
Semantic Web 0 (0) 1 1
IOS Press

On the Efficient Execution of Bounded
Jaro-Winkler Distances
Editor(s): Michelle Cheatham, Wright State University, USA; Isabel F. Cruz, University of Illinois at Chicago, USA; Jérôme Euzenat, INRIA
& University of Grenoble, France; Catia Pesquita, University of Lisbon, Portugal
Solicited review(s): Two anonymous reviewers

Kevin Dreßler a, Axel-Cyrille Ngonga Ngomo a

a AKSW Research Group, University of Leipzig, Germany

Abstract. Over the last years, time-efficient approaches for the discovery of links between knowledge bases have been regarded
as a key requirement towards implementing the idea of a Data Web. Thus, efficient and effective measures for comparing the
labels of resources are central to facilitate the discovery of links between datasets on the Web of Data as well as their integration
and fusion. We present a novel time-efficient implementation of filters that allow for the efficient execution of bounded Jaro-
Winkler measures. We evaluate our approach on several datasets derived from DBpedia 3.9 and LinkedGeoData and containing
up to 106 strings and show that it scales linearly with the size of the data for large thresholds. Moreover, we also show that our
approach can be easily implemented in parallel. We also evaluate our approach against SILK and show that we outperform it
even on small datasets.

Keywords: Link Discovery, String similiarity measure

1. Introduction

The Linked Open Data Cloud (LOD Cloud) has de-
veloped to a compendium of more than 2000 datasets
over the last few years.1 For example, data sets per-
taining to more than 14 million persons have already
been made available on the Linked Data Web.2 While
this number is impressive on its own, it is well known
that the population of the planet has surpassed 7 bil-
lion people. Hence, the Web of Data contains infor-
mation on less than 1% of the overall population of
the planet (counting both the living and the dead).
The output of open-government movements3, scien-
tific conferences4, health data5 and similar endeavours

1See http://stats.lod2.eu for an overview of the current
state of the Cloud. Last access: July 11th, 2014.

2Data collected from http://stats.lod2.eu. Last access:
July 11th, 2014.

3See for example http://data.gov.uk/.
4See for example http://data.semanticweb.org/
5http://aksw.org/Projects/GHO

yet promises to make massive amounts of data pertain-
ing to persons available in the near future. Dealing with
this upcoming increase of the number of resources on
the Web of data requires providing means to integrate
these datasets with the aim to facilitate statistical anal-
ysis, data mining, personalization, etc. However, while
the number of datasets on the Linked Data Web grows
drastically, the number of links between datasets still
stagnates.6 Addressing this lack of links requires solv-
ing two main problems: the quadratic time complexity
of link discovery (efficiency) and the automatic sup-
port of the detection of link specifications (effective-
ness). In this paper, we address the efficiency of the
execution of bounded Jaro-Winkler measures,7 which
are known to be effective when comparing person
names [11]. To this end, we derive equations that allow
discarding a large number of computations while ex-

6http://linklion.org
7We use bounded measures in the same sense as [18], i.e., to mean

that we are only interested in pairs of strings whose similarity is
greater than or equal to a given lower bound.

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

http://stats.lod2.eu
http://stats.lod2.eu
http://data.gov.uk/
http://data.semanticweb.org/
http://aksw.org/Projects/GHO
http://linklion.org

2 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

ecuting bounded Jaro-Winkler comparisons with high
thresholds.

The contributions of this paper are as follows:

1. We derive length- and range-based filters that al-
low reducing the number of strings t that are
compared with a string s .

2. We present a character-based filter that allows
detecting whether two strings s and t share
enough resemblance to be similar according to
the Jaro-Winkler measure.

3. We evaluate our approach w.r.t. to its runtime and
its scalability with several threshold settings and
dataset sizes.

The rest of this paper is structured as follows: In
Section 2, we present the problem we tackled as well
as the formal notation necessary to understand this
work. In the subsequent Section 3, we present the three
approaches we developed to reduce the runtime of
bounded Jaro-Winkler computations. We then evaluate
our approach in Section 4. Related work is presented
in Section 5, where we focus on approaches that aim to
improve the time-efficiency of link discovery. We con-
clude in Section 6. The approach presented herein is
now an integral part of LIMES.8

This paper is an extended version of [6]. We im-
proved the scalability of the approach presented in the
previous version of the paper by using tries. In addi-
tion, we provide a parallel version of the approach for
additional scalability. Finally, an extended evaluation
of the algorithm is presented.

2. Preliminaries

In the following, we present some of the symbols
and terms used within this work.

2.1. Link Discovery

In this work, we use link discovery as a hypernym
for deduplication, record linkage, entity resolution and
similar terms used across literature. The formal speci-
fication of link discovery adopted herein is tantamount
to the definition proposed in [17]: Given a set S of
source resources, a set T of target resources and a re-
lationR, our goal is to find the setM ⊆ S×T of pairs
(s, t) such thatR(s, t). IfR is owl:sameAs, then we
are faced with a deduplication task. Given that the ex-

8http://limes.sf.net

plicit computation of M is usually a very complex en-
deavour, M is most commonly approximated by a set
M ′ = {(s, t, δ(s, t)) ∈ S × T × R+ : δ(s, t) ≥ θ},
where δ is a (potentially complex) similarity function
and θ ∈ [0, 1] is a similarity threshold. Given that this
problem is in O(n2), using naïve algorithms to com-
pare large S and T is most commonly impracticable.
Thus, time-efficient approaches for the computation of
bounded measures have been developed over the last
years for measures such as the Levenshtein distance,
Minkowski distances, trigrams and many more [16].

In this paper, we thus study the following problem:
Given a threshold θ ∈ [0, 1] and two sets of strings
S and T , compute the set M ′ = {(s, t, δ(s, t)) ∈
S × T × R+ : δ(s, t) ≥ θ}. Two categories of ap-
proaches can be considered to improve the runtime of
measures: Lossy approaches return a subset M ′′ of
M ′ which can be calculated efficiently but for which
there are no guarantees that M ′′ = M ′. Lossless ap-
proaches on the other hand ensure that their result
set M ′′ is exactly the same as M ′. In this paper, we
present a lossless approach. To the best of our knowl-
edge, only one other link discovery framework imple-
ments a lossless approach that has been designed to
exploit the bound defined by the threshold θ to en-
sure a more efficient computation of the Jaro-Winkler
distance, i.e., the SILK framework with the approach
MultiBlock [10]. We thus compare our approach with
SILK 2.6.0 in the evaluation section of this paper.

2.2. The Jaro-Winkler Similarity

Let Σ∗ be the set of all possible strings over Σ. The
Jaro measure dj : Σ∗×Σ∗ → [0, 1] is a string similar-
ity measure approach which was developed originally
for name comparison in the U.S. Census. This measure
takes into account the number of character matches m
and the ratio of their transpositions t:

dj =

{
0 if m = 0
1
3

(
m
|s| + m

|t| + m−τ
m

)
otherwise (1)

Here two characters are considered to be a match if and
only if (1) they are the same and (2) they are at most at
a distance w = bmax(|s|,|t|)

2 c from each other. For ex-
ample, for s = spears and t = pears, the second
s of s matches the s of t while the first s of s does
not match the s of t. The number of transpositions τ is
half of the number of matching characters which are in
different orders across the input strings s and t. For ex-

http://limes.sf.net

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 3

ample, consider strings house and huose. All char-
acters match, however, the order of the letters o and u
is different. Thus, we have τ = 2

2 = 1.

The Jaro-Winkler measure [30] is an extension of
the Jaro distance. This extension is based on Winkler’s
observation that typing errors occur most commonly
in the middle or at the end of a word, but very rarely
in the beginning. Hence, it is legitimate to put more
emphasis on matching prefixes if the Jaro distance ex-
ceeds a certain "boost threshold" bt, originally set to
0.7 by Winkler in his publication [30].

dw =

{
dj if dj < bt
dj + (`p (1− dj)) otherwise (2)

Here, ` denotes the length of the common prefix and p
is a weighting factor. Winkler uses p = 0.1 and ` ≤ 4.
Note that `p must not be greater than 1.

3. Improving the Runtime of Bounded
Jaro-Winkler

The main principle behind reducing the runtime of
the computation of measures is to improve their reduc-
tion ratio. Here, we use a sequence of filters that allow
discarding similarity computations while being sure
that they would have led to a similarity score which
would have been less than our threshold θ. To this end,
we regard the problem as that of finding filters that
return an upper bound estimate θe(s, t) ≥ dw(s, t)
for some properties of the input strings that can be
computed in constant time. For a given threshold θ,
if θe(s, t) ≤ θ, we can discard the computation of
the Jaro-Winkler score for (s, t). We denote the upper
bound estimate of a concrete filter by θe,x, where x
will be the first letter of the filters name.

3.1. Length-based filters

In the following, we denoted the length of a string s
with |s|. Our first filter is based on the insight that large
length differences are a guarantee for poor similarity.
For example, the strings a and alpha cannot have a
Jaro-Winkler similarity of 1 by virtue of their length
difference. We can formalize this idea as follows: Let
s and t be strings with respective lengths |s| and |t|.
Without loss of generality, we will assume that |s| ≤
|t|. Moreover, let m be the number of matches across
s and t. Because m ≤ |s|, we can substitute m with

|s| and gain the following upper bound estimation for
dj(s, t):

dj =
1

3

(
m

|s|
+
m

|t|
+
m− τ
m

)
≤ 1

3

(
1 +
|s|
|t|

+
|s| − τ
|s|

) (3)

Now the lower bound for the number τ of transposi-
tions is 0. Thus, we obtain the following equation.

dj ≤
1

3

(
1 +
|s|
|t|

+ 1

)
≤ 2

3
+
|s|
3|t|

(4)

The application of this approximation on Winkler’s
extension is trivial:

dw = dj + ` · p · (1− dj)

≤ 2

3
+
|s|
3|t|

+ ` · p ·
(

1

3
− |s|

3|t|

)
= θe,l

(5)

Consider the pair s = bike and t = bicycle
and a threshold θ = 0.9. Applying the estimation for
Jaro we get dj ≤ 2

3 −
4
3·7 = 0.857. This exceeeds

the boost threshold, so we use equation 5 to compute
θe,l(s, t) = 0.885. Given that θe,l(s, t) < θ, we do not
need to compute the real value of dw(s, t) as we know
that this pair will not belong to the desired output.

By using this approach we can decide in O(1)9 if
a given pairs score is greater than a given threshold,
which saves us the much more expensive score com-
putation for a big number of pairs, provided that the
input strings sufficiently vary in length.

3.2. Filtering ranges by length

The approach described above can be reversed to
limit the number of pairs that we are going to be iter-
ating over. To this end, we can construct an index :
N→ Σ∗ which maps string lengths l ∈ N to all strings
s with |s| = l. With the help of this index, we can now
determine the set of strings t that should be compared
with the subset S(l) of S that only contains strings of
length l. We go about using this insight by computing
the upper and lower bound for the length of a string t

9In most programming languages, especially Java (which we used
for our implementation), the length of string is stored in a variable
and can thus be accessed in constant time.

4 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

that should be compared with a string s. This is basi-
cally equivalent to asking what is the minimum length
difference ||s| − |t|| so that θ ≥ θe,l(s, t) is satisfied.
We transpose equation 5 to the following for our lower
bound:

|s| ≥
⌊

3|t|θ − `p
1− `p

− 2|t|
⌋

= ρmin (6)

Analogously, we can derive the following upper bound:

|s| ≤

⌈
|t|

3 θ−`p1−`p − 2

⌉
= ρmax (7)

For example, consider a list of strings S with equally
distributed string lengths (4, 7, 11, 18) and θ = 0.9.
Using Equation 6 and Equation 7 we obtain Table 1.
Taking into account the last column of the table, we

Table 1
Bounds for distinct string lengths (θ = 0.9)

|s| ρmin ρmax sizes in range

4 2 8 (4, 7)

7 3 14 (4, 7, 11)

11 5 22 (7, 11, 18)

18 9 36 (11, 18)

will save a total of 3
8 comparisons. Note that this bound

is not effective if the threshold is not greater than φ =
2+`p
3 . This is simply due to the bounds ρmin and ρmax

being negative below this particular value of φ.

3.3. Filtering by character frequency

An even more fine-grained approach can be chosen
to filter out computations. Let e : Σ× Σ∗ → N be the
function which returns the number of occurrences of a
given character in a string. For the strings s and t, the
number of maximum possible matches mmax can be
expressed as

mmax =
∑

c∈s
min(e(s, c), e(t, c)) ≥ m (8)

Consequently, we can now substitute m for mmax in
the Jaro distance computation:

dj(s, t) =
1

3

(
mmax

|s|
+
mmax

|t|
+
mmax − τ
mmax

)
≤ 1

3

(
mmax

|s|
+
mmax

|t|
+ 1

)
= θe,f

(9)

Table 2
Calculation of mmax

c e(s, c) e(t, c) min(e(s, c), e(t, c)) mmax

a 2 1 1 1
c 0 1 0 1
h 0 1 0 1
i 0 1 0 1
m 0 1 0 1
n 1 0 0 1
o 1 1 1 2
p 0 1 0 2
r 1 1 1 3
s 1 1 1 4
t 2 1 1 5
u 1 0 0 5

We can thus derive that dj(s, t) ≥ θ iff

mmax ≥
(3θ − 1) |s||t|
|s|+ |t|

. (10)

For instance, let s = astronaut, t = astro-
chimp. The retrieval of mmax is shown in Table 2.

3.3.1. Naïve Implementation
The naïve implementation of the character-based fil-

ter consists of checking if Equation 10 holds true. The
e function for each string is thereby represented us-
ing a map. As shown by our evaluation, the character-
based filter leads to a significant reduction of the num-
ber of comparisons (see Figure 6) by more than 2 or-
ders of magnitude. However, the runtime improvement
achieved using this implementation is not substantial.
This is simply due to the lookup into maps being con-
stant in time complexity but still a large amount of
time. Instead of regarding strings as monolithic enti-
ties, we thus extended our implementation to be more
fine-grained and used a trie as explained in the subse-
quent section.

3.3.2. Implementation with Tries
To overcome the need to perform character index

lookups for every pair of strings we use a trie-based
pruning technique. We thus dub this filter the trie filter
from now on. Let Dl ∈ {S, T} be the dataset that con-
tains the longest string. Moreover, let Ds be the other
dataset (we set Dl = S and Ds = T if both datasets
contain longest strings of same length).

We define a function σ : Σ+ → Σ+, which maps a
word onto an ordered permutation of itself according
to any consistent total ordering of letters in Σ. For ex-

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 5

Algorithm 1 Trie filter

1: procedure TRIEFILTER(Dl,Ds, θ)
2: M← {}
3: T ← CONSTRUCTTRIE(Ds)
4: P ← CONSTRUCTPARTITIONS(Dl)
5: for all Pu ∈ P do
6: TRIETRAVERSE(T ,Pu, u, θ)
7: end for
8: end procedure

9: function θe, t(l1, l2,m)
10: p← 4
11: `← 0.1
12: return 1−`p

3

(
m
l1

+ m
l2

+ 1
)

+ `p

13: end function

14: procedure TRIETRAVERSE(T ,Pu, u, θ)
15: X ← new Stack()
16: X .push(〈ε, 0, 0〉) . Start at root node
17: while X 6= ∅ do
18: 〈η,mu, du〉 ← X .pop()
19: mmax ← mu+ min(|u|−du, height(η) + 1)

20: if mmax ≥ mmin(|u|, v) then
21: if label(η) ≤ udu then
22: if label(η) = udu then
23: du ← du + 1
24: mu ← mu + 1
25: α1 ← Sη 6= ∅
26: α2 ← dmaxw (|η|, |u|,m) ≥ θ

. |η| denotes the level of η
27: if α1 ∧ α2 then
28: M←M∪ 〈Sη,Pu〉
29: end if
30: end if
31: for all x ∈ children(η) do
32: X .push(〈x,mu, du〉)
33: end for
34: else
35: du ← du + 1
36: X .push(〈η,mu, du〉)
37: end if
38: end if
39: end while
40: end procedure

ample, we get σ(hello) = ehllo for the ordering
derived from the UTF-8 index of characters. We begin
by partitioning the set Dl. The partition (also called
bucket) Pσ(si) with the signature σ(si) is the set of
all strings sj from Dl with σ(si) = σ(sj). In a sec-
ond step, we add all elements tk ∈ Ds to a trie T .
More precisely, we add all tk to sets Sη associated with
nodes η at path σ(tk). We assume that each node of
T is labelled with the letter that must be added to its
father to create it. The core of our approach now con-
sists of detecting all tk that must be compared with all
elements of a particular partition Pσ(si). To this end,
we begin by computing the minimal number of match-
ing characters mmin from the signature σ(si) that any
relevant tk must have to be a potential match. The to-
tal amount of possible matches mmax must be greater
than or equal to mmin for having a chance of finding
any tk such that dw(si, tk) ≥ θ.

From the Jaro-Winkler version of the upper bound
estimation given in Equation 9 we obtain the following

equation:

mmax ≥ mmin(s, t)

=

⌈(
θ − `p− 1− `p

3

)
· 3|s||t|

(|s|+ |t|) (1− `p)

⌉
(11)

Given this value, we traverse T depth-first in pre-
order for every Pu with signature u (i.e., for all strings
si with signature u) as follows: We begin by setting
the number mu of matches for u to 0 and the depth
counter du to 0. Note that du and mu do have a lo-
cal scope w.r.t. a path on T . That is, we virtually run
our approach independently on each path. When at a
node η of the trie, we check whether the number of
matches between the sequence of letters that leads to
η and the signature u abides by mmax ≥ mmin. Less
formally, we simply check whether the children of the
given nodes can at all be potential matches for the sig-
nature u. If the node η does not fulfill this criterion, we
terminate the exploration of the trie and go on with the
next node in the set of nodes to be explored, effectively
cutting off the subtrie below node η. Else, we make use

6 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

of the total ordering underlying the signature u. To this
end, we compare the letter of uwith the index du, from
here on called udu with the label of η. If the label of η
is superior to that chosen letter udu , then no children
of η can match udu either. However, subsequent letters
of umay match the label of η or its children. We there-
fore increment du and put η back into the set of nodes
to be explored, effectively revisiting η in the next iter-
ation step. If the label of η is inferior to udu , it means
that we can still expect some node in the subtrie of η
to match udu , therefore we just add all children of η to
the set of nodes to be explored. Finally, if the label of
η matches udu exactly, we increment both mu and du,
add all children of η to the set of nodes to be explored
and if Sη is not empty, we add (Pu,Sη) to the set of
potential match candidates. The detailed implementa-
tion logic of the tree traversal is given in Algorithm 1.
Consider the following example for a better under-
standing of how the algorithm works. The threshold
parameter θ is set to 0.92. Datasets S and T are given
in Table 3.

Table 3
Datasets S and T from the example

S T

{nines} {niece, niche, nices, spice, since}

We deliberately selected string of size 5 so that we
can present the character filtering in a clear fashion. As
both datasets contain the longest string, we setDl = S

and Ds = T . The only string in Dl is nines, hence
we have exactly one Partition Pσ(nines) = Peinns =

{nines}. We now construct T from strings in Ds,
gaining the trie shown in Figure 1. The nodes η, whose
corresponding sets Sη are not empty, are highlighted
in blue color. Table 4 gives an overview of all Sη .

ε c e0

i0

p s0

n0 s1

h i1 n1

e1 i2 n2

Fig. 1. Example Trie T

Table 4
Nodes and their corresponding sets from the example

η Sη

s0 {spice}
s1 {nices, since}
n0 {niche}
n1 {niece}

We select the first and only Partition Peinns and set
u = einns, du = 0 and mu = 0. Now we begin
the trie exploration, therefore starting at the root (la-
beled with the empty word). In the next step we need
to check whether mmax ≥ mmin holds true. To this
end, we need to compute mmin and mmax. First, we
compute mmin using Equation 11 with arguments u
and v, where v is the string we gain by chaining all
labels of nodes on the shortest path from the root to
a leaf, getting mmin = 4. Second, we determine the
maximal number of possible matches in this iteration
using Equation 12.

mmax(u, du, η) = m+min(|u|−du, height(η)+1)

(12)

The height of a node η herein is defined as the num-
ber of edges on the longest downward path between
that node and a leaf. Therefore we have mmax =
min(5, 6) = 6. As mmax = 6 ≥ 4 = mmin

holds true, we continue by comparing the label of η
to udu . With η being the root of the trie, we have
label(η) = ε < e = u0, hence we just add all children
of η to the set of nodes to be explored.
In the next iteration step, we now have mmax =
min(5, 5) = 5, which is still greater than mmin = 4.
Again, we have label(η) = c < e = u0 and end up
adding all children of node c to the set of nodes to be
explored.
In iteration step 3 mmax = 4 ≥ 4 = mmin still
holds true and this time we indeed have a match, as
label(η) = e = u0. Therefore, we now increment both
m and du and add all children of node e0 to the set of
nodes to be explored.
In iteration step 4 we select η = i0 and still mmax =
4 ≥ 4 = mmin. We have a match for label(η) = i =
u1. We increment both m and du and add all children
of node i0 to the set of nodes to be explored.
In iteration step 5 we select η = p and still mmax =
4 ≥ 4 = mmin. We have label(η) = p > n = u2. We
increment du and revisit this node in the next step.

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 7

Source

Target

×

S

T

Range
partitioner

Trie
filter

Jaro-Winkler
distance

calculation

Threshold
filter

S × T M ′′′x M ′′x M ′x Mx

Fig. 2. Flowchart of parallel trie filter stack

In iteration step 6 we revisit η = p and still mmax =

4 ≥ 4 = mmin. Again, it is label(η) = p > n = u3.
We increment du and revisit this node once again in
the next step.
In iteration step 7 we revisit η = p and this time
mmax = 3 ≥ 4 = mmin, hence we continue with the
next node.
In iteration step 8 we select η = n0 and still mmax =

4 ≥ 4 = mmin. We have a match for label(η) = n =

u2. Therefore, we now increment both m and du and
add all children of node n0 to the set of nodes to be
explored.
In iteration step 9 we select η = s1 and still mmax =

4 ≥ 4 = mmin. We have label(η) = s > n = u3. We
increment du and revisit this node in the next step.
In iteration step 10 we revisit η = s1 and still
mmax = 4 ≥ 4 = mmin. We have a match for
label(η) = s = u4. As mu = 4 = mmin, we can now
add {Pu,Ss1

} to the set of match candidates.
In iteration step 11 we select η = h and still mmax =

4 ≥ 4 = mmin. However, label(η) = h < i = u1.
All children of node h are therefore added to the set of
nodes to be explored.
In iteration step 12 we select η = i1 and due to
mmax = 3 < 4 = mmin, we abort the exploration of
this branch and continue with the next step.
Iterations 13 and 14 come about analogously to steps
11 and 12, leading to a stop of exploration at node i2.
The set of match candidates that is forwarded to the ac-
tual Jaro-Winkler distance computation now contains
{Pu,Ss1

} = {{nines}, {nices,since}}.
Note that using the range filter prior to the trie filter
is a key requirement towards its efficiency, that is, the
more equally distributed the string lengths are, the bet-
ter we get in terms of reduction ratio and runtime im-
provement. The worst case scenario is a big dataset
with very large strings over a little alphabet and little
to none variation in string lengths.

3.4. Parallel Implementation

While our results suggest that the approach pre-
sented above scales well on one processor, we wanted
to measure how well the partitioning induced by
the upper and lower length bounds given in Equa-
tions 6 and 7 can be used to implement our approach
in parallel. Let Ti,j = {t ∈ T : i ≤ |t| ≤ j} be set of
strings whose length is larger or equal to i and less or
equal to j. Moreover, let Sk = {s ∈ S : k = |s|}
be the subset of S which contains strings of length k.
Finally, let L(S) be the set of distinct string lengths of
elements of S. We distribute a subset S × T into sets
M ′′′x = Sx × Tρmin(x),ρmax(x)∀x ∈ L(S). Note that
due to the bounds in Equations 6 and 7, we are sure that
all elements of T which abide by the similarity condi-
tion δ(s, t) ≥ θ for s ∈ Sx can be found in the subset
Tρmin(x),ρmax(x). Moreover, not all elements of S × T
are in the setM ′′′x . In particular, pairs of strings that do
not abide by the range restrictions are not considered
as they are known not to be matches.

Now given the sets M ′′′x , we can parallelize our im-
plementation by simply using a thread-pool-based ap-
proach. We initialize a user-given number of threads
and assign each thread one of the sets M ′′′x randomly.
Once a thread has completed its computations, it is
simply assigned a further set M ′′′x . Note that we do
not implement any load balancing as we were primar-
ily interested in how well the range filter allows parti-
tioning data. Figure 2 gives an overview of our parallel
pipeline.

4. Evaluation

4.1. Experimental Setup

The aim of our evaluation was to study how well
our approach performs on real data. We chose DBpe-
dia 3.9 as a source of data for our experiments as it
contains data pertaining to 1.1 million persons and thus

8 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

10−1

100

101

Threshold θ

Ti
m

e
(i

n
s)

n
r
l
f
t

r+l
r+f
r+t

r+l+f

Fig. 3. Runtimes on sample of DBpedia rdf:labels with size 1000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

101

102

Threshold θ

Ti
m

e
(i

n
s)

n
r
l
f
t

r+l
r+f
r+t

r+l+f

Fig. 4. Runtimes on sample of DBpedia rdf:labels with size 104

allows for both fine-grained evaluations and scalability
evaluations. As a second data source we chose Linked-
GeoData to evaluate how well we perform on strings
that have no relation to person names. We chose these
datasets because (1) they have been widely used in ex-
periments pertaining to link discovery and (2) the dis-
tributions of string sizes in these datasets are signifi-
cantly different (see Figures 7 and 8). All experiments
where deduplication experiments, i.e., S = T . We con-
sidered the list of all rdfs:label in DBpedia in
our runtime evaluation and added all rdfs:labels
of the Places dataset from LinkedGeoData for scala-
bility experiments. We also computed the number of
actual Jaro-Winkler calculations carried out for 1000
strings from DBpedia. All runtime and scalability ex-

periments were performed on a 2.5 GHz Intel Core
i5 machine with 16GB RAM running OS X 10.9.3.
The speedup of the parallel trie-based filter stack was
measured on a Microsoft Azure VM instance with 16
CPUs and 112GB RAM.

For the sake of legibility, we used the following
names and acronyms for filter combination or lack
thereof:

– naïve (n): No use of any filters (equivalent to
brute-force).

– range (r): Uses only the range filter as de-
scribed in Section 3.2.

– length (l): Uses only the length filter as de-
scribed in Section 3.1.

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 9

– frequency (f): Uses only the naïve imple-
mentation of the character frequency filter as de-
scribed in Section 3.3.

– trie (t): Uses only the trie filter implementa-
tion of the character frequency filter as described
in Section 3.3.2.

– range and length (r+l): Uses the range
filter to partition the datasets, the length filter is
then applied to each pair of partitions.

– range and frequency (r+f): Sets up the
frequency filter globally in a first step. Then uses
the range filter to partition the datasets and applies
the frequency filter to each pair of partitions.

– range and trie (r+t): Uses the range fil-
ter to partition the datasets, the trie filter is then
applied to each pair of partitions.

– range, length and frequency (r+l+f):
Sets up the frequency filter globally in a first step.
Then uses the range filter to partition the datasets
and applies the length filter to each pair of parti-
tions. The frequency filter is then only applied to
those pairs of strings for which the length filter
does not apply.

Note that the trie filter implicitly contains a length
filter, which is the reason why we do not evaluate the
combination r+l+t separately.

4.2. Runtime Evaluation

In our first series of experiments, we evaluated the
runtime of all filter combinations against the naïve ap-
proach on a small dataset containing 1000 labels from
DBpedia. The results of our evaluation are shown in
Figure 3. This evaluation suggests that all filter setups
except those containing t outperform the naïve ap-
proach. Moreover, the combination of all filters leads
to the best overall runtime in most cases on this small
sample. Overall, the results on this dataset already
shows that we outperform the naïve approach by more
than an order of magnitude when θ > 0.9. Interest-
ingly, the break-even point for f and t is reached when
θ > 0.99 on this small dataset. This is clearly due to
the overhead necessary to create the trie overshadow-
ing the runtime advantage engendered by using the trie
to search for matches.

The runtimes on a larger sample of size 104 show
an even better improvement (see Figure 4). This sug-
gests that the relative improvement of our approach
improves with the size of the problem. The most inter-
esting result comes from filter setup r+t. It is slower

than the naïve approach on low θ but after an break-
even point around 0.89 ≤ θ ≤ 0.91 it outperforms the
second best setup r+l by an order of magnitude.

4.3. Scalability Evaluation

The aim of the scalability evaluation was to mea-
sure how well our approach scales. In our first set of
experiments, we looked at the growth of the runtime
of our approach on datasets of growing sizes (see Fig-
ures 9 and 10). Our results show very clearly that r+t
is the best filter combination for datasets of large sizes.
This result holds on both DBpedia and LinkedGeo-
Data. r+t is thus the default implementation of the
Jaro-Winkler measure in LIMES. In addition, our re-
sults suggest that our approach grows linearly with the
number of labels contained in S and T . This is one of
our most important results as it makes clear that we can
employ r+t on large datasets and expect acceptable
runtimes. Moreover, the behavior of the runtime of our
default setup can be easily predicted for large datasets,
which is of importance when asking users to wait for
the results of the computation.

The second series of scalability experiments looked
at the runtime behaviour of our approach on a large
dataset with 105 labels (see Figure 5). Our results sug-
gest that the runtime of our approach falls superlin-
early with an increase of the threshold θ. This be-
haviour suggest that our approach is especially useful
on clean datasets, where high thresholds can be used
for link discovery.

In the third series of experiments we looked at the
speedup we gain by parallelizing r+t on the DBpe-
dia dataset with input sizes of 105 and 106 (see Fig-
ures 11 and 12). Here, our results show that the cur-
rent implementation scales up in a satisfactory man-
ner on up to 4 processors. Running the parallel imple-
mentation on 8 and 12 processors does not bring about
any considerable increase in speedup. The reason for
this behavior is simply that we did not implement any
load balancing. Hence, there is commonly one thread
that is assigned a single large M ′′′x , leading to all other
threads having completed their tasks but having to wait
for this particular thread to terminate. Adding load bal-
ancing to the approach as well as splitting large M ′′′x
into smaller chunks should lead to an improvement of
the scalability of our parallel implementation. These
extensions will be implemented in future work.

10 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

0.8 0.85 0.9 0.95 1
101

102

103

104

Threshold θ

Ti
m

e
(i

n
s)

n
r+l

r+l+f
r+t

Fig. 5. Runtimes on sample of DBpedia rdf:labels with size
105, scaling threshold

0.8 0.85 0.9 0.95 1

103

104

105

106

Threshold θ

C
om

pa
ri

so
ns

n
r

l; r+l
f; r+f
t; r+t

Fig. 6. Actual Jaro-Winkler computations, measured on sample of
DBpedia rdf:labels with size 1000

0 50 100

101

103

105

String Length

Fr
eq

ue
nc

y

Fig. 7. String length distribution of 106 DBpedia rdf:labels

0 100 200

100

102

104

String Length

Fr
eq

ue
nc

y

Fig. 8. String length distribution of 106 LinkedGeoData rdf:labels

103 104 105 106

100

102

104

Input list size

Ti
m

e
(i

n
s)

n
r+l (θ = 0.91)
r+l (θ = 0.95)
r+l (θ = 0.99)
r+t (θ = 0.91)
r+t (θ = 0.95)
r+t (θ = 0.99)

Fig. 9. Runtimes for growing input list sizes (DBPedia)

103 104 105 106
10−1

101

103

Input list size

Ti
m

e
(i

n
s)

n
r+l (θ = 0.91)
r+l (θ = 0.95)
r+l (θ = 0.99)
r+t (θ = 0.91)
r+t (θ = 0.95)
r+t (θ = 0.99)

Fig. 10. Runtimes for growing input list sizes (LinkedGeoData)

1 2 4 8 12

1

2

3

1

1.72

2.7
2.89

3.16

Number of CPUs

Ti
m

e
(i

n
s)

Fig. 11. Speedup of parallel algorithm (DBPedia, 105)

1 2 4 8 12

2

4

1

1.87

3.05

4.12
4.47

Number of CPUs

Ti
m

e
(i

n
s)

Fig. 12. Speedup of parallel algorithm (DBPedia, 106)

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 11

4.4. Comparison with existing approaches

We compared our approach with SILK2.6.0. To this
end, we retrieved all rdfs:label of instances of
subclasses of Person. We only compared with SILK
on small datasets (i.e., on classes with small numbers
of instances) as the results on these small datasets al-
ready showed that we outperform SILK consistently.10

Our results are shown in Table 5. They suggest that the
absolute difference in runtime grows with the size of
the datasets. Thus, we did not consider testing larger
datasets against SILK as in the best case, we were al-
ready 4.7 times faster than SILK (Architect dataset,
θ = 0.95).

5. Related Work

The work presented herein is related to record
linkage, deduplication, link discovery and the effi-
cient computation of Hausdorff distances. An exten-
sive amount of literature has been published by the
database community on record linkage (see [12,7] for
surveys). With regard to time complexity, time-efficient
deduplication algorithms such as PPJoin+ [32], ED-
Join [31], PassJoin [13] and TrieJoin [29] were devel-
oped over the last years. Several of these were then
integrated into the hybrid link discovery framework
LIMES [17]. Moreover, dedicated time-efficient ap-
proaches were developed for LD. For example, RDF-
AI [27] implements a five-step approach that com-
prises the preprocessing, matching, fusion, interlink
and post-processing of data sets. [19] presents an ap-
proach based on the Cauchy-Schwarz that allows dis-
carding a large number of unnecessary computations.
The approaches HYPPO [15] and HR3 [16] rely on
space tiling in spaces with measures that can be split
into independent measures across the dimensions of
the problem at hand. Especially,HR3 was shown to be
the first approach that can achieve a relative reduction
ratio r′ less or equal to any given relative reduction ra-
tio r > 1. Standard blocking approaches were imple-
mented in the first versions of SILK and later replaced
with MultiBlock [10], a lossless multi-dimensional
blocking technique. KnoFuss [22] also implements
blocking techniques to achieve acceptable runtimes.
Further approaches can be found in [28,4,23,24,8,26].

In addition to addressing the runtime of link discov-
ery, several machine-learning approaches have been

10We ran SILK with -Dthreads = 1 for the sake of fairness.

developed to learn link specifications (also called link-
age rules) for link discovery. For example, machine-
learning frameworks such as FEBRL [2] and MAR-
LIN [1] rely on models such as Support Vector Ma-
chines [3] and decision trees [25] to detect classifiers
for record linkage. RAVEN [20] relies on active learn-
ing to detect linear or Boolean classifiers. The EA-
GLE approach [21] combines active learning and ge-
netic programming to detect link specifications. Kno-
Fuss [22] goes a step further and presents an unsu-
pervised approach based on genetic programming for
finding accurate link specifications. Other record dedu-
plication approaches based on active learning and ge-
netic programming are presented in [5,9].

6. Conclusion and Future Work

In this paper, we present a novel approach for the
efficient execution of bounded Jaro-Winkler compu-
tations. Our approach is based on three filters which
allow discarding a large number of comparisons. We
showed that our approach scales well with the amount
of data it is faced with. Moreover, we showed that
our approach can make effective use of large thresh-
olds by reducing the total runtime of the approach con-
siderably. We also compared our approach with the
state-of-the-art framework SILK 2.6.0 and showed that
we outperform it on all datasets. In future work, we
will test whether our approach improves the accuracy
of specification detection algorithms such as EAGLE.
Moreover, we will focus on improving the quality of
matches. To this end we will split input strings into to-
kens and use a hybrid approach as proposed by Monge
and Elkan [14], which adds to complexity of the al-
gorithm, hence allowing for further runtime improve-
ments. Furthermore, we will extend the parallel imple-
mentation with load balancing.

References

[1] Mikhail Bilenko and Raymond J. Mooney. Adaptive dupli-
cate detection using learnable string similarity measures. In
Lise Getoor, Ted E. Senator, Pedro M. Domingos, and Chris-
tos Faloutsos, editors, Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 24 - 27, 2003, pages
39–48. ACM, 2003. doi:10.1145/956750.956759.

[2] Peter Christen. Febrl -: an open source data cleaning, dedu-
plication and record linkage system with a graphical user in-
terface. In Ying Li, Bing Liu, and Sunita Sarawagi, editors,
Proceedings of the 14th ACM SIGKDD International Confer-

12 Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances

Table 5
Runtimes (in seconds) of our approach (OA) and SILK 2.6.0

DBpedia Class Size OA(0.8) OA(0.9) OA(0.95) SILK(0.8) SILK(0.9) SILK(0.95)

Actors 9509 15.07 10.13 6.38 27 25 25
Architect 3544 5.58 5.48 2.32 11 11 11
Criminal 5291 11.54 7.77 4.52 18 18 18

ence on Knowledge Discovery and Data Mining, Las Vegas,
Nevada, USA, August 24-27, 2008, pages 1065–1068. ACM,
2008. doi:10.1145/1401890.1402020.

[3] Nello Cristianini and Elisa Ricci. Support vector machines. In
Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer,
2008. doi:10.1007/978-0-387-30162-4_415.

[4] Philippe Cudré-Mauroux, Parisa Haghani, Michael Jost, Karl
Aberer, and Hermann de Meer. idmesh: graph-based disam-
biguation of linked data. In Juan Quemada, Gonzalo León,
Yoëlle S. Maarek, and Wolfgang Nejdl, editors, Proceedings of
the 18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009, pages 591–600. ACM,
2009. doi:10.1145/1526709.1526789.

[5] Junio de Freitas, Gisele L. Pappa, Altigran Soares da Silva,
Marcos André Gonçalves, Edleno Silva de Moura, Adriano
Veloso, Alberto H. F. Laender, and Moisés G. de Carvalho. Ac-
tive learning genetic programming for record deduplication. In
Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC 2010, Barcelona, Spain, 18-23 July 2010, pages 1–8.
IEEE, 2010. doi:10.1109/CEC.2010.5586104.

[6] Kevin Dreßler and Axel-Cyrille Ngonga Ngomo. Time-
efficient execution of bounded jaro-winkler distances. In Pavel
Shvaiko, Jérôme Euzenat, Ming Mao, Ernesto Jiménez-Ruiz,
Juanzi Li, and Axel Ngonga, editors, Proceedings of the 9th
International Workshop on Ontology Matching collocated with
the 13th International Semantic Web Conference (ISWC 2014),
Riva del Garda, Trentino, Italy, October 20, 2014., volume
1317 of CEUR Workshop Proceedings, pages 37–48. CEUR-
WS.org, 2014.

[7] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vas-
silios S. Verykios. Duplicate record detection: A sur-
vey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.
doi:10.1109/TKDE.2007.250581.

[8] Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura
Hollink, Christian Meilicke, Andriy Nikolov, Dominique
Ritze, François Scharffe, Pavel Shvaiko, Heiner Stucken-
schmidt, Ondrej Sváb-Zamazal, and Cássia Trojahn dos San-
tos. Results of the ontology alignment evaluation initia-
tive 2011. In Pavel Shvaiko, Jérôme Euzenat, Tom Heath,
Christoph Quix, Ming Mao, and Isabel F. Cruz, editors,
Proceedings of the 6th International Workshop on Ontology
Matching, Bonn, Germany, October 24, 2011, volume 814 of
CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[9] Robert Isele and Christian Bizer. Learning expressive linkage
rules using genetic programming. PVLDB, 5(11):1638–1649,
2012.

[10] Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient mul-
tidimensional blocking for link discovery without losing recall.
In Amélie Marian and Vasilis Vassalos, editors, Proceedings
of the 14th International Workshop on the Web and Databases
2011, WebDB 2011, Athens, Greece, June 12, 2011, 2011.

[11] Matthew A Jaro. Advances in record-linkage methodology as
applied to matching the 1985 census of tampa, florida. Jour-
nal of the American Statistical Association, 84(406):414–420,
1989.

[12] Hanna Köpcke and Erhard Rahm. Frameworks for entity
matching: A comparison. Data Knowl. Eng., 69(2):197–210,
2010. doi:10.1016/j.datak.2009.10.003.

[13] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng.
PASS-JOIN: A partition-based method for similarity joins.
PVLDB, 5(3):253–264, 2011.

[14] Alvaro E. Monge and Charles Elkan. An efficient domain-
independent algorithm for detecting approximately duplicate
database records. In DMKD, page 0, 1997.

[15] Axel-Cyrille Ngonga Ngomo. A time-efficient hybrid ap-
proach to link discovery. In Pavel Shvaiko, Jérôme Euzenat,
Tom Heath, Christoph Quix, Ming Mao, and Isabel F. Cruz,
editors, Proceedings of the 6th International Workshop on On-
tology Matching, Bonn, Germany, October 24, 2011, volume
814 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[16] Axel-Cyrille Ngonga Ngomo. Link discovery with guaranteed
reduction ratio in affine spaces with minkowski measures. In
Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tu-
dorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier
Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein,
and Eva Blomqvist, editors, The Semantic Web - ISWC 2012
- 11th International Semantic Web Conference, Boston, MA,
USA, November 11-15, 2012, Proceedings, Part I, volume
7649 of Lecture Notes in Computer Science, pages 378–393.
Springer, 2012. doi:10.1007/978-3-642-35176-1_24.

[17] Axel-Cyrille Ngonga Ngomo. On link discovery using a
hybrid approach. J. Data Semantics, 1(4):203–217, 2012.
doi:10.1007/s13740-012-0012-y.

[18] Axel-Cyrille Ngonga Ngomo. ORCHID - reduction-ratio-
optimal computation of geo-spatial distances for link discov-
ery. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T.
Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo,
Natasha F. Noy, Chris Welty, and Krzysztof Janowicz, ed-
itors, The Semantic Web - ISWC 2013 - 12th International
Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part I, volume 8218 of Lecture
Notes in Computer Science, pages 395–410. Springer, 2013.
doi:10.1007/978-3-642-41335-3_25.

[19] Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A
time-efficient approach for large-scale link discovery on the
web of data. In Toby Walsh, editor, IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial Intel-
ligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
2312–2317. IJCAI/AAAI, 2011.

[20] Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and
Konrad Höffner. RAVEN - active learning of link speci-
fications. In Pavel Shvaiko, Jérôme Euzenat, Tom Heath,

Dreßler and Ngonga / Time-Efficient Execution of Bounded Jaro-Winkler Distances 13

Christoph Quix, Ming Mao, and Isabel F. Cruz, editors,
Proceedings of the 6th International Workshop on Ontology
Matching, Bonn, Germany, October 24, 2011, volume 814 of
CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[21] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. EAGLE: effi-
cient active learning of link specifications using genetic pro-
gramming. In Elena Simperl, Philipp Cimiano, Axel Polleres,
Óscar Corcho, and Valentina Presutti, editors, The Seman-
tic Web: Research and Applications - 9th Extended Seman-
tic Web Conference, ESWC 2012, Heraklion, Crete, Greece,
May 27-31, 2012. Proceedings, volume 7295 of Lecture
Notes in Computer Science, pages 149–163. Springer, 2012.
doi:10.1007/978-3-642-30284-8_17.

[22] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. Unsu-
pervised learning of link discovery configuration. In Elena
Simperl, Philipp Cimiano, Axel Polleres, Óscar Corcho, and
Valentina Presutti, editors, The Semantic Web: Research and
Applications - 9th Extended Semantic Web Conference, ESWC
2012, Heraklion, Crete, Greece, May 27-31, 2012. Proceed-
ings, volume 7295 of Lecture Notes in Computer Science,
pages 119–133. Springer, 2012. doi:10.1007/978-3-642-
30284-8_15.

[23] Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne
N. De Roeck. Overcoming schema heterogeneity between
linked semantic repositories to improve coreference resolution.
In Asunción Gómez-Pérez, Yong Yu, and Ying Ding, editors,
The Semantic Web, Fourth Asian Conference, ASWC 2009,
Shanghai, China, December 6-9, 2009. Proceedings, volume
5926 of Lecture Notes in Computer Science, pages 332–346.
Springer, 2009. doi:10.1007/978-3-642-10871-6_23.

[24] George Papadakis, Ekaterini Ioannou, Claudia Niederée,
Themis Palpanas, and Wolfgang Nejdl. Eliminating the re-
dundancy in blocking-based entity resolution methods. In
Glen Newton, Michael J. Wright, and Lillian N. Cassel,
editors, Proceedings of the 2011 Joint International Con-
ference on Digital Libraries, JCDL 2011, Ottawa, ON,
Canada, June 13-17, 2011, pages 85–94. ACM, 2011.
doi:10.1145/1998076.1998093.

[25] S. Rasoul Safavian and David A. Landgrebe. A survey
of decision tree classifier methodology. IEEE Transactions
on Systems, Man, and Cybernetics, 21(3):660–674, 1991.
doi:10.1109/21.97458.

[26] Fatiha Saïs, Nathalie Pernelle, and Marie-Christine Rousset.
Combining a logical and a numerical method for data reconcil-
iation. J. Data Semantics, 12:66–94, 2009. doi:10.1007/978-
3-642-00685-2_3.

[27] Francois Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an
architecture for rdf datasets matching, fusion and interlink. In
Proc. IJCAI 2009 workshop on Identity, reference, and knowl-
edge representation (IR-KR), Pasadena (CA US), 2009.

[28] Dezhao Song and Jeff Heflin. Automatically generating data
linkages using a domain-independent candidate selection ap-
proach. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Tay-
lor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy,
and Eva Blomqvist, editors, The Semantic Web - ISWC 2011 -
10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, volume 7031 of
Lecture Notes in Computer Science, pages 649–664. Springer,
2011. doi:10.1007/978-3-642-25073-6_41.

[29] Jiannan Wang, Guoliang Li, and Jianhua Feng. Trie-join: Ef-
ficient trie-based string similarity joins with edit-distance con-
straints. PVLDB, 3(1):1219–1230, 2010.

[30] William E. Winkler. String comparator metrics and enhanced
decision rules in the fellegi-sunter model of record linkage. In
Proceedings of the Section on Survey Research, pages 354–
359, 1990.

[31] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient
algorithm for similarity joins with edit distance constraints.
PVLDB, 1(1):933–944, 2008.

[32] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Ef-
ficient similarity joins for near duplicate detection. In Jinpeng
Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying
Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceed-
ings of the 17th International Conference on World Wide Web,
WWW 2008, Beijing, China, April 21-25, 2008, pages 131–
140. ACM, 2008. doi:10.1145/1367497.1367516.

