
Undefined 1 (2009) 1–5 1
IOS Press

x-Avalanche: Optimisation Techniques for
Large Scale Federated SPARQL Query
Processing
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Cosmin Başca a,∗ and Abraham Bernstein a

a Department of Informatics, University of Zürich, Switzerland
E-mail: {basca,bernstein}@ifi.uzh.ch

Abstract. Attributes like ease of linking and integration, flexibility and standardisation are making the RDF data model more
popular. As a consequence, more RDF data gets published across different domains. This distributed publication of RDF data
ethos embodies the spirit of the Web of Data. While centralised RDF storage has gotten more scalable in order to keep up with
the increase of published data, the problem of querying large federations of RDF datasets has not received as much attention.

In this paper we extend our existing AVALANCHE federation engine to address some of the most pertinent issues with federated
RDF query processing. First, we add support for disjunctions by employing a distributed union operator capable of scaling
to hundreds or thousands of endpoints. Second, we enhance the distributed state management with remote caches aimed to
reduce the high latency typical of SPARQL endpoints. Finally, we introduce a novel and parallel-friendly optimisation paradigm
designed not only to offer an optimal tradeoff between total query execution time and fast first results, but to also consider an
extended planning space unexplored so far.

Our results show that combined, these capabilities improve our system’s performance by up to 70 times over the best per-
forming SPARQL federation engine and find an optimal performance tradeoff between delivering first results and total query
execution time under external constraints.

Keywords: Federated SPARQL processing, Web of Data, Query Optimisation, Dynamic Programming, Planning Space
Reduction, k-Segmentation

1. Introduction

In recent years, the RDF data model has received
more attention; primarily due to factors that revolve
around the data models’ flexibility and standardisa-
tion. Linking RDF datasets as well as extending them
wether with new data, annotations, or new versions is
easy. Additionally, the semi-structured format is a nat-
ural fit for storing and representing graph data. As a
consequence , the amount of published RDF contin-

*Corresponding author. E-mail: basca@ifi.uzh.ch

ues to grow steadily. To cope with the growth of in-
dividual datasets—for example computational biology
RDF datasets can amass to billions of triples such as
uniprot.org, which has 6.95 billion triples—centralised
indexing and storage solutions are becoming more
scalable. At the same time the number of RDF datasets
also continues to grow, as partly shown by the evolu-
tion of the Linked Open Data (LoD) cloud1. However,
unlike centralised storage systems, federated RDF en-
gines have not seen much attention while often pro-

1http://lod-cloud.net/

0000-0000/09/$00.00 © 2009 – IOS Press and the authors. All rights reserved

http://lod-cloud.net/

2 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

viding limited support for the SPARQL 1.1 federation
extensions.

1.1. Motivation

Over the years, substantial research has been car-
ried out to address performance issues, location trans-
parency, and to improve the SPARQL 1.1 federation
specification [27,11,22,1,6,5,23]. These systems have
primarily focused on addressing performance issues
that are endemic to the LoD ecosystem. However, not
all problematic aspects have been addressed to the
same extent. One such issue stems from the LoD’s
schema richness and broad semantic diversity. In this
setup, typical real-world and benchmark queries like
the ones from FedBench [26] are semantically selec-
tive — i.e., the vocabularies bound to the query restrict
the execution of the query to only a few endpoints,
considerably reducing the size of the problem. Having
to deal with only a handful of endpoints at a time sim-
plifies the position of typical SPARQL federation en-
gines. The limitation to of investigations to semanti-
cally selective situations can lead to a lack of attention
and optimisations that target more difficult scenarios.

There are cases in which the implicit assumption of
semantic selectivity does not hold. First, it is foresee-
able that as the size of the published RDF data contin-
ues to grow so is the number of endpoints that are se-
mantically homogenous, i.e., store data with the same
schema. Second, given the "messiness" of the LoD,
which stems from the use of similar yet overlapping
vocabularies, it is not uncommon to rewrite SPARQL
queries in order to capture more of the potentially rel-
evant data. For these scenarios, the large size of the
problem requires:

a) novel and scalable system designs that are not ad-
dressed by current methods and standards,

b) novel query optimisation strategies, and
c) updated and comprehensive benchmarks designed

to capture the issues of large RDF federations.

Equally important, flexibility has to be taken into
account. A flexibly designed RDF federation engine
must be compatible to a large degree with the existing
SPARQL 1.1 standard and make few or no assump-
tions about the underlying RDF storage technology.

1.2. Contributions

In this paper we present novel methods, architec-
tural enhancements, and optimisations for federated

RDF engines, which, when combined, offer dramatic
performance improvements over existing approaches
while at the same time maintaining a flexible design.

To ascertain the validity of our hypotheses we
fully implemented the methods by extending the
AVALANCHE SPARQL federation engine [6]. We refer
to the extension as X-AVALANCHE. Specifically, the
technical contributions of this paper can be grouped
into Query Execution & Operator Design, Optimiza-
tion, and Implementation & Evaluation. They are as
follows:

Optimisation

1. We propose a novel approach to optimally re-
duce and explore an extended planning space for
large federations of SPARQL endpoints (that has
a parametric and non-parametric variant), where
data is partitioned. We also show how to opti-
mally find the largest partial result-set that can be
retrieved in the shortest possible time under user
/ domain defined constraints and given the cost
model.

2. We identify a new class of easily parallelizable
plans we call fragmented bushy plans – the top
level logical node is a disjunction of standard plan
subtrees.

Query Execution & Operator Design

3. We introduce a novel parallel union operator scal-
able to hundreds or thousands of endpoints.

4. We present an extended distributed state man-
agement protocol with support for disjunctions.
Each operator is designed to execute directly or
by proxy, i.e., delegate the operator’s execution
to a remote endpoint. All query executiuon X-
AVALANCHE operators rely only on the SPARQL
1.1 protocol.

5. We show that a distributed caching strategy tai-
lored for federated SPARQL queries is able to
mitigate to a significant extent the high latency
typical of SPARQL endpoints.

Implementation & Evaluation

6. We propose a simple synthetic benchmark based
on LUBM [12] and the design of the Water-
loo SPARQL Diversity Test Suite or WatDiv [3]
with support for different data distributions. We
provide an open source implementation of that

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 3

benchmark in the rdftools2 project, also contain-
ing a description of the queries3.

7. We present the implementation of the X-
AVALANCHE system and performance measure-
ments against FedX a state of the art top perform-
ing federated SPARQL engine [23], with support
for location transparency.

The remainder of this paper is structured as fol-
lows. Section 2 describes state of the art federated
SPARQL query approaches and optimality guarantee
optimisation methods. A scalable union operator is in-
troduced in Section 4, while the design decisions for
X-AVALANCHE’s extended query execution protocol
are discussed in Section 5. A detailed evaluation of X-
AVALANCHE follows in Section 6. We discuss limita-
tions and future work directions in Section 7 and con-
clude in Section 8.

2. Background

In the following section we describe related and
similar works to our system X-AVALANCHE. They can
be grouped into: federated SPARQL processing and
query optimisation. We also briefly describe the origi-
nal AVALANCHE federation engine.

2.1. Related Work

2.1.1. Federated SPARQL Processing
The continuous growth of the Web of Data (WoD)

has given rise to new opportunities and challenges in
querying this global repository of distributed but inter-
linked datasets. The Linked Open Data (LoD)4 alone
amassed over 60 billion assertions spread over more
than 1000 datasets spanning a broad spectrum of do-
mains. Typically, data on the LoD is shared either
by following W3C’s Linked Data5 guidelines, indexed
and exposed via a SPARQL endpoint, or simply avail-
able as compressed data dumps. While querying the
WoD has seen much attention, in the following we will
focus only on federations of SPARQL endpoints, such
as those querying the indexed LoD, but not limited to.

One of the earliest approaches to offer location
transparency materialised in DARQ [22]. Since the

2https://github.com/cosminbasca/rdftools
3https://github.com/cosminbasca/rdftools/

blob/master/doc/DESCRIPTION.md
4http://stats.lod2.eu/
5http://www.w3.org/TR/ldp-bp/

SPARQL 1.1 federation extensions were standardised
much later, the authors relied on their own RDF-
based representation of service descriptions. These
provided a declarative way to describe the indexed data
alongside useful statistics, which were valuable dur-
ing query optimisation. A second wave of research
has given birth to several more SPARQL federation
engines. In FedX [27], another virtual integrator of
SPARQL endpoints, the authors develop new join ex-
ecution strategies designed to minimise the number of
requests sent to participating endpoints. Unlike FedX
which makes use of a rule-based or heuristic query
optimiser, SPLENDID [11] features a Dynamic Pro-
gramming (DP) cost based optimiser able to guarantee
plan optimality – within the confines of the cost model.
The authors overcome one of the major impediments
to using traditional database techniques for federated
SPARQL processing by extracting advanced statistics
from voID6 endpoint descriptors. When voID statis-
tics are not available, SPLENDID reverts to using ASK
queries when selecting source endpoints.

A series of factors endemic to the WoD such as
i) uncontrollable network conditions, i.e., no guaran-
tees can be made about latency, bandwidth or availabil-
ity, ii) inaccurate statistics, i.e., continuous data growth
in both number of datasets and size, as well as iii) dy-
namic data and workload, have prompted the adoption
to various degrees of adaptive query processing meth-
ods. For example, ADERIS [17] a mediator based fed-
eration, utilises adaptive join reordering given a pre-
defined cost model. ANAPSID [1] is adaptive dur-
ing query execution as well as during source selec-
tion. Exhibiting an intra-operator flavour of adaptivity
the system features a non-blocking operator design. In
contrast, AVALANCHE [6,5] features an inter-operator
adaptive query execution design. Statistics about cardi-
nalities and data distribution are obtained before query
execution and used during optimisation. The system
uses a fragmented execution model were top-k partial
plans are executed concurrently, until user defined ter-
mination conditions are met or the plan fragment space
is exhausted.

Given the sheer size of the LoD, recent research into
federated SPARQL querying has focused more on the
parallelism aspect of query processing. For instance,
LHD [30] like previous systems makes use of a variant
of the popular selectivity based cost model, coupled
with a parallel execution system that exploits stream-

6http://www.w3.org/TR/void/

https://github.com/cosminbasca/rdftools
https://github.com/cosminbasca/rdftools/blob/master/doc/DESCRIPTION.md
https://github.com/cosminbasca/rdftools/blob/master/doc/DESCRIPTION.md
http://stats.lod2.eu/
http://www.w3.org/TR/ldp-bp/
http://www.w3.org/TR/void/

4 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

ing in order to minimise query execution time. An ex-
tension of FedX, FedSearch [19] a hybrid federation
search engine, is designed to execute combined struc-
tured SPARQL queries with full-text search. The sys-
tem employs on-the-fly adaptation of the query plan
and is optimised to execute top-k hybrid search queries
over multiple data sources. Finally, in [24] the authors
focus on the problem of duplicate data on the WoD.
The proposed method, DAW which is used to extend
the DARQ, SPLENDID and FedX federation engines,
shows great promise in reducing the number of queries
sent to endpoints.

2.1.2. Query Optimisation
The ideal query optimiser would feature the low-

est optimisation time (a small search space) and op-
timal plans. In the centralised case, the size of the
search space is primarily governed by the number
of joins in the query. Of secondary concern, the
shape of the query can be used to further reduce the
search space, i.e., leverage the fact that the query con-
tains star-patterns.7 When resolving complex federated
SPARQL queries, query optimisers typically switch to
a rule-based mode of operation in order to cope with
the large planning space and answer the query in rea-
sonable time. This is undesirable since 1) the opti-
miser is forced to drop any optimality guarantees and
2) using heuristics worsens the problem of accurately
estimating the cost of complex queries [15].

As analysed in previous works [20], the time com-
plexity of a DP optimiser in a centralised DBMS is
O(3n), where n is the number triple patterns. Sim-
ilarly, the space complexity is O(2n). One way to
reduce the optimisation time is to adapt the general
DP approach as described in [16] by applying DP
several times iteratively, while optimising the query.
The method is known as Iterative Dynamic Program-
ming (IDP) and features a reasonable polynomial time
complexity, but does not guarantee overall optimal
plans when more than one iteration of DP is per-
formed. It does, however, find the optimal plan under
the imposed resource constrains. The number of iter-
ations can be controlled by the database administra-
tor or adjusted automatically considering resource al-
location (e.g., memory or time). In a distributed con-
text, when data is replicated at different sites, the size
of the search space explodes in the worst case. In this
case the time complexity of a classic DP optimiser is
O(s3 ∗ 3n), while its space complexity falls into the

7star-patterns are common when retrieving resource attributes

O(s∗2n+s3) class, where s represents the number of
sites that hold data.

For partitioned setups, however, traditional DP op-
timisers consider partitions usually at the leaf nodes
as physical unions between sites, conveying the ad-
vantage of a reduced planning space over the repli-
cated setup. In doing so, however, an extended plan-
ning space that can contain better join and union or-
derings is left unexplored, as this would again lead to
an explosion of the search space. A first attempt to par-
tially explore this extended planning space is presented
in [13], where the authors propose a method suitable
for both centralised and parallel relational DBMS’.
The central innovation of the algorithm is the introduc-
tion of a clustering phase aimed at discarding unnec-
essary child table (partitions) joins during planning,
when information about which partitions can join is
present. While this method is applicable for range, list
or hash partitioning schemes typically encountered in
such systems, it is not suitable for the global and un-
controllable nature of the Web of Data.

2.2. Avalanche

Here, we give a brief overview of our pre-
vious AVALANCHE federated SPARQL engine.
AVALANCHE’s architecture is organised to accom-
modate a three phase execution model. First, relevant
endpoints are identified. Second, query specific car-
dinalities are retrieved and finally the query planning
and execution phases follow. While finding out the
cardinality of a basic graph pattern (BGP) can be
expensive operation for an RDF store, aggressive
indexing techniques like the ones implemented by
RDF-3X [18] and Hexastore [31] or high performance
implementations such as Virtuoso8 allow for fast
retrieval of triple pattern cardinalities. Furthermore,
voID9 [2] descriptions of the indexed data can accom-
plish the same. If no catastrophic SPARQL endpoint
failures occur, the system is eventually complete.

Tailored to address the semantic heterogeneity and
lack of guarantees that are characteristic to the WoD,
AVALANCHE employs a fragmented execution model.
Here, the query is decomposed into the union of all
query fragments. A query fragment, or fragment in
short, is defined as the conjunction of all query triple
patterns with the restriction that a triple pattern can

8https://github.com/openlink/
virtuoso-opensource

9http://www.w3.org/TR/void/

https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource
http://www.w3.org/TR/void/

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 5

be resolved by one host, i.e., no disjunctions allowed
inside a fragment. AVALANCHE enumerates all frag-
ments using a priority queue based repeated depth first
search traversal algorithm. This allows AVALANCHE

to 1) generate fragments in a given order, i.e., favour
faster and productive fragments and 2) execute all or
K fragments concurrently at any given moment, i.e.,
dynamically adapting to network conditions and end-
point availability.

3. Optimisation

Currently, the LoD exhibits high semantic selectiv-
ity and limited dataset partitioning. This is primarily
due to its schema richness and broad semantic diver-
sity, which leads to a drastic reduction of the number of
participating SPARQL endpoints when querying. De-
signed to target the current state of the LoD, the orig-
inal AVALANCHE federation engine exhibits a num-
ber of shortcomings. First, while it features a multi-
fragment concurrent execution model, it does not pro-
vide support for disjunctions. Second, AVALANCHE

does not statically optimise each plan fragment and in-
stead it employs a non-optimal greedy execution strat-
egy (GRDY), where the order of each join is decided
on the fly. Finally, AVALANCHE makes use of a selec-
tivity based cost model to decide on the order in which
fragments are generated, and does not attempt to re-
duce the size of the planning space.

However, as the size of the LoD continues to grow,
we expect to see a decrease in semantic selectiv-
ity and an increase of dataset partitioning. Conse-
quently, new solutions are warranted and therefore,
this section introduces new optimisation approaches
that are more suitable for these scenarios, optimisa-
tions which are built into X-AVALANCHE – an exten-
sion of AVALANCHE.

3.1. Cost Model and Optimisation Strategies

X-AVALANCHE is designed to address large RDF
federations where data is horizontally partitioned be-
tween many endpoints and where semantic selectiv-
ity has a negligible or low impact. In other words it
is designed to deal with large and semantically ho-
mogenous distributed datasets. In order to proceed fur-
ther, we relax the notion of a plan fragment as used by
AVALANCHE and redefine it as follows:

Definition 3.1 A plan fragment is a query plan for
which only a subset of all participating sites s are con-
sidered.

In other words, a (conjunctive) plan fragment can
also contain disjunctions or unions. Defined as such
(Definition 3.1), a query can have between 1 (∀ triple
pattern bound to all sites) and sn fragments (∀ triple
pattern bound to one site).

A first enhancement over AVALANCHE is that each
fragment can now be statically optimised in contrast
to the greedy execution strategy. For this purpose we
employ the classic dynamic programming (DP) [7]
method. Since DP features a worst case time complex-
ity of O(3n) [20] for n triple patterns, we consider the
following simplifying assumptions in order to reduce
the plan space:

– Like in System R [4] we explore only left-deep
plan trees and avoid cross-products whenever
possible.

– The order of the join operands is ignored dur-
ing the planning phase and determined at runtime,
i.e., always ship the smallest bindings set.

Furthermore, since network communication intro-
duces the highest latency during query execution, we
rely on the simplifying assumption that the number of
partial results has the highest impact on performance.
Therefore, we base the cost model used to optimise
each plan fragment on the estimation of the query’s se-
lectivity [29]. Equations 1 and 2 show how the cardi-
nality of joining and unioning two triple patterns tp1
and tp2 is estimated, where Θ represents the total num-
ber of triples.

|tp1 on tp2| = |tp1| × |tp2| ×
|tp1|+ |tp2|

2×Θ
, (1)

|tp1 ∪ tp2| = max (|tp1|, |tp2|) (2)

While naïve, this model of partial result size estimation
has the advantage that no other statistics are needed
aside from triple pattern cardinalities or estimates of.
However, this comes at a cost: less accurate estima-
tions can, in practice, render some plans much more
expensive than estimated. As results from Section 6
show, this model, while simple, was able to dramati-
cally improve performance over a top performing state
of the art approach.

6 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

3.2. Extended Space Reduction

To show how the optimal partition-aware union
grouping method works, we reuse the notion of plan
matrix from [6]. The plan matrix or PM is a compact
representation of the cardinalities of all query triple
patterns on all sites as follows:

PM =

card0,0 · · · card0,n...
. . .

...
cards,0 · · · cards,n

 (3)

where s and n represent the number of sites and triple
patterns respectively, while cardi,j is the cardinality10

of triple pattern i on site j. For simplicity, the remain-
der of this paper only considers plans that are con-
structed with conjunctions (on) and disjunctions (∪).
While not a trivial matter and outside the scope of this
work, support for OPTIONAL and FILTER graph pat-
terns could be provided by relying for example on their
mapping to relational algebra operators [10].

TP2 TP3TP1

S5

S4

S3

S2

S1

1500 290

290

0

0

110

230

0

90

70

20

220

20

10

REDUCE

TP2 TP3TP1

U5

U4

U3

U2

U1

1500 0

0

0

0

0

0

0

190

290

0

450

20

0

U5 = {S1 U S4 U S5}

U4 = {S5}

U3 = {S1 U S2 U S3 U S4}

U2 = {S2 U S3}

U1 = {S1}

Fig. 1. Example PM and a possible reduced PM∗. Si represent
the sites holding data, while TPj represent triple-patterns.

Note that a plan matrix PM of size (s, n) may lead
to up to sn plan fragments. Consider for a moment
the unlikely case, where each triple pattern tpi can be
matched on every site sj (i.e., PM contains no ze-
ros). A valid plan fragment can now be constructed
by choosing one of the sites for each triple pattern.
As there are s sites to choose from, there are s valid
choices for each of the n triple patterns resulting in sn

possible fragments. Obviously, this plan space is too
large in the worst case. Heuristics-based algorithms
circumvent the problem of a large PM by employing
specific rules to prune the majority of possible plans.

In this paper, in contrast, we propose to employ
partition-aware union grouping to reduce PM, result-
ing in fewer plans to consider. The spirit of the solu-
tion is to use union operations to merge the data from
different sites thereby reducing the plan space. Specif-

10exact cardinalities are not required, estimations suffice.

ically, the method maps PM 7→ PM∗, where PM∗

is the reduced plan matrix of the extended planning
space. This gives rise to the following research ques-
tion: How can PM be reduced, and how can it be
done optimally?

As an example (used in the remainder of this sec-
tion), consider the simple PM illustrated in Figure
1 alongside a possible reduction PM∗. The reduced
plan matrix PM∗ will always have the same num-
ber of columns, but fewer or equal number of rows.
In essence, this transform introduces 0s in some of the
reduced matrix’s cells to limit the number of possible
fragments that can be constructed. In other words the
general idea is to reduce the size of each column indi-
vidually, i.e., by grouping together sites given a criteria
for group fitness.

In the remainder of this section, we introduce the
novel concept of fragmented bushy-plans and pro-
ceed with detailing two approaches to reducing the
plan matrix PM, inspired from data-analysis, a non-
parametric and a parametric method.

3.2.1. Fragmented Bushy Plans
Traditionally, a logical query plan is represented as

a tree where the non-leaf nodes are algebraic operators
while the leaf nodes represent data. As stated in the
introduction, the time complexity of a DP optimiser
which does not consider disjunctions during the logical
planning phase is O(3n). In the worst case, between
any two joining triple patterns that are fully partitioned
on all sites, there would be n ∗ s partition joins. There
are an exponential number of possible ways in which
a union leaf node in a logical plan can be split into a
combination of sub-unions and there are n such union
nodes. The higher order exponential space complexity
of the extended planning space prevents us from ex-
ploring all possible plans. Instead, to benefit from par-
allelism, we consider to explore only a special class of
bushy plans, which we call fragmented bushy plans.

U

(U1,TP1) (U3,TP2)

(U5,TP3)⋈

⋈F1

(U4,TP2) (U2,TP1)

(U5,TP3)⋈

⋈F2

…
F3 F4

…

Fig. 2. A possible fragmented bushy plan for the example PM∗
from Figure 1. The plan consists of 4 fragments, each equivalent to
a left-deep logical plan tree.

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 7

Given the construct of a plan fragment as outlined
in Definition 3.1, a fragmented bushy plan is defined
as follows:

Definition 3.2 A fragmented bushy plan is a logical
plan whose root node is a disjunction between multiple
plan fragments.

As an example, Figure 2 is a partial illustration of a
possible fragmented bushy plan extracted from the re-
duced plan matrix PM∗ from Figure 1. The primary
benefits of fragmented bushy plans are twofold:

– the size of the reduced extended planning space
(explained by PM∗) can be directly controlled
by varying the maximum number of desired
unique fragments or φ, and

– they are easily parallelisable, since each fragment
is independent and can be executed concurrently.

Consequently, in order to explore the new extended
planning space X-AVALANCHE’s optimiser pipeline
consists of two general phases:

1. reduce the plan matrix PM and
2. optimise each fragment in parallel.

As a result, the optimiser’s overall time complexity is
O(k∗n2 ∗s2 +p∗3n), where p = φ

#CPU is a constant
factor regarding parallelism.

3.2.2. Non-Parametric Optimal Reduction
The primary appeal of these methods is that they do

not require user-intervention to decide how to best re-
duce PM. In the remainder of this section, we first de-
tail how a column can be reduced and then show how
this method can be used to reduce PM.

A class of methods which can be used to achieve the
reduction of each column in PM are change point or
step detection methods [21]. Widely used in statistical
analysis, these methods try to identify when the proba-
bility distribution of a series of events changes, result-
ing in a change-point. Given this information, the orig-
inal set of events can be approximated by a piece-wise
constant model, a process we refer to as segmentation.
One such method is bayesian blocks, detailed in [25],
which achieves an optimal reduction of its input (in our
case a PM column) by employing dynamic program-
ming or DP in short. Applied to each column in PM,
it features a time complexity ofO(n∗s2) with anO(s)
space complexity, where s is the number of sites and n
the number of columns (or triple patterns in query).

While the primary advantage of such methods is
that they are parameter agnostic, they do however re-

quire ex-ante knowledge about the prior distribution
of the data to be segmented. In our case, they require
knowledge about the prior probability distribution of
triples to participating sites. This can be problematic
as data distributions may change, requiring re-learning
the prior in order to produce higher quality plans.11

Algorithm 1 Non-Parametric Plan Matrix Reduction
Precondition: PM: the cardinalities matrix of size s × n,

p0: the prior probability distribution

1: function AUTOREDUCE(PM)
2: cols← ∅ . the columns of PM∗
3: s, n← SHAPE(PM) . shape: (rows, columns)

4: for δ ∈ PM do . iterate over all columns ∈ PM
. optimum segmentation of column given p0

5: S← BAYESIANBLOCKS(δ, p0)
6: cols← cols ∪ {

∑
δ[σ] | ∀σ ∈ S}

. outer join of all reduced columns
7: return ./ cols

The bayesian-blocks algorithm can be used to re-
duce PM as seen in Algorithm 1. Iterating over all
columns in PM (line 4), the method retrieves the
optimal segments S for the current column δ (line
5). It than constructs the reduced or segmented col-
umn by replacing all cardinalities within each segment
σ ∈ S with their sum (line 6). Other aggregate func-
tions could be used to get better estimates of the size of
the resulting union over the given segment. We chose
Σ since it represents the upper bound of the estimated
cardinality of the union. Finally, the newly reduced
columns are concatenated in matrix PM∗, by employ-
ing a full outer join (line 7).

3.2.3. Parametric Optimal Reduction
Methods in this class expect the user to pass domain

knowledge encoded as parameters. While tedious, this
form of loose coupling exhibits the major advantage of
ease of adaptation when the domain changes or when
encoding this knowledge is difficult or expensive. In
our case, the domain knowledge is represented by the
distribution of cardinalities (or selectivities) of query
triple patterns to sites, which is expected to change as
data diversifies and its volume increases over time.

To this end, we adapt the traditional 1D k-
segmentation method. Unlike the non-parametric
bayesian-blocks method which was applied locally to
reduce each column in PM, the global parameter φ

11we used the same prior p0 as in [25].

8 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

TP2 TP3TP1

S5

S4

S3

S2

S1

1500 290

290

0

0

110

230

0

90

70

20

220

20

10

S3S2S1

0220 230 020

S5S3S1

29090 7020 10

S4S3S1
0 0 110290 150A

B

141310850 1 62 7 9

150110220 7020 29020 90230 29010Cardinalities

Cells
(Sorted intervals)

C
Breaks

290150220 9010 11020 70230 29020

Fig. 3. Preparing PM for reduction. D (cells) is the array of
non-zero cardinalities from PM in column major order form,
while B (breaks) encodes the position of the columns in PM.

(the number of segments) requires that the method be
applied to the entire PM and not individually to its
columns. To achieve this, PM is represented as an ar-
ray in column major order, i.e., as a 1D array com-
prised of the concatenation of all columns in the or-
der in which they appear in PM. Figure 3, illustrates
the process of representing the plan matrix as a 1D ar-
ray D in column major order form. In order to avoid
the creation of segments that would span across mul-
tiple columns and therefore invalidating the semantics
of the original SPARQL query, we introduce a helper
structure referred to as breaks (B), which is a list hold-
ing the starting index of each PM column in D. The
structure is used by the DP algorithm to set the cost
on any segment spanning over multiple columns to∞
(line 4 in Algorithm 2).

A DP algorithm, ksegb finds the optimal set of seg-
ments of PM – in column major order form, D –
with the restriction that any segmentations with seg-
ments containing elements from B are ignored. The al-
gorithm’s time complexity isO(k∗n2∗s2), where k is
the number of segments and a parameter of ksegb. The
method is exhaustive as it explores all possible seg-
mentations ofD. To find the optimal segmentation, the
fitness function (line 1) computes the max-min delta of
a segment. We base this formulation on the simplifying
assumptions that:

1. all unions are executed in parallel, and
2. the time to execute a union is primarily dependent

on the selectivity of the given triple pattern.

Therefore, the fitness function of a segment is in-
tended as a measure of wasted time. In cardinality-
homogenous segments all sites finish around the same
time, while heterogeneous segments incur waiting
times on sites with lower cardinalities.

The transition from the original parameter φ repre-
senting the number of plan fragments in PM to the
number of segments required by ksegb is performed
using the formula from Equation 4.

Algorithm 2 k-Segmentation with Breaks
Precondition: D: numeric array containing data to be seg-

mented, k: desired number of segments, B: integer array
with index bounds of non-breakable segments from D

1: function COST(D, j, i, B)
2: for b ∈ B do
3: if j < b ≤ i then
4: return∞
5: return MAX(D[j : i]) - MIN(D[j : i])

6: function KSEGB(k, D, B)
7: N ← LENGTH(D)

. matrix of size (k, N), elements initialised to∞ cost
8: DP ← MATRIX(k,N ,∞)

. matrix of size (k, N); for solution reconstruction
9: PT ← MATRIX(k,N ,0)

10: for 0 ≤ j < k do . initialisation
11: DP [j, j]← 0
12: for 0 ≤ i < N do
13: DP [0, i]← COST(D,0,i,B)
14: for 1 ≤ j < k do
15: for j + 1 ≤ i < N do
16: C ← {DP [j− 1, l] + COST(D, l+1, i,B) |
∀l ∈ [0, i)}

17: best← ARGMIN(C)
18: DP [j, i]← C[best]
19: PT [j, i]← best

. final solution reconstruction
20: return SOLUTION(PT , k, N)

k = n ∗ n
√
φ (4)

The parametric reduction method detailed in Algo-
rithm 3 starts by preparing the input for the ksegb
method. It first represents PM in column major or-
der form (line 5) after computing the number of seg-
ments k. It then records the start positions of the orig-
inal columns in B (line 6). Next, it obtains the opti-
mum segmentation of the transformed PM (line 7).
Afterwards, it proceeds to constructing the reduced
columns, by replacing all cardinalities within each seg-
ment σ ∈ S[i : j] with their sum (line 10), following
the same rationale as in Algorithm 1. Finally, the newly
reduced columns are concatenated in matrix PM∗, by
employing a full outer join (line 11).

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 9

Algorithm 3 Parametric Plan Matrix Reduction
Precondition: PM: the cardinalities matrix of size s × n,

φ: the maximum number of plan fragments to reduce to

1: function REDUCE(PM, φ)
2: cols← ∅ . the columns of PM∗
3: s, n← SHAPE(PM) . shape: (rows, columns)
4: k← n× n

√
MIN(φ, sn)

5: D ← TOCOLUMNMAJORORDERFORM(PM)
6: B ← COLUMNPOSITIONS(PM, D)
7: S← KSEGB(k, D, B) . optimum k-segmentation
8: for (i, j) ∈ B do . (begin, end) of each column
9: δ←D[i : j]

10: cols← cols ∪ {
∑
δ[σ] | ∀σ ∈ S[i : j]}

. outer join of all reduced columns
11: return ./ cols

3.3. Parametric vs. Non-Parametric Fragmentation

Naturally, an automatic or non-parametric reduction
of PM is preferred, given that the optimiser or admin-
istrator does not have to be concerned with specify-
ing extra parameters. Such a choice, however, leads to
the following question: how does the non-parametric
bayesian blocks method perform in general? or more
specifically, how does bayesian blocks perform in au-
tomatically choosing the number of segments φ? To
find out the answer to this question, we conducted an
exploratory analysis of the bayesian blocks method
over synthetically generated data. Hence, we randomly
generated syntheticPM data which simulates the case
of a medium-sized 10 triple pattern SPARQL query,
with a random distribution of triples to endpoints.

20 40 60 80 100

s number of sites

100

101

102

103

104

105

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

se
g
m

e
n
ts

 φ
 (

1
0

0
 r

u
n
s)

φ (number of fragments)

Fig. 4. Number of fragments φ automatically selected by bayesian
blocks function of number of sites s, for a 10 triple pattern query.

Figure 4 shows the relationship between the number
of fragments φ and the number of sites s, when s in-

creases from a centralised setup to a large federation
of 100 SPARQL endpoints. Each datapoint represents
the average of 100 runs over randomly generated car-
dinalities while incrementing the number of sites. A
clear observation is that when the number of sites in-
creases over a particular threshold, ≈ 50 for this anal-
ysis, the number of fragments automatically chosen by
the bayesian blocks method starts to increase exponen-
tially. This is undesirable for two reasons:

1. the optimiser cannot choose φ in order to control
resource wastefulness, and

2. φ can, on average, grow very large which dimin-
ishes the tractability of the query execution, e.g.,
more than 10000 fragments for ≈ 90 sites.

In contrast, parametric methods hand control over to
the optimiser or the administrator, allowing for the
choice of a value that also encompasses resource avail-
ability.

20 40 60 80 100 120

φ number of fragments

500

1000

1500

2000

2500

3000

3500

A
v
e
ra

g
e
 p

la
n
 c

o
st

 (
1

0
0

 r
u
n
s)

(l

o
g
 o

f
e
st

im
a
te

d
 r

e
su

lt
 c

a
rd

in
a
lit

y
)

Fastest Fragment Cost

Slowest Fragment Cost

Fig. 5. Quality of plans function of φ (maximum number of frag-
ments) for a 10 triple pattern SPARQL query. The cost is equivalent
to that of the traditional DP planner when φ = 1.

Another interesting aspect of the PM reduction
process has to do with with the complex relationship
between: (a) the quality (or cost) of the fastest and
slowest fragments and (b) the number of chosen frag-
ments φ. Figure 5 illustrates this relationship, by com-
paring the quality of the fastest and slowest fragments
when φ is incremented (for parametric methods). We
compute the cost o a fragment given the simplifying
assumption that query performance is mostly affected
by the number of partial results generated by that re-
spective fragment. One can clearly see that the higher
the number of fragments, the better the plan fragment
quality (lower cost is better). This is no surprise since
by fragmenting the original plan, the optimiser ends
up dividing the work optimally between participating

10 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

sites. However, just like before, having a larger num-
ber of fragments incurs resource wastefulness leading
to a larger overall system load. This leads the way to
the following questions: What is an optimal number of
fragments φ and how can it be computed?

Results from Figures 4 and 5 show that both meth-
ods have their own plusses and minuses. Automatic,
non-parametric methods like bayesian blocks suffer
from the need of precise fine tuning to data. Even in
such cases, there is no guarantee that the appropriate
number of fragments is low enough for query execu-
tion to become tractable. In contrast, parametric meth-
ods offer the administrator or query optimiser just this:
control over the number of segments. On the down
side, finding out the appropriate φ can be an expen-
sive trial and error process, considering the complex
relationship between the characteristics of each partic-
ipating SPARQL endpoint and the a fragmented query
execution.

Consequently, we chose to employ the parametric
k-segmentation space reduction method as part of X-
AVALANCHE’s optimisation, primarily due to its in-
trinsic control over the number of fragments.

3.4. Total/First Results Tradeoff

Since fragmented bushy plan are a variant of bushy
plans where the top subtrees represent disjoint parti-
tions or fragments of the query plan, they are easily
parallelizable given the fact that each fragment is inde-
pendent. In consequence, they offer control over exe-
cuting only a portion of the query if needed. This can
be advantageous, for example, in multi-query optimi-
sation situations, when the scheduler can choose to in-
terleave the execution of fragments belonging to dif-
ferent queries in an informed way, avoiding the star-
vation of clients waiting for results from expensive
queries. Another situation where plan fragmentation
can be beneficial is when FAST FIRST results con-
straints are imposed by some application, e.g. a search
engine requiring results for the first page.

The fragmented execution of any query plan ulti-
mately offers the caller a tradeoff between t, the time
until first results are found and T , the total query com-
pletion time. Naturally, minimising both performance
metrics is desired. To obtain a clear and quantifiable
view of this tradeoff we combine both time measure-
ments within the unified performance metric τ . We ex-
press τ using the euclidean norm to compute the dis-
tance to the ideal, (0, 0):

τ =
√
t2 + (δ)2, δ = T − t (5)

It is our hypothesis that there exists a number of
fragments φ > 1 where the τ performance metric is
optimal. Additionally, we expect τ to degrade as frag-
mentation increases over a given threshold due to the
fact that overall system occupancy increases in addi-
tion to the overhead and interactions introduced by or-
chestrating the execution of a large number of frag-
ments.

4. Scalable Distributed Unions

When data pertinent to a triple-pattern or subquery
is physically partitioned among several sites, the op-
timiser will have to consider a disjunction between
all relevant endpoints in order to guarantee result-set
completeness. To simplify matters, most state of the
art query optimisers will not consider different group-
ing strategies during the logical planning phase. Con-
sequently, unions are only applied to the relevant leaf
nodes of the plan. If the number of endpoints is large,
the physical design of the operator can have a dra-
matic effect on the overall query execution perfor-
mance. Consider for example a setup similar to the
one illustrated in Figures 1 and 2, with the difference
that instead of 5 sites data is partitioned over 100 sites.
Such a scenario could lead to unioning triples match-
ing for example TP1, from 100 endpoints.

While there are many ways in which a distributed
union can be carried out, in the following we will fo-
cus on methods where computation occurs remotely
and not at the client site. Specifically, we investigate
parallel execution while considering the naïve serial
method as the baseline. The main advantage of the se-
rial method lies in its inherent simplicity: it does not re-
quire advanced support, aside from the basic assump-
tion that 2-way unions can be carried out by simply
shipping the smaller result set of bindings to the target
server and performing the union in-place. Obviously,
this serial approach forgoes any performance benefits
from parallelism since unioning n sites require in the
order of O(n) union operations.

On the other spectrum from serial execution all
binding sets or partial results can be shipped to a pre-
viously elected master site and ‘unioned’ in-place. In
this case, since all union operations are executed in
parallel, the cost of the union falls in the O(1) com-

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 11

plexity class and would theoretically be equivalent
with the cost of the most expensive of the union oper-
ations. In practice, the master site can become a bot-
tleneck when there are many sites, by having to keep
n remote connections open at the same time. Further-
more, if duplicate partial bindings are dropped either
to reduce traffic or due to the UNIQUE modifier, local
contention can mitigate the benefit of parallelism and
would require more complex handling strategies that
are not implemented by most federated RDF stores.

5

40

10

35

15

30

U

U

U

45

45

45

20

25
U

45

U

U

90

90

U

5

10

15

20

25

30

35

40 180

Grouping Phase Parallel Union Phase

sort ASC

sort DESC

Fig. 6. Example parallel tree union for 8 sites. Numbers are sub-
query cardinalities on each site.

Algorithm 4 parallel tree union
Precondition: S: the participating sites, given subquery sq

1: function PARALLELUNION(sq, S)
2: SORTASC(S) . sort S on cardinality (ascending)

3: while ¬EMPTY(S) do
4: n← |S|

2

5: slaves← S[: n] . left side of union
6: masters← S[n :] . right side of union

. sort master sites on cardinality (descending)
7: SORTDESC(masters)

. parallel execution of each (slave,master) union pair
8: S ← PARMAP({s ∪ m | ∀s ∈ slaves,m ∈
masters})

. the root of the union-tree holds all partial results
9: return S[0]

In the following, we propose a simpler distributed
union execution strategy which enjoys both: the bene-
fit of parallelism while at the same time requiring only
the simple 2-way union capability from a participat-
ing site. Called parallel tree-union, the method uses
the topology of a balanced binary tree with endpoints
as nodes. The algorithm traverses the tree bottom-up
towards the master endpoint, by iteratively pairwise

unioning each level of leaf nodes. The time complexity
for this operator is O(log(n)) for n sites.

As illustrated in Figure 6, within each iteration the
sites are divided into two groups: slave and master
sites, where the latter are the ones performing the
union. To load-balance the amount of traffic that is
generated, the slave with the smallest binding-set ships
to the master with the most partial bindings in each it-
eration (lines 5 - 8 in Algorithm 4). This has the advan-
tage of producing more balanced later stage unions.

5. Distributed State Management & Caching

One of the major factors contributing to X-
AVALANCHE’s increased performance is the dis-
tributed management of partial query results. The
SPARQL 1.1 federation extensions are stateless and
therefore operate at a lower level than X-AVALANCHE.
They are however instrumental building blocks, since
X-AVALANCHE relies on: i) the COUNT aggregate, to
obtain statistics about triple patterns (equivalent statis-
tics can be retrieved using W3C’s VoID), ii) the SER-
VICE keyword, to execute a subquery agains a re-
mote endpoint, and iii) the VALUES clause, to con-
strain the results another endpoint. During execution,
network traffic is minimised, by keeping materialised
BGP views in memory for the duration of the current
query as detailed in [6].

Parallel Multicast Joins The introduction of support
for disjunctions triggered the addition of support for
the execution of parallel joins. Each X-AVALANCHE

endpoint can multicast and coordinate a join opera-
tion between multiple remote endpoints. All join op-
erations are bind semi-joins, where a set of partial
bindings is shipped remotely to reduce the execu-
tion of the subquery using the SPARQL 1.1 VALUES
clause. Consider for example the case of the star query
LQ5 (Listing 9), where during the execution process
bindings for the ?name variable are restricted to two
values: "GraduateStudent1" and "GraduateStudent2".
Hence, the execution of the remainder triple patterns is
bounded on all relevant remote sites of the semi-join,
by the two values.

In addition, the source partial results table from
which the bindings for the join variable are shipped,
can be reconciled using either a bloom filter of the re-
mote set of partial bindings if the set is large, or the
(compressed) set otherwise. Consider for example that
the remote side, or destination, of the semi-join oper-

12 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

ation produces partial results only for the "Graduat-
eStudent1" binding of the ?name variable. Therefore
all partial records from the source endpoint matching
"GraduateStudent2" can be safely discarded.

Execution by Proxy In addition, just like p2p sys-
tems, all X-AVALANCHE operators can be executed di-
rectly or by proxy. Proxy based execution helps the
endpoint orchestrating the overall query execution to
offload part of the execution orchestration to remote
sites while still managing the overall process. This is a
particularly useful design since it allows an RDF fed-
eration engine more flexible management of remote re-
sources and significantly aids in introducing more par-
allelism into the query execution pipeline.

For example, consider the bind semi-join operation
for query LQ5 on variable ?name described earlier.
The query execution coordinator can manage the pro-
cess in two ways. It could orchestrate the process di-
rectly by managing each of the phases of the semi-
join operation, or it could delegate the management of
the entire semi-join operation to the designated source
endpoint, therefore benefiting from more I/O and com-
putational resources to coordinate the execution of po-
tentially other concurrent operations.

SPARQL Endpoint Caching Often the performance
of the underlying SPARQL endpoint has a negative
impact over the RDF federation engine. To mitigate
some of the performance penalties incurred, in X-
AVALANCHE we enhance the wrapped SPARQL end-
point with a simple cache. The cache cannot be used to
store the results of all SPARQL query types. Cacheable
queries include: COUNT queries and simple SELECT
queries that do not have a VALUES clause. For obvi-
ous reasons, queries which contain VALUES variable
binding sets cannot be cached. In such cases the key
would have to uniquely identify not only the BGP or
subquery but also the supplied binding sets. Creating
a unique key in this case can be expensive for large
binding sets. We employed a typical LRU cache evic-
tion strategy with expiration for records. In practice,
the expiration duration should not be larger than the
endpoint’s dataset update frequency.

6. Evaluation

In this section we present and discuss the results
we obtained from evaluating X-AVALANCHE in a con-
trolled setup in order to observe the impact that differ-
ent external and internal factors have on system perfor-

mance. Specifically, we first investigate the impact of
the parallel union operator followed by a enquiry of the
impact of SPARQL endpoint caching. We then explore
X-AVALANCHE’s performance whilst varying problem
size and data distribution. Additionally, we evaluate X-
AVALANCHE against the current top performing feder-
ated SPARQL engine: FedX, as identified in [23].

Technical setup: We used the latest freely available
version of FedX, v3.1.12 All experiments were run
on a cluster of 11 machines, each having 128 GB
RAM and two E5-2680v2 @2.8GHz processors, with
10 cores per processor, i.e., equivalent to 20 execution
units when HyperThreading enabled. Nodes run 64 bit
linux (kernel version 3.2.0) and are interconnected us-
ing standard 1Gb ethernet. We used Python 2.7.8 and
all SPARQL endpoints were powered by Virtuoso v7.1
open source.

6.1. Benchmark Design

X-AVALANCHE is designed to improve query per-
formance in large federations of SPARQL endpoints.
However, as mentioned in Section 1.1, the present day
LoD’s schema richness and broad semantic diversity
create a semantically selective benchmarking setup,
i.e., where the vocabularies used in the query restrict
the execution to a handful of endpoints. To address
this notion, we distinguish between the selectivity of
a query based on the number of result tuples, which
we call result-set selectivity, and the source selectivity
of the query. The latter kind of selectivity is the deci-
sive factor during the source selection phase and can
dramatically improve performance and recall.

Unfortunately, semantically selective benchmarks
do not shed any light into how the federation engine
performs in worst case scenarios, where hundreds of
endpoints are actively engaged in query answering.
These scenarios can occur when: a) large numbers of
sites operate within the same domain, a clear future
development as the LoD continues to grow and b) the
query is re-written to use different but similar schemas
(i.e., overlapping semantics). In both situations the fed-
erated engine has to coordinate the query execution
over a large number of endpoints.

In order to observe X-AVALANCHE’s performance
improvements compared to state of the art federated
engines as well as to better understand the impact of
internal (configuration) and external (data distribution

12http://www.fluidops.com/

http://www.fluidops.com/

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 13

/ workload) factors in a large federation setting, the
benchmark must be able to:

1. scale to as many endpoints as required,
2. allow for data distribution control,
3. emulate a semantically homogenous setup over a

large number of endpoints,
4. provide a diverse and comprehensive set of

queries.

The most comprehensive federated SPARQL bench-
mark to date is FedBench [26]. It features a mix of
synthetic and real-world LoD data. In addition, it of-
fers a set of cross-domain and domain-specific queries.
While highly useful, it does not adhere to the above
requirements. First concerning points 4 and 1, it pro-
vides only a fixed data set size, while queries do not
systematically cover a defined design space. Second,
point 3 is not addressed, as it, for example has only
three sources for life sciences queries. Finally, regard-
ing point 2, the data distribution is not specified.

To mimic this worst-case scenario, we modified the
popular LUBM [12] benchmark to generate data from
a single domain: academia. Both scale and data distri-
bution are user controllable. While there are many pos-
sible data distributions, in our evaluation we adopted
horizontal partitioning. Highly popular, these strate-
gies often provide an excellent tradeoff between per-
formance and ease of use. For example, Huang et. al.
[14] show substantial performance improvements by
employing a partitioning scheme based on the idea
that star shaped queries are common and therefore star
shaped sub-graphs should not be split. Finally, hori-
zontal partitioning schemes are a natural fit for feder-
ations of RDF data, as it is unlikely for triples to be
randomly assigned to sites that belong to different ad-
ministrative entities, but very likely for triples sharing
a common provenance criteria to stay together.

Given its popularity, we adopt this partitioning
scheme and choose 5 horizontal splits with increasing
levels of distribution messiness. In the first distribution
U1, data specific to one LUBM university is allocated
to one site, similarly, distributionsU3,U5 andU7 split
the triples of each university to 3, 5 and 7 sites respec-
tively.13 Finally, we complemented these with distri-
bution UH which represents the traditional horizontal
split of the data based on the subject of a triple. While

13We released the LUBM generator wrapper under an open
source licence at https://github.com/cosminbasca/
rdftools

Table 1
federated LUBM queries

Query Shape Selectivity Scaling

LQ1 LINEAR LOW SCALING
LQ2 LINEAR HIGH CONSTANT
LQ3 LINEAR HIGH CONSTANT
LQ4 LINEAR LOW SCALING

LQ5 STAR HIGH CONSTANT
LQ6 STAR LOW SCALING
LQ7 STAR LOW SCALING
LQ8 STAR LOW SCALING

LQ9 FLAKE HIGH CONSTANT
LQ10 FLAKE LOW CONSTANT
LQ11 FLAKE HIGH CONSTANT

LQ12 COMPLEX HIGH CONSTANT
LQ13 COMPLEX HIGH CONSTANT
LQ14 COMPLEX LOW CONSTANT

UH is not a natural fit for federated setups it offers
valuable insight.

Accompanying these distributions we developed 14
SPARQL queries (cf. detailed in Appendix C and Ta-
ble 1) with different shapes as specified by the Wa-
terloo SPARQL Diversity Test Suite (WatDiv) [3].14

In addition to shape, the queries are also split into
high and low result-set selectivity given a threshold on
the total number of result tuples. Furthermore, we dif-
ferentiate between constant and scaling queries when
their result sets stay constant or increase with total
dataset size. For this evaluation we fixed the result-set
selectivity threshold to 5000 tuples.

6.2. Union Operator Performance and Scaling

To ascertain how much faster the parallel tree union
operator is when compared to the baseline serial union
we constructed four queries each containing only a sin-
gle triple-pattern: LU1 - LU4 (see Appendix B). Note
that these single triple pattern queries have the advan-
tage over LQ1 − LQ14 that they solely measure the
impact of different kinds of unions. Specifically, we
measured the time it takes to union all partial bindings
spread over 100 sites, while relying on the same exper-
imental setup detailed earlier.

As seen in Table 2, the final result-set cardinality
for each of the union-queries varies between ≈ 20 and
160000 tuples. As expected, when the cardinality of
the result set is low the methods fare comparably in
terms of performance. For example query LU1 pro-

14The queries are also available publicly athttps:
//github.com/cosminbasca/rdftools/blob/
master/doc/DESCRIPTION.md

https://github.com/cosminbasca/rdftools
https://github.com/cosminbasca/rdftools
https://github.com/cosminbasca/rdftools/blob/master/doc/DESCRIPTION.md
https://github.com/cosminbasca/rdftools/blob/master/doc/DESCRIPTION.md
https://github.com/cosminbasca/rdftools/blob/master/doc/DESCRIPTION.md

14 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

Table 2
Union LUBM queries

Query Cardinality TSERIAL TPARALLEL

LU1 19 0.26 0.20
LU2 8000 6.48 1.02
LU3 25600 7.09 1.23
LU4 160006 10.27 1.97

* T : time for all results (seconds)

duces only 19 result tuples, a much smaller number
than the number of participating sites. In consequence,
and assuming no data replication in our setup, not all
endpoints can contribute to the final result. This leads
to a low number of disjunctions for both operators, and
hence similar performance: ≈ 0.2 seconds.

0K 20K 40K 60K 80K 100K 120K 140K 160K

Resultset size (thousands of tuples)

0

5

10

15

20

25

30

35

40

In
cr

e
a
se

 f
a
ct

o
r

fo
r

to
ta

l
ti

m
e
,

 f
o
r

q
u
e
ri

e
s
L
U

1,
 L
U

2,
 L
U

3,
 L
U

4

scaling: log(x)

parallel-tree union

serial union

Fig. 7. Parallel tree vs serial union performance function of varying
triple-pattern cardinality. Partial bindings horizontally partitioned
over 100 sites.

However, when more data is involved i.e., for
queries which produce more partial results, the per-
formance difference can be dramatic. Just as expected
(and graphed in Figure 7), the parallel tree union op-
erator exhibits a scaling characteristic closely follow-
ing a logarithmic performance degradation (blue ver-
sus dashed line). It is however interesting to observe
that the naïve serial operator also scales better than lin-
ear when result-set cardinality increases. This can be
explained by the fact that larger result-sets use the net-
work more efficiently, by saturating bandwidth, unlike
smaller result-sets which do not utilise the entire avail-
able bandwidth.

As seen, for queries LU2, LU3 and LU4, the paral-
lel tree union algorithm leads to a 6.3x, 5.7x and 5.2x
performance boost over the naïve serial case. Even
more so, such performance gains are typically cumu-
lative, since even simpler queries may require several
union operations – proportional with the number of

(partitioned) triple patterns in the query. Additionally,
the same general principle can be applied not only to
union but to merge operations as well.

6.3. Impact of SPARQL Endpoint Caching

In order to observe the extent by which the SPARQL
endpoint caching strategy (outlined in Section 5) im-
pacts overall system performance, we measured the
geometric mean over the entire benchmark, of the time
spent while waiting for RDF store results. We differ-
entiated between the two optimisers employed by X-
AVALANCHE. Furthermore, we used the same exper-
imental setup detailed before and controlled for frag-
mentation by setting the number of fragments φ = 1.

DP GRDY

Optimisation strategy

0.0

0.5

1.0

1.5

2.0

G
e
o
m

e
tr

ic
 m

e
a
n
 p

e
rf

o
rm

a
n
ce

 n
o
 f

ra
g
m

e
n
ta

ti
o
n
 (
φ

=
1)

 a
ll

q
u
e
ri

e
s

b
e
st

 t
im

e
 (

se
co

n
d
s)

Time RDF Store

Time RDF Store (no cache)

Fig. 8. SPARQL endpoint cache impact.

Figure 8 graphs the geometric mean of the SPARQL
endpoint wait times incurred (i.e., the time that x-
Avalanche waits for results) for all queries in the
benchmark. As can be seen, caching has a significant
impact on overall performance. The hit ratio varies
from 52% to 66% with an average of 55% cache hits.
The impact is significant even for high performance
SPARQL endpoints, like Virtuoso v7.1 (used in this
evaluation), and resulted in an≈ 10% reduction of the
benchmark overall geometric mean query completion
time.

Note that these results are based on the simple
strategies that only cache the results of BGP and
COUNT queries. More elaborate strategies are likely
to have a higher impact.

6.4. System Scalability

Performance scalability is critical to any distributed
DBMS query processing engine when more data is in-
dexed. To this end, we varied the size of the gener-
ated LUBM datasets from 500 universities totalling
≈ 67 million triples to 8000 universities totalling ≈

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 15

1.1 billion triples. Naturally, the scaling characteris-
tic of the underlying SPARQL endpoint, which X-
AVALANCHE wraps, has an impact on parts of the fed-
erated engine’s execution pipeline. In the worst case, if
all endpoints would be powered by an RDF store that
scales poorly, the maximum number of SPARQL op-
erations that need to be executed serially, i.e., the crit-
ical execution path, will be the primary performance
impacting factor. X-AVALANCHE mitigates the effect
of a low performing RDF store to a certain degree
by: 1) caching the results of queries without VALUES
bindings (Section 5) and 2) keeping materialised views
in memory for the current executing query.

138 276 414 553 691 829 967 1106

Dataset size (million triples)

100

101

102

103

M
e
d
ia

n
 i
n
cr

e
a
se

 f
a
ct

o
r

fo
r

to
ta

l
ti

m
e

 a
ll

C
O

N
S
T
A

N
T
 q

u
e
ri

e
s,

 φ
∈[

0,
6
4]

scaling: x1

scaling: x2

scaling: ex

GRDY

DP

Fig. 9. Performance scaling by strategy, when dataset size increases
for constant queries (error bars indicate standard deviation).

First, we examine how X-AVALANCHE’s perfor-
mance scales when processing queries whose num-
ber of results do not change when the total number
of triples stored across all endpoints varies. Figure 9
graphs the median ratio between the total query time
across all constant benchmark queries for the current
dataset size and the smallest dataset: LUBM 500. As
observed, X-AVALANCHE exhibits average constant
scaling for queries whose number of results stay the
same at all dataset sizes i.e., is unaffected by dataset
size variation for constant queries.

Similarly, we examine how X-AVALANCHE’s per-
formance scales when dealing with queries whose
number of results increase with the dataset size. In our
evaluation queries from the scaling group (see Table
1) exhibit the same scaling factor as that of the dataset,
e.g., if the dataset size doubles so does the number of
results for the respective query. As can be observed
in Figure 10, X-AVALANCHE’s median scaling charac-
teristic is better than the theoretical linear scalability
threshold (bottom most dotted line in Figure labeled:

138 276 414 553 691 829 967 1106

Dataset size (million triples)

100

101

102

103

M
e
d
ia

n
 i
n
cr

e
a
se

 f
a
ct

o
r

fo
r

to
ta

l
ti

m
e

 a
ll

S
C

A
LI

N
G

 q
u
e
ri

e
s,

 φ
∈[

0,
6
4]

scaling: x1

scaling: x2

scaling: ex

GRDY

DP

Fig. 10. Performance scaling by strategy, when dataset size increases
for scaling queries (error bars indicate standard deviation).

scaling: x1). While there are cases that lead to per-
formance degradation as dataset size increases (error
bars in Figure) they still follow a linear scaling char-
acteristic as depicted. In conclusion, X-AVALANCHE
exhibits better than linear performance scaling for
scaling queries.

6.5. Data Distribution

To see how the X-AVALANCHE optimisation strate-
gies are impacted by varying distribution messiness,
we generated distributions U1, U3, U5, U7 and UH
for the LUBM 8000 scaling factor, a dataset totalling
more than 1.1 billion triples.

U1 U3 U5 U7 UH

Data distribution

100

101

102

103

B
e
n
ch

m
a
rk

 p
e
rf

o
rm

a
n
ce

,
φ

=
1

 b
e
st

 o
f

3
 r

u
n
s

(s
e
co

n
d
s)

Avalanche GRDY Avalanche DP

Fig. 11. Overall benchmark performance function of data distribu-
tion. The boxplot graphs the quartiles (box), the largest and smallest
non-outliers (little T-shaped extensions, as well as possible outliers
(crosses).

Figure 11 illustrates X-AVALANCHE’s top perfor-
mance distribution over all benchmark queries by op-
timisation strategy. We controlled for the effects of

16 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

fragmentation and disabled it by setting φ = 1. Each
query was run 3 times and the best run time was con-
sidered. Results show that both the greedy (GRDY)
and dynamic programming (DP) optimisers exhibit
a comparable average performance as a university’s
triples spread further from the source, i.e., distributions
U1 −→ UH . However, as expected the optimal DP
optimiser fares better in general than GRDY. The aver-
age best performance ranges in the [3.1, 5] and [4.2, 5]
seconds intervals for the DP and GRDY respectively.
An interesting observation is that while for the messi-
est distribution UH both show the same average per-
formance, DP is 1 second faster on average for the less
messy distribution U1.

Performance differences become quite visible how-
ever by the time 75% of the benchmark queries have
executed. The GRDY optimiser exhibits an average
performance between 62 and 66 seconds depending on
distribution while the DP optimiser takes only between
12.8 and 15.9 seconds to achieve the same. The DP op-
timiser is on average≈ 4.5 times faster than the GRDY
approach.

In order to measure the effect of distribution vari-
ation on X-AVALANCHE, i.e., to see how robust X-
AVALANCHE is to distribution change, we performed
pairwise t-tests15 between the obtained measurements
of all distribution pairs. We use the more rigorous three
σ rule, i.e., having a P value threshold of 0.001, to
determine if the observed effect is due to distribu-
tion variation and not due to chance alone. Distribu-
tion variation has no effect on the GRDY optimiser.
The P value ranges from 0.003 to 0.93. The smaller
P values are obtained when comparing distribution
U1 to any other distribution. A similar conclusion can
be drawn for the DP optimiser with one exception,
the effect that distribution U1 has on X-AVALANCHE

compared to distribution UH is statistically significant
with P = 0.0004. In conclusion we can safely say that
even though performance degrades slightly, the DP op-
timiser is robust to distribution variation as triples are
spread further from the source with the exception of
the less messy distribution U1, where performance is
best for both optimisers.

A similar trend can be seen in Figure 12 which plots
the geometric performance of both strategies in addi-
tion to FedX for the entire benchmark. Again, while
the distribution has a general but limited impact on per-

15We tested for normality using the SciPy normality test, which is
based on D’Agostino and Pearson.

formance, except for U1 where as expected it performs
best, it does not affect the relative differences between
the two optimisation strategies, with the greedy opti-
miser consistently performing worst.

6.6. Versus State of the Art

In order to get a better grasp of X-AVALANCHE’s
performance gains, this section compares its re-
sults against the top performing state of the art
SPARQL federated engine, which supports location
transparency. We chose to evaluate only against FedX,
since a recent fine grained and comprehensive study
[23] found that overall FedX outperformed all other
state of the art SPARQL federation engines.

U1 U3 U5 U7 UH

Data Distribution

0

5

10

15

20

25

30

G
e
o
m

e
tr

ic
 m

e
a
n
 p

e
rf

o
rm

a
n
ce

 a
ll

q
u
e
ri

e
s

(b
e
st

 o
f

3
 r

u
n
s)

 t
o
ta

l
e
x
e
cu

ti
o
n
 t

im
e
 (

se
co

n
d
s)

FedX

Avalanche GRDY

Avalanche DP

Fig. 12. Geometric benchmark performance function of data distri-
bution, for both systems.

U1 U3 U5 U7 UH

Data distribution

10-1

100

101

102

103

104

105

B
e
n
ch

m
a
rk

 p
e
rf

o
rm

a
n
ce

,
φ

=
1

 b
e
st

 o
f

3
 r

u
n
s

(s
e
co

n
d
s)

FedX

Avalanche GRDY

Avalanche DP

Fig. 13. Overall benchmark performance function of data distribu-
tion, for both systems. Note that y-axis is logarithmic.

As seen in Figure 12, both optimisation strategies
outperform FedX in the geometric mean over the entire
benchmark. Like before, we controlled for fragmenta-
tion by setting φ = 1, and considered the best out of
3 runs for each query. Both federated engines perform

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 17

better for less messy distributions, where the triples are
spread out on fewer or no endpoints. A detailed sta-
tistical breakdown of the performance difference be-
tween X-AVALANCHE and FedX is illustrated in Fig-
ure 13. Results clearly show that X-AVALANCHE is
more than one order of magnitude faster than FedX
over the entire benchmark. In addition it is interesting
to observe that:

– the slowest X-AVALANCHE query finishes well
before FedX completes the benchmark’s 75th

percentile,
– the 75th percentile of the benchmark queries are

completed by the DP optimiser before FedX com-
pletes the benchmarks 50th percentile, and

– most expensive non-outlier query for GRDY is
comparable with the outlier queries for DP. Fur-
thermore, DP completes the benchmark’s 75th

percentile significantly sooner than GRDY.

lq1
lq2

lq3
lq4

lq5
lq6

lq7
lq8

lq9
lq10

lq11
lq12

lq13
lq14

Query

100

101

102

B
e
st

 s
p
e
e
d
u
p
 o

v
e
r

Fe
d
X

Time first results GRDY

Time total results GRDY

Time first results DP

Time total results DP

Fig. 14. Best speedup for U7, any configuration.

Speedup Figure 14 illustrates X-AVALANCHE’s
speedup over FedX, by optimiser strategy. In this
setup we consider the messiest natural distribution we
evaluated namely U7, where the triples of a university
are spread to 7 other endpoints. We did not control
for fragmentation and choose the best response time
for per system and per query. The dotted line in
Figure represents the point of equal best performance
between the two systems.

The GRDY optimiser obtains a maximum perfor-
mance speedup factor of 70x respectively 57.7x over
FedX for first results retrieval respectively total query
completion. While better performing in general the DP
optimiser obtains a maximum speedup factor of 66.5x

respectively 49.5x over FedX for first results respec-
tively total time.

GRDY is faster than FedX for total query perfor-
mance in 10 of the 14 queries while DP performs bet-
ter for 11 queries. For getting first results both opti-
misers are faster for 9 of the 14 queries. FedX is faster
in 3 respectively 4 out of the 14 queries over the DP
respectively GRDY optimisers, and in 5 queries when
retrieving first results. However, as seen in Table 3, the
difference between the two systems for queries where
FedX is faster is between 1.1 and 1.7 seconds with the
notable exception of query LQ14 where GRDY com-
pletes in 140.5 seconds compared to 48.2 seconds for
FedX. This is an expected result since the query is
part of the COMPLEX group and the greedy optimiser
does not guarantee optimality. The DP optimiser how-
ever, finishes query execution in 6.1 seconds, an ex-
pected conclusion. We attribute FedX’s speedup over
X-AVALANCHE for queries LQ5, LQ9 and LQ11 to
the following:

a) the queries are highly selective with 7, 3, and 133
results respectively, and

b) FedX’s local cache, which can greatly improve per-
formance by discarding sources known not to con-
tribute to the current query.

Table 3
Best query performance for each system

Query tGRDY
AV A tDP

AV A tFEDX TGRDY
AV A TDP

AV A TFEDX

lq1 2.3 2.3 0.4 4.3 4.2 22.1
lq2 1.5 1.5 2.2 1.8 1.8 2.3
lq3 1.6 1.6 1.9 1.9 2.0 2.2
lq4 46.7 46.5 29.3 77.4 78.9 769.4

lq5 1.4 1.4 0.2 1.6 1.5 0.3
lq6 35.7 35.7 485.0 130.7 132.8 1299.3
lq7 5.9 6.0 382.3 15.5 15.5 407.5
lq8 45.3 44.9 2873.7 105.0 111.1 3130.8

lq9 1.8 1.9 0.3 1.9 2.0 0.3
lq10 4.5 4.7 313.7 7.3 8.4 418.7
lq11 2.0 2.0 0.9 2.0 2.0 0.9

lq12 2.3 2.4 4.4 2.3 2.4 4.2
lq13 2.6 2.8 5.8 2.7 3.0 13.1
lq14 5.6 5.0 41.5 140.5 6.1 48.2

* t: time for first results (seconds)
+ T : time for all results (seconds)

For cases where X-AVALANCHE is faster than FedX,
the performance difference ranges from near similar,
e.g., 0.5 seconds, to dramatic improvements of over
3000 seconds, as observed for query LQ8 a low selec-
tivity start shaped query with more than 70000 results.

18 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

6.7. Fragmentation

In Section 3.4 we introduced the τ performance
metric as defined in equation 5. It offers a unified mea-
sure of the tradeoff between time to first results and
total query execution time. Considering the τ metric,
in the following, we investigate X-AVALANCHE’s av-
erage benchmark performance when plan fragmenta-
tion is considered. We varied the number of fragments
φ ∈ [0, 64] by powers of 2 increment.

In the following we investigate the average bench-
mark performance of X-AVALANCHE in terms of the τ
performance tradeoff.

1.0 2.0 4.0 8.0 16.0 32.0 64.0

Number of fragments φ

0

2

4

6

8

10

G
e
o
m

e
tr

ic
 p

e
rf

o
rm

a
n
ce

,
 a

ll
q
u
e
ri

e
s,

 b
e
st

 r
u
n
 o

f
3
,

 t
o
ta

l
&

 f
ir

st
 t

im
e
 (

se
co

n
d
s)

GRDY time first results

GRDY time total results

DP time first results

DP time total results

Fig. 15. Overall benchmark performance by number of fragments
and optimisation strategy.

Figure 15 depicts the geometric benchmark perfor-
mance split by total query completion time and time
to first results for both optimisation strategies function
of number of fragments φ. We varied φ ∈ [1, 64] by
powers of 2 increments. All generated fragments were
executed concurrently in parallel on the orchestrating
node’s 10 physical cores. In general we can see that
fragmentation helps deliver FAST FIRST results at the
cost of introducing a small penalty for overall comple-
tion time. The trend appears to be more accentuated on
average for the GRDY optimiser.

A quantifiable view of the trade-off between total
and first results is graphed in Figure 16. The dashed
line represents τ when φ = 1, equivalent to total
execution time when fragmentation is disabled. Both
GRDY and DP strategies benefit from fragmentation
if the desired goal is to get first results fast with some
penalty in increasing query execution time. For the
give experimental setup, an optimal tradeoff is ob-
tained for DP when φ ∈ [2, 4], while for GRDY when
φ ∈ [2, 32]. It is interesting to note that on average the
greedy approach can offer a better tradeoff when frag-
mentation is enabled than DP with no fragmentation.

10 20 30 40 50 60

Number of fragments φ

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

B
e
n
ch

m
a
rk

 q
u
e
ri

e
s

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 16. Overall benchmark performance by number of fragments
and optimisation strategy.

6.8. Query Shape and Selectivity

To get a clearer view of the impact of workload on
performance, in the following we control for query
shape and result set selectivity.

High selectivity queries They are primarily charac-
terised by low number of results. We consider a query
to be highly selective if it has ≤ 5000 results. Conse-
quently, such queries are expected to have better exe-
cution performance, leading to the hypothesis that the
impact of any optimisation is less visible than for low
selectivity queries. This fact is easily observed in Fig-
ures 17 through 20, where the range of the τ metric is
between 1.4 and 2.75 seconds overall.

10 20 30 40 50 60

Number of fragments φ

1.60

1.65

1.70

1.75

1.80

1.85

1.90

LI
N

E
A

R
,
H

IG
H

 s
e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 17. High selectivity LINEAR queries

For LINEAR, STAR and COMPLEX queries there
exists an optimal tradeoff for φ > 1. In general the DP
optimiser fares better, however, this is not the case for
COMPLEX queries where GRDY offers better perfor-
mance (Figure 20) although by a very small margin of
0.1 seconds on average. It is interesting to observe that
for FLAKE queries (Figure 19), only the DP optimiser
benefits from fragmentation with an optimal φ ∈ [2, 4]
seconds. At the same time the GRDY optimiser shows

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 19

10 20 30 40 50 60

Number of fragments φ

1.42

1.44

1.46

1.48

1.50

1.52

1.54

1.56

1.58

S
T
A

R
,
H

IG
H

 s
e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 18. High selectivity STAR queries

10 20 30 40 50 60

Number of fragments φ

1.95

2.00

2.05

2.10

FL
A

K
E
,

H
IG

H
 s

e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 19. High selectivity FLAKE queries

10 20 30 40 50 60

Number of fragments φ

2.50

2.55

2.60

2.65

2.70

2.75

2.80

C
O

M
P
LE

X
,

H
IG

H
 s

e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 20. High selectivity COMPLEX queries

a steady degradation characteristic although by a very
small margin of 0.15 seconds on average.

Low selectivity queries Low selectivity queries are
naturally more expensive since they usually produce
a larger number of partial results during execution.
Therefore, the effects of fragmentation on the different
optimisation strategies and query shapes is more visi-
ble, as seen in Figures 21 through 24, where the range
of the τ metric is between 5.5 and≈ 160 seconds over-
all.

LINEAR shaped queries show a clear benefit (Fig-
ure 21) when fragmentation is enabled. While both

10 20 30 40 50 60

Number of fragments φ

14

16

18

20

22

24

LI
N

E
A

R
,
LO

W
 s

e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 21. Low selectivity LINEAR queries

optimisers fare similarly in performance, an optimal
tradeoff is obtained when φ ∈ [32, 64]. We believe this
to be due to the fact that when fragmented this class
of queries leads to less interactions between executing
fragments than in other situations.

10 20 30 40 50 60

Number of fragments φ

45

50

55

60

65

70

75

80

S
T
A

R
,

LO
W

 s
e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 22. Low selectivity STAR queries

For STAR shaped queries, both the GRDY and DP
optimisers benefit from fragmentation with an opti-
mum trade-off when φ = 2. It is interesting to note that
both strategies follow a similar performance trend with
GRDY being faster by up to 5 seconds on average. In
addition more than 16 fragments leads to performance
degradations in our experimental setup.

Perhaps the most dramatic performance improve-
ments are observed for FLAKE shaped queries which
benefit both optimisers for any number of fragments in
the chosen range. Here the greedy optimiser (GRDY)
seems to benefit the most by achieving the highest per-
formance tradeoff for φ = 64. In this case the total
time stays relatively stable while the time for first re-
sults drops from ca. 7.5 seconds to ca. 4.75 seconds.

For COMPLEX queries the choice of number of
fragments has a positive effect on the GRDY optimiser
whose time for first results drops from ca. 155 seconds
to ca. 40 seconds. The DP strategy appears to be less

20 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

10 20 30 40 50 60

Number of fragments φ

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

FL
A

K
E
,
LO

W
 s

e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 23. Low selectivity FLAKE queries

10 20 30 40 50 60

Number of fragments φ

0

20

40

60

80

100

120

140

160

C
O

M
P
LE

X
,
LO

W
 s

e
le

ct
iv

it
y

 G
e
o
m

e
tr

ic
 τ

 m
e
tr

ic
 (

se
co

n
d
s)

GRDY DP

Fig. 24. Low selectivity COMPLEX queries

affected by fragmentation in this case. We attribute this
to the fact that GRDY ends up choosing suboptimal
plans where the effect of fragmentation is more dra-
matic, in contrast to DP which chooses optimal plans.

In conclusion, we can observe that in general
the asynchronous GRDY and DP strategies, where
each fragment is optimised either greedily or via dy-
namic programming in isolation and executed concur-
rently, do generally benefit up to a point from an in-
creased number of fragments. The most impact can
be observed for LINEAR and FLAKE low selectiv-
ity queries. We believe that this is the case due to the
more flexible scheduling of resources, a direct conse-
quence of the concurrent and asynchronous execution
paradigm that X-AVALANCHE employs.

7. Limitations and Future Work

In the following we are going to detail X-
AVALANCHE limitations as well as those of the sys-
tem’s optimisation methods and operator design. In ad-
dition, based on these limitations and findings, we will
briefly discuss possible future work directions.

The work presented in this paper exhibits two kinds
of limitations. First, X-AVALANCHE could be extended

and/or optimised further and second, the external va-
lidity of our empirical evaluation is limited.

A first limitation stems from the fact that when em-
ploying plan fragmentation to derive an optimal trade-
off between total query execution time and time to
first results the choice between parametric and non-
parametric space reduction algorithms is not auto-
matic. Potential future work directions could include
automatic learning of the parameters. This would en-
tail learning which method to use and what is a good
prior or number of fragments using of methods such
as Bayesian Optimisation [28] or self-tuning database
methods [9].

Additional limitations stem from the mismatch be-
tween real and predicted plan performance. Tradi-
tional query optimisation algorithms like bottom up
DP approaches assume that the cost model is opti-
mal. In reality, plan cost estimations vary widely from
their true cost. Consequently, fragmentation derived
performance gains are diminished and depend on the
estimative power of the cost model. Improving the
cost model’s accuracy will allow X-AVALANCHE to
make better optimisation decisions and improve per-
formance.

To further improve X-AVALANCHE’s performance
a number of research avenues and potential solu-
tions stand out. While X-AVALANCHE extends and en-
hances the distributed state management protocol of
AVALANCHE, it does not address all sources of limita-
tion. One such limitation is derived from the level of
impact that low performing SPARQL endpoints have
on the system. While this is addressed to a certain de-
gree by caching of result-sets, X-AVALANCHE does
not cache SPARQL queries with VALUES bindings. A
future extension could entail investigating how to use
bloom filters [8] to reduce the number of bindings sent
to remote endpoints and therefore remote workload.
Furthermore, X-AVALANCHE union operator is not op-
timised to take duplicates into account. On the Web
of Data records are duplicated leading to a more opti-
misation possibilities by investigating the applicability
of bloom filters to these cases or employing methods
similar to the ones described in [24].

Finally, the experimental setup relies on a limited
number of physical resources. A physical machine
is typically tasked with accommodating more than a
dozen SPARQL and X-AVALANCHE endpoints. The
resulting resource contention, generated by the compe-
tition for shared resources such as RAM, disk & net-
work I/O, and CPU-time, can have a negative impact

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 21

on measured system performance, a fact that can be
mitigated by the choice of physical machines.

8. Conclusions

To conclude, in this paper we present an extension
of our original AVALANCHE SPARQL federation en-
gine, which we call X-AVALANCHE. First, we intro-
duce support for disjunctions when data is partitioned,
by employing a novel parallel union algorithm called:
parallel tree union. Results show that the parallel al-
gorithm is able to perform up to 5x faster than a naïve
serial one. Second, we enhanced the distributed state
management specific to our federated SPARQL proto-
col. To this end, each X-AVALANCHE operator is en-
hanced with support for execution by proxy allowing
for orchestration effort offloading to other participating
endpoints. In addition, we make use of parallel mul-
ticast bind-joins to minimise network traffic. At the
same time we remotely cache query results (given al-
lotted memory for cache) when no VALUES bindings
are present in the query. This strategy alone, reduced
overall query processing time by ≈ 10%.

Furthermore, we introduce a first novel approach to
optimally reduce and traverse the extended planning
space, that is suitable for large federations of RDF
stores. We identify a new class of easily parallelizable
plans we call fragmented bushy plans and we show
how to optimally find the largest partial results set re-
trievable in the shortest possible time given external
constraints. We implement and compare two exem-
plars of the non-parametric and parametric optimal ex-
tended planning space reduction methods: bayesian-
blocks and k-segmentation and conclude in favour of
the parametric approach, given its intrinsic control of
the number of fragments. Finally, to support our hy-
pothesis we also introduced a new synthetic bench-
mark designed with the difficult case of large ho-
mogenous RDF federations in mind. Released as open-
source, the benchmark relies on LUBM to generate the
data, which is than distributed to a given number of
sites based on a user specified distribution. In addition,
it borrows from the Waterloo SPARQL Diversity Test
Suite (WatDiv) for query design.

Combined, X-AVALANCHE’s enhancements and op-
timisations can lead to dramatic performance improve-
ments over one of the top federated SPARQL engines
to date: FedX – as shown in [23]. While, in the best
case, X-AVALANCHE is up to 70x times faster, on aver-
age, the system exhibits more than one order of mag-

nitude performance improvements for total query
execution time.

In summary, x-Avalanche shows that federated
SPARQL processing can still be substantially im-
proved both by focusing on low-level elements such
as operator design and high-level system architecture
considerations. As such we believe that the insight we
gained from x-Avalanche provide an important build-
ing block for building the Web of Data.

9. Acknowledgments

This work was partially supported by the Swiss
National Science Foundation under contract number
200021-118000. We would also like to thank Timo
Mennle and Ioana Giurgiu for their invaluable feed-
back in improving this paper.

References

[1] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruck-
haus. ANAPSID: An adaptive query processing engine for
SPARQL endpoints. In The Semantic Web – ISWC 2011, pages
18–34. Springer Science + Business Media, 2011.

[2] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-
scribing Linked Datasets - On the Design and Usage of voiD,
the ’Vocabulary of Interlinked Datasets’. In WWW 2009 Work-
shop: Linked Data on the Web (LDOW2009), Madrid, Spain,
2009.

[3] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified
stress testing of RDF data management systems. In The Se-
mantic Web – ISWC 2014, pages 197–212. Springer Science +
Business Media, 2014.

[4] M. M. Astrahan, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W.
Wade, V. Watson, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie,
and P. R. McJones. System r: relational approach to database
management. ACM Trans. Database Syst., 1(2):97–137, jun
1976.

[5] C. Başca and A. Bernstein. Avalanche: putting the spirit of
the web back into semantic web querying. In Proceedings
Of The 6th International Workshop On Scalable Semantic Web
Knowledge Base Systems (SSWS2010), pages 64–79, Novem-
ber 2010.

[6] C. Başca and A. Bernstein. Querying a messy web of data with
avalanche. Web Semantics: Science, Services and Agents on
the World Wide Web, 26:1–28, may 2014.

[7] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[8] A. Broder and M. Mitzenmacher. Network applications of
bloom filters: A survey. Internet Mathematics, 1(4):485–509,
2003.

[9] S. Chaudhuri and V. Narasayya. Self-tuning database systems:
A decade of progress. In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, pages 3–14.
VLDB Endowment, 2007.

22 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

[10] R. Cyganiak. A relational algebra for SPARQL. Technical
Report HPL-2005-170, HP Laboratories, Sep 2005.

[11] O. Görlitz and S. Staab. SPLENDID: SPARQL endpoint fed-
eration exploiting VOID descriptions. In Proceedings of the
Second International Workshop on Consuming Linked Data
(COLD2011), Bonn, Germany, October 23, 2011, 2011.

[12] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2-3):158–182, oct 2005.

[13] H. Herodotou, N. Borisov, and S. Babu. Query optimization
techniques for partitioned tables. In Proceedings of the 2011
international conference on Management of data - SIGMOD
'11. Association for Computing Machinery (ACM), 2011.

[14] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying
of large rdf graphs. Proceedings of the VLDB Endowment,
4(11):1123–1134, 2011.

[15] Y. E. Ioannidis and S. Christodoulakis. On the propagation
of errors in the size of join results. ACM SIGMOD Record,
20(2):268–277, apr 1991.

[16] D. Kossmann and K. Stocker. Iterative dynamic programming:
a new class of query optimization algorithms. ACM Trans.
Database Syst., 25(1):43–82, mar 2000.

[17] S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. ADERIS:
An adaptive query processor for joining federated SPARQL
endpoints. In Lecture Notes in Computer Science, pages 808–
817. Springer Science + Business Media, 2011.

[18] T. Neumann and G. Weikum. x-RDF-3x. Proceedings of the
VLDB Endowment, 3(1-2):256–263, sep 2010.

[19] A. Nikolov, A. Schwarte, and C. Hütter. FedSearch: Efficiently
combining structured queries and full-text search in a SPARQL
federation. In The Semantic Web – ISWC 2013, pages 427–443.
Springer Science + Business Media, 2013.

[20] K. Ono and G. M. Lohman. Measuring the complexity of join
enumeration in query optimization. In 16th International Con-
ference on Very Large Data Bases, August 13-16, 1990, Bris-
bane, Queensland, Australia, Proceedings, pages 314–325.
Morgan Kaufmann, 1990.

[21] E. S. PAGE. A test for a change in a parameter occurring at an
unknown point. Biometrika, 42(3-4):523–527, 1955.

[22] B. Quilitz and U. Leser. Querying distributed RDF data sources
with SPARQL. In The Semantic Web: Research and Appli-
cations, pages 524–538. Springer Science + Business Media,
2008.

[23] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A.-C.
Ngonga Ngomo. A fine-grained evaluation of SPARQL end-
point federation systems. Semantic Web Journal, 2014.

[24] M. Saleem, A.-C. N. Ngomo, J. X. Parreira, H. F. Deus, and
M. Hauswirth. DAW: Duplicate-AWare federated query pro-
cessing over the web of data. In The Semantic Web – ISWC
2013, pages 574–590. Springer Science + Business Media,
2013.

[25] J. D. Scargle, J. P. Norris, B. Jackson, and J. Chiang. STUD-
IES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI.
BAYESIAN BLOCK REPRESENTATIONS. ApJ, 764(2):167,
feb 2013.

[26] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and
T. Tran. FedBench: A benchmark suite for federated semantic
data query processing. In The Semantic Web – ISWC 2011,
pages 585–600. Springer Science + Business Media, 2011.

[27] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt.
FedX: Optimization techniques for federated query processing
on linked data. In The Semantic Web – ISWC 2011, pages 601–

616. Springer Science + Business Media, 2011.
[28] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian

optimization of machine learning algorithms. In Advances in
Neural Information Processing Systems 25, pages 2951–2959.
Curran Associates, Inc., 2012.

[29] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization using
selectivity estimation. In Proceeding of the 17th international
conference on World Wide Web - WWW '08. Association for
Computing Machinery (ACM), 2008.

[30] X. Wang, T. Tiropanis, and H. C. Davis. LHD: optimising
linked data query processing using parallelisation. In Proceed-
ings of the WWW2013 Workshop on Linked Data on the Web,
Rio de Janeiro, Brazil, 14 May, 2013, 2013.

[31] C. Weiss, P. Karras, and A. Bernstein. Hexastore. Proceedings
of the VLDB Endowment, 1(1):1008–1019, aug 2008.

Appendix

For brevity the prefix declaration for LUBM16 was
omitted.

A. Detailed Results and Statistics

The average time to retrieve the cardinality of a triple-
pattern was 0.246 seconds with σ = 0.01 seconds.

B. Union Benchmark Queries

SELECT * WHERE{
? s t u d e n t lubm : t a k e s C o u r s e < h t t p : / / www. Depar tment12 .

U n i v e r s i t y 1 . edu / Course1 > }

Listing 1: LU1

SELECT * WHERE{
? d e p a r t m e n t lubm : name " Depar tment1 " }

Listing 2: LU2

SELECT * WHERE{
? s t u d e n t lubm : u n d e r g r a d u a t e D e g r e e F r o m < h t t p : / / www.

U n i v e r s i t y 0 . edu > }

Listing 3: LU3

16www.lehigh.edu/~zhp2/2004/0401/univ-bench.
owl#

www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#
www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#

C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing 23

SELECT * WHERE{
? p r o f e s s o r lubm : name " F u l l P r o f e s s o r 1 " }

Listing 4: LU4

C. Benchmark Queries

C.1. Linear Queries

SELECT * WHERE {
? r e s e a r c h G r o u p s lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? d e p a r t m e n t lubm : name " Depar tment1 " . }

Listing 5: LQ1

SELECT * WHERE {
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f ? u n i v e r s i t y .
? p r o f e s s o r lubm : worksFor ? d e p a r t m e n t .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? s t u d e n t lubm : memberOf < h t t p : / / www. Depar tment1 . U n i v e r s i t y 0 .

edu > . }

Listing 6: LQ2

SELECT * WHERE {
? r e s g r o u p lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? p r o f e s s o r lubm : worksFor ? d e p a r t m e n t .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? s t u d e n t lubm : memberOf < h t t p : / / www. Depar tment1 . U n i v e r s i t y 0 .

edu > . }

Listing 7: LQ3

SELECT * WHERE {
? a d v i s o r lubm : e m a i l A d d r e s s ? e m a i l .
? a d v i s o r lubm : worksFor ? d e p a r t m e n t .
? d e p a r t m e n t lubm : name " Depar tment1 " . }

Listing 8: LQ4

C.2. Star Queries

SELECT * WHERE {
? s t u d e n t lubm : a d v i s o r ? a d v i s o r .
? s t u d e n t lubm : name ?name .
? s t u d e n t lubm : u n d e r g r a d u a t e D e g r e e F r o m ? u n i v e r s i t y .
? s t u d e n t lubm : t a k e s C o u r s e < h t t p : / / www. Depar tment1 .

U n i v e r s i t y 0 . edu / Gradua teCourse33 > . }

Listing 9: LQ5

SELECT * WHERE {
? p r o f e s s o r lubm : e m a i l A d d r e s s ? ma i l .
? p r o f e s s o r lubm : t e l e p h o n e ? phone .
? p r o f e s s o r lubm : d o c t o r a l D e g r e e F r o m ? d o c t o r .
? p r o f e s s o r lubm : name " F u l l P r o f e s s o r 1 " . }

Listing 10: LQ6

SELECT * WHERE {
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? s t u d e n t lubm : t a k e s C o u r s e ? c o u r s e .
? s t u d e n t lubm : a d v i s o r ? a d v i s o r .
? s t u d e n t lubm : t e a c h i n g A s s i s t a n t O f ? t a c o u r s e .
? s t u d e n t lubm : e m a i l A d d r e s s ? e m a i l .
? s t u d e n t lubm : name ?name .
? s t u d e n t lubm : t e l e p h o n e ? t e l e p h o n e .
? s t u d e n t lubm : u n d e r g r a d u a t e D e g r e e F r o m < h t t p : / / www.

U n i v e r s i t y 0 . edu > . }

Listing 11: LQ7

SELECT * WHERE {
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? s t u d e n t lubm : t a k e s C o u r s e ? c o u r s e .
? s t u d e n t lubm : a d v i s o r ? a d v i s o r .
? s t u d e n t lubm : t e a c h i n g A s s i s t a n t O f ? t a c o u r s e .
? s t u d e n t lubm : e m a i l A d d r e s s ? e m a i l .
? s t u d e n t lubm : name " G r a d u a t e S t u d e n t 7 1 " .
? s t u d e n t lubm : t e l e p h o n e ? t e l e p h o n e .
? s t u d e n t lubm : u n d e r g r a d u a t e D e g r e e F r o m ? u n i v e r s i t y . }

Listing 12: LQ8

C.3. Snow Flake Queries

SELECT * WHERE {
? s t u d e n t lubm : a d v i s o r ? a d v i s o r .
? a d v i s o r lubm : worksFor ? d e p a r t m e n t .
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f ? u n i v e r s i t y .
? s t u d e n t lubm : name ?name .
? s t u d e n t lubm : t e l e p h o n e ? t e l .
? s t u d e n t lubm : t a k e s C o u r s e < h t t p : / / www. Depar tment12 .

U n i v e r s i t y 1 . edu / Course1 > . }

Listing 13: LQ9

SELECT * WHERE {
? d e p a r t m e n t lubm : name ?name .
? r e s g r o u p lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f < h t t p : / / www. U n i v e r s i t y 0 .

edu > .
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? s t u d e n t lubm : t a k e s C o u r s e ? c o u r s e . }

Listing 14: LQ10

SELECT * WHERE {
? d e p a r t m e n t lubm : name ?name .
? r e s g r o u p lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f ? u n i v e r s i t y .
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? s t u d e n t lubm : t a k e s C o u r s e < h t t p : / / www. Depar tment1 .

U n i v e r s i t y 0 . edu / Gradua teCourse33 > . }

Listing 15: LQ11

24 C. Başca et al. / x-Avalanche: Optimisation Techniques for Large Scale Federated SPARQL Query Processing

C.4. Complex Queries

SELECT * WHERE {
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f ? u n i v e r s i t y .
? r e s g r o u p lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? d e p a r t m e n t lubm : name ?name .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? p u b l i c a t i o n lubm : p u b l i c a t i o n A u t h o r ? p r o f e s s o r .
? p u b l i c a t i o n lubm : p u b l i c a t i o n A u t h o r < h t t p : / / www. Depar tment1 .

U n i v e r s i t y 1 0 . edu / A s s o c i a t e P r o f e s s o r 1 > . }

Listing 16: LQ12

SELECT * WHERE {
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f ? u n i v e r s i t y .
? r e s g r o u p lubm : s u b O r g a n i z a t i o n O f ? d e p a r t m e n t .
? s t u d e n t lubm : memberOf ? d e p a r t m e n t .
? s t u d e n t lubm : a d v i s o r ? p r o f e s s o r .
? s t u d e n t lubm : t a k e s C o u r s e ? c o u r s e .

? p u b l i c a t i o n lubm : p u b l i c a t i o n A u t h o r ? p r o f e s s o r .
? p u b l i c a t i o n lubm : p u b l i c a t i o n A u t h o r < h t t p : / / www. Depar tment1 .

U n i v e r s i t y 1 0 . edu / A s s o c i a t e P r o f e s s o r 1 > .
? p u b l i c a t i o n lubm : name ? t i t l e . }

Listing 17: LQ13

SELECT * WHERE {
? s t u d e n t lubm : a d v i s o r ? a d v i s o r .
? a d v i s o r lubm : worksFor ? d e p a r t m e n t .
? d e p a r t m e n t lubm : s u b O r g a n i z a t i o n O f < h t t p : / / www. U n i v e r s i t y 0 .

edu > .
? head lubm : headOf ? d e p a r t m e n t .
? head lubm : e m a i l A d d r e s s ? e m a i l .
? head lubm : d o c t o r a l D e g r e e F r o m ? alma .
? s t u d e n t lubm : name ?name .
? s t u d e n t lubm : t e l e p h o n e ? t e l .
? s t u d e n t lubm : t a k e s C o u r s e ? c o u r s e . }

Listing 18: LQ14

