

A Toolset for Supporting Evolution and Preservation of Linked Data:

the DIACHRON approach

Panagiotis Hasapis, Danae Vergeti, Aggelos Liapis, Antonis Ramfos

{Panagiotis.Hasapis, Danae.Vergeti, Aggelos.Liapis, Antonis.Ramfos}@intrasoft-intl.com, INTRASOFT International, 2b Rue

Nicolas Bove, Luxembourg, Luxembourg

Giorgos Flouris, Kostas Stefanidis, Ioannis Chrysakis, Yannis Roussakis

{ fgeo, kstef, hrysakis, rousakis }@ics.forth.gr, FORTH ICS, N. Plastira 100 Vassilika Vouton, GR-700 13 Heraklion, Crete,

Greece

Marios Meimaris, George Papastefanatos, Yannis Stavrakas, Christos Pateritsas, Theodora Galani

{m.meimaris, gpapas, yannis , pater , theodora }@imis.athena-innovation.gr, Research Center Athena,

Artemidos 6 & Epidavrou, Marousi 15125, Greece

Peter Buneman, James Cheney, Slawomir Staworko, Stratis D. Viglas

{opb, jcheney,sstawork, sviglas}@inf.ed.ac.uk, School Of Informatics, Informatics Forum, 10 Crichton Street

EH8 9AB, Edinburgh, United Kingdom

Jeremy Debattista, Natalja Friesen

jeremy.debattista@iais-extern.fraunhofer.de, Enterprise Information Systems, University of Bonn, Institut für Informatik III

Römerstraße 164 53117 Bonn, Germany

Loïc Petit

loic.petit@data-publica.com, Data-Publica, 22 rue Chauchat, 75009 Paris, France

Simon Jupp, Tony Burdett

{jupp, tburdett}@ebi.ac.uk, EMBL – European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, UK.

Robert Isele, Knud Möller

{robert.isele, knud.moeller}@eccenca.com, eccenca GmbH, Neumarkt 20, 04109 Leipzig, Germany

Abstract.
Over the course of the last few years, there has been a vast and rapidly increasing quantity of scientific, corporate, govern-

ment and crowd-sourced data, published on the emerging Data Web that has been created for open access. Open Data is ex-

pected to play a catalyst role in the way structured information is exploited in the large scale. This offers a great potential for

building innovative products and services that create new value from already collected data. Open data published according to

the Linked Data Paradigm is essentially transforming the Web from a document publishing-only environment, into a

knowledge ecosystem where users have become active data aggregators and generators themselves. A traditional view of digi-

tally preserving them by pickling them and locking them away for future use, like groceries, would conflict with their evolu-

tion. There are a number of approaches and frameworks, such as the LOD2 stack, that manage a full life-cycle of the Data

Web. More specifically, these techniques are expected to tackle major issues such as the synchronisation problem (how can

we monitor changes), the curation problem (how can data imperfections be repaired), the appraisal problem (how can we

assess the quality of a dataset), the citation problem (how can we cite a particular version of a linked dataset), the archiving

problem (how can we retrieve the most recent or a particular version of a dataset), and the sustainability problem (how can

we spread preservation ensuring long-term access).

In this paper we describe DIACHRON, a unified semantic platform for supporting the evolution and preservation of Linked

Dataset. We describe modules that tackle the previously mentioned issues. With regard to the synchronization problem, our

approach allows the identification and analysis of the evolution of a dataset, in an efficient, user-friendly and customizable

manner. The proposed solution allows the execution of queries spanning multiple versions, as well as queries related to the

evolution itself (rather than just the data). For the citation problem, we describe a rule-based mechanism for specifying, ex-

tracting, and assigning citable persistent identifiers to diachronic resources. A sequential process is implemented to efficiently

assess a dataset’s quality, providing the user with the necessary quality metadata and quality problem report as a bonus, in

order to keep track of the appraisal problem. With regard to the archiving problem, we have designed and developed a concep-

tual model that captures both structural and semantic aspects of evolving data, thus enabling evolution management at differ-

ent granularity levels. Based on this, we have implemented a query language as an extension of SPARQL that inherently tack-

les querying evolving entities and their changes across time. Supporting this platform we provide three real-life use-cases; a

business use-case, a life science use-case, and an Open Data use-case.

Keywords: linked data, data evolution, digital preservation, appraisal, provenance problem, data curation

1. Introduction

Over the course of the last few years, there has been

a vast and rapidly increasing quantity of scientific,

corporate, government and crowd-sourced data, pub-

lished on the emerging Data Web that has been creat-

ed for open access. The basic advantage oft he Data

Web is that facts are recorded rather than documents,

which become the basis for the discovery of new

knowledge that is not contained in an individual

source. In particular, open data published according

to the Linked Data Paradigm are essentially trans-

forming the Web from a document publishing-only

environment, into a knowledge ecosystem where

users have become active data aggregators and gen-

erators themselves.

Although Linked Open Data (LOD) provide a unique

and flexible paradigm for publishing data, preserving

this type of knowledge and information poses several

challenges not actually addressed by past and on-

going Linked Data and Digital Preservation projects:

 LOD are Structured: Unlike documents, we

need to manage not individual facts but en-

tire LOD datasets representing real-world

entities for which additionally constraints

(e.g., name uniqueness) may hold. Moreo-

ver, LOD may be interconnected through

typed links when they refer to the same or

related real-world entities. This calls for ef-

fective entity recognition and co-reference

methods to rank LOD datasets according to

their quality for guiding crawling and ap-

praisal. It also stresses the need for preserv-

ing an entire network of interconnected

LOD datasets which may prove to be useful

for future analyses.

 LOD are Dynamic: Unlike closed settings in

which data changes are communicated via

notification mechanisms, LOD evolution in

the Data Web can be periodically observed

through crawling or by other mechanisms

such as Publish/Subscribe. In addition, un-

derstanding the changes of evolving LOD

datasets and repairing their potential incon-

sistencies requires methods for recognizing

complex change patterns beyond low-level

atomic changes. In particular, discovering

LOD differences (deltas) and representing

them as first class citizens with structural,

semantic, temporal and provenance infor-

mation is vital in various tasks such as the

synchronization of autonomously developed

LOD versions, or visualizing the evolution

history of a particular LOD dataset. For ex-

ample, biomedical data analyses and data re-

leases consuming LOD are version/date

stamped and cannot be repeated or fully un-

derstood unless the correct versions of sup-

porting data are available.

 LOD are Distributed: By definition LOD

production, processing and consumption are

activities distributed among several actors

worldwide. Today we have reasonable

methods for protecting our data from physi-

cal destruction, but this is no guarantee

against the economic collapse of the organi-

zation that maintains the data.

In this respect, the authors’ consider addressing the

following challenges arising when preserving Linked

Open Data (LOD) of varying quality actually pub-

lished on the Data Web:

 How can one monitor changes of third-party

LOD datasets released in the past (the evo-

lution tracking problem) or how can newly

released versions be considered by ongoing

data analysis processes (the change syn-

chronization problem)?

 How can we understand the evolution of

LOD datasets with respect to the real world

entities they describe (the provenance prob-

lem) and how can various data imperfec-

tions (e.g., granularity inconsistencies) be

repaired (the curation problem)?

 How we can assess the quality (temporal

and spatial) of harvested LOD datasets in

order to be able to decide which and how

many versions of them deserve to be further

preserved (the appraisal problem)?

 How do we cite particular versions of a

LOD dataset (the citation problem), and

how will we be able to retrieve them when

looking up a reference in the form in which

we saw it – not the most recently available

version (the archiving problem)?

 How can we spread preservation costs to en-

sure long-term access even when the origi-

nal motivation for publishing has changed

(the sustainability problem)?

In this paper, the authors present DIACHRON, a

framework and set of services that will allow data

stewards, curators (and people working in the data

publishing domain) to monitor changes, to sustain

and manage versions of different datasets. All sepa-

rate components that help resolve each particular

aforementioned problem can be used autonomously

or in form of an integrated architecture as web ser-

vices in order to facilitate the ease of deployment and

usage. First, a short description of three use cases in

relation to our paradigm will be presented. Secondly,

the overall architecture will be presented, followed

by a set of core services described. In the end, a set

of results of the usage of those services will be pro-

vided.

2. Use Case Description

2.1. Business Scenario Case

In this scenario, a large manufacturer in the auto-

motive industry is developing a web-based customer

portal that will allow users to browse their range of

current and historical models, read related news,

browse the company’s history, find like-minded peo-

ple through car clubs, etc.

A range of data sources from different divisions of

the company have been identified as relevant for im-

plementing the portal: an extensive car model data-

base with detailed technical features for each model,

a technical term database, various news channels,

club listings and history data. In addition, several

external LOD and non-LOD data sources have been

identified which will provide further context. Exam-

ples are DBpedia, Linked Geodata and car review

sites.

Since preparing the data for the portal is largely a

data integration problem, and since several external

data sources already exist as LOD, Linked Data has

been chosen as the development approach for the

data backend. To this end, an infrastructure has been

set up which converts all internal and external non-

LOD data to LOD and then establishes links between

the datasets.

Because cars are the main interest of the expected

portal users, the car model database will act as the

datahub in the application’s LOD: most other da-

tasets will link their resources to the relevant car

models (news items about those models, clubs inter-

ested in a particular model, etc.). Tracking the evolu-

tion of the car model dataset is therefore crucial to

ensure that the references from all other datasets stay

intact (evolution and change synchronization). Addi-

tionally, the external LOD data sources need to be

appraised, before they can be included in the produc-

tion code of the portal.

2.2. Life Sciences Case

The life sciences have been quick to adopt LOD as

a mechanism for publishing biological data on the

Web. This data is exploited by industry and academ-

ia to advance out understanding of biology and used

in the development of new drugs and areas such as

translational medicine. Organisations like the EMBL

European Bioinformatics Institute are dedicated to

the preservation and curation of this data and serve it

back to the community through a wide range of ser-

vices. EMBL-EBI has already begun to embraced

LOD technologies through the release of their LOD

RDF platform [Jupp 2013] and invest heavily in the

annotation and curation of data to add value through

the use of ontologies [Malone 2010].

This large-scale annotation presents a challenge

especially when you consider how the data and the

ontologies continue to evolve as the technologies

used to generate the data change and our understand-

ing of the underlying biology progresses. The ability

to track changes in the data helps to reduce the over-

all cost of curation as errors are can be detected more

readily and repaired appropriately. Having a robust

strategy for handling data provenance also improves

overall data transparency when new hypothesis are

generated from large data analysis and integration.

The Samples Phenotypes and Ontologies Team

(SPOT) at EMBL-EBI are currently exploiting the

Diachron platform to track changes in the ontologies

and ontology-data mappings. By using the Diachron

platform, SPOT are able to develop novel applica-

tions that assist the database curators in dealing with

changes in the ontologies that impact on downstream

annotations in the data.

2.3. Open Data Case

Using open data, it is possible to create a dash-

board to expose the situation of a specific region in

terms of economy or demography. Sources for this

dashboard uses public datasets from the governments

and / or statistical institutions like Eurostat for Eu-

rope or more local ones like INSEE (France) or Stat-

Bel (Belgium).

Unfortunately, most of the data is not published as

LOD but by raw files like CSV, XLS, XML, SDMX

etc… Although, this data is mostly multidimensional

and Open Data platforms such as Data-Publica or

DataMarket aggregate those and structure them in a

unified way. Therefore, it is possible to use the RDF

Data Cube Vocabulary

[http://www.w3.org/TR/vocab-data-cube/] to model

the data as structured triples that references common

concepts from the LOD, say cities or countries. Mak-

ing our approach viable to those partners.

Data preservation is key in this domain because

the concepts data sets refer to evolve over time. For

instance, a city can be created, renamed or merged

over time; countries are split or reunified; regions can

also be redefined from scratch. Hence, if we want to

track the demography of a country over a long period

of time like in this use case, it is crucial to understand

the evolution of the country over time. For instance,

if we want to plot the demography of Germany from

1970 until now, we have to take into account the fact

that Germany was in fact two countries until 1990.

This platform will help to understand and keep track

of those similar changes.

Finally, the upstream sources can evolve over time

as well. Dimensions can be added to datasets (or re-

moved), license terms or identifiers can change. Cur-

rently, curators must deal with these problems using

ad-hoc routines.

3. Integrated Platform Overview

In DIACHRON, a three layered architecture will be

implemented and deployed. Figure 1 presents a con-

ceptual overview of the system. The two layers of the

system (which of our pilot applications will adjust to

their existing systems) are the Platform Layer (Ser-

vice Inventory) and the Integration Layer.

Platform Layer - Service Inventory. The first (bot-

tom) layer is the core DIACHRON platform and the

SOA perspective acts as a service inventory. This

layer includes the core functionality of the platform

that corresponds to the research challenges of the

project. The services of this layer are independent of

each other, namely none of them uses another service

of this layer to implement its functionality. There

isn’t any kind of direct data or message exchange

between them. This allows for the system to operate

even in the case where some services are disabled. Of

course in such a case the system will not be able to

provide the overall functionality to its full extent, but

whatever adjustments need to be made are limited to

the Service layer (integration). The independence of

this layer according to the service orientation para-

digm is pursued in order to benefit from the ad-

vantages of service orientation. More specifically, it

provides a larger degree of flexibility in the technol-

ogies selected for each service module and its associ-

ated deployment options.

Integration Layer - Service Composition. The sec-

ond (middle) layer is a service composition and inte-

gration layer and acts as a controller/orchestrator of

the functionality of the core layer services in order to

provide more complex services to the users. This

layer is a middleware layer with a dual role. It encap-

sulates the services of the core layer and re-exposes

the DIACHRON functionality by composing more

complex services and by homogenizing the service

contracts and endpoints. Additionally, it provides

common functionality such as security and auditing

control, logging, storage area for configuration in-

formation, etc. The components of this layer act as

orchestrators of the core functionality provided by

the platform layer. Their role is to execute specific

workflows that usually involve more than one core

service from the platform layer in order to create ser-

vice compositions and expose more composite func-

tionality to the pilot applications that use them.

In the next sections we will present the web service

and components that belong to each of the aforemen-

tioned layers of the system.

4. Services Description

4.1. Integration Layer

4.1.1. Query API

This component exposes an API and acts as the pri-

mary data endpoint of the platform. It performs que-

ries to the archive using the DIACHRON query lan-

guage and also uses the citation service in order to

dereference and return datasets to the users.

4.1.2. Archiving Service

This component is the primary data input channel, as

datasets or temporal versions of them that need to be

stored in the archive must go through this compo-

nent. As a service composition it uses the change

detection service to detect changes and feed them to

the Data storage module in case of an already exist-

ing dataset.

4.1.3. Quality Service

This component exposes the functionality of the

quality evaluation module and also provides datasets

ranking functionality based on the quality evaluations

of a group of datasets or the series of temporal ver-

sions of the same dataset.

4.1.4. Authentication and Security Mechanism

This component provides authentication functionality

for the system and also, if needed, more complex

security and auditing services (selective access to

dataset, logging, etc.).

4.1.5. Repairing Service

This component is responsible for validating and, if

needed, repairing datasets according to sets of valida-

tion and repairing rules.

4.1.6 Cleaning Service

The goal of the cleaning component is detection of

incomplete, incorrect, inaccurate facts in the data and

then replacing, modifying, or deleting them in order

to improve data set quality. The cleaning service is

designed in a way to provide as much automated op-

eration as possible. For that the identification of qual-

ity problems and generation of cleaning suggestions

are done automatically in the background. The con-

crete user advices and data transformation rules are

maintained in an extensible ontology.

4.2. Core Platform Layer

4.2.1. Change Detection Module

The change detection module is at the core of our

approach, and its role is to capture the dynamics of

LOD datasets by identifying the changes occurring

Figure 1 - Integrated Platform Architecture

among any pair of dataset versions. There are two

main components of the change detection module.

The first component is the list of supported chang-

es, which consists of two levels. The lower level,

called simple changes, contains fine-grained changes

which are adequate for the data model at hand (i.e.,

they are data-model-specific); the definition of sim-

ple changes provably guarantees that detection is

deterministic and complete in any possible evolution

scenario. The upper level, called complex changes,

contains application-specific, customized changes,

suitable for capturing changes that are important,

frequently-occurring or abnormal for the specific

context of usage; defining complex changes is done

by the user at run time, through an adequate interface.

The second component of the change detection

module is the ontology of changes, which is a spe-

cially designed ontology for storing the changes that

have been detected among versions. Storing detected

changes as instances of the ontology of changes al-

lows the use of linked data principles to easily navi-

gate between the changes, the different versions, and

the data itself, thereby supporting longitudinal que-

ries, as well as queries involving both changes and

data. This way, detected changes are treated as first-

class citizens in the diachronic repository. For exam-

ple, consider a query requesting "all countries for

which the unemployment rate of their capital city

increased at a rate higher than the average increase of

the country as a whole, and the corresponding period

in which this happened". This query requires access

to the data itself (for identifying the countries and

their corresponding capital cities) and to the evolu-

tion history (through which one can determine the

rate of increase of the unemployment rate in each

country and city); in addition, the last clause of the

query requires returning all periods (i.e., pairs of ver-

sions) in which this happened, therefore the query is

longitudinal (spanning over all available versions

rather than over a specific pair of versions).

The change detection module was implemented in a

robust and flexible manner that allows easy customi-

zation. This customization may be necessary in cases

where a new data model (or a new set of simple

changes) needs to be supported; that would require

some adaptation of the configuration files, but no

changes in the code itself. More details on this work,

including the associated theoretical framework and

an experimental evaluation can be found at [rousa-

kis]; this work can be seen as an extension and gen-

eralization of [papavassiliou], with significantly im-

proved computational properties.

4.2.2. Quality Evaluation Module

The Quality Evaluation Module (QEM) is respon-

sible for assessing the quality of linked datasets

available in the archive. This backbone of this mod-

ule is Luzzu
1
, a quality assessment framework for

linked data [luzzu]. Luzzu provides an integrated

platform that: (1) assesses Linked Data quality using

a library of generic and user-provided domain specif-

ic quality metrics in a scalable manner; (2) provides

query-able quality metadata on the assessed datasets;

(3) assembles detailed quality reports on assessed

datasets. The Luzzu infrastructure also enables the

definition of domain-specific metrics, employing a

semantic backend of ontologies to represent quality

metadata about the assessed datasets in a standard-

ised manner.

When QEM is invoked with one or more Dia-

chronic datasets and metrics, the first process is to

de-reify the dataset into a flat RDF representation in

order to make use of Luzzu’s efficient stream pro-

cessing. Zaveri et al. [zaveri] described various met-

rics that are relevant to DIACHRON. When triples

are streamed, metrics are executed in parallel in order

to compute a quality result and to identify possible

problems in the dataset that require cleaning or re-

pairing. We are currently investigating probabilistic

approximation techniques in order to improve the

runtime of this module. Once the assessment is over,

the module communicates the quality metadata and a

quality report back to the integration layer for further

assessment by the user.

4.2.3. Data Access Module

The archive module is the primary data channel, as

datasets and their temporal versions that need to be

stored in the archive must go through this component.

As a service composition it creates and manages dia-

chronic datasets and uses the change detection ser-

vice to detect changes and feed them to the Data

storage module in case of already existing datasets.

The module’s functionality is exposed via the HTTP

protocol as the primary access mechanism of the ar-

chive through a RESTful web service API. The basic

components the module employs are the Data Access

Manager, the Store Connector, the Data Modeler, the

Archive Optimizer and the Query Processor.

Incoming datasets conform to the DIACHRON da-

taset model [meimaris], while the Data Modeler

component handles the dataset input functionality

and data transformations from the DIACHRON da-

taset model to the native data model of the store and

1 http://eis-bonn.github.io/Luzzu

vice versa, and consists of the Data Translator and

the Data Loader. The Archive optimizer component

enables optimization of the storage method of incom-

ing datasets based on various archive strategies as

shown in [4.1.2] and further discussed in [stefanidis]

that are out of the scope of this paper. It performs

analysis of the dataset characteristics and chooses the

most efficient storage strategy based on metrics. The

Query Processor component is the base mechanism

for query processing and thus data access. Its query

engine handles SPARQL queries, as well as queries

formulated using the DIACHRON Query Language,

which is a specialized extension of SPARQL de-

signed to abstract the inherent structure and charac-

teristics of the DIACHRON dataset model in order to

make querying on DIACHRON datasets intuitive and

uncomplicated.

Presently, the archive module is deployed on top

of a Virtuoso 7.1 instance, but is implemented to be

independent from the underlying storage technolo-

gies and can thus be used on top of a variety of stores

from different vendors.

4.2.4. Citation Module

Citations are one of the most significant tools used

in the creation and propagation of knowledge and

therefore play a central role in DIACHRON as well.

Through citations we can give attribution to the data

point creator, convey information about the content,

assign responsibility of ownership, and provide an

identifier (either machine- or human-readable) for

enhancing the longevity of data through persistent

identification and retrieving the referenced work.

DIACHRON incorporates a citation mechanism that

not only satisfies these goals but also addresses the

normal dataset provider requirements of being effi-

cient and robust under change.

The citation mechanism is coupled with DIA-

CHRON’s data model. Every diachronic resource of

the data model is inherently citable. Implementing

citation consists of two substrates: (i) a description of

the citation format, and (ii) a specification for identi-

fying citable units in the diachronic dataset [bune-

man]. The citation format allows the system to gen-

erate the citation in whichever way the dataset user

desires. The format contains a number of variables

that are to be instantiated through evaluating path

expressions in the hierarchical diachronic dataset.

For instance, {Citation[Author=$a]} speci-

fies a Citation with a Author attribute that is

to be populated by binding variable $a. To valuate

$a we need a path expression that is to be evaluated

over a diachronic dataset and act as a generator. An

example of such a path expression is re-

source/book/author=$a and may result in a

citation like {Citation[Author=Tesla]} if

Tesla is the ending point of the path expression.

Each generated citation is given a unique identifier

that is guaranteed by DIACHRON to be stable for the

lifetime of the datasets it cites. Additionally, the cita-

tion itself is stored along with its generating specifi-

cation. This ensures that once a citation is looked up,

DIACHRON can retrieve the associated information

by “replaying” the citation generation mechanism.

5. DIACHRON’s non-Functional Features

5.1.1. Performance – Response Time

The DIACHRON platform requirements regarding

performance and response time may vary depending

on the functionality. Archiving operations do not

exhibit a great degree of need of high response time

since these operations are mainly automated executed

by system users of the system (pilot existing applica-

tions). On the other hand, the querying functionality

will be used by human users and in some cases in

order to provide results requested by web pages etc.

In these cases the response time is critical.

5.1.2. Scalability

The amount of data especially in the Open Data

and the Scientific Data use cases are expected to be

significant. Given the high rates of increase of the

available datasets, the platform utilised design ap-

proaches and technologies that are capable of scaling

up to even larger data volumes.

5.1.3. Security-Privacy

The platform handles datasets that already public

in the web, therefore privacy and security do not con-

stitute a critical factor of the platform. The enterprise

scenario is an exception as it includes sensitive cor-

porate information. Consequently the platform con-

tains a user management and access control function-

ality to prevent unauthorized access to such data.

5.1.4. Interoperability

The platform currently cooperates with the exist-

ing systems of each organization in order to provide

the required functionality. Therefore, proper deci-

sions have been taken during the modelling and de-

sign phase of the platform in order to ensure a high

degree of interoperability. A loosely coupled, Ser-

vice-Oriented Architecture (SOA) has been adopted

to achieve this.

5.1.5. Usability

Within DIACHRON usability issues are not

ranked high because of the fact that the platform’s

user base does not include non-expert users. On the

contrary pilot applications that visualize the datasets

and their evolution will be used by web users. Con-

sequently in the design of these applications, the nec-

essary usability aspects have been tackled; especially

in the evolution visualization features so as to seemly

integrate with the rest of DIACHRON’s GUI.

6. Conclusion and Future Work

The scope of this paper was to provide the descrip-

tion of operation and orchestration of the components

that comprise the integrated DIACHRON platform.

Its main purpose was to present the components, how

they behave in an integrated environment, and how

the communication will be conducted, by describing

the messages exchanged.

The integrated DIACHRON Framework is based

on Service Oriented Architecture (SOA) with the

usage of message queues, which has been proven to

be the most effective way to achieve synergy be-

tween a multitude of organisationally independent

and technically heterogeneous services.

DIACHRON architectural design essentially relies

on a shared semantic framework for capturing mes-

sage meaning (data and functional semantics), as

well as asynchronous messaging, to allow frictionless

linking of heterogeneous systems.

The design and development decisions presented

in this paper guided the implementation of the first

prototype of the DIACHRON platform, which pro-

vided all the aforementioned functionality. During

the second development cycle of the module, focus

will be given to address performance and scalability

issues that will arise from the use of the modules by

the pilot applications as described in section 2. In the

course of this second development cycle, certain de-

sign approaches might be revised and if so it will be

reported in future publications.

Acknowledgement

This work has been co-funded by the DIACHRON

project, a European Commission research program

under Contract Number FP7-601043.

References

[buneman] Buneman, P. and Silvello, G. A Rule-

Based Citation System for Structured and

Evolving Datasets. IEEE Data Eng. Bull. 33(3):

33-41 (2010)

[jupp] Jupp, S., Malone, J., Bolleman, J., Brandizi,

M., Davies, M., Garcia, L., Gaulton, A.,

Gehant, S., Laibe, C., Redaschi, N., Wima-

laratne, M. S., Maria Martin, Novère, L. N.,

Parkinson, H., Birney, E., and Jenkinson, A. M.

The EBI RDF platform: linked open data for

the life sciences. Bioinformatics (2014) 30 (9):

1338-1339 doi:10.1093/bioinformatics/btt765

[luzzu] Debattista, J., Londoño, S., Lange, C., & Au-

er, S. (2014). LUZZU-A Framework for

Linked Data Quality Assessment. arXiv Pre-

print arXiv:1412.3750.

[malone] Malone, J., Holloway, E., Adamusiak, T.,

Kapushesky, M., Zheng, J., Kolesnikov, N.,

Zhukova, A., Brazma, A., and Parkinson, H.

Modeling sample variables with an Experi-

mental Factor Ontology.Bioinformatics (2010)

26 (8): 1112-1118

doi:10.1093/bioinformatics/btq099

[meimaris] M. Meimaris, G. Papastefanatos, C.

Pateritsas, T. Galani, and Y. Stavrakas. To-

wards a Framework for Managing Evolving In-

formation Resources on the Data Web. In

PROFILES2014.

[papavassiliou] Papavassiliou, V., Flouris, G., Fundu-

laki, I. Kotzinos, D., Christophides, V. High-

Level Change Detection in RDF(S) KBs.

Transactions on Database Systems (TODS),

38(1), 2013.

[rousakis] Yannis Roussakis, Y., Chrysakis, I.,

Stefanidis, K., Flouris, G., Stavrakas, Y. A

Flexible Framework for Defining, Representing

and Detecting Changes on the Data Web.

ArXiv technical report, #1501.02652, 2015.

Available at: http://arxiv.org/abs/1501.02652

[stefanidis] Stefanidis, Kostas, Ioannis Chrysakis,

and Giorgos Flouris. "On Designing Archiving

Policies for Evolving RDF Datasets on the

Web." In Conceptual Modeling, pp. 43-56.

Springer International Publishing, 2014.

[zaveri] Zaveri, A. et al. Quality Assessment Meth-

odologies for Linked Open Data. In: Semantic

Web Journal (2014). http://www. semantic-

web- journal.net/content/quality- assessment-

linked- data- survey. Forthcoming.

http://arxiv.org/abs/1501.02652

