Semantic Web 0 (2015) 1-0 1
10S Press

Ripple Down Rules for Question Answering

Editor(s): Christina Unger, Bielefeld University, Germany; Axel-Cyrille Ngonga Ngomo, University of Leipzig, Germany; Philipp Cimiano,
Bielefeld University, Germany; Soren Auer, University of Bonn, Germany; George Paliouras, NCSR Demokritos, Greece

Solicited review(s): Gosse Bouma, University of Groningen, Netherlands; Konrad Hoffner, University of Leipzig, Germany; Shizhu He,
Chinese Academy of Sciences, China; Christina Unger, Bielefeld University, Germany

Dat Quoc Nguyen »*, Dai Quoc Nguyen ” and Son Bao Pham ©

& Department of Computing, Macquarie University, Australia

E-mail: dat.nguyen@students.mq.edu.au

> Department of Computational Linguistics, Saarland University, Germany

E-mail: daiquocn @ coli.uni-saarland.de

¢ VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietham
E-mail: sonpb@vnu.edu.vn

Abstract. Recent years have witnessed a new trend of building ontology-based question answering systems. These systems use
semantic web information to produce more precise answers to users’ queries. However, these systems are mostly designed for
English. In this paper, we introduce an ontology-based question answering system named KbQAS which, to the best of our
knowledge, is the first one made for Vietnamese. KbQAS employs our question analysis approach that systematically constructs
a knowledge base of grammar rules to convert each input question into an intermediate representation element. KbQAS then
takes the intermediate representation element with respect to a target ontology and applies concept-matching techniques to return
an answer. On a wide range of Vietnamese questions, experimental results show that the performance of KbQAS is promising
with accuracies of 84.1% and 82.4% for analyzing input questions and retrieving output answers, respectively. Furthermore, our
question analysis approach can easily be applied to new domains and new languages, thus saving time and human effort.

Keywords: Question answering, Question analysis, Single Classification Ripple Down Rules, Knowledge acquisition, Ontology,
Vietnamese, English, DBpedia, Biomedical

1. Introduction QA systems directly produce an exact answer to an in-
put question. In addition, QA systems allow to spec-
ify the input question in natural language rather than as

keywords.

Accessing online resources often requires the sup-
port from advanced information retrieval technolo-
gies to produce expected information. This brings new
challenges to the construction of information retrieval
systems such as search engines and question answer-
ing (QA) systems. Given an input query expressed in

In general, an open-domain QA system aims to po-
tentially answer any user’s question. In contrast, a
restricted-domain QA system only handles the ques-

a keyword-based mechanism, most search engines re-
turn a long list of title and short snippet pairs ranked
by their relevance to the input query. Then the user has
to scan the list to get the expected information, so this
is a time consuming task [66]. Unlike search engines,

“The first two authors contributed equally to this work. Corre-
sponding author’s e-mail: dat.nguyen @students.mq.edu.au.

tions related to a specific domain. Specifically, tradi-
tional restricted-domain QA systems make use of re-
lational databases to represent target domains. Subse-
quently, with the advantages of the semantic web, the
recent restricted-domain QA systems employ knowl-
edge bases such as ontologies as the target domains
[30]. Thus, semantic markups can be used to add meta-
information to return precise answers for complex nat-

1570-0844/15/$27.50 (© 2015 — IOS Press and the authors. All rights reserved

2 Nguyen et al. / Ripple Down Rules for Question Answering

ural language questions. This is an avenue which has
not been actively explored for Vietnamese.

In this paper, we introduce the first ontology-based
QA system for Vietnamese, which we call KbQAS.
KbQAS consists of question analysis and answer re-
trieval components. The question analysis component
uses a knowledge base of grammar rules for analyzing
input questions; and the answer retrieval component is
responsible for interpreting the input questions with re-
spect to a target ontology. The association between the
two components is an intermediate representation ele-
ment which captures the semantic structure of any in-
put question. This intermediate element contains prop-
erties of the input question including question struc-
ture, question category, keywords and semantic con-
straints between the keywords.

The key innovation of KbQAS is that it proposes
a knowledge acquisition approach to systematically
build a knowledge base for analyzing natural language
questions. To convert a natural language question into
an explicit representation in a QA system, most pre-
vious works so far have used rule-based approaches,
to the best of our knowledge. The manual creation of
rules in an ad-hoc manner is more expensive in terms
of time and effort, and it is error-prone because of the
representation complexity and the variety of structure
types of the questions. For example, rule-based meth-
ods, such as for English [26] and for Vietnamese as
described in the first KbQAS version [35], manually
define a list of pattern structures to analyze the ques-
tions. As rules are created in an ad-hoc manner, these
methods share common difficulties in controlling the
interaction between the rules and keeping the consis-
tency among them. In our question analysis approach,
however, we apply Single Classification Ripple Down
Rules knowledge acquisition methodology [10,47] to
acquire the rules in a systematic manner, where consis-
tency between rules is maintained and an unintended
interaction among rules is avoided. Our approach al-
lows an easy adaptation to a new domain and a new
language and saves time and effort of human experts.

The paper is organized as follows. We provide re-
lated work in Section 2. We describe KbQAS and our
knowledge acquisition approach for question analysis
in Section 3 and Section 4, respectively. We evaluate
KbQAS in Section 5. The conclusion will be presented
in Section 6.

2. Short overview of question answering
2.1. Open-domain question answering

The goal of an open-domain QA system is to au-
tomatically return an answer for every natural lan-
guage question [21,63,31]. For example, such sys-
tems as START [23], FAQFinder [8] and AnswerBus
[68] answer questions over the Web. Subsequently, the
question paraphrase recognition task is considered as
one of the important tasks in QA. Many proposed ap-
proaches for this task are based on machine learn-
ing as well as knowledge representation and reasoning
[7,22,48,67,16,5].

Since aroused by the QA track of the Text Retrieval
Conference [59] and the multilingual QA track of the
CLEF conference [42], many open-domain QA sys-
tems from the information retrieval perspective [24]
have been introduced. For example, in the TREC-9 QA
competition [58], the Falcon system [20] achieved the
highest results. The innovation of Falcon focused on
a method using WordNet [17] to boost its knowledge
base. In the QA track of the TREC-2002 conference
[60], the PowerAnswer system [33] was the most pow-
erful system, using a deep linguistic analysis.

2.2. Traditional restricted-domain question
answering

Usually linked to relational databases, traditional
restricted-domain QA systems are called natural lan-
guage interfaces to databases. A natural language inter-
face to a database (NLIDB) is a system that allows the
users to access information stored in a database by typ-
ing questions using natural language expressions [2].
In general, NLIDB systems focus on converting the in-
put question into an expression in the corresponding
database query language. For example, the LUNAR
system [64] transfers the input question into a parsed
tree, and the tree is then directly converted into an ex-
pression in a database query language. However, it is
difficult to create converting rules that directly trans-
form the tree into the query expression.

Later NLIDBs, such as Planes [61], Eufid [51],
PRECISE [46], C-Phrase [32] and the systems pre-
sented in [50,34], use semantic grammars to analyze
questions. The semantic grammars consist of the hard-
wired knowledge orienting a specific domain, so these
NLIDB systems need to develop new grammars when-
ever porting to a new knowledge domain.

Nguyen et al. / Ripple Down Rules for Question Answering 3

Furthermore, some systems, such as TEAM [29] and
MASQUE/SQL [1], use syntactic-semantic interpre-
tation rules driving logical forms to process the in-
put question. These systems firstly transform the in-
put question into an intermediate logical expression of
high-level world concepts without any relation to the
database structure. The logical expression is then con-
verted to an expression in the database query language.
Here, using the logical forms enables those systems to
adapt to other domains as well as to different query lan-
guages [49]. In addition, there are many systems also
using logical forms to process the input question, e.g.
[52,33,56,18,15,25,6].

2.3. Ontology-based question answering

As a knowledge representation of a set of concepts
and their relations in a specific domain, an ontology
can provide semantic information to handle ambigui-
ties, to interpret and answer user questions in terms of
QA [27]. A discussion on the construction approach of
an ontology-based QA system can be found in [4]. This
approach was then applied to build the MOSES system
[3], with the focus on the question analysis. The fol-
lowing systems are some typical ontology-based QA
systems.

The Aqualog system [26] performs semantic and
syntactic analysis of the input question using resources
including word segmentation, sentence segmentation
and part-of-speech tagging, provided by the GATE
framework [11]. When a question is asked, Aqua-
Log transfers the question into a query-triple form of
(generic term, relation, second term) containing the
keyword concepts and relations in the question, us-
ing JAPE grammars in GATE. Aqualog then matches
each element in the query-triple to an element in
the target ontology to create an onto-triple, using
string-based comparison methods and WordNet [17].
Evolved from Aqualog, the PowerAqua system [28]
is an open-domain system, combining the knowledge
from various heterogeneous ontologies which were au-
tonomously created on the semantic web. Meanwhile,
the PANTO system [62] relies on the statistical Stan-
ford parser to map an input question into a query-triple;
the query-triple is then translated into an onto-triple
with the help of a lexicon of all entities from a given
target ontology enlarged with WordNet synonyms; fi-
nally, the onto-triple and potential words derived from
the parse tree are used to produce a SPARQL query on
the target ontology.

Using the gazetteers in the GATE framework, the
QuestIO system [12] identifies the keyword concepts
in an input question. Then QuestIO retrieves potential
relations between the concepts before ranking these re-
lations based on their similarity, distance and speci-
ficity scores; and so QuestIO creates formal SeRQL or
SPARQL queries based on the concepts and the ranked
relations. Later the FREyA system [13], the successor
of QuestlO, allows users to enter questions in any form
and interacts with the users to handle ambiguities if
necessary.

In the ORAKEL system [9], wh-questions are con-
verted to F-Logic or SPARQL queries by using domain-
specific Logical Description Grammars. Although
ORAKEL supports compositional semantic construc-
tions and obtains a promising performance, it involves
a customization process of the domain-specific lexi-
con. Also, another interesting work over linked data as
detailed in [55] proposed an approach to convert the
syntactic-semantic representations of the input ques-
tions into the SPARQL templates. Furthermore, the
Pythia system [54] relies on ontology-based gram-
mars to process complex questions. However, Pythia
requires a manually created lexicon.

2.4. Question answering and question analysis for
Vietnamese

Turning to Vietnamese question answering, Nguyen
and Le [34] introduced a Vietnamese NLIDB system
using semantic grammars. Their system includes two
main modules: the query translator (QTRAN) and the
text generator (TGEN). QTRAN maps an input natural
language question to an SQL query, while TGEN gen-
erates an answer based on the table result of the SQL
query. The QTRAN module uses limited context-free
grammars to convert the input question into a syntax
tree by means of the CYK algorithm [65]. The syntax
tree is then converted into an SQL query by using a dic-
tionary to identify names of attributes in the database
and names of individuals stored in these attributes. The
TGEN module combines pattern-based and keyword-
based approaches to make sense of the meta-data and
relations in database tables to produce the answer.

In our first KbQAS conference publication [35],
we reported a hard-wired approach to convert input
questions into intermediate representation elements
which are then used to extract the corresponding ele-
ments from a target ontology to return answers. Later,
Phan and Nguyen [45] described a method to map
Vietnamese questions into triple-like formats (Subject,

4 Nguyen et al. / Ripple Down Rules for Question Answering

Verb, Object). Subsequently, Nguyen and Nguyen [40]
presented another ontology-based QA system for Viet-
namese, where keywords in an input question are iden-
tified by using pre-defined templates, and these key-
words are then used to produce a SPARQL query to
retrieve a triple-based answer from a target ontology.
In addition, Tran et al. [53] described the VPQA sys-
tem to answer person name-related questions while
Nguyen et al. [41] presented another NLIDB system to
answer questions in the economic survey domain.

3. Our KbQAS question answering system

This section gives an overview of KbQAS. The ar-
chitecture of KbQAS, as shown in Figure 1, contains
two components: the natural language question analy-
sis engine and the answer retrieval component.

Question
[P S
| | =
} : Ontology
'l Syntactic || Answer
} analysis : R e Y it
P e |
| Semantic | 1| Ontology Answer :
! analysis | Intermediate || mapping extraction ||
\] ~ Irepresentation! - :
Question analysis| ~ element | ___ Answerrefrieval __

Figure 1. System architecture of KbQAS.

The question analysis component consists of three
modules: preprocessing, syntactic analysis and seman-
tic analysis. This component takes the user question as
an input and returns an intermediate element represent-
ing the input question in a compact form. The role of
the intermediate representation element is to provide
the structured information about the input question for
the later process of answer retrieval.

The answer retrieval component contains two mod-
ules: ontology mapping and answer extraction. It takes
the intermediate representation element produced by
the question analysis component and an ontology as its
input to generate the answer.

3.1. Intermediate representation of an input question

Unlike Aqualog [26], the intermediate representa-
tion element in KbQAS covers a wider variety of ques-
tion types. This element consists of a question structure
and one or more query tuples in the following format:

(sub-structure, question category, Termy, Relation,
Terms, Terms)

where Term; represents a concept (i.e. an object
class), excluding the cases of Affirm, Affirm_3Term
and Affirm_MoreTuples question structures. In addi-
tion, Termy and Terms represent entities (i.e. objects
or instances), excluding the cases of Definition and
Compare question structures. Furthermore, Relation is
a semantic constraint between the terms.

We define the following question structures: Nor-
mal, UnknTerm, UnknRel, Definition, Compare, Three-
Term, Clause, Combine, And, Or, Affirm_MoreTuples,
Affirm, Affirm_3Term, and question categories: What,
When, Where, Who, HowWhy, YesNo, Many, Many-
Class, List and Entity. See Appendix A and Appendix
B for details of these definitions.

A simple question has only one query tuple and its
question structure is the sub-structure in the query tu-
ple. A complex question, such as a composite one, has
several sub-questions, where each sub-question is rep-
resented by a separate query tuple, and the question
structure captures this composite factor.

For example, the question “Pham Duc Dang hoc
trudng dai hoc nao va dugc hudng din bdi ai ?”
(“Which university does Pham Duc Dang enroll in
and who tutors him ?”) has the Or question struc-
ture and two query tuples where ? represents a miss-
ing attribute: (Normal, Entity, trudng dai hocypiversity»
hocenro, Pham Diic DéngPPam Duc Dang>» ?) and (Un-
knTerm, Who, ?, huéng dangy,,, Pham Duc Dang
Pham Duc Dang» {7)

The intermediate representation element is designed
so that it can represent various types of question struc-
tures. Therefore, attributes such as Relation or terms in
the query tuple can be missing. For example, a ques-
tion has the Normal question structure if it has only
one query tuple and Terms is missing.

3.2. An illustrative example

For demonstration' [38] and evaluation purposes,
we reuse an ontology which models the organiza-
tional system of the VNU University of Engineer-
ing and Technology, Vietnam. The ontology contains
15 concepts such as “trudngschoo”, “glang vi€njecwrer”
and “sinh viéngygene’, 17 relations or properties such
as “hocenron”, “giang dayiean” and “la sinh vién cua

IThe KbQAS is available at http://150.65.242.39:8080/KbQAS/
with an intro video on YouTube at http://youtu.be/M1PHvIvv1Z8.

http://150.65.242.39:8080/KbQAS/
http://youtu.be/M1PHvJvv1Z8

Nguyen et al. / Ripple Down Rules for Question Answering 5

The intermediate representation element:

Question-structure: And
The number of tuples: 2

Sub-structure: Mormal

KbQAS

Knowledge-based Viethamese Question Answering System

Introduction (&3 Examples @ NL Question Analysis (73 Publications @3 Contact

Question-class: List

Term 1 sinh vién

Relation: hoc

Term 20 |&#p K50 khoa hoc may tinh
Term 3:

Sub-structure: Mormal

]Liét k& tat ca sinh vién hoc 1¢p K50 khea hoc may tinh ma cd qué & Ha Néi?

nguyén_ba_dat nguyén_quéc_dai nquyén_qubc_dat

The answer:

Question-class: List

Term 1: sinh vién
Relation: cd qué
Term 2: Ha Mai
Term 3

Knowledge-based English Natural Language Question Analysis

Description @3 Examples 3 Vietnamese Question Analysis @3 KbQAS Demo

who is member of the Open University?

The intermediate representation element:

Question-structure: UnknTerm
The number of tuples: 1
Sub-structure: UnknTerm
Question-class: QU-who-what
Term 1:

Relation: member

Term 2: Open University

Term 3:

Who is the director of the compendium project in Knowledge Media?

The intermediate representation element:

Question-structure:
The number of tuples: 1

Sub-structure:
Question-class: QU-who-what
Term 1:

Relation: director

Term 2:
Term 3. Knowledge Media

Analyze Question

ThreeTerm

ThreeTerm

compendium project

Figure 2. Illustrations of question analysis and question answering.

is student of » and 78 instances, as described in our first
KbQAS version [35].

Given a complex-structure question “Liét ké& tit ca
sinh vién hoc 16p K50 khoa hoc mdy tinh ma cé qué
G Ha Noi” (“List all students enrolled in the K50 com-
puter science course, whose hometown is Hanoi”), the
question analysis component determines that this ques-
tion has the And question structure with two query
tuples (Normal, List, sinh viéngygent, hOCenroleds 16p
K50 khoa hQC méy tinhKSO computer science course» ?) and
(Normal, List, sinh viéngygen;, €O qU€has hometown, Ha
NC)iHanois ?)

In the answer retrieval component, the ontology
mapping module maps the query tuples to ontology
tuples: (sinh viéngydent, hOCenroried, 16p K50 khoa hoc
mé—y tl/nhKSO computer science course) and (Sinh Viénstudema co
qU&has hometown,» Ha NOipanoi). For each ontology tuple,
the answer extraction module finds all satisfied in-
stances in the target ontology, and it then generates an
answer based on the And question structure and the List
question category. Figure 2 shows the answer.

3.3. Natural language question analysis component
The natural language question analysis component

is the first component in any QA system. When a ques-
tion is asked, the task of this component is to convert

the input question into an intermediate representation
which is then used in the rest of the system.

KbQAS makes use of the JAPE grammars in the
GATE framework [11] to specify semantic annotation-
based regular expression patterns for question analy-
sis, in which existing linguistic processing modules for
Vietnamese including word segmentation and part-of-
speech tagging [43] are wrapped as GATE plug-ins.
The results of the wrapped plug-ins are annotations
covering sentences and segmented words. Each anno-
tation has a set of feature-value pairs. For example, a
word has a category feature storing its part-of-speech
tag. This information can then be reused for further
processing in subsequent modules. The new question
analysis modules of preprocessing, syntactic analysis
and semantic analysis in KbQAS are specifically de-
signed to handle Vietnamese questions using patterns
over existing linguistic annotations.

3.3.1. Preprocessing module

The preprocessing module generates TokenVn anno-
tations representing a Vietnamese word with features,
such as part-of-speech, as displayed in Figure 3. Viet-
namese is a monosyllabic language; hence, a word can
contain more than one token. So there are words or
word phrases which are indicative of the question cat-
egories, such as “phai khong;s tmat/are there > 12 bao

6 Nguyen et al. / Ripple Down Rules for Question Answering

nhi€Upow many”s “6 dUyhere”, “khindoyhen” and “la cdi
Siwna - However, the Vietnamese word segmentation
module was not trained on the question domain. In this
module, therefore, we identify those words or phrases
and label them as single TokenVn annotations with
the question-word feature and its semantic category,
like HOWWhycause/method7 YeSNOZrue or falses Whatsumethinga
Whentime/datea Wherelocatiom Manynumber or Whopersan~
In fact, this information will be used to create rules in
the syntactic analysis module at a later stage.

Sa Ifgng sinh vign hoc 1dp khoa hoc may tinh ma cd qué quan & Ha Nai

Type Set Start End Id Features

& 142 [{ question-word=Many, string=53 luang}

Taokenvn 9| 18|29|{category=Nc, kind=ward, string=sinh vién}
Taokenvn 19| 22|20|{category=Vt, kind=word, string=hoc}
Tokenn 23| 26|31|{category=Nc, kind=waord, string=Idp}
Takenvn 27| 35|22|{category=Ma, kind=word, string=khoa hoc)
Takenn 36| 44|33|{category=Nc, kind=waord, string=may tinh}

Figure 3. Examples of TokenVn annotations.

We also label special words, such as abbreviations
of words on a special domain, and phrases that refer
to a comparison, such as “l6n hongeater than s “nhé hon
hodc bangjess than or equal o and the like, by single To-
kenVn annotations.

3.3.2. Syntactic analysis

The syntactic analysis module is responsible for
identifying concepts, entities and the relations between
them in the input question. This module uses the 7o-
kenVn annotations which are the output of the prepro-
cessing module.

Concepts and entities are normally expressed in
noun phrases. Therefore, it is crucial to identify noun
phrases in order to generate the query tuple. Based on
the Vietnamese language grammar [14], we use the
JAPE grammars to specify patterns over annotations as
shown in Table 1. When a noun phrase is matched, a
NounPhrase annotation is created to mark up the noun
phrase. In addition, a rype feature of the NounPhrase
annotation is used to determine whether concept or en-
tity is covered by the noun phrase, using the following
heuristics: if the noun phrase contains a single noun
(not including numeral nouns) and does not contain a
proper noun, it covers a concept. If the noun phrase
contains a proper noun or at least three single nouns,

Table 1

JAPE grammar for identifying Vietnamese noun phrases.

({TokenVn.category == “Pn”})?
({TokenVn.category == “Nu”} |

Quantity pronoun
Concrete noun
{TokenVn.category == “Nn”})? | Numeral noun
({TokenVn.string == “cdi”} | “Caigpe”
{TokenVn.string == “chiéc”})? | “chiécye”
({TokenVn.category == “Nt”})?

({TokenVn.category == “Nc”} |

Classifier noun
Countable noun
{TokenVn.category == “Ng”} | Collective noun
{ TokenVn.category == “Nu”} |
{TokenVn.category == “Na”} | Abstract noun
{TokenVn.category == “Np”})+ | Proper noun
({TokenVn.category == “Aa”} | Quality adjective
{TokenVn.category == “An”})? Quantity adjective
({TokenVn.string == “nay”} | “NAY this: these
TokenVn.string == “kia”} | “kiaghat; those”

«k »
AYthat; those

{
{TokenVn.string == “4y”} |
{

TokenVn.string == “d6”})? “dOthat; those

it covers an entity. Otherwise, the fype feature value is
determined by using a dictionary?.

Furthermore, the question phrases are detected by
using the matched noun phrases and the question-
words which are identified by the preprocessing mod-
ule. QuestionPhrase annotations are generated to cover
the question phrases, with a category feature that gives
information about question categories.

The next step is to identify relations between noun
phrases or between a noun phrase and a question
phrase. When a phrase is matched by one of the re-
lation patterns, a Relation annotation is created to
markup the relation. We use the following four gram-
mar patterns to determine relation phrases:

(Verb)+
(Noun Phraseype == Concept)
(Preposition)(Verb)?

(Verb)+((Preposition)(Verb)?)?
((“Céhavel}las”)|(Verb))+

(Adjective)

(Preposition)

(Verb)?

(“Céhave/has”)

((Noun Phraseype == concept)|(Adjective))
(“lais/are”)

2The dictionary contains concepts which are extracted from the
target ontology. However, there is no publicly available WordNet-
like lexicon for Vietnamese. So we manually add synonyms of the
extracted concepts to the dictionary.

Nguyen et al. / Ripple Down Rules for Question Answering 7

A

Liét ké tit ca cdc sinh vién c6 qué quan & Ha Noi ?

Danh sach tit ca cac sinh vién o qué quan & Ha N&i ma hoc [dp khea hoc may tinh 2

A

Type Set Start End Id Features
QuestionPattern 0| 49| 89{category=Mormal, pattern=QuestionPhrase Relation MounPhrase}
|| GQuestionPattern 83| 133| 90|{category=And, pattern=QuesticnPhrase Relation NounPhrase And Relation NounPhrase}

Figure 4. Examples of question structure patterns.

For example, we can describe the first question “Liét
ké tit ca cic sinh vién c6 qué quan ¢ Ha Noi” (“List all
students whose hometown is Hanoi”) in Figure 4, us-
ing NounPhrase, Relation and QuestionPhrase anno-
tations as follows:

[QuestionPhrase: Liét kéji, [NounPhrase: tt ca cdc
sinh Viénall sludents]] [Relation: co qué qum 6have hometown]
[NounPhrase: Ha NOigano;i]

The phrase “c6 qué quan Spaye hometown” 18 the rela-
tion linking the question phrase “liét ké tat ca cac sinh
Viényigt all students. and the noun phrase “Ha NOigano;”

3.3.3. Semantic analysis module

The semantic analysis module aims to identify the
question structure and produce the query tuples (sub-
structure, question category, Termy, Relation, Terms,
Terms) as the intermediate representation element of
the input question, using the TokenVn, NounPhrase,
Relation and QuestionPhrase annotations returned by
the two previous modules. Existing NounPhrase an-
notations and Relation annotations are potential can-
didates for terms and relations in the query tuples,
respectively. In addition, QuestionPhrase annotations
are used to detect the question category.

In the first KbQAS version [35], following Aqual.og
[26], we developed an ad-hoc approach to detect struc-
ture patterns of questions and then use these patterns
to generate the intermediate representation elements.
For example, Figure 4 presents the detected structure
patterns of the two example questions “Liét ké& tit ci
cac sinh vién ¢6 qué quan § Ha N6i” (“List all students
whose hometown is Hanoi”) and “Danh sich tét ca cac
sinh vién c6 qué quan ¢ Ha N6i ma hoc 16p khoa hoc
mady tinh” (“List all students enrolled in the computer
science course, whose hometown is Hanoi”’). We can
describe these questions by using annotations gener-
ated by the preprocessing and syntactic analysis mod-
ules as follows:

[QuestionPhrase: Liét ké tit ca cac sinh viéng g an
students] [Relation: co qué qum Ohave hometown] [INOun-
Phrase: Ha NQiganoi]

and

[QuestionPhrase: Liét ké tit ca cac sinh viénggan
sludents] [Relation: Cé QUé qllén 6have hometown] [NOUII-
Phrase: Ha NOiganoi] [And: [TokenVn: ma,,q]] [Re-
lation: hoceproriea] [NounPhrase: 16p khoa hoc mdy

tlnhcomputer science course]

The intermediate representation element of an in-
put question is created in a hard-wired manner link-
ing every detected structure pattern via JAPE gram-
mars. This hard-wired manner takes a lot of time and
effort to handle new patterns. For example in Figure
4, the hard-wired approach is unable to reuse the de-
tected structure pattern of the first question to iden-
tify the structure pattern of the second question. Since
JAPE grammar rules were created in an ad-hoc man-
ner, the hard-wired approach encounters common dif-
ficulties in managing the interaction among rules and
keeping consistency.

Consequently, in this module, we solve the men-
tioned difficulties by proposing a knowledge acquisi-
tion approach for the semantic analysis of input ques-
tions, as detailed in Section 4. In this paper, this is con-
sidered as the key innovation of KbQAS.

3.4. Answer retrieval component

As presented in the first KbQAS version [35], the
answer retrieval component includes two modules: on-
tology mapping and answer extraction, as shown in
Figure 1. It takes the intermediate representation pro-
duced by the question analysis component and a tar-
get ontology as its input to generate an answer. To de-
velop the answer retrieval component in KbQAS, we
employed the relation similarity service component of
AqualLog [26].

The task of the ontology mapping module is to map
terms and relations in the query tuple to concepts, in-
stances and relations in the target ontology by using
string names. If an exact match is not possible, we
use a string distance algorithm [57] and the dictionary

8 Nguyen et al. / Ripple Down Rules for Question Answering

containing concepts and their synonyms to find near-
matched elements from the target ontology, with the
similarity measure above a certain threshold.

In case the ambiguity is still present, KbQAS in-
teracts with users by showing different options, and
the users then choose the suitable ontology element.
For example, given the question “Liét ké tit ci céc
sinh vién hoc 16p khoa hoc mdy tinh” (“List all stu-
dents enrolled in the computer science course”), the
question analysis component produces a query tu-
ple (Normal, List, sinh vi€ngygent, NOCenrolied, 16p khoa
hoc may tinhcomputer science courses 7). Because the on-
tology mapping module cannot find the exact in-
stance corresponding to “I6p khoa hoc mdy tinh
computer science course . 1N the target ontology, it requires
the user to select between “16p K50 khoa hoc mdy tinh
K50 computer science course” - an instance of class “16pcourse”7
and “b@ mon khoa hQC méy tinhcomputer science department”
- an instance of class “bd mOngepartment -

[Information in Ontology]

[Stn’ng distance algorithm

[User interaction

Intermediate representation
l element

o e R Ty S—

(ion 1
Extract match .

I

1 !
I
I

Figure 5. Ontology mapping module for the query tuple with two
terms and one relation.

Following Aqual.og, for each query tuple, the result
of the ontology mapping module is an ontology tuple
where the terms and relations in the query tuple are
now the corresponding elements from the target on-
tology. How the ontology mapping module finds the
corresponding elements from the target ontology de-
pends on the question structure. For example, when the
query tuple contains Termy, Termy and Relation with
Terms missing, the mapping process follows the dia-
gram shown in Figure 5. The mapping process first

tries to match 7ermy and Termo with concepts or in-
stances in the target ontology. Then the mapping pro-
cess finds a set of potential relations between the two
mapped concepts/instances from the target ontology.
The ontology relation is finally identified by mapping
Relation to a relation in the potential relation set, using
a manner similar to mapping a term to a concept or an
instance.

With the ontology tuple, the answer extraction mod-
ule finds all individuals of the ontology concept cor-
responding to Termi, having the ontology relation
with the ontology individual corresponding to Terms.
The answer extraction module then returns the answer
based on the question structure and question category.
See the definitions of question structure and question
category types in Appendix A and Appendix B.

4. Single Classification Ripple Down Rules for
question analysis

As mentioned in Section 3.3.3, due to the represen-
tation complexity and the variety of question struc-
tures, manually creating grammar rules in an ad-hoc
manner is very expensive and error-prone. For ex-
ample, such rule-based approaches as presented in
[26,35,45] manually defined a list of sequence pattern
structures to analyze questions. Since rules were cre-
ated in an ad-hoc manner, these approaches share com-
mon difficulties in managing the interaction between
rules and keeping consistency among them.

This section introduces our knowledge acquisition
approach® to analyze natural language questions by ap-
plying the Single Classification Ripple Down Rules
(SCRDR) methodology [10,47] to acquire rules in-
crementally. Our contribution focuses on the seman-
tic analysis module by proposing a JAPE-like rule lan-
guage and a systematic processing to create rules in a
manner that the interaction among rules is controlled
and consistency is maintained. Compared to the first
KbQAS version [35], this is the key innovation of the
current KbQAS version.

A SCRDR knowledge base is built to identify the
question structures and to produce the query tuples as
the intermediate representations of the input questions.
We outline the SCRDR methodology and propose a

3The English question analysis demonstration is available on-
line at http://150.65.242.39:8080/KbEnQA/, and the Vietnamese
question analysis demonstration is available online at http://150.65.
242.39:8080/KbVnQA/.

http://150.65.242.39:8080/KbEnQA/
http://150.65.242.39:8080/KbVnQA/
http://150.65.242.39:8080/KbVnQA/

Nguyen et al. / Ripple Down Rules for Question Answering 9

rule language for extracting the intermediate represen-
tation of a given question in Section 4.1 and Section
4.2, respectively. We then illustrate the process of sys-
tematically constructing a SCRDR knowledge base for
analyzing questions in Section 4.3.

4.1. Single Classification Ripple Down Rules

This section presents the basic idea of Single Clas-
sification Ripple Down Rules (SCRDR) [10,47] which
inspired our knowledge acquisition approach for ques-
tion analysis. A SCRDR tree is a binary tree with two
distinct types of edges. These edges are typically called
except and false edges. Associated with each node in a
tree is a rule. A rule has the form: if « then 8 where «
is called the condition and (3 is called the conclusion.

ROR RuleBase
[Root node (0}

¢ [Except node (1)
- [Except node (2)
¢ [C] False node (3)
9 3 Except node (5)
¢ [Except node (40)
9 [C] Except node (42)
¢ [False node (43)
D False node (45)
¢] False node (41)
D Except node (44)
D False node (4G)
¢ [False node (4)
9] Except node (7)
¢ [False node (21)
o= [Except node (50)
o~ [False node (22)
o~ [False node (9)

Figure 6. A part of the SCRDR tree for English question analysis.

Cases in SCRDR are evaluated by passing a case to
the root node of the SCRDR tree. At any node in the
SCRDR tree, if the condition of the rule at a node 7 is
satisfied by the case (so the node 7 fires), the case is
passed on to the except child node of the node 7 using
the except edge if it exists; otherwise, the case is passed
on to the false ch