
Semantic Web 0 (2015) 1–0 1
IOS Press

Question Answering over BioMedical Linked
Data with Grammatical Framework

Anca Marginean a,∗

a Department of Computer Science, Technical University of Cluj Napoca, 401446 Cluj-Napoca, Romania

Abstract. The blending of linked data with ontologies leverages the access to data. GFMed introduces grammars for
a controlled natural language targeted towards biomedical linked data and the corresponding controlled SPARQL
language. The grammars are described in Grammatical Framework and introduce linguistic and SPARQL phrases
mostly about drugs, diseases and relationships between them. The semantic and linguistic chunks correspond to
Description Logic constructors. Problems and solutions for querying the datasets with Romanian, beside English,
are described in the context of GF.

Keywords: querying linked data, description logics, controlled natural language, multilingual system, Grammatical
Framework

1. Introduction

Linked Data means using the Web to connect
related data. A large number of data from various
domains such as government data, education, life
sciences, art and others were made available in the
context of the Linked Open Data initiative built
around DBpedia. One of the greatest challenges of
this new big set of data is querying it. In order
to fill the gap between end users and formal lan-
guages like SPARQL, more approaches emerged:
querying in full natural language [18], or in Con-
trolled Natural Languages [3], [7], [5], or incremen-
tal query building [17].

The dimension of the terminology used for
building the data is one impediment to be sur-
passed in order to query it. The lack of previous
and detailed knowledge about the structure of the
data makes the querying task tedious, even for
users well adjusted to the semantic web technolo-
gies. Not to mention the common situation where
more datasets are required in order to find the
desired data.

*Corresponding author. E-mail:

anca.marginean@cs.utcluj.ro

In the context of the large adoption of ontolo-
gies and semantic reasoning on one hand, and the
development of techniques for natural language
processing on the other hand, the aim of having
the natural language as a mean to query linked
data becomes more feasible. Querying databases
with meaning representation languages that rely
on natural language is an old idea. CHILL system
[16] used such a language for querying Geobase,
a set of Prolog facts. The specialized parser for
the language was learned through inductive logic
programming. More recently, statistical machine
learning was used. With an increasing popular-
ity, Controlled natural languages aim at giving an
intuitive representation to formal representations,
by making a trade-off between precision of formal
languages and ambiguity, but high expressiveness,
of natural languages. A comparative analysis of
controlled natural languages is done in [8].

Following the controlled natural language line,
we propose a system based on application gram-
mars manually built with Grammatical Frame-
work (GF) [11]. The goal is to provide a natu-
ral, yet precise way of querying linked data. The
starting point is the relation between the mean-
ing of expressions in natural language and the

1570-0844/15/$27.50 c© 2015 – IOS Press and the authors. All rights reserved

2

constructors of description logics. This relation is
also analyzed in [7], while GF is also used for
linked data in [3], [4]. The targeted linked data
are biomedical data, described in Diseasome, Sider
and Drugbank. These three sets were proposed in
Task 2, Biomedical question answering over linked
data, of the Question Answering over Linked Data
(QALD-4) [13].

DrugBank is part of the project Bio2RDF [2]
and gives chemical, pharmacological and phar-
maceutical data about drugs with comprehensive
drug target information. Diseasome provides infor-
mation about human disease-gene network, while
SIDER relates drugs to their adverse reactions.
The Linked Data version of Diseasome publishes
a network of 4300 disorders and disease genes, as
well as possible drugs for diseases. SIDER includes
4192 side effects, 996 drugs and 99423 drug/side-
effect pairs. The three datasets are connected: dis-
eases from Diseasome are related to drugs de-
scribed in DrugBank, DrugBank drugs are related
to Sider drugs with the relation sameAs and there
are side effects from Sider that are also diseases.

Grammatical Framework is a special purpose
programming language with a high support for
multilingual applications. Therefore a multilingual
system was investigated starting from the gram-
mars proposed for English, with Romanian as the
second natural language.

The article is structured in 6 sections. Section
2 introduces the GF resource library that we pro-
pose for SPARQL. Section 3 describes the main
functions from the abstract and concrete gram-
mars which define the controlled language. Section
4 introduces our first attempt in building a mul-
tilingual language for querying biomedical data.
Related work is analyzed in Section 5, while some
conclusions are drawn in Section 6.

2. Controlled natural language with GF

The general workflow of a system for querying
linked data with GF is detailed in figure 1.

GF grammars are divided into abstract and con-
crete grammars. An abstract grammar defines ca-
tegories and functions. Each category stands for
a set of trees. Functions produce trees of certain
categories. The linearization types and functions
are defined in concrete grammars. For each cate-
gory, a linearization type is defined and for each

Natural language question

Natural Language Grammar

Abstract Grammar

SPARQL grammar

SPARQL query

Linked Data:
DrugBank, Sider,
Diseasome

Grammatical
Framework

Fig. 1. Querying linked data with natural language

function, a linearization function. Based on the
abstract grammar and the concrete grammars for
each language, GF is able to translate a phrase
from one language to another by parsing it first
into an abstract tree and then linearizing it by
means of the concrete grammars.

GF has support for syntax, lexicon and inflec-
tions in 36 languages. It comes with a comprehen-
sive library for English [11]. GFMed English con-
crete grammar relies on this library for the syntax,
morphological paradigms used to introduce new
elements in the lexicon, and coordination.

2.1. SPARQL resource library

The first step in using GF for querying linked
data is to create support for the language SPARQL.
From our knowledge, even though there are appli-
cations of GF for this task [3], GF libraries do not
include resources for SPARQL.

Two main types were defined: Triplet and State-
ment. The type Triplet : Type = {subj, obj :
Str; prop : PropertyT}; is a structure with
three components: two string components for the
subject and the object, and a structure for the
property. The structure PropertyT : Type =
{s : Str; vt : V alueType} for the property in-
cludes also two fields: a string for the name of
the property and a field of the enumerated type
V alueType. The field stores the type of the val-
ues for the property. The enumerated type has two
values: String and Number. The type of the pro-
perty is important in using the correct operator
inside the FILTER expressions. For the moment,
only equality and the regex operators are included.
By default, the regex operator is used for proper-
ties that have strings as values, while the equality
operator is used for the properties with numerical
values.

3

mkStatement : Triplet → Statement =

\vp → {s = vp.subj + +vp.prop.s + +vp.obj; extra = ””; aggreg = no};

mkFilterStatement : PropertyT → Str → Str → Statement =

\p, x, v2 → case p.vt of {

String ⇒ {s = ”FILTER(regex(” + +v2 + +”, ” + +x + +”,′ i′))”; extra = ””; aggreg = no};

Number ⇒ {s = ”FILTER(” + +v2 + +” = ” + +x + +”)”; extra = ””; aggreg = no}};

addStatement : Triplet → Statement → Statement =

\vp, st → let s1 = mkStatement vp

in {s = s1.s + +”.” + +st.s; extra = st.extra; aggreg = st.aggreg};

addStatement2 : Statement → Statement → Statement =

\st1, st2 → {s = st1.s + +”.” + +st2.s; extra = st1.extra + +st2.extra;

aggreg = case st1.aggreg of { yes => yes;

no => st2.aggreg} };

Fig. 2. Functions that create graph patterns

mkEmptyTriplet : PropertyT → Triplet =

\p → {subj = ””; prop = p; obj = ””};

addSubj : Str → Triplet → Triplet =

\ss, vp → {subj = ss; prop = vp.prop;

obj = vp.obj};

Fig. 3. Functions that create a Triplet

The type Statement : Type = {s : Str; extra :
Str; aggreg : AggregationType}; is a structure
with three fields. It corresponds to a graph pat-
tern formed by one or more triple patterns. The
first component is the string expressing the graph
pattern and it is going to be part of the WHERE
clause. The third component, aggreg, has two pos-
sible values, yes and no, stating whether value ag-
gregation is required. The field extra contains the
expression for value aggregation in case it exists.

A set of functions were defined on these types.
There are functions that create incomplete triple
patterns, as the functions mkEmptyTriplet or
addSubj (Figure 3). A subset of the functions that
create graph patterns is mentioned in Figure 2.
The function mkStatement concatenates the fields
of a Triplet and creates a graph pattern with only

one triple pattern. The function mkFilterState-
ment details the default behavior for FILTER ex-
pressions for the two defined property types. In
order to support other datatypes, the enumer-
ated type V alueType must be extended with other
types, and a new field can be added to PropertyT
allowing explicit specification in this function of
the behavior for properties with a certain type of
values. The last two functions build graph patterns
with more than one triple pattern. The function
addStatement adds a triple pattern to a graph pat-
tern, while the function addStatement2 concate-
nates two graph patterns.

Finally, there is a set of functions that create
the strings for SELECT and ASK queries (Figure
4). The function mkQuery applies on a string that
includes the variables to appear in the query re-
sults and on a graph pattern. The final string is
built according to whether aggregation is part of
the query or not.

3. DL based questions for biomedical linked data

Description Logics (DLs) [1] are a family of
knowledge representation languages that can be
used to represent the knowledge of an applica-
tion domain in a structured and formally well-

4

Abstract Biomedical

Concrete English Grammar Concrete SPARQL Grammar

English Syntax English Lexicon SPARQL Lexicon SPARQL Syntax

Sider Diseasome DrugBank

SPARQL ResourcesGF English lib

Fig. 5. Principalele gramatici şi resurse utilizate de GFMed

mkQuery : Str → Statement → Str =

\var, b → case b.aggreg of{

yes ⇒ ”select”++var++

”where{”++b.s++”}”++b.extra;

no ⇒ ”select distinct”++var++

”where{”++b.s++”}” }

mkAskQuery : Statement → Str =

\b → ”ask{”++b.s++”}”;

Fig. 4. Functions for creating SELECT and ASK queries

understood way. In the description logic ALC, con-
cepts are built using the set of constructors formed
by negation, conjunction, disjunction, value re-
striction, and existential restriction. Extensions of
ALC introduce inverse roles, number restrictions
(N ,Q) and concrete domains(O). Even though
the three targeted datasets are not all providing
for DLs descriptions or ontologies, approaching
them from a DLs perspective indicates ways to effi-
ciently split possible questions in semantic chunks
that have straightforward translations to SPARQL
and are highly composable.

GFMed, the proposed system, consists mainly
of a GF grammar for the application domain given
by SIDER, Diseasome and DrugBank datasets.
GFMed also includes some minor preprocessing
of questions and post-processing of translation re-
sults, mainly in order to deal with structures in-
volving numeric values, e.g. values for water sol-
ubility, or free text, like different names of foods.
Figure 5 shows the main grammars: an abstract
grammar and two concrete grammars. For each
concrete grammar, lexicons derived from SIDER,
Diseasome and DrugBank were generated. Many

syntactic structures in both English and SPARQL
were driven by the datatsets’ terminology.

For domain-specific applications, the GF ab-
stract grammar must state the main semantic ca-
tegories and trees of the language. For GFMed
we introduced the following categories: Drug,
Target, Disease, Gene, SideEffect and SIDER
Drug corresponding to the main resources in the
targeted datasets. We also introduced the ca-
tegories DrugBankProperty, DiseasomeProperty
and SIDERProperty for describing the proper-
ties of the same datatsets. For each mentioned
resource category, classes of these semantic enti-
ties are described, resulting DrugClass, Disease-
Class, GeneClass, TargetClass and SideEffect-
Class. Trees for these categories are built either
from a single named resource, or from a restric-
tion on a property. For each XClass there are one
or more CriterionForXClass categories, where the
class can be obtained from the Criteria for that
class. For example, drugs that interact with food
is a DrugClass tree, while interact with food is a
CriterionForDrugClass. In other words, trees of
type CriterionForXClass are subtrees of XClass
trees. Table 1 depicts the main categories together
with their English linearization category and some
examples or explanations.

The core of the abstract grammar consists of
functions to build trees. GFMed’s functions can be
categorized in (i) functions that describe property
restrictions, (ii) functions for transforming a cri-
terion of a class into a class or for transformations
between different types of classes and properties,
(iii) functions expressing queries.

In the concrete SPARQL grammar built on top
on our SPARQL resource library, each property
from the targeted datasets is linearized to a value
of type Triplet, initially with null object and sub-
ject. These two are completed within linearization
of different restriction functions: one of them must

5

Table 1

Main categories of GFMed grammars

Category English Examples and Short Explanation

Category

X NP X ∈ {Drug, TargetConcept, Gene, Disease, SideEffect, SiderDrug}
DrugBank-
Property

CN MeltingPoint, GeneralFunction, DosageForm, PredictedWaterSolubility, Manufactur-
ers, Indication, Target, Interacting, FoodInteraction,...

Sider-Property CN SideEffect

Diseasome-

Property

CN AssociatedGene, PossibleDrug, ClassDegree, Degree, Class, Size, SubtypeOf, Chro-

mosomalLocation

Property CN any kind of property from the above three

XClass NP classes formed of a single named X entity: Lepirudin, or from drugs described by a

criterion: drugs that target Prothrombin

DrugClass, TargetClass, SideEffectClass, SiderDrugClass, DiseaseClass, GeneClass,

PropertyClass

Criterion-

ForXClassY
criterion for getting a class of X, expressed by an Y syntactic structure

NP Lepirudin as possible drug

Adv with Lepirudin as possible drug

AP treated with Lepirudin, indicated for Fever

VP treat Tuberculosis

RCl whose possible drug is Lepirudin, whose possible drugs interact with Lepirudin

ClSlash Lepirudin is used for

Question QS which drugs interact with food

Utterance Utt utterances from affirmative clauses List the drugs that... or from question clauses

What are the drugs that ...

be a resource or a previously introduced variable,
case in which there must exist a triplet where this
variable is bound. The other one is completed with
a newly introduced variable that will be either in-
cluded in the SELECT clause of the query, or will
become the subject or the object of another triplet,
when more functions are composed. In order to be
able to do this, the linearizations of XClass or of
the associated criteria are structures consisting of
i) the name of the new variable and ii) the body
that includes complete triplets and possible aggre-
gations or filters in a Statement structure.

When dealing with hasValue restrictions, the
SPARQL linearization must include different types
of filters according to the datatype of the property.
In order to identify the correct filter, SPARQL
linearization of each DrugBank, Diseasome, Sider
property includes also the type, Number or String,
in addition to its complete name.

3.1. Building Trees for Property Restrictions

In DLs, there are two types of roles or prop-
erties: object properties and datatype proper-
ties. Object properties relate two concepts, while

Table 2

Examples of DL expressions with terms from Diseasome

DL

Constructor Examples

existential

restriction
∃ R.C

∃ PossibleDrug.ApprovedDrugs - dis-

eases treated with at least one drug from
the category of ApprovedDrug

∃ PossibleDrug−1.DiseasesWithDegree1
- drugs that treat diseases with Degree 1

universal

restriction
∀ R.C

∀ PossibleDrug.{Bextra} - diseases

treated only with Bextra

individual

assertion
a:C

Rickets : Disease - Rickets is a disease

role as-

sertion
(a,b):R

(Rickets, Calcitriol) : PossibleDrug -

Rickets has Calcitriol as possible drug

datatype properties relate one concept to a value

of a certain datatype. For example, the object

property SideEffect connects the resources Peni-

cillinG and Fever. Differently, the Mechanism of

Action property relates the drug Lepirudin to a

string value.

6

WithPossibleDrug : DrugClass → DiseaseClass; - - diseases treated with D
WithPossibleDrugCriterion : DrugClass → CriterionForDiseaseClass; - - treated with D
WithPossibleDrugCriteriaClSlash : DrugClass → CriterionForDiseaseClassClSlash; - - D is used for
WithPossibleDrugCriteriaNP : DrugClass → CriterionForDiseaseClassNP ; - - D as possible drug
WithPossibleDrugCriteriaAdv : DrugClass → CriterionForDiseaseClassAdv; - - with D as possible drug
WithPossibleDrugCriteriaRCl : DrugClass → CriterionForDiseaseClassRCl; - - whose possible drug is D
WithPossibleDrugCriteriaRCl V P : CriterionForDrugClassV P → CriterionForDiseaseClassRCl;

- - whose possible drug interacts with D
WithPossibleDrugCriteriaRCl Adj : CriterionForDrugClassAdj → CriterionForDiseaseClassRCl;

- - whose possible drug is associated with D

Fig. 6. Functions for diseases expressed as restrictions on the property PossibleDrug

Object properties Object properties and datatype
properties are treated differently in the GFMed
grammar. When it comes to object properties,
the DL existential restriction ∃R.C on property
R describes the set of individuals having as
value of the property (role) R an individual
from the concept C. For example, ∃ Possible-
Drug.FeverInducingDrug is a restriction on pro-
perty PossibleDrug whose interpretation, if it ex-
ists, is the set of all diseases that have at least
one possible drug from the class FeverInducing-
Drug. FeverInducingDrug stands for all drugs
that have fever as a side effect and it is a value
restriction, with value Fever, on the property
SideEffect. Some more examples are given in ta-
ble 2. We consider that even though the targeted
datasets are not described in DL, in order to have
language constructors able to be composed based
on their type, the functions to build trees in either
English or SPARQL can be described similarly to
DL constructors. This approach is also justified
by the functional style of the chosen grammatical
framework.

Each DL constructor can be expressed in nat-
ural language in more ways, either as noun
phrase (NP), verbal phrase (VP), adjectival phrase
(AP), verb-phrase-modifying adverb (Adv), rela-
tive clause (RCl) or clause with some missing part
(ClSlash). These syntactic categories are defined
by GF library. To each DL constructor identified
at a conceptual level correspond more functions
to build trees at concrete English level, one for
each possible syntactic structure. Figure 6 shows
functions that model restriction on the property
PossibleDrug with values in DrugClass. In a sim-
ilar manner, functions for restriction on the in-
verse property of PossibleDrug are defined. They

allow statements about drugs used to treat a cer-
tain disease or a disease class. For all object prop-
erties, the abstract and concrete grammars include
sets of functions to express existential and value
restrictions on them. Since classese formed from
only one named drug are allowed, hasV alue re-
strictions on object properties can be treated in
the same way as existential restrictions.

Within this approach, treated by interferon
beta-1a is identified as (WithPossibleDrugsCrite-
rion (SingleDrug DB00060)), and its SPARQL
liniarization is the graph pattern ?dis ds:diseasome/
possibleDrug db:drugs/DB00060 . ?dis a ds:disea-
some/diseases.

Datatype properties When it comes to restric-
tions on datatype properties, the English methods
to express them are not anymore particular to each
property, therefore it is possible to treat all with
the same set of functions. Some examples are de-
scribed in Fig. 7. The property becomes one of
the functions’ parameters. The most important is-
sue is that it is not possible to include all actual
values in the grammar, because the set of val-
ues is not finite. This issue can not be completely
solved in GF. The proposed solution is to in-
clude in the grammar generic trees with a dummy
string. If the translation to SPARQL succeeds, the
dummy value is replaced in the generated query
during post-processing. Since the values for these
restrictions tend to appear at the end of the ques-
tion, e.g. Give me the side effects of drugs with a
solubility of 3.24e-02 mg/mL, in the preprocess-
ing phase the string value is replaced with the
dummy value and the question to be parsed be-
comes Give me the side effects of drugs with a
solubility of XX. This is identified as [GiveSider-

7

V alueRestriction : DrugBankProperty → CriterionForDrugClass - - solubility of XX
V alueRestrictionAdj → CriterionForTargetClass - - involved in XX
V alueRestrictionRCl : DrugBankProperty → CriterionForDrugClassRCl

- - whose route of elimination involves XX
DiseaseV alueRestriction : DiseasomeProperty → CriterionForDiseaseClassNP

- - chromosomal location of XX
DiseaseV alueRestrictionRCl : DiseasomeProperty → CriterionForDiseaseClassRCl

- - whose subtype involves XX
LowestNumber : Property → CriterionForDrugClass - - lowest number of side effects
DiseaseWithLowestV alue : DiseasomeProperty → CriterionForDiseaseClassNP ;

- - with lowest size
LowestNumberV alue : Property → PropertyClass; - - least common chromosome location

Fig. 7. Functions for restrictions on datatype properties

Property SideEffect [ToDrugClass [ValueRestric-
tion Solubility]]], where SideEffect indicates the
object property whose value is asked for. The con-
tent of the innermost brackets represents the drugs
indicated by the transformation to DrugClass of
a value restriction on the datatype property Sol-
ubility. Another possible solution for covering nu-
merical values for these restrictions could be based
on the GF support for integers and floating point
numbers.

Other described constructors include High-
estNumber, LowestNumber, ZeroNumber, which
are focused on the number of properties, or
HighestValue, and LowestValue which are fo-
cused on values of properties. For example, the
least common chromosome location is interpreted
as [LowestValue ChromosomeLocation], where
ChromosomeLocation is a DrugBank property.

Figure 8 details two examples. The function
HighestNumber is used in the first example and
its SPARQL linearization includes an aggrega-
tion function. The graph pattern for the WHERE
clause is stored in the component s of the structure
Statement (from the SPARQL resource library),
and the description for the aggregation function is
stored in the component extra of the same struc-
ture Statement. A second example includes a filter
on the value of the property state from DrugBank.

3.2. Transformation Functions

For composability reasons, transformation func-
tions are defined for getting from a criterion to a
class, or for getting from one dataset to another.

(HighestNumber (DbToProperty Indication))

the highest number of indications

?drug db:drugbank/indication ?vp. – WHERE clause

count(distinct ?vp) as ?c – SELECT clause

group by ?drug order by desc(?c) limit 1

(WithPossibleDrugsCriteria (ToDrugClass GasState))

treated by drugs with gas state

?dis ds:diseasome/possibleDrug ?drug .
?dis a ds:diseasome/diseases .

?drug db:drugbank/state ?state .

FILTER(regex(?state , ’gas’ , ’i’))

Fig. 8. Examples for datatype properties

The former are important for English lineariza-
tion, while the latter play an important role in
SPARQL linearization.

The first transformation functions take crite-
ria and build on them the upper level linguistic
structures needed in queries. For example, in or-
der to get to the Noun Phrase drugs used for Rick-
ets from the Adjectival Phrase used from Rickets,
there is a transformation from CriterionForDrug-
ClassAdj to DrugClass that adds the noun drugs to
linearization of the AP. When building SPARQL
queries, these transformation functions do not al-
ter the linearization of the Criterion, because the
corresponding SPARQL triplets are already com-
pletely built. All the English alternatives for ex-
pressing a conceptual DL constructor have the
same SPARQL linearization. This is somehow ex-
pected, as SPARQL is a formal language tightly
related to DLs.

The second type of transformations deals with
queries requesting access to more datasets. In this
case, English linearization does not alter the ob-
ject of transformation, while the SPARQL lin-

8

[WithPossibleDrugsCriteria [ToDrugClass [ToDrugClassCriteria [SiderZeroNumber SideEffect]]]]

treated by drugs with no side effect

?dis ds : diseasome/possibleDrug ?drug.
?dis a ds : diseasome/diseases.
FILTER NOT EXISTS {?siderdrug sd : sider/sideEffect?vp}.
?siderdrug a sd : sider/drugs.

}
t1

?drug owl : sameAs ?siderdrug

 t2

 t3

 t4

Fig. 9. Abstract tree and concrete linearizations in English and SPARQL for an example with two transformation functions:

WhichDisease2 : DiseaseClass → Question; - - which are the diseases caused by D?
WhichDisease : CriterionForDiseaseClass → Question; - - which diseases are caused by D?
WhichTargetAdj : V alueRestrictionAdj → Question; - - which targets are involved in XX?
WhatPropertyV alue : PropertyClass → Question; - - which is the least common chromosome location?

Fig. 10. Functions for queries

earization introduces new variables and sameAs
statements. For example, the function DBToSider-
Drug converts the class of DrugBank drugs to the
class of Sider drugs. Its SPARQL linerization in-
troduces a new variable ?siderdrug that is related
with a sameAs statement to the variable of the
function’s parameter.

DBToSiderDrug : DrugClass → SiderDrugClass;

DBToSiderDrug d = {var = ”?siderdrug”;

body = addStatement2

(mkSameAsStatement ”?siderdrug” d.var)

d.body}; - - concrete SPARQL

DBToSiderDrug d = d; - - concrete English

An exampe combining two transformation func-
tions is given in Figure 9. The innermost tree t1 is a
criterion for a class of Sider drugs [SiderZeroNum-
ber SideEffect]. The tree t2=[ToDrugClass- Cri-
teria t1] is determined by a transformation func-
tion between the sets Sider and Drugbank, while
t3 = [ToDrugClass t2] corresponds to a transfor-
mation from a criterion to a class.

3.3. Functions for Queries

Several types of queries were identified: give,
list, which, what, for/with which, and is/are there.

They are applied on one class, one criterion, or on
a list of classes or criteria for classes (Figure 10).
The questions deal mostly with resource classes
and criteria for these classes and less with prop-
erties. An exception to this rule is the question
WhatPropertyValue. This question treats Prop-
ertyClass instead of a resource class, because it
queries for information about a property class
and not about a property of some resource. For
example, the question which is the least com-
mon chromosome location is parsed to the ab-
stract tree [WhatPropertyValue [LowestNumber-
Value [DBToProperty ChromosomeLocation]]]. Its
SPARQL linearization requires aggregation and
sort operations.

The advantage of taking the described ap-
proach is the flexibility in composition of trees/-
constructors, based on their types and transfor-
mation functions. For example, drugs that in-
teract with the drugs used for diseases treated
by tetracycline is parsed to the abstract tree
t3=[ToDrugClass withThatVP [DDrugClassCri-
terionVP t2]], where t2=[AdjToDrugClass [Possi-
bleDrugsForCriterionAdj t1]] is the tree for the
class of drugs that are used for diseases in t1.
t1=[ToDiseaseClass [WithPossibleDrugsCriterion
[SingleDrug DB00759]]] stands for a DiseaseClass
of diseases treated by tetracycline. DB00759 is the
DrugBank ID for tetracycline. The abstract tree
t3 is linearized in the SPARQL concrete grammar.
By running the query, we get drugs which inter-

9

act with tetracycline, and also other drugs used to
treat the same diseases as tetracycline.

The grammars can be used not only for trans-
lating natural language questions into SPARQL,
but also for SPARQL queries to natural language
questions, for the phrases that are not involved in
the pre/post-processing of GFMed. For example,
the next query is identified as being the SPARQL
linearization of 17 different abstract trees.

SELECT DISTINCT ?possDrug

WHERE { ds:diseases/173

ds:diseasome/possibleDrug ?possDrug }

3.4. Pre- and Post-processing

GF comes with an HTTP server that supports
REST services for its main functionality, as trans-
lation or parsing. GFMed includes (i) the abstract
grammar and the concrete grammars for English
and SPARQL described previously, and (ii) a Java
standalone application that consumes GF transla-
tion service based on these grammars.

The standalone application includes a prepro-
cessing module, a module for consuming the trans-
lation service, and a post-processing module. Al-
gorithm 1 describes the main steps of the transla-
tion from a natural language to SPARQL.

Preprocessing includes a simple transformation
of the question to lowercase, and a failure handling
method. When the translation module gets a fail-
ure from the server, the failure handling method
repeatedly trims the last word of the question and
replaces the trimmed sequence with the dummy
string XX. This is done in order to deal with value
restrictions, for example drugs with water solubil-
ity of 3.24e-02 mg/mL. It can be observed that
the part which represents the value is formed by
the last two words, and not only the last one.

A special case of this trimming is done for sit-
uations where a list of free text values is included
in the question. Question 13 from the QALD test
set is an example for this situation: it includes the
phrase drugs whose mechanism of action involves
norepinephrine and serotonin, with mechanism of
action as a datatype property. In this case, the
preprocessing includes a step where the question is

Algorithm 1 English2SPARQL
toLowerCase(question)

replacedText=””

answer=translation(question)
if !(answer contains FAIL) then

Find Abstract Treek with minimal length

return SPARQL Linearizationk of Abstract Treek
else

while (answer contains FAIL)&& !empty(question) do
replacedText+=lastWord(question)

question=removeLastWord(question)

answer=translation(question+XX)
end while

end if

if !(answer contains FAIL) then
Find Abstract Treek with minimal length

query ← substitute(XX, replacedText,

SPARQL Linearizationk)
return query

end if

function translation(EN phrase) . GF Rest Service

Abstract Treei ← PARSE(ENphrase)
SPARQL Linearizationi ←

LINEARIZE(Abstract Treei)

return (i > 0) ?⋃
i
{SPARQL Linearizationi, Abstract Treei}

: FAIL

end function

split by the string and. Thus, the previously men-
tioned phrase becomes drugs whose mechanism of
action involves XX and YY. In case the transla-
tion works, XX is replaced with norepinephrine
in the resulting query, and Y Y with serotonin.

After a successful translation, the post-processing
module searches for the abstract tree with the
smallest length. This is needed because is is pos-
sible to have more alternatives for translating the
questions, mainly due to the transformation func-
tions. Once the tree is found, its SPARQL lin-
earization is extracted. In case it was a value re-
striction, solved by the failure handling method,
some replacements are done.

3.5. Generated Lexicons

GF grammars must know, at compilation time,
all the tokens that are part of the analyzed
text. Therefore, GFMed includes lexicons for both
SPARQL and English formed of all drugs, targets,
diseases, genes, and side effects extracted from the
three datasets (Figure 5).

These lexicons where generated from the data
sources available on the sites of the three datasets,

10

Table 3

Number of resources described in lexicon

Dataset Distinct Distinct Considered

Resource Ids Names properties

DrugBank

1470 22872

db : name,

Drug db : synonym

db : brandName

DrugBank
4553 3784 drugbank : name

Target

Diseasome
4213 3642 diseasome : name

Disease

Diseasome
3919 4328

rdfs : label,

Gene owl : sameAs

SIDER
1737 2398

sd : sideEffect−
SideEffect Name

Table 4

Results for GFMed in Task2 of QALD4

Total/ Right/ Recall Precision F-measure

Processed Partially

25/25 24/1 0.99 1 0.99

either by using SPARQL endpoints, or by parsing
RDF files. Also, the same results were obtained
from executing SPARQL queries on the QALD-
provided endpoint. Special attention was given to
side effects, drugs, and genes. For the same ID of
a side effect more synonym names are known, ex-
pressed through the property sideEffectName. For
one drug ID in DrugBank, there are more names
and synonyms. Furthermore, as the name, the syn-
onyms and the brand names of a drug can appear
in a question, English linearization of each drug
includes alternatives expressed by values of prop-
erties name, synonym, and brandName. For Genes,
besides the property rdfs : label, it was consid-
ered the property owl : sameAs that relates some
genes to DBpedia resources. Extended names for
genes are extracted from these resources.

Table 3 shows the number of resources identified
in this way, giving both the number of distinct IDs
and distinct names for each category.

3.6. Results and Their Analysis

The system was evaluated against training and
test questions of Task 2 in QALD4 and obtained
the overall evaluation from the table 4.

GFMed correctly parsed all the questions, ex-
cept one. It partially parsed question 21, Give me

the drug categories of Desoxyn, for which it ob-
tained 0.85714 recall and precision 1, meaning that
all the answers retrieved by the proposed query
were correct, but they were not complete. The
reason for this is that Desoxyn is a brand name
for drugs with DrugBank IDs DB00182, DB01576,
DB01577. We wrongly assumed that one brand
name can be associated either to only one drug,
or to several drugs but with consistent descrip-
tions. The drug DB00182 has one more category
compared to the other two drugs: amphetamines.
GFMed identified the drug as being DB01577 so
it missed this category. Given the fact that more
drugs with different names and different descrip-
tions can have the same brand name, we think
that the lexicon should treat the names differently
compared to brand names. Instead of having one
drug with alternative linearizations for both name
and brand name, it would be better to linearize in
English a drug ID only to its name and synonyms.

4. First steps towards a multilingual system

Grammatical Framework is a programming
language for multilingual grammar applications.
Therefore, starting from GFMed’s concrete gram-
mars for English, the first steps were made to-
wards a multilingual application. The Romanian
language was considered, beside English.

The default GF mechanism for building mul-
tilingual grammar applications is through incom-
plete grammars that are language independent.
The name of the properties from the schemas of
the three sets were translated manually in Ro-
manian, resulting in two lexicons, one for each
language. The general syntactic patterns are de-
scribed in the incomplete grammar, that is ex-
tended by two concrete grammars, one for English
and one for Romanian. In Figure 11, two two-place
adjectives are defined in the English and the Ro-
manian lexicons. The criterion for drugs based on
the inverse property of the possibleDrugs property
is defined using the functions from the lexicons.
The Figure 11 also contains an example of a pro-
perty from DrugBank, MeltingPoint, as it is de-
fined in Romanian lexicon.

The main problems in using GF library for Ro-
manian were identified for expressing relational
nouns and genitive relative phrases. Unlike English
prepositions, Romanian prepositions have cases,

11

- - english lexicon

UsedFor A2 = P.mkA2 ”used” for Prep;

Treated A2 = P.mkA2 ”treated” by8means Prep

|P.mkA2 ”treated” with Prep;

- - romanian lexicon

UsedFor A2 = P.mkA2 (P.mkA ”utilizat”) for Prep;

Treated A2 = P.mkA2 (P.mkA ”tratat”) with Prep

|P.mkA2 (P.mkA ”tratat”) by8means Prep;

Route of Elimination CN = mkCN

(P.mkN2 (P.mkN ”cale” ”căi”) (P.mkPrep ”de” Ac))

(mkNP (P.mkN ”eliminare”));

- - incomplete grammar

PossibleDrugsForCriterionAdj disc =

mkAP UsedFor A2 disc;

PossibleDrugsForCriterionV P disc =

mkV P Treat V 2 disc;

Fig. 11. Functions from lexicons and incomplete grammar

and the nouns and adjectives have different forms
for different cases. GF’s resource library has a
good support for these cases, but we experienced
a problem with expressing nouns in the genitive
case due to the expected presence of the possessive
article. The correct forms are solubilitatea medica-
mentului, solubilitate a medicamentului, efect ad-
vers al medicamentului, where the presence of the
possessive article is variable. The forms of this ar-
ticle (a, al, ai, ale) are also described in GF li-
brary for Romanian, but, as far as we know, they
are not used in dealing with the genitive case of
nouns. As a result, all the nouns in genitive are
wrongly built without the possessive article. The
current solution was to consider the preposition
pentru (for) instead, which requires a noun in ac-
cusative. For example, the phrase side effect of the
drug has as correspondent the phrase efect advers
pentru medicamentul, which means side effect for
the drug.

The set of recognized questions in Romanian is
smaller compared to that in English. The ques-
tions involving genitive relative phrases, as dis-
eases whose possible drug, are not treated.

4.1. The Romanian names for human diseases

Apart from having phrases of common sense
knowledge expressed in different languages, an im-
portant issue in building multilingual systems is
the domain specific terminology. When there are
structured versions of the terminology in different
languages, the problem is easier to solve. For ex-
ample, Medical Dictionary for Regulatory Activ-
ities (MedDRA) [9] is a multilingual terminology
developed in order to provide a single standard-
ised international medical terminology which can
be used for regulatory communication and eval-
uation of data pertaining to medicinal products
for human use. Unfortunately, Romanian is not
included in the set of used languages.

However, based on existing classifications of dis-
orders as OMIM, ICD and Orphanet, we investi-
gated a solution to build a Romanian lexicon for
the named diseases from Diseasome.

Online Mendelian Inheritance in Man (OMIM)
captures the relation between genes and disorders.
Each disorder has an OMIM code. This catalog
is continuosly updated. The initial bipartite graph
from Diseasome was build on the OMIM version
from 2005 [6], while the 2012 version of Diseasome
was extended with drugs.

ICD-10 classification is the 10th revision of the
International Classification of Diseases and Re-
lated Health Problems. There is a Romanian ver-
sion of the Australian version ICD-10-AM, that
is used in Romanian hospitals. Diagnosis Related
Group (DRG)1 provides for an application that
includes this classification.

Orphanet is a portal for rare diseases, led by
a consortium of around 40 countries. One of its
freely accessible services is a classification of dis-
eases elaborated using existing published expert
classifications2. The included alignments between
disorders and external terminologies or resources,
as OMIM, ICD10, MeSH, UMLS and MedDRA,
are characterised in order to specify if the terms
are perfectly equivalent (exact mappings) or not.
There are versions for 7 languages, but again Ro-
manian is not included.

Bio2RDF is a project that aims at providing
Linked Data for the Life Sciences [2] and includes

1www.drg.ro
2http://www.orphadata.org/cgi-

bin/inc/product1.inc.php

12

many medical resources formalized with RDF.
DBpedia also contains information for diseases,
including OMIM, MeSH or ICD identifiers, and
names in different languages. One way to use it
for the task of building Romanian lexicon is to
rely on a mapping between English and Romanian
names without the use of ICD classification. If in
case of other languages this could be an accept-
able solution, in case of Romanian, the small num-
ber of resources in this language make it unappro-
priate. The alternative is to rely on DBpedia for
identification of ICD codes from OMIM codes or
names, followed by the use of the Romanian ver-
sion for ICD-10AM. A first problem is the incom-
pletness of the OMIM and the ICD codes in DB-
pedia. Another problem is the inconsistency with
the referred classifications. For example, for Acute
myeloid leukemia, DBpedia gives the OMIM code
602439, which in OMIM is moved to 601626.

With this analysis, the current solution for
building the Romanian lexicon for diseases follows
the next steps:

1. the labels of the diseases are obtained from
Diseasome

2. the ICD code is searched in the Linked Data
version of OMIM from Bio2RDF. The search
is done either on the disease’s label or on the
OMIM code extracted from the label (in case
it is included). The used endpoint is http:

//cu.omim.bio2rdf.org/sparql.
3. the ICD code is searched in Orphanet, again

based on the name or the OMIM code. In
case it is found, the type of the mapping is
extracted, too.

4. the Romanian terms are extracted from the
Romanian classification ICD-10-AM based
on the identified ICD code. If the ICD code
was obtained at step 2, the mapping is con-
sidered exact. Otherwise, the type of Or-
phanet mapping is analysed, and in case it is
an exact mapping, only the Romanian term
is kept. In case the mapping is not exact, the
initial English label is concatenated to the
Romanian term. Table 5 includes some exam-
ples of obtained terms. For the disease with
OMIM code 180920, Orphanet mentions two
mappings to ICD classified disorders, both
having the status of not decided.

Table 5

Romanian terms for diseases

Label in Diseasome ICD10 Romanian term

beta-

ureidopropionase
deficiency

E79.8

(NTBT)

(eng)+alte

tulburari de
metabolism al

purinelor si pirim-
idinei

abetalipoproteinemia E87.6

(NTBT)

(eng)+deficit ı̂n

lipoproteine

aplasia of lacrimal

and salivary

glands, 180920

Q38.4

(ND)

malformatii con-

genitale ale glan-

delor si canalelor
salivare

hepatocellular car-
cinoma

C22.0 (E) carcinom al celulei
hepatice

Results The steps 2 and 3 are alternatives for
finding the ICD code. None of them is complete,
and their combination is also incomplete. From
4213 different Diseasome resources, using only Or-
phanet, 1210 Romanian terms were found, includ-
ing all types of mappings, not only exact map-
pings. By using also OMIM Bio2RDF, the num-
ber increases to 1815 terms. It must be empha-
sized that the process of building the lexicon can
be improved through i) a more detailed filtering
by name of the disease in Orphanet, since for ex-
ample, in Diseasome, type ii phrase is used and
in Orphanet it appears as type 2 ; ii) the extensive
use of synonyms of diseases from Orphanet. Fi-
nally, medical experience is needed to solve some
mapping and to validate the resulted lexicon.

A question parsed and linearized with GFMed
grammars that include the generated lexicon for
romanian terms of diseases in shown in Figure 12.

5. Related work

With the recent boost in available linked data
and ontologies, the interest in extending the lex-
ical context of ontologies increased as well. A re-
cent result in extending ontologies with richer lex-
ical layer is the ontology-lexicon model lemon [10].
This model proposes design patterns for the most
common lexicalizations of labels from ontologies.
The model was used in a manual approach of
building an ontology-derived lexicon for DBpedia
[12]. The building process consists of creating de-
scriptions of verbalizations for classes and proper-
ties from ontologies. A significant part of DBpedia

13

Fig. 12. An example of the multilingual version for GFMed, with Romanian term for disorder

ontology was covered, 98% of classes and 20% of
properties. Common with this approach, GFMed
grammars are built manually, starting from the
schemas of datasets to be queried. Patterns are
identified in our approach starting from DL con-
structors, mainly restrictions on properties. The
patterns are directly described in GF, based on
our own SPARQL resource library. The GF func-
tions correspond to DL constructors, facilitating
their composition in similar way to DL.

Manual development of the grammars strongly
restricts the scalability of our approach. The se-
mantic of the aimed linked data, biomedical data
from Diseasome, Sider and DrugBank, is narrower
compared to DBpedia. Nevertheless, the required
precision in tackling medical data, can be obtained
with a manual approach. A very recent result in
automatic derivation of lexicons in lemon format
is described in [14].

SQUALL [5] is another controlled natural lan-
guage that allows SPARQL queries and updates
and it relies on Montague grammars. Unlike
SQUALL, GFMed is appropriate for multilingual
development due to the fact that is a controlled
natural language built with GF. GF was previ-

ously used in multilingual systems for querying

linked data in [4], [3].

An incremental built of queries is described in

[17]. Relevant concepts and properties are identi-

fied at each step and the user can choose one. The

use of the ontology is the shared point with our

approach, but in our case the user does not inter-

act with the ontology and it uses natural language

to express his needs.

From a completely different perspective, [15]

and [19] propose learning and pattern matching

for querying linked data in natural language. Am-

biguity and named entity recognition are not easy

to tackle withing these approaches, unlike the case

of controlled natural languages. But their impor-

tant advantage is scalability and domain indepen-

dence. Nevertheless, if we consider Romanian in-

stead of English as querying language, the limited

resources existing for processing this language,

hamper the application of many approaches based

on learning and pattern matching. In the same

time, they sustain approaches based on GF and its

resources for Romanian.

14

6. Conclusion

A controlled natural language for querying
biomedical linked data was introduced. The lan-
guage is built within Grammatical Framework by
following a methodology based on DL construc-
tors. The functions defined in GFMed’s grammar
are highly composable, due to their relation with
DL constructors and the types of resources from
the targeted datasets. A GF resource for SPARQL
was introduced and used. The resulting language
is able to cover questions over more datasets, com-
plex questions with different linguistic structures,
and questions that involve lists and free text. The
steps followed in building the language are not spe-
cific to the biomedical area, therefore the method
can be considered general. The manual character
of the language building process claims for future
work in the direction of deriving automatically the
GF functions from ontologies extended with lexi-
cal layer.

The proposed system addresses also multilin-
guality. Romanian was investigated near English
as natural languages for querying. In order to ob-
tain Romanian terms for diseases from Diseasome,
a method based on more international classifi-
cations was analyzed, employing mainly the re-
sources which follow the principles of linked data.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,

and P.F. Patel-Schneider, (eds) The Description Logic
Handbook: Theory, Implementation, and Applications

Cambridge University Press, New York, USA, 2003.

[2] F. Belleau, MA. Nolin, N. Tourigny, P. Rigault, and
J. Morissette, Bio2RDF: Towards a mashup to build

bioinformatics knowledge systems. Journal of Biomed-

ical Informatics, 41(5) (2008), pp. 706–716.
[3] M. Damova, D. Dannélls, M. Mateva, R. Enache, A.

Ranta, Natural language interaction with semantic web

knowledge bases and linked open data, in: Towards mul-
tilingual Semantic Web, 2014, pp. 211–226. Springer,

Berlin

[4] D. Dannells, A. Ranta, R. Enache, M. Damova, and
M. Mateva, Mul- tilingual Access to Cultural Heritage
Content of the Semantic Web, in: Language Technolo-
gies for Cultural Heritage Workshop at ACL2013, 2013

[5] S. Ferré, SQUALL: A Controlled Natural Language as

Expressive as SPARQL 1.1, in: E. Métais, F. Meziane,
M. Saraee, V. Sugumaran, and S. Vadera, ed., Natural

Language Processing and Information Systems, volume
7934 of Lecture Notes in Computer Science, 2013, pp.
114–125.

[6] K.I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal,
and A.L. Barabási, The human disease network. Pro-

ceedings of the National Academy of Sciences, 104(21)

(2007): pp. 8685–8690.
[7] J. van Grondelle, J., C. Unger, A three-dimensional

paradigm for conceptually scoped language technology,

in: P. Buitelaar, P. Cimiano, (eds.) Towards the Mul-
tilingual Semantic Web. (2014) Springer

[8] T. Kuhn, A survey and classification of controlled nat-
ural languages Computational Linguistics, 40(1) (2014),

pp. 121–170.

[9] Understanding MedDRA The medical Dictionary for
regulatory activities, http://www.meddra.org/sites/

default/files/page/documents/meddra2013.pdf, 2013

[10] J. McCrae, D. Spohr, and P. Cimiano, Linking Lexical
Resources and Ontologies on the Semantic Web with

Lemon, in: Proceedings of the 8th Extended Semantic

Web Conference on The Semantic Web: Research and
Applications - Volume Part I, ESWC11, 2011, pp. 245–

259, Springer

[11] A. Ranta The GF Resource Grammar Library. Lin-
guistic Issues in Language Technology, 2(2), (2009)

[12] C. Unger, J. McCrae, S. Walter, S. Winter, and P.
Cimiano, A lemon lexicon for DBpedia, in: Proceed-

ings of 1st International Workshop on NLP and DB-

pedia, colocated with the 12th International Semantic
Web Conference (ISWC 2013), 2013, CEUR Workshop

Proceedings.

[13] C. Unger, C. Forascu, V. Lopez, A-C.N.Ngomo, E.
Cabrio, P. Cimiano, and S. Walter, Question answer-

ing over linked data (QALD-4), in Working Notes for

CLEF 2014 Conference, UK, 2014, pp. 1172–180.
[14] S. Walter, C. Unger, and P. Cimiano, ATOLL - A

framework for the automatic induction of ontology lex-

ica. Data Knowledge Engineering, 94, 2014.
[15] K. Xu, S. Zhang, Y. Feng, and D. Zhao Answering

natural language questions via phrasal semantic pars-
ing, in: C. Zong, J-Y. Nie, D. Zhao, and Y. Feng, (eds),
Natural Language Processing and Chinese Computing,

volume 496 of Communications in Computer and Infor-
mation Science, 2014, pp. 333–344. Springer

[16] J.M. Zelle, and R.J. Mooney, Learning to parse

database queries using inductive logic programming, in:
W.J. Clancey, and D.S. Weld, (eds), Proceedings of

the Thirteenth National Conference on Artificial Intel-

ligence and Eighth Innovative Applications of Artificial
Intelligence Conference, AAAI 96, Oregon, Volume 2.,

1996, pp. 1050–1055. AAAI Press/The MIT Press
[17] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W.

Nejdl, From keywords to semantic queries - incremental

query construction on the semantic web, Journal Web

Semantic, 7(3), 2009, pp. 166–176.
[18] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W.

Nejdl, Aqualog: An ontology- driven question answering
system for organizational semantic intranets. Journal

Web Semantics 5(2), 2007, pp. 72–105.

[19] L. Zou, R. Huang, H. Wang, H., J.X. Yu, W. He,
and D. Zhao, Natural language question answering over

RDF: a graph data driven approach, in: C.E. Dyreson,

F. Li, and M.T. Ozsu, (eds), International Conference
on Management of Data, USA, 2014, pp. 313–324. ACM

