL API [15] is a reference implementation for
creating, manipulating and serializing OWL on-
tologies. We extended the OWLReasoner inter-
face to support SPARQL query answering.

– Sesame [7] is a de-facto standard framework
for processing RDF data. Ontop implements the
Sesame Storage And Inference Layer (SAIL) API
supporting inferencing and querying over rela-
tional databases.

2.4. Application Layer

Ontop is available through a simple command line
interface, but also through several applications access-
ing it via the above mentioned APIs. We describe three
such applications, which we have been developing and
maintaining together with Ontop over the past years.

– Protégé. Ontop implements a Plugin for Pro-
tégé 4 based on OWL API. The plugin provides a
graphical interface for various key functionalites re-
lated to OBDA: editing mappings, executing SPARQL
queries, checking consistency of the ontology, auto-
matically bootstrapping ontologies and mappings from
the database, importing and exporting R2RML map-
pings, materializing RDF triples, etc. Figure 2 shows
two screenshots of the Ontop Protégé Plugin for cre-
ating mappings and answering SPARQL queries from
the running examples.

– Sesame Workbench & SPARQL Endpoint. Sesame
OpenRDF Workbench is a web application for admin-
istrating Sesame repositories. We extended the Work-
bench to create and manage Ontop repositories using
SAIL API. Such repositories can then be used as stan-
dard SPARQL endpoints. Figure 3 shows a screenshot
of creating an Ontop repository in Sesame Workbench.

– Optique Platform. The Optique Platform com-
plements Ontop by adding an intuitive visual query
builder, tools for ontology and mapping management,
a friendly query answering interface, and a database
federation tool among other features [13]. Ontop is the
core of the Optique Platform and is in charge of the
query transformation module. The platform can query
streaming data and exploit massive parallelism in the
backend whenever possible.

Ontop 5

(a) Mapping Editor (b) SPARQL Query Answering

Fig. 2. Screenshots of Ontop Protégé Plugin

Fig. 3. Screenshot of Ontop Sesame Workbench

3. Answering SPARQL Queries

Ontop answers end-user’s SPARQL queries by
rewriting them into SQL queries and delegating their
execution to the data sources. With this approach there
is no need to apply rules to GBs of data to generate
all the facts entailed by the ontology. The workflow
of Ontop can be divided into the off-line and online
stages and is illustrated in Fig. 4. The most critical
task during start-up (the off-line stage) is compiling

Ontop

ON-LINE OFF-LINE

Reasoner

Ontology

Mapping-
Optimiser

Mappings

DB Integrity Constraints

Classified
Ontology

T -mapping

SPARQL
Query

Query Rewriter

SQL query

SPARQL to SQL
Translator

Fig. 4. The Ontop workflow

the ontology into the mappings and generating the so-
called T -mappings [34]. During the query execution
(the online stage) Ontop transforms input SPARQL
queries into optimized SQL queries exploiting the T -
mappings and the database integrity constraints. We
now explain each of the two stages.

3.1. Off-line Stage: Ontology and Mapping
Compilation

The off-line stage of Ontop processes the ontol-
ogy, mappings, and database integrity constraints. This
stage can be thought of as consisting of three phases:
ontology classification, T -mapping construction, and
T -mapping optimization. In the implementation of
Ontop, however, the last two phases are performed si-
multaneously.

6 Ontop

During the first phase, the ontology is loaded
through OWL API and is classified using the built-
in reasoner. The resulting complete hierarchy of prop-
erties and classes is stored in memory as a directed
acyclic graph (DAG). For example, in the ontology
in Example 2.1, both :NSCLC and :SCLC are sub-
classes of :LungCancer, which in turn is a subclass
of :Neoplasm. It follows that every NSCLC and every
SCLC is a form of Neoplasm:

:NSCLC rdfs:subClassOf :Neoplasm .
:SCLC rdfs:subClassOf :Neoplasm .

The classification algorithm is based on a variant of
graph reachability for the constructed DAG [30] (a
similar algorithm was later described in [23]).

During the second phase, T -mappings are con-
structed by composing the class and property hi-
erarchies with the mappings [34,36]. For example,
consider concept :Neoplasm in Example 2.1. Al-
though it has no mappings defined by the user, the two
inclusions derived above give rise to the following
rules in the T -mapping:

:db1/neoplasm/{pid} rdf:type :Neoplasm .
← SELECT pid, stage FROM tbl_patient

WHERE type = false

:db1/neoplasm/{pid} rdf:type :Neoplasm .
← SELECT pid, stage FROM tbl_patient

WHERE type = true

Finally, during the third phase, the T -mappings
are optimized by using disjunction (OR) and inter-
val expressions in SQL and by applying Semantic
Query Optimization (SQO) techniques (which will
be described in Section 3.2.2). For instance, using
disjunction, Ontop transforms the two rules above into
the following single rule:

:db1/neoplasm/{pid} rdf:type :Neoplasm .
← SELECT pid, stage FROM tbl_patient

WHERE type = false OR type = true

Such optimizations are known to be relatively expen-
sive (for example, SQO is based on an NP-complete
conjunctive query containment check) but are per-
formed only once, during the off-line stage of Ontop,
and therefore have no negative effect on query pro-
cessing. On the other hand, the resulting T -mappings
produce all the RDF triples that can be inferred from
the database and the ontology and so, during the
online stage, the T -mappings are used as the basis for
the translation of individual triple patterns in SPARQL
queries into SQL.

3.2. Online Stage: Query Answering

The online stage takes a SPARQL query and trans-
lates it into SQL by using the T -mappings. We focus
only on the translation of SELECT queries (ASK and
DESCRIBE queries are treated analogously). In this
process Ontop also optimizes the SQL query by ap-
plying the Semantic Query Optimization (SQO) tech-
niques [11,20]. To ease the presentation we distinguish
three phases in the query answering process:

(a) The SPARQL query is translated into SQL using
T -mappings.

(b) The resulting SQL query is optimized for efficient
execution by the database engine.

(c) The optimized SQL query is then executed by the
database engine, and the result set is translated into
the answer to the original SPARQL query by cre-
ating necessary RDF terms.

Phases (a) and (b) are handled together in the imple-
mentation of Ontop (we, however, distinguish them
here for the sake of clarity).

We elaborate now on the three phases of query an-
swering.

3.2.1. From SPARQL to SQL
Ontop internally represents the SPARQL query as a

tree corresponding to the SPARQL algebra expression
(generated by the Sesame SPARQL parser). Each node
of the tree is transformed into the respective SQL ex-
pression. To illustrate the transformation, we continue
with the running example.

Example 3.1. Consider the fragment of the query in
Example 2.3 that retrieves all tumors of stage IIIa:

SELECT ?tumor WHERE {
?tumor rdf:type :Neoplasm ;

:hasStage :stage-IIIa . }

(We note that the triple pattern ?tumor rdf:type

:Neoplasm was not needed in Example 2.3: indeed,
Ontop can infer it from ?p :hasNeoplasm ?tumor

because the range of :hasNeoplasm is :Neoplasm.)
The above query is represented by the following tree:

PROJECT

JOIN

T1: ?x rdf:type Neoplasm . T2: ?x :hasStage :IIIa .

Ontop 7

Input: SPARQL Query Q, T -mappings MT
Output: SQL Expression

1: S = List of nodes in Q in a bottom-up topological order
2: sqlM = a map from nodes to SQL expressions
3: for node n ∈ S do
4: if n is triple pattern then . Translating leaves
5: sqlM[n] = replace-Tmap-def(n, MT)
6: else . Translating non-leaf nodes
7: if n = JOIN(n1,n2) then
8: sqlM[n] = InnerJoin(sqlM[n1],sqlM[n2])
9: else if n = OPTIONAL(n1, n2, e) then

10: sqlM[n] = LeftJoin(sqlM[n1],sqlM[n2],e)
11: else if n = UNION(n1, n2) then
12: sqlM[n] = Union(sqlM[n1],sqlM[n2])
13: else if n = FILTER(n1, e) then
14: sqlM[n] = Filter(sqlM[n1], e)
15: else if n = PROJECT(n1, p) then
16: sqlM[n] = Project(sqlM[n1], p)
17: end if
18: end if
19: end for
20: return sqlM[S.last()]

Algorithm 1. Translating SPARQL into SQL

Next we explain how to produce the SQL expres-
sion from a SPARQL query using T -mappings. Algo-
rithm 1 is a simplified version of the process. It iter-
ates over the nodes of the SPARQL algebra tree in a
bottom-up fashion; more precisely, it goes through the
list S in the topological sorting order. In our running
example this list is [T1, T2, JOIN, PROJECT]. So, the
algorithm starts by replacing each leaf of the tree, that
is, a triple pattern of the form (s, p, o), by the union of
the SQL queries defining its predicate (lines 4–5) in the
T -mapping. In this step, the algorithm implicitly con-
siders two cases: (1) when p is an object or data prop-
erty, such as :hasStage or :hasName or (2) when p

is rdf:type and o is a class, such as :Patient.
Once it finishes processing the leaves, it continues

to the upper levels in the tree (lines 7–17), where the
SPARQL operators (PROJECT, JOIN, OPTIONAL,
UNION, and FILTER) are translated into the corre-
sponding SQL operators (Project, InnerJoin, LeftJoin,
Union, and Filter, respectively). Once the root is trans-
lated the process is finished and the resulting SQL ex-
pression is returned.

Example 3.2. Ontop translates the SPARQL query in
Example 3.1 into a SQL query (shown in Fig. 5a) with
the following structure:

SELECT Q1.x FROM
((SELECT concat(":db1/neoplasm/", pid) AS x

FROM tbl_patient
WHERE type = false OR type = true) Q1

JOIN
(SELECT concat(":db1/neoplasm/", pid) AS x
FROM tbl_patient WHERE stage = 4) Q2

ON Q1.x = Q2.x)

(a) Non-optimized generated SQL query

SELECT concat(":db1/neoplasm/", Q.pid) AS x
FROM
(SELECT T1.pid
FROM tbl_patient T1 JOIN tbl_patient T2

ON T1.pid = T2.pid
WHERE (T1.type = false OR T1.type = true)

AND T2.stage = 4) Q

(b) SQL query after the structural optimization

SELECT concat(":db1/neoplasm/", Q.pid) AS x
FROM
(SELECT pid
FROM tbl_patient
WHERE (type = false OR type = true)

AND stage = 4) Q

(c) SQL query after the self-join elimination

SELECT concat(":db1/neoplasm/", pid) AS x
FROM tbl_patient
WHERE (type = false OR type = true)

AND stage = 4

(d) SQL query after the second structural optimization

Fig. 5. Example of SQL translation and optimization

Project

InnerJoin

Q1 Q2

The leaves, Q1 and Q2, are respectively the SQL defi-
nitions of the concept :Neoplasm and of the property
:hasStage in the T -mapping rules constructed dur-
ing the off-line stage (see Section 3.1). Observe that
without the T -mapping optimizations in the off-line
stage, the resulting SQL would contain a union in place
of Q1, increasing the complexity of the SQL query and
so, having a negative effect on the query evaluation
time.

For the sake of simplicity we do not describe the
translation of filter expressions and OPTIONALs (an

8 Ontop

optimal translation of unions and empty expressions in
the second argument is particularly challenging) and
how to handle data types and functions in SQL expres-
sions. Instead, we refer the interested reader to [38,21].

3.2.2. Optimizing the generated SQL queries
The generated SQL queries can already be executed

by the DB engine but they are not necessarily efficient:
they often contain subqueries, redundant self-joins and
joins over complex expressions (such as string con-
catenations). Observe that joins over complex expres-
sions, for instance, prevent the database engine from
using indexes. To improve performance, Ontop em-
ploys a number of structural and semantic optimiza-
tions.

Structural Optimizations. Ontop applies three main
structural optimizations: (a) pushing the joins inside
the unions, (b) pushing the functions as high as pos-
sible in the query tree, and eliminating sub-queries.
Returning to the running example, the SQL query ob-
tained by these optimizations is shown in Fig. 5b: (b)
and (c) convert the join over the complex expressions
into a join over the attributes of the relations (effec-
tively de-IRIing the join) and subsequently remove the
subqueries.

Semantic Optimization. Ontop adopts techniques from
the Semantic Query Optimization (SQO) [11,20] field.
SQO refers to a set of techniques that perform the se-
mantic analysis of SQL queries and transform them
into a more efficient form, e.g., by removing redundant
self-joins, and detecting unsatisfiable or trivially satis-
fiable conditions. SQO techniques often use database
dependencies such as primary and foreign keys to re-
duce the size and complexity of the query. In our run-
ning example, these optimizations eliminate the self-
join, which is redundant because pid is the primary
key of tbl_patient; the result is shown in Fig. 5c. Ob-
serve that it has a subquery that could not be elimi-
nated before, but because of SQO we can apply struc-
tural optimization (c) again to obtain a simpler SQL
query, shown in Fig. 5d.

Observe that these optimizations complement and
interact with each other. The optimization step is crit-
ical [22] and nontrivial. The translation of more com-
plex queries is more involved and implies tackling the
gap between the SQL and SPARQL semantics. This
simple example is meant to provide an intuition; the
interested reader is referred to [21,38].

3.2.3. Executing the Query over the Database
Since different database engines support slightly

different SQL dialects, we have to adjust the SQL syn-
tax accordingly. For instance, the operator for string
concatenation is || in Postgres and concat in MySQL;
in MySQL, one cannot cast a value to Integer, so we
cast the value to Signed instead; Postgres internally
changes unquoted identifiers (both column and alias
names) to lowercase, while Oracle and H2 change un-
quoted identifiers to uppercase6.

Finally Ontop sends the optimized SQL query to
the database engine and translates the result into RDF
terms (URIs or literals) to construct the answers to the
SPARQL query. In the implementation, Ontop wraps
the result set obtained from the database via JDBC and
creates corresponding Java objects for OWL API or
Sesame API.

3.2.4. Performance
The cost of query answering in Ontop can be split

into three parts: (i) the cost of generating the SQL
query, (ii) the cost of execution by the RDBMS, and
(iii) the cost of fetching and transforming the SQL re-
sults into RDF terms. We have studied the performance
of Ontop using several benchmarks (e.g., BSBM, Fish-
Mark, LUBM, NPD) and settings (e.g., different DB
engines, number of clients, dataset size) [21,39,22,36].
The obtained results suggest that the performance of
Ontop depends more on the complexity of the combi-
nation of ontology and mappings than on the size of
the dataset. This is in line with the well-known theoret-
ical results that state that the translation from SPARQL
to SQL is exponential in the worst case [14]. In bench-
marks like BSBM, FishMark, and LUBM, where the
number of mappings and the number of ontological
terms are small and the dataset ranges from 25 to 200
million triples, Ontop outperforms its competitors by
orders of magnitude [39,21,36]. This performance is
the result of (i) the fast SPARQL-to-SQL translation
(around 4–15ms); (ii) the efficient optimization of the
SQL; and (iii) the well-known efficiency of relational
DB engines. For instance, in BSBM with 200 million
triples, Ontop can run more than 400.000 queries per
hour (44k query mixes per hour).

To better understand the performance of OBDA sys-
tems, we developed a more challenging benchmark,
the NPD Benchmark [22], which reveals the strengths
and pitfalls of OBDA. The benchmark comes with

6https://github.com/ontop/ontop/wiki/
Case-sensitivity-for-SQL-identifiers

Ontop 9

thousands of axioms in the ontology and rules in map-
pings, and a dataset containing up to 4 billion triples.
The results comparing Ontop and Stardog show that
indeed the approach is scalable but more work is
needed to optimize the generated SQL queries.

The query set, which was obtained by interview-
ing users of the NPD dataset [41], can be divided into
queries that are translated by Ontop into efficient SQL
queries and queries that are translated into exponen-
tially larger SQL queries. For instance, Query 12 from
the benchmark is translated into a union of more than
10.000 SQL subqueries. Ontop outperforms Stardog
whenever the SPARQL queries are not translated into
very large SQL queries. In the remaining cases, Star-
dog outperforms Ontop by orders of magnitude. The
results confirm that the exponential blow-up of the
translation into SQL is a major source of performance
loss in modern OBDA systems. If this issue is not han-
dled properly, it can prevent OBDA systems from be-
ing deployed in production environments. We are cur-
rently working on different techniques for tackling this
issue.

4. Industrial Applications

The adoption of Ontop by the community has been
growing steadily since 2010: last year (2014) On-
top got 500 new registrations, the webpage got 7000
hits, and the mailing list in excess of 120 threads.
Nowadays, Ontop is the core of the Optique Plat-
form (developed in the Optique EU project [13]), and
it is actively being used in academia7 (e.g., in Se-
mantic Mediator [5], for accessing electronic health
records [31], and for querying temporal and streaming
data in OBDA [26]) and being experimented with in
industry.

In this section we describe the use cases of the
two major industrial partners in the Optique Project,
namely Siemens and Statoil, and what role Ontop is
expected to play there.

Siemens. Siemens Energy is one of the four sectors
of Siemens AG corporation. It is in charge of gen-
erating and delivering power from numerous sources.
Siemens Energy runs several service centers for power
plants. Each center monitors thousands of devices re-
lated to power generation, including gas and steam

7https://github.com/ontop/ontop/wiki/
UseCases

turbines, compressors, and generators. Each device is
monitored by different sensors. All dynamic (observa-
tional) data from the sensors is stored in one large rela-
tional database (PostgreSQL) using more than 150 ta-
bles per device. About 30 GB of new sensor and event
data is being generated every day, resulting in a total
of 100 TB of timestamped data.

One of the main tasks of service engineers monitor-
ing these devices is to promptly solve issues detected
by gathering the relevant sensors data and analyzing
it. Nowadays, the data gathering phase is the bottle-
neck of the process because it takes about 80% of the
amount of time spent by engineers. The reason why the
gathering phase is critical partially resides in the com-
plexity and quantity of the data to be analyzed. Ide-
ally the engineers should be able to access the data di-
rectly, by creating and combining queries in a way that
is compatible with their knowledge. However, the data
is often organized to better serve the applications rather
than in a most intuitive way for the domain experts.

The OBDA approach to solving the problem con-
sists of topping the database with an ontology that uses
the terminology of the engineers and mediates between
the engineers and the data [18]. Observe that in the
Siemens scenario this requires handling historical and
streaming data. It is worth noticing that OBDA with
temporal and streaming data is still an open branch of
research, and Ontop alone is not fully able to cope with
all the requirements of this use case. However, Ontop
can provide the backbone including the temporal and
streaming dimensions in the Optique platform [26].

Statoil. Statoil is an international energy company
with main activities in gas and oil extraction. It is head-
quartered in Norway and present in over 30 countries
around the world.

Geologists at Statoil access several databases on a
daily basis, of which one of the most relevant is the
Exploration and Production Data Store (EPDS). EPDS
is a large SQL database comprising over 1500 ta-
bles with information about historical exploration data
(e.g., layers of rocks, porosity), production logs, maps,
etc. It also contains business information such as li-
cense areas and companies. The schema is organized
in such a way that direct data access by engineers
(and geologists in particular) often becomes challeng-
ing or even impossible. Similarly to the Siemens use
case, the main problem lies not only in the size of the
schema and the data but also in the obscure structure
of this legacy database. The solution currently adopted
by Statoil relies on tools that enable domain experts to

10 Ontop

combine different pre-defined queries. The problem of
these pre-defined queries is that they often are too spe-
cific, or too general, or cannot be easily combined to
obtain the desired results.

The role of Ontop (and Optique) in such scenario is
helping the engineers formulate their own queries au-
tonomously using the domain vocabulary [13]. Simi-
larly to the Siemens use case, this will be achieved by
enriching EPDS with an ontology expressed in terms
familiar to the engineers.

5. Related SPARQL Query Answering Systems

In this section, we briefly review the most popu-
lar SPARQL query answering systems, which can be
categorized into two major types: OBDA systems and
triplestores. Their main features are summarized in Ta-
ble 1.

Triplestores provide a flexible generic logical model
that allows them to accept and store any set of RDF
triples. However, if the triples are generated from ex-
ternal sources (e.g., relational databases) then an inter-
mediate ETL (Extract, Transform and Load) process
must be set up between these external sources and the
triplestore. The ETL process can be expensive, espe-
cially when datasources are updated frequently.

OBDA systems, on the other hand, are set up
over existing relational datasources and exploit their
domain-specific schemas. By using ontologies and
mappings, they expose the database as a virtual RDF
graph that can be queried using SPARQL. No ETL is
thus required.

Some triplestores and OBDA systems have reason-
ing capabilities. The most common strategy for triple-
stores is forward-chaining, which consists in extend-
ing the set of RDF triples by means of inferences ac-
cording to a given set of rules. Thus, the OWL 2 RL
profile of OWL 2 (and similar rule-based ontology lan-
guages) are most suitable for triplestores. Forward-
chaining has some drawbacks: the inferences can be
costly in terms of both time and space; moreover, up-
dates and deletions of triples require additional book-
keeping for incremental reasoning.

In contrast to triplestores, the most common strat-
egy for OBDA systems is query rewriting, and so the
profile of OWL that is most suitable for this setting
is OWL 2 QL. To guarantee rewritability, certain fea-
tures, such as recursion and property chains, are not
allowed in OWL 2 QL.

In the remainder of this section, we review various
implementations from these two categories.

5.1. Triplestores

Virtuoso Universal Server8 is a hybrid DBMS that
can be used as a relational database, a triplestore,
or an OBDA system. It has two editions: an open-
source and a commercial one. From the perspective
of answering SPARQL queries, Virtuoso is mostly
used as a triplestore. It supports SPARQL 1.1 and, in
this mode, it offers some backward- (by default) and
forward-chaininqg capabilities for a limited subset of
RDFS and OWL. When Virtuoso is used as a regu-
lar RDBMS, it can be extended into an OBDA sys-
tem by setting up mappings in its own mapping lan-
guage. However, this OBDA mode has several limita-
tions: no reasoning capability is available and only a
small fragment of R2RML is supported. Virtuoso can
be accessed through the Sesame and Jena APIs.

GraphDB,9 previously known as OWLIM [4], is a
commercial triplestore developed by Ontotext. It fully
supports SPARQL 1.1. OWL reasoning support is
based on the forward-chaining rule-based material-
ization approach. This strategy naturally fits with the
OWL 2 RL profile but is incomplete for OWL 2 QL [3].
GraphDB is accessible through the Sesame API.

Stardog10 is a commercial triplestore developed by
Clark&Parsia. It supports SPARQL 1.1 and several
reasoning levels: RDFS, the three profiles (OWL 2 QL,
OWL 2 EL, OWL 2 RL), and OWL 2 DL (however,
completeness in OWL 2 DL is guaranteed only for
schema reasoning). The reasoning level can be chosen
by the user at query time. Stardog avoids eager mate-
rialization and the reasoning is partly based on query
rewriting. It can be accessed through the Sesame API.

RDFox11 is an in-memory triplestore developed at the
University of Oxford. It implements a novel shared-
memory parallel Datalog reasoning algorithm and sup-
ports OWL 2 RL reasoning by materialization [25].
The system is a cross-platform software written in C++
and comes with a Java wrapper supporting OWL API.

5.2. OBDA systems

D2RQ12 is one of the pioneering OBDA systems, de-
veloped at the Free University of Berlin and DERI.

8http://virtuoso.openlinksw.com/
9http://www.ontotext.com/products/

ontotext-graphdb/
10http://stardog.com/
11http://www.cs.ox.ac.uk/isg/tools/RDFox/
12http://d2rq.org/

Ontop 11

System Reasoning Mapping support License Starting year

Triplestore Virtuoso RDFS∗ Native, R2RML∗ GPL 2, Commercial 1999
GraphDB OWL 2 RL - Commercial 2005
Stardog OWL 2 ∗/ SWRL∗ - Commercial 2012
RDFox OWL 2 RL / SWRL / Datalog - Academic 2013

OBDA D2RQ No D2RQ Mapping, R2RML∗ Apache 2 2004
Mastro OWL 2 QL R2RML∗ Academic 2006
Ultrawrap RDFS-Plus Native, R2RML Commercial 2012
Morph-RDB No R2RML Apache 2 2013
Ontop OWL 2 QL / SWRL∗ Ontop Mapping, R2RML Apache 2 2010

Table 1
Feature matrix of SPARQL query answering systems
(∗ indicates limited support)

This query rewriting system provides some query op-
timizations but these have often been reported as in-
sufficient: for instance, the generated SQL queries can
contain an excessive number of joins [29]. It provides
its own mapping language, D2RQ, and supports only
a fragment of R2RML. No inference mechanism is in-
cluded. This software (last release in 2012) is available
under an open-source license.

Mastro13 is an OBDA system that shares common ori-
gins with Ontop. This query rewriting system sup-
ports reasoning over OWL 2 QL ontologies. Unlike
other OBDA systems mentioned here, it supports only
a restricted fragment of SPARQL that corresponds to
unions of conjunctive queries. Mastro is available only
for demonstration, testing, and evaluation purposes.

Ultrawrap14 is an OBDA system commercialized by
Capsenta. It was recently extended to support infer-
ence over an extension of RDFS with inverse and tran-
sitive properties [40]. Ultrawrap uses an analogue of
T -mappings of Ontop, which are called saturated map-
pings and which are used for creating regular and ma-
terialized views in the relational database.

Morph-RDB,15 formerly called ODEMapster, is an
open-source OBDA system supporting the R2RML
and Direct Mappings standards. This system imple-
ments a number of query optimizations techniques
such as the self-join elimination [29]. It, however, has
no OWL inference capability.

13http://www.dis.uniroma1.it/~mastro/
14http://capsenta.com
15https://github.com/oeg-upm/morph-rdb

6. A Retrospective

Ontop has its roots in our initial work on the QuOnto
and Mastro [1,8] systems (2006), in the OBDA plugin
for Protégé [28], and in our DIG extension for Mas-
tro [33]. QuOnto is a reasoner for the description logic
DL-Lite with plain conjunctive query (CQ) answering.
Mastro extends QuOnto with support for GAV (global
as view) mappings for relational databases [27]. Both
systems are maintained by Sapienza University of
Rome. Our work enabled the use of these systems
through the ontology editor Protégé 3 and the DIG rea-
soner API.

Using these tools we interacted with third parties
to develop several OBDA applications [10,8,17,37,32]
(for a full list, see [32]). Such interactions allowed
us to test both the performance of the state-of-the-art
query rewriting techniques and the feasibility of apply-
ing this technology in data integration and data access.
The insights we obtained concern technique/optimiza-
tion issues and API/features issues. These two paths
of development characterized our work from then. We
now briefly elaborate on them.

Reasoning, Optimization and Performance. The
main issue initially was the large number of CQs
generated by the rewriting technique implemented in
QuOnto (the PerfectRef algorithm [9]), which some-
times, even for simple ontologies and mappings, pro-
duces in the order of hundreds of thousands of CQs.
And although DBMSs do perform very well in gen-
eral, they have problems with automatically generated
queries (and this applies to both commercial and non-
commercial database engines). To deal with the issue,
we extended the PerfectRef algorithm by the Seman-
tic Query Optimization (SQO) component, which re-
moves redundant CQs and eliminates redundant self-

12 Ontop

joins using database dependencies (foreign and pri-
mary keys) [32].

The work in this direction materialized in the first
version of Ontop (2010), which at the time was called
Quest (the name now refers only to the query answer-
ing engine). Quest focused on RDFS and OWL 2 QL
(instead of DL-Lite) and SPARQL (instead of CQs).
This required a new mapping language suitable for the
ontology languages (RDFS and OWL). Quest is ca-
pable of working in two modes: (i) the virtual mode
supports virtual RDF graphs via mappings, and (ii) the
RDF triplestore mode stores triples directly in a rela-
tional database. Two further ideas were developed for
improving performance: T -mappings for the virtual
mode [34,21] (c.f. Section 3.1) and the Semantic Index
for the RDF triplestore mode [35]. The tree-witness
query rewriting algorithm [19] was implemented to re-
duce the size of rewritings and take advantage of the
T -mappings and the Semantic Index. We also stud-
ied the execution of the SQL queries produced by On-
top and observed [32] that the generic database-centric
SQO was not sufficient and other techniques were re-
quired for the issues specific to the context of map-
pings and ontologies (e.g., join conditions can be sim-
plified by de-IRIing and the resulting joins eliminated
as explained in Section 3.2.2).

The more recent lines of research in Ontop in-
clude the formalization of SPARQL in the context of
OBDA [38], under the OWL 2 QL/RDFS entailment
regimes [21], and SWRL with limited forms of re-
cursion supported by SQL Common Table Expres-
sions [43].

API, Features and Accessibility. With the first ver-
sion of Ontop, we shifted our focus from the De-
scription Logic domain to Semantic Web technolo-
gies, gradually increasing our support for RDF, RDFS,
OWL 2 QL, and SPARQL. To support the OWL com-
munity, we included the OWL API and Protégé 4 in-
terfaces for Ontop. To support RDF and the Linked
Data community we created the Sesame API interface
for Ontop, as well as an HTTP SPARQL end-point.
With the publication of R2RML as the official W3C
RDB2RDF mapping language, we extended Ontop to
support it.

Ontop was initially released under a non-
commercial use license before adopting the permissive
Apache 2.0 license in 2013. In addition, the project
is now hosted in GitHub so that anybody can easily
download and contribute to it. On the software engi-
neering side, to facilitate integration, building, testing,

and distribution, Ontop was repackaged as a Maven
project and has been available from the official Maven
repository since 2013. We gradually introduced
project-wide testing, starting with functional tests
for the reasoning modules, query answering modules
(including the DAWG tests for SPARQL 1.0), and
virtual RDF modules (including the DAWG tests for
R2RML). Now most JUnit tests (∼2000) are automat-
ically run with Travis-CI whenever new changes are
pushed to GitHub.

7. Conclusion

In this paper we presented Ontop, a mature open-
source OBDA system. It allows users to access rela-
tional databases through a conceptual representation of
the domain of interest in terms of an ontology. The sys-
tem is based on solid theoretical foundations and has
been designed and implemented towards compliance
with relevant W3C standards. It supports all major re-
lational databases and implements multiple optimiza-
tion techniques to offer a good level of performance.
Ontop has been adopted in several academic and in-
dustrial use cases.

In the future, we plan to extend Ontop in the follow-
ing directions:

(i) In order to further improve performance, we will
investigate data-dependent optimizations.

(ii) We plan to support larger fragments of the
SPARQL (e.g., aggregation, negation, and path
queries) and R2RML (e.g., named graphs) stan-
dards.

(iii) For end-users, we will improve the GUI inter-
faces and add utilities to make Ontop even more
user-friendly.

(iv) We plan to go beyond relational databases and
support other kinds of data sources (e.g., graph
databases and document-oriented databases).

Acknowledgements. This paper is supported by the
EU under the large-scale integrating project (IP) Op-
tique (Scalable End-user Access to Big Data), grant
agreement n. FP7-318338.

References

[1] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, Mattia Palmieri, and
Riccardo Rosati. QUONTO: QUerying ONTOlogies. In Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI), pages
1670–1671, 2005.

Ontop 13

[2] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and
Michael Zakharyaschev. The DL-Lite family and relations. J.
of Artificial Intelligence Research, 36:1–69, 2009.

[3] Barry Bishop and Spas Bojanov. Implementing OWL 2 RL and
OWL 2 QL rule-sets for OWLIM. In Proc. of the 8th Int. Work-
shop on OWL: Experiences and Directions (OWLED), vol-
ume 796 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, 2011.

[4] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan
Peikov, Zdravko Tashev, and Ruslan Velkov. OWLIM: A fam-
ily of scalable semantic repositories. Semantic Web J., 2(1):33–
42, 2011.

[5] Béatrice Bouchou and Cheikh Niang. Semantic mediator
querying. In Proc. of the 18th Int. Database Engineering &
Applications Symposium (IDEAS), pages 29–38. ACM Press,
2014.

[6] Dan Brickley and R. V. Guha. RDF vocabulary description
language 1.0: RDF Schema. W3C Recommendation, World
Wide Web Consortium, February 2004. Available at http:
//www.w3.org/TR/rdf-schema/.

[7] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A generic architecture for storing and querying RDF
and RDF schema. In Proc. of the 1st Int. Semantic Web Conf.
(ISWC), volume 2342 of Lecture Notes in Computer Science,
pages 54–68. Springer, 2002.

[8] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-
Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. The Mastro system for ontology-based data access. Se-
mantic Web J., 2(1):43–53, 2011.

[9] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-
Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[10] Diego Calvanese, C. Maria Keet, Werner Nutt, Mariano
Rodriguez-Muro, and Giorgio Stefanoni. Web-based graphical
querying of databases through an ontology: the WONDER sys-
tem. In Proc. of the 25th ACM Symposium on Applied Com-
puting (SAC), pages 1388–1395, 2010.

[11] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based
approach to semantic query optimization. ACM Trans. on
Database Systems, 15(2):162–207, 1990.

[12] Souripriya Das, Seema Sundara, and Richard Cyganiak.
R2RML: RDB to RDF mapping language. W3C Recommen-
dation, World Wide Web Consortium, September 2012. Avail-
able at http://www.w3.org/TR/r2rml/.

[13] Martin Giese, Peter Haase, Ernesto Jiménez-Ruiz, Davide
Lanti, Özgür Özçep, Martin Rezk, Riccardo Rosati, Ahmet
Soylu, Guillermo Vega-Gorgojo, Arild Waaler, and Guohui
Xiao. Optique – zooming in on big data access. IEEE Com-
puter, Accepted for publication, 2015.

[14] Georg Gottlob, Stanislav Kikot, Roman Kontchakov,
Vladimir V. Podolskii, Thomas Schwentick, and Michael Za-
kharyaschev. The price of query rewriting in ontology-based
data access. Artificial Intelligence, 213:42–59, 2014.

[15] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for OWL ontologies. Semantic Web J., 2(1):11–21, 2011.

[16] Joseph S. Nye Jr. The benefits of soft power. Technical re-
port, Harvard University - Business School, 2004. Available at
http://hbswk.hbs.edu/archive/4290.html.

[17] C. Maria Keet, Ronell Alberts, Aurona Gerber, and Gibson

Chimamiwa. Enhancing web portals with Ontology-Based
Data Access: the case study of South Africa’s Accessibility
Portal for people with disabilities. In Proc. of the 5th Int. Work-
shop on OWL: Experiences and Directions (OWLED), vol-
ume 432 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, 2008.

[18] Evgeny Kharlamov, Nina Solomakhina, Özgür Lütfü Özçep,
Dmitriy Zheleznyakov, Thomas Hubauer, Steffen Lamparter,
Mikhail Roshchin, Ahmet Soylu, and Stuart Watson. How se-
mantic technologies can enhance data access at Siemens En-
ergy. In Proc. of the 13th Int. Semantic Web Conf. (ISWC), vol-
ume 8796 of Lecture Notes in Computer Science, pages 601–
619. Springer, 2014.

[19] S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive
query answering with OWL 2 QL. In Proc. of the 13th Int.
Conf. on the Principles of Knowledge Representation and Rea-
soning (KR), pages 275–285, 2012.

[20] Jonathan J. King. QUIST: A system for semantic query op-
timization in relational databases. In Proc. of the 7th Int.
Conf. on Very Large Data Bases (VLDB), pages 510–517. IEEE
Computer Society, 1981.

[21] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro,
Guohui Xiao, and Michael Zakharyaschev. Answering
SPARQL queries over databases under OWL 2 QL entailment
regime. In Proc. of the 13th Int. Semantic Web Conf. (ISWC),
volume 8796 of Lecture Notes in Computer Science, pages
552–567. Springer, 2014.

[22] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Cal-
vanese. The NPD benchmark: Reality check for OBDA sys-
tems. In Proc. of the 18th Int. Conf. on Extending Database
Technology (EDBT), 2015.

[23] Domenico Lembo, Valerio Santarelli, and Domenico Fabio
Savo. Graph-based ontology classification in OWL 2 QL. In
Proc. of the 10th Extended Semantic Web Conf. (ESWC), vol-
ume 7882 of Lecture Notes in Computer Science, pages 320–
334. Springer, 2013.

[24] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu,
Achille Fokoue, and Carsten Lutz. OWL 2 Web Ontology
Language profiles (second edition). W3C Recommendation,
World Wide Web Consortium, December 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

[25] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan
Olteanu. Parallel materialisation of Datalog programs in cen-
tralised, main-memory RDF systems. In Proc. of the 28th AAAI
Conf. on Artificial Intelligence (AAAI), pages 129–137. AAAI
Press, 2014.

[26] Özgür Lütfü Özçep and Ralf Möller. Ontology based data ac-
cess on temporal and streaming data. In Reasoning Web. Rea-
soning on the Web in the Big Data Era – 10th Int. Summer
School Tutorial Lectures (RW), volume 8714 of Lecture Notes
in Computer Science, pages 279–312. Springer, 2014.

[27] Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. on Data Semantics,
X:133–173, 2008.

[28] Antonella Poggi, Mariano Rodríguez-Muro, and Marco Ruzzi.
Ontology-based database access with DIG-Mastro and the
OBDA Plugin for Protégé. In Kendall Clark and Peter F. Patel-
Schneider, editors, Proc. of the 4th Int. Workshop on OWL: Ex-
periences and Directions (OWLED DC), 2008.

[29] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. Formalisa-

14 Ontop

tion and experiences of R2RML-based SPARQL to SQL query
translation using Morph. In Proc. of the 23rd Int. World Wide
Web Conf. (WWW), pages 479–490, 2014.

[30] S. Pugacs. Efficient query answering with semantic indexes.
BSc thesis, KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano, 2011.

[31] Alireza Rahimi, Siaw-Teng Liaw, Jane Taggart, Pradeep Ray,
and Hairong Yu. Validating an ontology-based algorithm to
identify patients with type 2 diabetes mellitus in electronic
health records. Int. J. Medical Informatics, 83(10):768–778,
2014.

[32] Mariano Rodríguez-Muro. Tools and Techniques for Ontology
Based Data Access in Lightweight Description Logics. PhD
thesis, KRDB Research Centre for Knowledge and Data, Free
University of Bozen-Bolzano, 2010.

[33] Mariano Rodriguez-Muro and Diego Calvanese. Towards an
open framework for ontology based data access with Protégé
and DIG 1.1. In Proc. of the 5th Int. Workshop on OWL: Expe-
riences and Directions (OWLED), volume 432 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/,
2008.

[34] Mariano Rodríguez-Muro and Diego Calvanese. Dependen-
cies: Making ontology based data access work in practice. In
Proc. of the 5th Alberto Mendelzon Int. Workshop on Founda-
tions of Data Management (AMW), volume 749 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/,
2011.

[35] Mariano Rodriguez-Muro and Diego Calvanese. High perfor-
mance query answering over DL-Lite ontologies. In Proc. of
the 13th Int. Conf. on the Principles of Knowledge Representa-
tion and Reasoning (KR), pages 308–318, 2012.

[36] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael
Zakharyaschev. Ontology-based data access: Ontop of
databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC),
volume 8218 of Lecture Notes in Computer Science, pages
558–573. Springer, 2013.

[37] Mariano Rodríguez-Muro, Lina Lubyte, and Diego Calvanese.

Realizing ontology based data access: A plug-in for Protégé. In
Proc. of the ICDE Workshop on Information Integration Meth-
ods, Architectures, and Systems (IIMAS 2008), pages 286–289.
IEEE Computer Society Press, 2008.

[38] Mariano Rodriguez-Muro and Martin Rezk. Efficient
SPARQL-to-SQL with R2RML mappings. Technical report,
Free University of Bozen-Bolzano, January 2014. Avail-
able at http://www.inf.unibz.it/~mrezk/pdf/
sparql-sql.pdf.

[39] Mariano Rodriguez-Muro, Martin Rezk, Josef Hardi, Mindau-
gas Slusnys, Timea Bagosi, and Diego Calvanese. Evaluat-
ing SPARQL-to-SQL translation in Ontop. In Proc. of the
2nd Int. Workshop on OWL Reasoner Evaluation (ORE), vol-
ume 1015 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, pages 94–100, 2013.

[40] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker.
OBDA: Query rewriting or materialization? In practice, both!
In Proc. of the 13th Int. Semantic Web Conf. (ISWC), volume
8796 of Lecture Notes in Computer Science, pages 535–551.
Springer, 2014.

[41] Martin G. Skjæveland and Espen H. Lian. Benefits of pub-
lishing the Norwegian Petroleum Directorate’s FactPages as
Linked Open Data. In Proc. of Norsk informatikkonferanse
(NIK 2013). Tapir, 2013.

[42] Manolis M. Tsangaris, George Kakaletris, Herald Kllapi,
Giorgos Papanikos, Fragkiskos Pentaris, Paul Polydoras, Eva
Sitaridi, Vassilis Stoumpos, and Yannis E. Ioannidis. Dataflow
processing and optimization on grid and cloud infrastructures.
Bull. of the IEEE Computer Society Technical Committee on
Data Engineering, 32(1):67–74, 2009.

[43] Guohui Xiao, Martin Rezk, Mariano Rodriguez-Muro, and
Diego Calvanese. Rules and ontology based data access. In
Proc. of the 8th Int. Conf. on Web Reasoning and Rule Sys-
tems (RR), volume 8741 of Lecture Notes in Computer Science,
pages 157–172. Springer, 2014.

