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Abstract. Analytics is a widespread phenomenon that often requires analysts to coordinate operations across a variety of in-
compatible tools. When incompatibilities occur, analysts are forced to configure tools and transform or munge data, distracting
them from their ultimate task objective. This additional burden is a barrier to our vision of seamless analytics, i.e. the use and
transition of content across tools without incurring significant costs. Our premise is that standardized semantic web technolo-
gies (e.g., RDF and OWL) can enable analysts to more easily munge data to satisfy tools’ input requirements and better inform
subsequent analytical steps. However, although the semantic web has shown some promise for interconnecting disparate data,
more needs to be done to interlink user- and task-centric, analytic applications. We present five contributions towards this goal.
First, we introduce an extension of the W3C PROV Ontology to model analytic applications regardless of the type of data, tool,
or objective involved. Next, we exercise the ontology to model a series of applications performed in a hypothetical but realistic
and fully-implemented scenario. We then introduce a measure of seamlessness for any ecosystem described in our Application
Ontology. Next, we extend the ontology to distinguish five types of applications based on the structure of data involved and
the behavior of the tools used. By combining our 5-star application rating scheme and our seamlessness measure, we propose
a simple Five-Star Theory of Seamless Analytics that embodies tenets of the semantic web in a form which emits falsifiable
predictions and which can be revised to better reflect and thus reduce the costs embedded within analytical environments.
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1. Introduction

Linked Data (LD) is a large, decentralized, and
loosely-coupled conglomerate covering a variety of
topical domains and slowly converging to use well-
known vocabularies [1,2]. To more fully reap the ben-
efits of such diverse data, LD analysts must employ an
equally diverse array of analytical tools. Meanwhile,
the Visual Analytics community (VA) has been forg-
ing a science of analytical reasoning and interactive
visual interfaces to facilitate analysis of “overwhelm-
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ing amounts of disparate, conflicting, and dynamic in-
formation [3]." Although the community has produced
a vast array of tools and techniques that could assist
[4], it remains difficult to easily reuse those tools in
evolving environments such as the world of LD analyt-
ics – perhaps because they rely on non-semantic repre-
sentations that make it difficult to establish and main-
tain connections across analyses. Regardless of which
community’s approaches are adopted, the need to con-
tinually form interconnections among the triad consist-
ing of data, analyst, and tool remains a costly endeavor
– and to benefit from both VA and LD research, the
costs need to be more clearly portrayed, assessed, and
overcome.
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We attribute these analytical costs to two major fac-
tors:

– the ability to integrate software tools with arbi-
trary data

– the ability to reuse prior analytical materials

With respect to applying software, the flexibility
afforded by new APIs such as D3 [5] has resulted
in a proliferation of “one-off” visualization tools that
inhibit low-cost reusability. These new visualizations
regularly assume specific input data formats about spe-
cific topics that are not explicitly expressed, and can
cause analysts to spend up to 80% of their time inte-
grating these kinds of tools [6]. Even if analysts could
easily use the near two-thousand cataloged D3 visual-
izations1, each visualization is a sink from the stand-
point of subsequent analysts. Derived results, includ-
ing interactions and selections, are often not codified
in forms that can be easily reused by subsequent ana-
lysts.

Given these cost factors, we formalize a “five-star
theory” that explains how these costs can be mitigated.
The theory combines work from VA and LD communi-
ties and explains analytical costs in terms of data evo-
lution (i.e, VA theory) and data structuredness (i.e., LD
theory). As data evolves into ordered forms that fa-
cilitate analytic reasoning, it jumps within a dichoto-
mous space of mundane (i.e., non-semantic) and se-
mantic forms. Figure 1 shows that our five-star theory
is just one possible theory in a class of possible ana-
lytical cost theories. We believe that an analytical cost
theory should be built from three major components:
Member of the theory class should all contain: a model
from which to describe analyses, a cost metric to as-
sess analyses, and cost reduction strategies.

Our contributions and sectioning of this paper are
also illustrated in Figure 1. As shown at the bottom
of the image, Section 2 introduces an extension of the
W3C PROV Ontology to model analytic applications
regardless of the type of data, tool, or objective in-
volved. Section 3 (not shown) exercises the ontology
to model a series of applications performed in a hypo-
thetical but realistic and fully-implemented scenario.
Section 4 introduces a measure of seamlessness based
on the cost of performing applications in ecosystems
described using our application ontology. Section 5 ex-
tends the application ontology to distinguish five types

1http://christopheviau.com/d3list/ maintains a list of public D3 vi-
sualizations. The current count as of December 10, 2014 was 1,897
visualizations.
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Fig. 1. A theory of seamless analytics comprises three elements: a
model, a cost model, and cost reduction strategies.
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Fig. 2. Application Ontology Core is an extension of PROV. Appli-
cations use tools to generate new datasets which could include vi-
sualizations. Applications are informed by munging activities that
transform data representations. Figure 9 illustrates an extension to
further distinguish among five types of applications.

of applications that progressive reduce the cost of anal-
yses. Section 6 describes past work in the area of an-
alytical models and techniques for supporting interop-
erability in analytical environments. Finally, Section 7
discusses future work before concluding in Section 8.

2. An Ontology of Analytical Applications

Our core Application Ontology (AO) provides a
minimal set of concepts to describe an analytical step,
herein known as an application; a complete thread
of analysis can be chained together when subsequent
applications use materials from previous applications,
as exemplified in Section 3. Application chains can
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then be assessed using the seamlessness measure in-
troduced in Section 4 and can be further distinguished
into five sub-types using the constraints introduced in
Section 5.

An application refers to an analyst’s contextualized
use of some dataset within a tool to achieve some im-
plicit objective, which contrasts with prior work of
modeling applications as a piece of software [7]. Our
applications are a kind of PROV Activity [8], defined
as “something that occurs over a period of time and
acts upon or with entities; it may include consuming,
processing, transforming, modifying, relocating, using,
or generating entities." An application associates three
key entities, which we refer to as the application triad:
1) the dataset used, 2) the performing analyst who also
most immediately benefited from the result, and 3) the
tool that derived a result from the dataset. Figure 2 il-
lustrates these relations using the PROV layout con-
ventions2 – dα is the result derived from dataset d by
analyst A with tool t during application α.

The distinguishing aspect of our AO is the focus
on munging activities that may be required to suit a
dataset to a tool’s input requirements. Munging, also
known as wrangling, is the imperfect manipulation of
data into a usable form and has been recognized in VA
field for decades, yet continues to be a ubiquitous and
costly problem [9]. We focus on munging because it
persists and dominates as a cost factor for applications.
The relationship between applications and munges is
also shown in Figure 2 using PROV, but we further re-
late munging activities as also being part of the appli-
cation3.

As shown in Figure 3, we establish seven sub-
classes of munging and group them into three interme-
diate super-classes. These intermediate classes (mun-
dane, semantic, and trivial munging) are distinguished
according to a dichotomy that can be found within Tim
Berners-Lee’s Linked Data rating scheme [1]. Broadly
speaking, Berners-Lee’s scale can be used to partition
data into two groups: non-RDF and RDF. Let D[1,3]

denote the union of all data earning one, two, or three
stars according to the popular scheme, and D[4,5] the
union of all four or five-star data. We call any dataset
within D[1,3] “mundane" and any dataset within D[4,5]

“semantic," reflecting the perspective of the Semantic
Web (SW) and LD communities that more highly rated
data are easier to use or inherently provide more value.

2http://www.w3.org/2011/prov/wiki/Diagrams
3Using Dublin Core hasPart, http://purl.org/dc/

terms/hasPart
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Fig. 3. Munging activities defined in terms of the Tim Berners-Lee’s
linked data scale. Not shown is content negotiation because it applies
to all data types (an ideal situation).

Let the function tbl return the star rating of a dataset,
i.e., tbl(d) = s. The seven sub-classes of munging
(shim, lift, cast, align, compute, glean, and conneg) are
defined in terms of using4 data from either D[1,3] or
D[4,5] and generating data from the same.

munge : {D[1,3], D[4,5]} 7→ {D[1,3], D[4,5]}

Mundane munges incur the highest cost and are
shown in Figure 3 with heaviest edges. Semantic
munges are less expensive than mundane munges and
are shown with medium weight lines. Finally, trivial
munges are the least expensive of all and are shown
with lightest lines. The abstract and coarse level cost is
intended to reflect the ease at which data can be used
within and across applications.

2.1. Mundane Munging

Three kinds of munging activities are common in
that they all require the analyst to understand both the
structure and semantics of mundane datasets (D[1,3]).

Shimming (shim): generates D[1,3] from D[1,3]; it is
any data transformation that does not involve

4We continue to follow PROV terminology to describe activities.

http://www.w3.org/2011/prov/wiki/Diagrams
http://purl.org/dc/terms/hasPart
http://purl.org/dc/terms/hasPart
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RDF and is the kind of activity that the LD com-
munity is working to ameliorate.

Lifting (lift): generates D[4,5] from D[1,3]; it cre-
ates RDF from non-RDF and has occupied the
LD community’s attention for most5 of the past
decade [10,11,12].

Casting (cast): generates D[1,3] from D[4,5]; it cre-
ates mundane forms from RDF and, unfortu-
nately, is regularly performed by many Linked
Data applications today, typically by using SPARQL
to create browser-friendly HTML or SVG.

2.2. Semantic Munging

Two kinds of munging activities are common in that
they require the analyst to understand only the seman-
tics of datasets (D[4,5]).

Aligning (align): generates D[4,5] from D[4,5]; it de-
rives new relationships from RDF and can often
be achieved using ontological mappings [13].

Computing (comp): generates D[4,5] from D[4,5]; it
derives new information from RDF that is it-
self also expressed in RDF. While aligning is a
special kind of computing, there are many other
kinds of computing that are not aligning. Com-
puting is relatively less common in current prac-
tice but can be found in a few works such as
Linking Open Vocabularies6 and SPARQL-ES
[14].

2.3. Trivial Munging

Two kinds of munging activities are common in that
they do not require the analyst to understand any of the
dataset’s structure or semantics.

Gleaning (glean): generates D[4,5] from D[1,3]; the
GRDDL7 and RDFa recommendations are both
approaches that can be used to glean RDF from
non-RDF representations without the need for
contextual knowledge.

Content Negotiation (conneg): generatesD[1,5] from
D[1,5] and “refers to the practice of making avail-
able multiple representations via the same URI.”
8

5http://triplify.org/challenge
6http://lov.okfn.org/dataset/lov/
7http://www.w3.org/TR/grddl/
8http://www.w3.org/TR/webarch/

3. An Analytical Scenario: Space Junk

This section presents two representative analyses
modeled according to our application ontology pre-
sented in the previous section. Both analyses are cen-
tered on the broad topic of Earth’s artificial satellites,
e.g., their locations, type distribution, and associated
launch sites. As our two analysts perform applications
and inspect generated results, they will incrementally
and serendipitously gain insight, formulate new ques-
tions, and perform subsequent applications to address
their new inquiries. Collectively, our two analysts ex-
emplify a “subsequent analyst” setting, where results
generated by a prior analyst are reused by a different
analyst with a different objective.

We also use this scenario to highlight the intersec-
tion between the Visual Analytics (VA) and Linked
Data (LD) communities. The VA community under-
stands how data evolves into ordered forms that facil-
itate analytical reasoning [15,16,17]; order is subjec-
tive and defined by the analyst. The LD community
understands how structuredness impacts data usage in
terms of discovery and integration [1,18]. We describe
our representative analyses from both perspectives. As
information evolves into more ordered forms, it spans
various levels of structuredness.

Ironically, the ordered forms generated by applica-
tions are typically unstructured. This “irony of use” is
exemplified by certain munging anti-patterns that gen-
erate mundane results. We focus on three such patterns
that we name “flatlines,” “house tops,” and ‘hill slides”
due to the signatures they exhibit when they are visual-
ized. Additionally, we use the munging anti-patterns to
explain certain analytical pain points [19,9] that have
been documented by the VA communities:

[pp1] : decoding semantics of mundane data
[pp2] : reusing prior application results
[pp3] : avoiding redundant work
[pp4] : obtaining different representations of data
[pp5] : understanding tools’ input data requirements
[pp6] : developing or modifying t’s code base
[pp7] : obtaining the provenance of results

The applications described in this section are in-
stances of the application class described in the pre-
vious section. To identify these application instances,
we use subscripts; for example, α1 denotes the first ap-
plication an analyst performs. We also use subscripts
to identify the result instance generated by a specific
application; for example, dα1

denotes the result gen-
erated by the first application. Finally, we use a pair

http://triplify.org/challenge
http://lov.okfn.org/dataset/lov/
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/webarch/
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of subscripts to identify intermediate result instances;
for example, d1,2 denotes the dataset generated by the
second munge of the first application. To disambiguate
applications and datasets across multiple analyses, we
will specify the analyst’s name, for example: Amy’s
α1 or Bart’s d1,2.

3.1. Amy’s Analysis

Amy, a student enrolled in a physics course, is learn-
ing about satellite launch trajectories and becomes
curious about the extent of equipment launched into
space. Although her professor mentions there are more
than 2,000 satellites launched by various countries, she
remains curious about the location and type of these
satellites and seeks some visualizations to gain per-
spective.

3.1.1. Application 1 (α1): Where are the Satellites
Located?

Amy’s professor provides her with a URL to a Key-
hole Markup Language (KML) dataset that contains all
satellites currently in orbit9. She uses a Geographical
Information System (GIS) tool to plot the geolocation
of satellites contained in the KML dataset.

Amy’s activities are represented by the provenance
trace labeled α1 in Figure 4. The provenance trace is
expressed in terms of munges and describes how Amy
transformed the KML dataset, d1,1, into a geospatial
map result, dα1 . She used a GIS tool, such as Google
Earth to perform the shim.

Amy’s provenance trace for α1 exemplifies the “flat-
line” anti-pattern, which is labeled in Figure 4. Amy
shimmed a mundane KML dataset, d1,1, into another
mundane form, dα1

, which may be difficult to reuse in
subsequent applications since it resides as unstructured
data [pp2].

Amy’s interactive map, presented at the top of Fig-
ure 5, shows the location of over 50,000 satellites scat-
tered throughout Earth’s orbit. The map also provides
an interactive legend that lets Amy toggle between
the visibility of certain kinds of satellites. Amy no-
tices that satellites are grouped according to whether
they are Rocket Bodies, Debris, Active, or Inactive, and
becomes inspired to calculate the efficiency of active
satellites to “space junk”, i.e., all satellites that are not
active. Unfortunately, the geospatial map does not pro-
vide a count for each satellite type from which Amy
could use to calculate the efficiency ratio.

9http://apps.agi.com/SatelliteViewer/

dα1

dα2

dα3

CIS, United States, China, and France

Useful

Trash

Fig. 5. Amy’s application results.

Amy is also unable to select and export any subset of
satellites painted on screen, such as the group of ‘junk”
satellites. The best she can do is take a screen shot or
keep the map visualization window open on her desk-
top so she can reference it in later applications. In this
case, Amy would serve as the communication channel
between the map result and subsequent applications,
which is inefficient. Fortunately, the map visualization
displays the URL of the KML dataset being rendered,
thereby providing Mary with a kind of natural prove-
nance [pp7].

3.1.2. Application 2 (α2): What is the Efficiency of
Satellites Launches?

Unlike her previous effort, Amy can begin her sec-
ond inquiry using materials generated by her first ap-
plication:

d1,1 a URL to a KML dataset of satellites
dα1 a geospatial map of “useful” satellites

http://apps.agi.com/SatelliteViewer/
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Fig. 4. Amy’s analysis described using munge glyphs.

The geospatial map is most in sync with Amy’s cur-
rent understanding of satellites types; there exists a set
of satellites painted on screen that Amy regards as use-
ful and another set that she regards as junk. She could
use the map to calculate the efficiency ratio, but her
imposed groupings only exist in the form of pixels on
the screen, which are difficult to reuse [pp2]. To reuse
the map, Amy would need to employ expensive image
processing to map specific groupings of pixels to data
elements [20]. That route, however, would require her
to use new experimental tools which would still keep
data at the mundane level [pp1].

The satellite KML dataset, on the other hand, is
structured and therefore easier for Amy to process. Un-
fortunately, the KML dataset is devoid of Amy’s im-
posed satellite groupings; the data only tags satellites
as Rocket Bodies, Debris, Active, or Inactive. If Amy
reuses the satellite KML, she will have to reestablish
her “useful” and “junk” satellite groupings and thereby
redo work she performed while interacting with the
geospatial map [pp3]. This kind of inefficient reuse
is commonplace in enterprise settings where analysts
prefer the actual source data (e.g., databases) over the
derived results (e.g., CSV files extracted from spread-
sheets) [9]. A common challenge for analysts is to find

materials that are both easy to munge and representa-
tive of the analyst’s mental schema [15].

With this tradeoff in mind, Amy falls back and uses
the satellite KML dataset to generate a histogram de-
picting the type distribution of satellites. Histograms
implant qualitative information into the visual plane
[21], which allow analysts to easily assess ratios. She
first partitions satellites into her imposed groupings:
“useful” and “junk”. Amy then uses an RDF visualiza-
tion tool to generate the histogram representing launch
efficiency.

Amy’s second application is described by the prove-
nance trace labeled α2 in Figure 4. The application
reuses the satellite KML data, d1,1, as indicated by the
dashed lines in the figure. Amy first used a custom
script to shim the satellite KML to a CSV file denoted
as d2,1. She then used a Linked Data converter [11]
to lift the CSV file into an equivalent RDF representa-
tion, d2,2. Once she obtained RDF, Amy used an ontol-
ogy mapping tool [13] to align her satellite RDF into
a new dataset, d2,3, which classifies rocket bodies, de-
bris, and inactive satellites as trash. She controlled the
mappings by specifying the following RDFS subclass
axioms:

SubClassOf ( : D e b r i s n fo : Trash )
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SubClassOf ( : RocketBody nfo : Trash )
SubClassOf ( : I n a c t i v e nfo : Trash )

Amy finally used an RDF visualization tool to cast
the RDF dataset of satellite groups into an SVG his-
togram, d2,3, and then a PNG image, dα2

, that shows
the distribution of satellites by type (i.e., useful or
junk). In practice, Amy could use a tool such as
Sgvizler [22], which requires that developers annotate
HTML with instructions on how to execute SPARQL
queries. When using these kinds of tools, analysts must
play the role of developers and thereby incur addition
costs [pp6].

The munge segment from d1,2to d2,2 is a stop-gap
approach to obtain linked data, which is tolerable since
standards for converting to linked data are relatively
new10. Ideally, Amy would have obtained RDF using
low cost techniques, such as content negotiation [23],
GRDDL, and RDFa processors [pp4]. The greater is-
sue is that Amy’s derived semantic results fall back
down to the mundane level when she generates the his-
togram, or any result for that matter. Once again, rich
semantic connections describing the satellite data were
lost during the cast to SVG. If the labels are not in-
formative and the context of the histogram generation
is forgotten, it may be difficult for subsequent analyst
understand what the graphics represent [pp1]. We re-
fer to this lift-then-cast anti-pattern as a “house top”,
as seen in Figure 4.

The histogram, shown in the center of Figure 5, pro-
vides Amy with an easy, side-by-side comparison of
relative bar lengths, which depict the number of use-
ful and junk satellites. Amy can clearly see an or-
der of magnitude difference between useful satellites
and trash, which leads her to think that countries are
inefficient when launching space materials. She does
not know, however, which countries are most responsi-
ble for the resulting environmental condition. She per-
forms the next application to explore launch efficiency
on a per-country basis.

3.1.3. What is the Efficiency of Satellite Launches per
Country?: Application 3 (α3)

Amy can begin her next inquiry using materials gen-
erated by her two previous applications (shown are ma-
terials from α2):

d2,1 a CSV file of satellites
d2,2 an RDF representation of the satellites

10R2RML www.w3.org/TR/r2rml is a more recent standard
for mapping relational data to RDF.

d2,3 an RDF representation of the satellites, grouped
as useful or junk

d2,4 an SVG histogram showing satellites distribution
by type

dα2 an PNG image of the histogram

Amy reuses the grouped satellites d2,3 to generate
a stacked bar chart that shows launch efficiency on a
per-country basis. She chose to reuse d2,3 so that she
could avoid expensive munges associated with SVG
and PNG histogram representations of the satellite data
[pp1,pp2]. Additionally, d2,3 contains her imposed
satellite groupings.

As presented by the munges in Figure 4, Amy used
a custom script to cast the RDF data into a JSON file,
d3,1, which conforms to the structure required by the
stacked bars tool. Visualization widgets, such as D3
stacked bars11 often impose custom format require-
ments which are not explicitly or formally described.
This lack of documentation forces analyst to inspect
source code in order to infer the ingestion requirements
of a tool. In Amy’s scenario, the stacked bars tool only
provided an example input CSV dataset, such as the
one show below:

S t a t e , 5 Years , 5 t o 13 Years , Over
AL,310504 ,552339 ,259034
AK,52083 ,85640 ,42153
AZ,515910 ,828669 ,362642

After tediously inspecting the example dataset and
the widget’s JavaScript code, Amy was able to decode
the input semantics. She realized that each row in the
table corresponds to a composite bar. The first column
specifies the label of the composite bar and the follow-
ing columns specify the sizes of the sub-bars. She also
realized that the widget accepts JSON versions of the
CSV file, and that the input data can specify an arbi-
trary number of sub-bins with the caveat that all rows
must provide data for every column [pp5].

Armed with the knowledge about what the stacked
bars accepts, Amy produced a compliant JSON version
dataset, d3,1, shown in the snippet below:

{ owner : " U n i t e d S t a t e s " , " A c t i v e " : 2 5 9 , " Trash " :3696}
{ owner : " F r an c e " , " A c t i v e " : 1 1 4 , " Trash " :5677}

Amy used the stacked bars tool to cast the JSON into
a SVG file embodying the stacked bars visualization.
Since stacked bars tool is web-based, the application

11http://bl.ocks.org/mbostock/3886394

www.w3.org/TR/r2rml
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also exhibits the SVG to PNG transformation pattern
between d3,2 and the final result dα3 .

Amy’s provenance trace for α3 exemplifies the hill
slide anti-pattern, which is labeled in Figure 4. Amy
cast the RDF dataset, d2,3, to a mundane JSON ta-
ble, which she then continually shimmed. When ana-
lysts cast semantic data to the mundane level, explicit
interconnections maintained at the semantic level are
lost or become implicit. This places an undue burden
on analysts to remember the cypher between the mun-
dane representations and the corresponding semantics
[pp1].

Amy’s stacked bar chart, shown at the bottom of
Figure 5, shows that most countries launch space junk,
to some degree. The stacked bars visual is normalized
and therefore conveys the relative efficiency of satel-
lite launches. This perspective allows Amy to see that
the Common Wealth of the Independent States (CIS),
United States, China, and France all launch a large per-
centage of junk. She shows her friend Bart the stacked
bar chart PNG image, dα3

, and conveys her concerns
about the inefficiency of satellite launches. She asks
Bart to figure out if the United States allows any of
other junk-launching countries to launch from its facil-
ities and hands him the stacked bars image as a starting
point.

3.2. Bart’s Analysis

Amy enlists her friend Bart to figure out which other
countries launch from facilities located in the Untied
States. She initially only provides him with the PNG
image showing the junk efficiency on a per-country ba-
sis.

3.2.1. Application 1 (α1): What other Countries
Launch Space Junk with the Help of the United
States?

Bart quickly realizes that the PNG image, dα3
,

although up-to-date with Amy’s current perspective,
does not provide adequate information for him to per-
form his analysis. He would have to decode meaning
from column labels and extract structured information
from pixels [pp1,pp2]. Furthermore, Bart is unable to
recover the raw materials that were used to create the
image since the image does not contain any water-
mark or metadata describing its derivation provenance
[pp7]. He therefore requests for all of Amy’s materi-
als, including both intermediate data and application
results from dα1

, dα2
, and dα3

, and decides to reuse the
RDF dataset, d2,3, which groups satellites according

Amy’s and Bart’ Boundry

d2,3

cast
shim

countries-in-
launch-sites.rdf

 Bart’s α1

d2,3

d1,2
dα1

grouped.rdf

hill slide

d1,1
align

countries-in-
launch-sites.xml

countries-in-
launch-sites.png

Fig. 6. Bart’s analysis described using munge glyphs.

to Amy’s dichotomy, i.e., her slightly older perspec-
tive that is devoid of group sizes. In practice, reviewing
all of Amy’s materials without any context would be a
daunting task; context and meaning of the results were
lost. Application results do not typically stand on their
own and require the expertise of the originating ana-
lyst to fill in the lost context, through person-to-person
discussion. Ideally, application results should serve as
the the only interface between two different analyses.

From d2,3, Bart generates a clustered visualization
that groups countries according to the launch sites they
use. This transformation sequence is described in the
provenance trace labeled α1 in Figure 6. Bart first
used an ontology mapping tool to align Amy’s satel-
lite RDF into a new dataset, d2,3, which specifies the
:inCategory property between countries and the
sites they use. He controlled the mappings by specify-
ing the following OWL property chain:

S u b O b j e c t P r o p e r t y O f
(

O b j e c t P r o p e r t y C h a i n
(

O b j e c t I n v e r s e O f ( a c l : owner )
prov : wasDerivedFrom

)
: i n C a t e g o r y

)

The property acl:owner specifies the country
that owns a satellite. The property prov: wasDerivedFrom
specifies the site from where a particular satellite was
launched. Bart then used a custom script to cast dataset
d2,3 into an XML file that conforms to the structure re-
quired by the cluster visualization tool, such as Aduna
ClusterMap12. He finally used the cluster tool to gen-
erate the result of the application, dα1

.

12http://www.aduna-software.com/technology/clustermap
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dα1 CIS
France

Fig. 7. Bart’s application results.

From the application result, presented in Figure7,
Bart can see that France launches from the “Mid-
Atlantic Regional Spaceport,” which is owned by the
United States. Additionally, CIS launches from the
“Easter Range” site, which is also owned by the United
States. Bart sends the cluster map image to Amy, with
some small text describing his findings.

3.3. Recap

Figure 8 presents an overview of Amy’s and Bart’s
analyses. The top segment of the figure represents the
actual analysis performed by Amy and Bart and the
bottom segment represents an ideal scenario, where
every application generates both a mundane and se-
mantic representation of their result. The dashed lines
in the figure indicate that a dataset was reused in a sub-
sequent application.

In the actual analysis, every application generated
only a mundane dataset. This is common signature of
the anti-patterns and the reason why analysts are usu-
ally encouraged to fall back and use less developed, in-
termediate materials. We see this in the figure where no
dashed lines extend from the arrow tips. This is consis-
tent with previous reports that indicate analysts usually
fall back to working with source databases and scripts
rather than derived artifacts [9].

In the ideal scenario, every application would gen-
erate a mundane result as well as an equivalent, al-
ternate semantic representation. Humans rely on their
broadband visual channel to receive information and,
therefore, will always need mundane representations
of information such as rendered graphics. We believe,
however, that analytical costs can be reduced if more
tools generated mundane/semantic datasets, such as

dα1

dα2

dα3

dα1

Amy’s Actual Analysis

Bart’s Actual Analysis

dα1

dα2

dα3

dα1

Amy’s Ideal Analysis

Bart’s Ideal Analysis

Fig. 8. Juxtaposition of an actual analysis vs. an ideal hypothetical
analysis.

GRDDL and RDFa serializers. With such tools, ana-
lysts would be able to directly reuse application results
and avoid duplicating prior analytical efforts.

4. A Metric for Application Seamlessness

In the previous section, Amy and Bart performed
specific sequences of applications that helped them
understand satellites from different perspectives. Amy
generated geospatial plots and histograms, while Bart
generated a a visualization that presents categorical re-
lationships between entities. Each unique sequence of
applications induces a unique analytical ecosystem,E.
Since Amy and Bart each performed their own unique
set of applications, they each induced a unique ecosys-
tem, i.e., EAmy and EBart.

Formally, an ecosystem E is defined as the set of
applications that influenced13 a particular analysis:

E = {α1, α2, ..., αn}

Each application α in an ecosystem is formally
defined as a tuple consisting of a non-empty set of
munges and a resultant dataset Dα:

α = (Mα = {m1,m2, ...,mm}, dα)

13http://www.w3.org/TR/prov-dm/
#term-influence

http://www.w3.org/TR/prov-dm/#term-influence
http://www.w3.org/TR/prov-dm/#term-influence
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This set-theoretic definition of application α is an
alternate expression of the OWL ontology described in
Section 2, and is better suited for defining the seam-
lessness metric presented in this section. The seam-

lessness metric, S, assesses analytical cost from two
different cost perspectives: (1) how easily can analysts
integrate data with tools and (2) how easily can subse-
quent analyst reuse prior application results. The met-
ric, thus, balances the importance of “getting the job
done” with the altruistic desire to help subsequent, fu-
ture analysts reuse materials.

4.1. Integration Cost

We define an equation that expresses how easily an-
alysts can integrate data with tools. The equation is
only a function of the kinds of munges performed dur-
ing applications:

S1(E) =

∑
α∈E

∑
m∈Mα

cost(m)∑
α∈E

∑
m∈Mα

cost(shim)
(1)

The numerator contains the actual cost of the
ecosystem, which is calculated by summing the costs
of each munge of every application in ecosystem E.
The denominator reflects the hypothetical worst-case
cost incurred by shimming exclusively (i.e., every
munge of every application is a shim) and effectively
normalizes ecosystems so that ecosystems with differ-
ent munge counts can still be compared. Therefore, the
equation has a range of (0, 1], where lower scores in-
dicate that analysts were able to more easily integrate
data with tools. The lower bound of zero is exlusive
since we do not permit munges to have a zero cost.

We see that the equation depends on a cost func-
tion that maps munge types to cost values. To bound
our munge-level cost function, we first present a com-
plete ordering of munge costs that aligns with the par-
tial ternary ordering introduced in Section 3.

cost(α) > cost(shim)

cost(shim) > cost(lift) + 2 cost(align) + cost(cast)

cost(lift) > cost(cast)

cost(cast) > cost(align)

cost(align) > cost(comp)

cost(comp) > cost(glean)

cost(glean) > cost(conneg)

cost(conneg) > 0

The horizontal lines delimit the three munge groups
shown in in Figure 3; the top group corresponds with
mundane munges, the middle group corresponds with
semantic munges, and the bottom group corresponds
with trivial munges. Therefore, the cost orderings re-
ward applications that contain a larger proportion of
trivial and semantic functions. The range of the cost
function is (0, cost(α)), which prohibits the possibil-
ity of a zero cost munges. The least expensive munge
is a conneg and the most expensive munge is a shim,
which is a composite of lifting, aligning, and casting;
shims incur the highest cost because they require ana-
lysts to perform mental data alignments without con-
crete intermediary models.

We use one such solution to the complete ordering
and define a munge-level cost function, as shown be-
low:

cost(m) =



20 : if shim
6 : if lift
5 : if cast
4 : if align
3 : if comp
2 : if glean
1 : if conneg

Given cost bindings, we see that he integration cost
function favors applications that contain trivial and se-
mantic munges. For example, compare Amy’s applica-
tion α3 and Bart’s application α3, which both consist
of only three munges. Amy’s α3 consists of one cast
and two shims, which results in an integration cost of
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0.75. Bart’s α1, on the other hand, consists of an align,
a cast, and a single shim, which results in a cost of
0.48.

In practice, analysts should assign costs that based
on different measures, e.g., man hours, lines of code,
and commit frequencies. As long as the ordering con-
straints are satisfied, Analysts can experiment with dif-
ferent cost valuations and obtain new seamlessness
scores that are consistent with previously computed
rankings of their ecosystems. For example, given two
ecosystems E1 and E2, where S1(E1) < S1(E2) was
established using cost function c, the ranking will hold
under a different cost function cprime, so long as both
c and c1 satisfy the same cost order constraints. We can
consider c and c1 as kind of scaling factors on applica-
tion costs as a whole.

4.2. Reuse Potential

We define an equation that expresses how easily
subsequent, analysts can reuse materials generated by
prior analyses. Since this score is looking at the seams
(i.e., data) between different ecosystems, the score is a
function of the kind of results that are generated by ap-
plications. We assume that linked data, including data
that can be trivially munged to yield linked data, are
easier for subsequent analysts to reuse. On the other
hand, mundane results such as PowerPoint slides, CSV
files, and raster images are harder to reuse [9]. For ex-
ample, Bart reused Amy’s less contextualized RDF file
instead of the PNG image result.

To embody this premise, we define the potential
(pot) function that returns a set of scaling factors based
on the type of Dα:

pot(dα) =


1

cost(shim)
: if tbl(dα) > 3

1
cost(align)

: if conneg(dα) 6= ∅
1

cost(glean)
: if glean(dα) 6= ∅

1 : otherwise

If a dataset is encoded in RDF, the pot function
provides the greatest reward by returning the smallest
scaling factor. If a dataset can be content negotiated to
RDF, the function provides a smaller award since sub-
sequent analysts would have to perform a content ne-
gotiation munge to acquire RDF. If a dataset can be
gleaned to RDF, the function provides the smallest re-
ward since subsequent analysts would have to perform
a glean munge, which costs slightly more than content
negotiation. Finally, if a dataset does not satisfy any of
the above conditions, the function provides no reward;
a scaling factor of 1 has no effect.

Like the munge cost function, we expect analysts
to reconfigure the pot function to best represent their
work environment. Perhaps, for provenance concerns
(i.e., prod:alternateOf), it is more important to keep
the mundane and semantic results bundled together as
gleanable datasets. In this case, pot can be reconfig-
ured to provide gleanable datasets with the greatest re-
ward. Or perhaps, file size is an issue and therefore
gleanable datasets should return very little reward. In
practice, we can update the function to “follow up” on
the actual reported gains by drawing from the prove-
nance of downstream usage [24] and providing up-
stream analysts with feedback regarding their impact.

Since dα can satisfy multiple conditions, the pot
function returns a set of scalars, one for each bucket
dα satisfies. In these cases, subsequent analysts can
choose which facet of the dataset they want to work
with. For example, an analyst may be able to glean or
content negotiate a single XML dataset, if the dataset
contained embedded RDF or was referenced by a URL
that could be content negotiated.

The pot function rewards applications that avoid ex-
pensive anti-patterns presented in Section 3. Even ap-
plications that flatline though a large portion of the
trace can be rewarded, so long as they generate seman-
tic, gleanable, or content negotiated results.

4.3. Seamlessness Score S

We can now define the seamlessness score, S, that
incorporates the integration and reuse ease expres-
sions:

S(E) =

∑
α∈E

∑
m∈Mα

min(pot(dα)cost(m))∑
α∈E

∑
m∈Mα

cost(shim)
(2)

The score uses the pot function to scale the total cost
of an application. Additionally, S uses the mimimim
value returned by pot in order to provide the great-
est rewards. The scaled application costs reflect future
“returns on investments” for potential, subsequent ana-
lysts. Although lifting mundane data to semantic forms
is expensive, multiple subsequent uses of the semantic
content is relatively cheaper in the long run.

4.4. Amy’s and Bart’s Scores

To compute Amy’s and Bart’s seamlessness score,
we first extracted their ecosystems by examining their
application traces and logging each munge and gener-
ated result dα:
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EAmy = {

{α1 = {cast, shim, shim},map.png},

{α2 = {shim, lift, align, cast, shim}, hist.png},

{α3 = {cast, shim, shim}, stackedbars.png}}

EBart = {

{α1 = {align, cast, shim}, clustermap.png}}

Table 1 presents the costs incurred by each applica-
tion contained in the ecosystems. For each application,
we compute its cost from the integration cost perspec-
tive, i.e., cost(Mα). We also compute the scaling fac-
tor from the data reuse cost perspective, i.e., pot(dα),
and apply the scaling factor to the application cost, i.e.,
cost×pot. Finally, we sum the scaled application costs
to compute the seamlessness score for each analysts’s
ecosystem.

Table 1
Amy’s and Bart’s seamlessness score S. The scores are broken down
into their constituent integration and reuse costs.

Analyst App. cost(Mα) pot(Dα) cost× pot

Amy
α1 20 1 20
α2 55 1 55
α3 45 1 45

S(EAmy) = 0.66
Bart α1 29 1 29

S(EBart) = 0.48

For example, in Bart’s application α1, he aligned
(cost = 4), cast (cost = 5), and shimmed (cost = 20),
resulting in a total application cost of 29. This same
application generated a mundane PNG image of a clus-
ter map and therefore, did not earn any cost reductions,
i.e., pot(dα) = 1. To compute his seamlessness score,
we divide his application cost 29 by the hypothetical
worst case incurred by exclusive shims, 60, to obtain a
score of 0.48. The reuse cost reduction factor did not
apply to any ecosystem, since both ecosystems gener-
ated only mundane results for dα.

wasInformedBy

used

used

PROV Responsibility

wasGeneratedBy

dαApplication  α

Data
d

Tool
t {

Triad

{
Munging  mMunging  m

Analyst
A

Data 
Provider
attr(d)

Tool 
Developer

attr(t)

disjointWith
1X

dcat:distribution http
URL

Web

2 X RDF
3 X

σt

4 X

data 
subset

5 X

Fig. 9. An extension of the Application Ontology Core (Figure 2) to
distinguish five subclasses of Application. The figure distinguishes
between generic application concepts, shown in gray, and the exten-
sion concepts shown in bold-face.

5. Reducing Analytical Costs with Five-Star
Applications

We propose a “5-star application rating scheme” that
analysts can use to design more efficient applications
that avoid anti-patterns and analytical pain points de-
scribed in Section 3. The rating scheme is expressed in
the form of ontological restrictions that progressively
reduce the space of possible munge sequences. As the
application ratings increase, the possibility of perform-
ing certain anti-patterns decrease.

We outline these ontology restrictions by extend-
ing the application ontology introduced in Section 2
to distinguish among five types of application sub-
classes that are illustrated in Figure 9. These sub-
classes are rated according their predicted cost, which
is expressed as an interval. We use an interval notation
to account for the fact that these application subclasses
describe a set of different applications instances, each
with their own scalar cost. The interval thus captures
the min and max cost of the application instances in
the set.

Table 2 enumerates all five application star ratings
and pairs each with their associated restriction(s). Fig-
ure ?? uses this table to rate the applications performed
by Amy and Bart in their analyses presented in Section
3.

5.1. One-star applications

One-star applications satisfy our fundamental re-
striction that the sets of analysts, tool developers,
and data providers (i.e., the application triad) asso-
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Table 2
A five-star rating scheme to assess analytical seamlessness of an
individual application. The restrictions are specified in natural lan-
guage and formally using functional and set notations. The function
tbl maps the dataset D used in an application to its star rating as
determined by Tim Berners-Lee’s scale.

9 Informal Restriction Formally

1 data providers, analysts, and tool developers are disjoint attr(D) ∩A ∩ attr(t) = ∅
2 accept data (any format) via URL; cite that URL in the future tbl(D) >= 1 ∧ URL ∈ Dα
3 accept data (RDF format) via URL; cite that URL in the future tbl(D) >= 4

4 use a tool’s input semantics (OWL, SPARQL) when preforming munges used(m,σt) ∧m ∈M
5 provide any information (RDF format) derived during use D ⊂ Dα

3.2.1

α1

3.1.3

α3α2

3.1.1 3.1.2

α1

§

Amy Bart

Fig. 10. Star ratings for the applications in Bart’s and Amy’s ecosys-
tems. White star indicate “conditional stars.”

ciated with a particular application are disjoint, i.e.,
attr(dα) ∩A ∩ attr(t) = ∅, where A refers to the an-
alyst and the function attr supports the transitive dis-
covery of data providers and tools developers that can
be practically achieved through SPARQL queries over
analytical PROV traces. Figure 9 depicts this restric-
tion towards the left-hand side, where cross-hatched
lines connecting the triad of Data Providers, Analysts,
and Tool Developers represent a disjoint relationship.

In the scenario presented in Section 3, Amy’s use
of the GIS tool in application α1 earns one-star since
Amy was neither the provider of the satellite data nor
the developer of the tool; when we state that an ap-
plication instance, such as Amy’s α1, earns a partic-
ular start rating, this is equivalent to stating that the
instance belongs to that application class. In contrast,
Amy’s use of the histogram tool in application α2

does not earn one star since she was required to write
HTML code. We therefore distinguish between devel-
oping munge scripts and developing the actual tool t
that generates application results, where only the latter
case precludes an application from earning one star.

Similarly to Amy’s α2, the use of government data
mash-ups14 and LOD metadata summaries such as
Linked Open Vocabularies (LOV)15 and SPARQL
Endpoint Service (SPARQL-ES)16 do not earn a star
since the tool developers are also data providers. The
LOV tree map view, for example, is immutably bound
to LOV’s underlying RDF store 17.

The one-star application restriction speaks more to
tool developers than analysts who use the tools. If de-
velopers would design software with one-star applica-
tions in mind, they might develop more flexible tools
that are not hard-coded for specific kinds of data or
data sources. With such flexibility, analysts could more
easily reuse tools without having to adapt the tool’s
source code to accept their data (pain point 6 ([pp6])
in Section 3).

Additionally, the one-star application class de-
scribes a set of possible munges sequences that we re-
fer to as a munge space. Since the one-star application
class does not place any restrictions on the structure of
the data used and generated, they include application
instances that consist of exclusive shims (i.e., flatlines
described in Section 3) and exclusive computes. Ad-
ditionally, the one-star application class allows every
possible combination in between, including house tops
and hill slides. We depict the one-star munge space in
Figure 11. Without loss of generality, the munge space
presented in the figure:

– assumes that data must always be munged to fit a
tool

14http://data-gov.tw.rpi.edu/demo/
USForeignAid/demo-1554.html

15http://lov.okfn.org/dataset/lov/
16http://sparqles.okfn.org/
17http://lov.okfn.org/endpoint/lov

http://data-gov.tw.rpi.edu/demo/USForeignAid/demo-1554.html
http://data-gov.tw.rpi.edu/demo/USForeignAid/demo-1554.html
http://lov.okfn.org/dataset/lov/
http://sparqles.okfn.org/
http://lov.okfn.org/endpoint/lov
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– assumes two non-trivial munges (see Section 2
per application: one munge to get data into a tool
and another munge supported by the tool itself.

– considers initial gleans and content negotiations
as outside the scope and cost consideration of
the application, since these munges incur such a
small cost (see four- and five-star patterns in the
figure)

Because each application described in this section
is a class (i.e., a set of munges traces), we describe
their costs in terms of intervals. The lower bound of the
interval specifies the cost the cheapest possible munge
sequence and the upper bound specifies the cost of the
most expensive possible sequence in the munge space.

To calculate these lower and upper bounds, we can
use the application cost formula presented in the pre-
vious section: ∑

m∈Mα

cost(m)

Considering the possible munge space and the ap-
plication cost formula, the cost bounds for the two-star
application class is expressed by the interval:

cost(α?) = [2× cost(comp), 2× cost(shim)]

= [6, 40]

5.2. Two-star applications

Two-star applications accept data via URL and al-
ways cite that URL in the future. This restriction ap-
plies to any kind of data, i.e., tbl(d) >= 1; the func-
tion tbl maps a dataset d to its star rating as determined
by Tim Berners-Lee’s scale. Like the previous rating,
two-star applications also fulfill the requirement that
data providers, analysts, and tool developers are dis-
joint.

Figure 9 depicts the two-star restriction near the top,
where:

– data d is available on the Web
– data d has an associated dcat:Distribution point-

ing to where d can be accessed
– the distribution URL is referenced by the out-

put dataset, dα; we use the subset relationship
to denote this requirement, which is depicted by
the semi-circle tail end and the embedded circle
within dα

Lower Cost Bound Path

Upper Cost  Bound Path
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Fig. 11. Possible munge patterns associated with each application
subclass. As the application restrictions increase, the space of possi-
ble munge sequences reduces.

Amy’s application α1, described in Section 3, earns
two stars. The input to the application, d1,1, was a
KML satellite dataset that was available on the Web.
Additionally, the resultant map, dα1

, contained the
URL of the input KML file, providing a simple and
natural derivation provenance, [pp7]. We take this op-
portunity to reinforce the definition of an application,
which is defined as a class of activities, not a software
entity. Therefore, to be two-stars, an application activ-
ity must use a web accessible dataset and generate a
result that cites that same dataset, despite the actual IO
of the employed tool. In cases when a tool’s IO does
not conform with the parent application’s desired star
rating, the burden falls on analysts to wrap the tool in-
vocation with munges that fulfill the desired star rat-
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ing. For example, if Amy wanted to perform a two-star
application, and her employed GIS tool did not gener-
ate a map citing the KML dataset, the burden would
fall on Amy to inject the URL into the map, perhaps
using a technique such as steganography.

In contrast, the use of LOV and SPARQL-ES would
likely earn two conditional stars. Conditionality refers
to cases when an application fulfills a particular star
level requirement but fails to fulfill the immediately-
preceding requirement(s). For example, although LOV
and SPARQL-ES accept URLs and thus implicitly en-
courage analysts to use URLs for their applications,
these two tools violate the one-star condition since the
tool developer and data provider are the same entity.

In terms of munge space, the two-star application
class is equivalent to the one-star class.

5.3. Three-star applications

Three-star applications accept RDF data via URL,
i.e., tbl(dα) >= 4. The data can be “pure” RDF or
embedded in a gleanable, mundane dataset. Like the
previous rating, three-star applications must also use
data available on the Web. Figure 9 presents the three-
star restriction at the top, where d is an RDF dataset.
The figure indicates that RDFis a subclass of Web, and
thus inherits a dcat:distribution URL.

Both Amy’s α3 and Bart’s α1 earn three conditional
stars. Both applications used an RDF dataset as in-
put and both generated results that did not include
the URLs to those input RDF datasets, i.e., the appli-
cations did not fulfill the two-star requirement. The
conditional star ratings are depicted as white stars, as
shown in Figure 10. Similarly, applications designed
around linked data browsers [25,26,27] can earn at
least three-stars iff the applicaitons meet the one- and
two- star requirements. These tools accept RDF and
thus encourage analysts to use RDF in their applica-
tions.

Two pain points can be alleviated when the in-
put dataset d is RDF. Provided that d is crafted us-
ing Linked Data best practices [28], Analysts do not
have to decode semantics ([pp1]) since these seman-
tics are explicit and conform to community standards.
Because of this affordance, analysts can more eas-
ily reuse datasets in subsequent applications ([pp1]).
These assumptions stem from the Linked Data com-
munity, which posits that Linked Data is easier for con-
sumers to discover, reuse, and integrate with tools.

The three-star application class defines a smaller
munge space than one- and two-star application classes.

If data d is encoded in RDF, it can only be com-
puted, aligned, and cast. The three-star restriction
thus removes the possibility for flatline and house top
munges, although hill slides are still possible. We de-
pict the three-star munge space in Figure 11.

The cost bounds for the three-star application class
is expressed by the interval:

cost(α???) = [2× cost(comp), cost(cast) + cost(shim)]

= [6, 25]

The cost bound for the three-star application class
is not only tighter than one- and two-star application
classes, but also lower since the upper cost is reduced
from 40 to 25.

5.4. Four-star applications

Four-star applications use a tool’s input seman-
tics (OWL, SPARQL) when performing munges, i.e.,
used(m,σt)∧m ∈M . Like the previous rating, four-
star applications also accept RDF via URL. Figure 9
depicts the four-star application restriction toward the
center-bottom, where a munge m uses a tool t’s input
semantics σt during an application.

Amy and Bart did not employ any tools that pro-
vided input semantics and, therefore, neither of their
ecosystems contains a four-star application. In general,
four-star applications are not in widespread use, but
some work in automated service orchestration relies on
these kinds of applications. For example, the Semantic
Automated Discovery and Integration (SADI) frame-
work [29] requires that service providers publish in-
put and output data requirements in the form of OWL,
which provides service consumers with an unambigu-
ous expression of the service’s I/O requirements. Ana-
lysts can assess the applicability of services by inspect-
ing formal and declarative expressions, rather than in-
specting the source code or example datasets [pp6],
which may not be representative of the class of accept-
able inputs.

In terms of munge space, the four-star application
class is equivalent to the three-star class.

5.5. Five-star applications

Five-star applications output results as linked data,
i.e., d ⊂ dα. Like the previous rating, five-star applica-
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tions also accept RDF via URL and use a tool’s input
semantics during munging. Figure 9 depicts the five-
star application restriction toward the right, where the
RDF data used in an application is a subset of the gen-
erated result Dα.

Amy and Bart did not perform any applications that
generated Linked Data, and, therefore, neither of their
ecosystems contains a five-star application. Similarly,
some applications analyzing the Linked Data cloud
[28,30] do not earn five-stars since the results are mun-
dane and embedded in static imagery or plain text em-
bedded in journal articles. On the other hand, Tim
Berners-Lee’s tabulator [26] can also be used by ana-
lysts to perform five-star applications. Tabulator emits
RDF corresponding to edits that analysts make while
browsing third party data. SADI can also support five-
star applications, since SADI services generate RDF
that is a superset of their input.

When applications generate Linked Data, they elim-
inate a number of analytical pain points. For exam-
ple, subsequent analysts can more easily understand
prior results and more easily incorporate them in their
analyses [pp1,pp2]. Additionally, subsequent analysts
can directly reuse an application result d, rather than
reusing an earlier result and rebuilding the context
[pp3]. Finally, if an application generates both mun-
dane and Linked Data results, it provides subsequent
analysts with alternate representations to be used for
different purposes [pp4]. Analysts can visual inspect
the mundane results, but subsequent analysts can reuse
the semantic alternatives.

The five-star application class defines a smaller
munge space than all previous application classes.
Five-star applications use RDF and generate Linked
Data, or results that can be trivial gleaned to yield
Linked Data; for the sake of simplicity we consider
RDF and gleanable datasets to be equivalent in this
section. We can therefore infer that the best case
munges are exclusive computes and the worst case is a
cast-lift combination or “inverted house top,” as shown
in Figure ??. From the figure, we see that the five-star
application class effectively eliminates the possibility
for anti-patterns described in Section 3.

The cost bounds for the five-star application class is
expressed by the interval:

cost(α?????) = [2× cost(comp), cost(cast) + cost(lift)]

= [6, 11]

The cost bound for five-star applications is not only
tighter than the three- and four-star application classes,
but also lower since the upper cost is reduced from 25
to 11.

5.6. Boosting Amy’s Seamlessness Scores

We will use Amy’s ecosystem, EAmy , from Section
3 as a baseline ecosystem to compare with an alternate,
ideal ecosystem,Eideal, that contains only five-star ap-
plications. We will also compare the two ecosystems
in terms of their seamlessness scores in order to verify
that the ideal ecosystem is more efficient. Additionally,
we will provide intuition as to why the ideal ecosystem
alleviates certain analytical pain points.

Ecosystem EAmy contains three applications that
collectively span nine munges. To facilitate a more
fair comparison, we retrofitted the applications in
EAmy with additional lifts and gleans to produce
Eideal, which is five-star compliant. Therefore, our
ideal ecosystem, Eideal, also contains three applica-
tions that are designed around the same tools and ob-
jectives as EAmy .

Figure 12 shows the provenance for the applications
comprising Eideal. We assume that an RDF version
of the satellite dataset, dα1 , existed prior to Amy’s
analysis. Therefore, from a more global perspective,
Amy is a subsequent analyst that reused the results
of a prior, anonymous five-star application. Amy first
used a script to cast the satellite RDF dataset, d1,1 to
a satellite KML file, d1,2. She then generated two, al-
ternate representations of the satellite map, dα1 , one
semantic and one mundane. In practice, she could
have used the GIS tool to generate the mundane ver-
sion of dα1

and then used a script to lift the KML
dataset to an RDF representation that contains her im-
posed satellite groupings. For the sake of this exer-
cise, we’ll assume that the GIS tool generated a glean-
able PNG image that contained the semantic repre-
sentation. We consider gleanable XML and other em-
bedding mechanisms, such ascontent preserved images
[31], to be equivalent, since both approaches embed
semantic content into mundane datasets.

Amy then used the map, dα1
, as input for her next

application, α2. InEAmy , Amy was not able to directly
reuse the satellite map since it resided as a mundane
PNG image that required expensive image processing
to reuse. This gleanable version of the map in Eideal
, however, contains an embedded RDF dataset con-
taining her imposed satellite groupings, as described
in Section 3. She extracts the satellite groups, d2,1, by
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Fig. 12. Amy’s ideal analysis supported entirely by five-star applications.

performing a glean and then uses the histogram tool to
cast the dataset into an SVG histogram, which she then
lifts to generate the application’s result, dα2

, i.e., an
RDF representation of the SVG histogram. A snippet
of the RDF histogram is shown below:

@p r e f i x v s r : < h t t p : / / p u r l . o rg / twc / vocab / v s r #>
@p r e f i x s i o : < h t t p : / / s e m a n t i c s c i e n c e . o rg / r e s o u r c e / >
: b in1 a v s r : Bin ;

r d f s : l a b e l " U s e f u l S a t e l l i t e s " ;
s i o : c o u n t " 1000 " .

: b in2 a v s r : Bin ;
r d f s : l a b e l " Junk S a t e l l i t e s " ;
s i o : c o u n t " 14000 " .

Although visually similar, a glean-then-cast se-
quence of munges is not considered a house top anti-
pattern and, rather, is more akin to a hill slide, since
gleanable datasets contain semantic data.

In the final application, α3, Amy used the satel-
lite groups, d21 as input. She used this intermediate
data because it contains information about countries,
whereas in ecosystem EAmy , she was choose the use
the group RDF only because it was in the path of least
resistance in terms of munge cost. She first cast the
grouped RDF into the JSON format the stacked bars
tools expects. The tool also provides its input seman-
tics describing the semantic structure of the data it ex-
pects. The SPARQL query below represents the input
semantics of stacked bars, which Amy used as a con-
ceptual munge target to generate her JSON:

s e l e c t ? b i n ? b inCoun t ? subBin ? subBinCount
where {

? b i n a v s r : Bin ;
s i o : c o u n t ? b inCoun t ;
dcterms : h a s P a r t ? subBin .

? subBin a v s r : Bin ;
s i o : c o u n t ? subBinCount . }

Although the SPARQL query does not include infor-
mation about the particular JSON format, its concep-
tual description coupled with the example dataset pro-
vided by tool was enough information for Amy to pro-
duce the appropriate JSON file, d3,1. Like applications
α1 and α2, she generates both mundane and semantic
application results.

Using the same mechanics in Section 4, we calculate
the seamlessness score for Eideal in Table 3. We also
include the seamlessness score for the older ecosystem
Eideal for comparison purposes.

6. Related Work

Early visualization researchers were focused on de-
veloping models to help them understand how data is
transformed into views, rather than predicting costs in-
curred by those transformations [32,33]. Chi devised
a visualization transform model that is useful for de-
scribing how data evolves from its raw state to a view
state as it passes through a four-stage pipeline of op-
erators [34]. Some of these operators, for example
data stage operators, are broadly specified and could
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Table 3
The seamlessness scores for ecosystem EAmy and Eideal.

Analyst App. cost(Mα) pot(Dα) cost× pot

Amy
α1 20 1 20
α2 55 1 55
α3 45 1 45

S(EAmy) = 0.66

Amy′
α1 31 0.5 15.5
α2 33 0.5 16.5
α3 51 0.5 25.5

S(Eideal) = 0.26

encompass munging activities. Chi’s objectives, how-
ever, were centered on understanding and compar-
ing different visualization techniques in terms of their
pipeline structure, not their imposed costs [35].

In parallel, the visual analytics community has con-
tinually developed and revised analytical cost mod-
els for decades [17,16]. These models mainly consider
cognitive costs incurred by performing user interac-
tions [36] and visual pattern recognition. In particular,
Patterson presents a cognitive model of how analysts
interpret and reason with visual stimuli in order to gen-
erate responses, e.g., decisions. He presents six lever-
age points that visual designers should employ in or-
der to reduce the costs imposed on analysts when in-
terpreting visualizations [37].

When analytics researchers do consider lower level
transforms, the result has been models that are spec-
ified at too high a level to easily calculate quan-
tifiable cost predictions. Wijk proposed an economic
model that considers the ratio of value (i.e., knowledge
gained) to the cost incurred to generate a visualization
[38]. Wijk specifically highlighted the cost to initialize
data, which could be equated to the cost of performing
munging. It is not clear, however, which specific fac-
tors influence this cost, leaving analysts with little di-
rection as to how to better quantify and mitigate those
costs.

In contrast, Kandel’s work provides a more detailed
description about the different kinds of data mung-
ing analysts must perform and even outlines a set of
research goals [6] that paved the way for a mung-
ing tool [39]. His hierarchy of munging types and re-
search directions were elicited from actual enterprise
analysts citekandel2012enterprise, the testimonies of
which provide evidence that supports our theory of an-
alytical seamlessness. Kandel begins to discuss the use

of semantic data types to address the challenges of
formatting, extracting, and converting data to fit input
data requirements. He mentions that these data types
should be shared and reused across analyses, simi-
larly to how the Linked Data community advocates the
reuse of popular vocabularies [40]. However, we be-
lieve our seamlessness theory represents the next logi-
cal step of his work by articulating his analysts’ testi-
monies in a form that can emit testable predictions.

Fink also outlined a set of challenges that were
elicited from analysts in cyber-security settings [19].
He found that, like Kandel’s enterprise subjects, ana-
lysts are limited by their capability to cheaply mitigate
disparities among diverse data and tools. Some of the
analysts interviewed by Fink believe that analytic en-
vironments should be as flexible as UNIX shells and
allow arbitrary visualization tools to be piped together
(e.g., application chains).

The models from the VA communities take a more
user-centric perspective to analytics, and, therefore,
typically do not incorporate the aspect of data struc-
turedness; structure in VA is a more subjective and
conceptual notion [15,16,17], whereas structure in LD
refers to data formats. For example, the Linked Data
community has long considered the potential costs
and benefits associated with publishing and consuming
linked structured data, but not necessarily from a an-
alytical setting where data evolves into ordered forms
that are reused by subsequent analysts. Tim Berners-
Lee is a proponent of Linked Data because of the po-
tential benefits afforded to data consumers, whom can
more easily discover, integrate, and reuse distributed
RDF 18. His scheme has been useful in understanding
the affordances provided to data consumers in a client-
server setting, where data is only generated by pub-
lishers. Our work, however, uses his scheme to under-
stand the costs and benefits in a peer-to-peer analytical
setting, where consumers are become future publishers
from the perspective of subsequent analysts.

Similarly, Janowicz and Hitzler [18] describe how
the Semantic Web provides analysts with an opportu-
nity to use third-party data in contexts not envisioned
by the data provider. Analysts are able to quickly de-
velop application-driven schema knowledge that can
be used to align data into arbitrary, suitable forms re-
quired by tools. In the same spirit, Heath and Bizer de-
scribe an application architecture for linked data ap-
plications, citing data access (e.g., HTTP Get) and vo-

18http://5stardata.info

http://5stardata.info
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cabulary mapping (i.e., a kind of munging) as major
components [1]. The Data Integration layer that en-
compasses alignment-type munges is essential for sup-
porting the more abstract and user-driven application
layer.

When “cost” is mentioned in Linked Data literature,
it is referred to in an abstract manner and not usually
expressed in mathematical forms from which it can be
calculated. The pieces of a theory are there, however
they are not consolidated and formally articulated into
a framework that can be used to test and predict the
community’s hypotheses regarding “ease-of-use”. We
believe our work embodies the community’s assump-
tions, claims, and hypothesis as a simple theory that
can be used to assess, predict, and even refute (in cases
when we find contrary evidence) the tenets of Linked
Data that have been advertised for nearly a decade.

7. Future Work

In terms of our seamless score, we can elaborate our
cost models to be more sensitive to real-world applica-
tions and consider the “user experience” factor. We can
borrow from existing VA work that describes a usage
cost, Ce, that denotes the “perception and exploration
cost” of the analyst [38]. We can integrate this term
with our application cost equation to express a more
complete cost function:

cost(α) =
∑

m∈Mα

cost(m) + Ce = cost(α)

We can also elaborate on the distinction between
mundane (1-3) and semantic (4-5) munges. Currently,
our model stereotypes four- and five-star data into the
same class, however, we observe significant cost dif-
ferences in creating quality five-star data [28,2] Ana-
lysts must have experience in good URI design, popu-
lar vocabularies19. Additionally, analysts need to have
some grasp of RDF patterns, such as PROV qualified
associations and Semantic Science Integrated Ontol-
ogy (SIO)20, so they can understand how to more ef-
fectively anchor their RDF to existing linked data in
more discoverable and recognizable ways.

In terms of development, we need to explore practi-
cal approaches for developing software that helps an-

19Linked Open Vocabularies (LOV) maintains a listing of crowd
sourced vocabularies http://lov.okfn.org/dataset/
lov/

20http://semanticscience.org/

alysts perform five-star applications. Currently, most
tools do not accept and generate RDF and, thus, it is
up to analysts to wrap the tool in munges that conform
to the five-star application munge space. The software
engineering community is missing a suitable abstrac-
tion and set of requirements that can guide visualiza-
tion developers to build tools that facilitate five-star us-
age.

Similarly, we can explore different representations
for expressing a tool’s inputs semantics. In addition
to OWL, input semantics may be represented using
SPARQL and even Java interfaces, provided the ana-
lyst’s environment is supported by a toolbox of Java
APIs. We are currently developing an API that allows
visualization widgets to self-describe their input se-
mantics using either representation. In fact, if a de-
veloper decides to document a tool’s input semantics
using SPARQL, the API will use that same SPARQL
query to ingest data. This keep the semantics of the
documentation tight with respect to implementation of
the tool.

Our hopes is to invert the current asymmetry;
instead of analysts spending the majority of their
time preparing views, we would rather they spend
their time observing and vetting an abundance of
automatically-generated visualization options – deter-
mined by matching data with the input semantics of a
tool. We want to put the analyst into a “visualization
zombie apocalypse” and change the paradigm to fo-
cus on eliminating visualizations that are not desirable
from the abundance of what can be instantly available.

8. Conclusion

We forged a Theory of Seamless Analytics that pre-
dicts the cost of non-trivial analyses that span multi-
ple applications. The theory is a conglomerate of theo-
ries from the Visualization Analytics and Linked Data
communities and explains analytical costs in terms of
data evolution (i.e, Visualization Analytics theory) and
data structuredness (i.e., Linked Data theory). As data
evolves into ordered forms that facilitate analytic rea-
soning, it jumps within a dichotomous space of mun-
dane and semantic formats. The theory suggests that
when data occupies the mundane space, analyses will
incur high costs.

Our theory was described in three parts: a Appli-
cation Ontology (AO) that describes analytic applica-
tions regardless of the type of data, tool, or objective
involved; a scoring metric to assess the cost of analyses

http://lov.okfn.org/dataset/lov/
http://lov.okfn.org/dataset/lov/
http://semanticscience.org/
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described in AO; and a set of cost reduction strategies
that are expressed in the form of restrictions on AO.
We demonstrate the utility of the theory by compar-
ing the actual cost and predicted cost of two analyses:
one real-world example based on the current state of
practice and an alternative, hypothetical analysis that
employs the cost reduction strategies.
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