
Semantic Web 0 (2016) 1–17 1
IOS Press

Question Answering over Biomedical Linked
Data with Grammatical Framework
Editor(s): Christina Unger, Bielefeld University, Germany; Axel-Cyrille Ngonga Ngomo, University of Leipzig, Germany;

Philipp Cimiano, Bielefeld University, Germany; Sören Auer, University of Bonn & Fraunhofer IAIS, Germany; George
Paliouras, NCSR Demokritos, Greece

Solicited review(s): Kaarel Kaljurand, Nuance Communications, Austria; Dana Dannélls, University of Gothenburg, Sweden;

Christina Unger, Bielefeld University, Germany; Anonymous reviewer

Anca Marginean a,∗

a Department of Computer Science, Technical University of Cluj Napoca, 401446, Cluj-Napoca, Romania
E-mail: anca.marginean@cs.utcluj.ro

Abstract. The blending of linked data with ontologies leverages the access to data. GFMed introduces grammars for
a controlled natural language targeted towards biomedical linked data and the corresponding controlled SPARQL
language. The grammars are described in Grammatical Framework and introduce linguistic and SPARQL phrases
mostly about drugs, diseases and relationships between them. The semantic and linguistic chunks correspond to
Description Logic constructors. Problems and solutions for querying biomedical linked data with Romanian, besides
English, are also considered in the context of GF.

Keywords: querying linked data, description logics, controlled natural language, multilingual system, Grammatical
Framework

1. Introduction

Linked data means using the Web to connect
related data. A large amount of data from various
domains such as government, education, life sci-
ences, art and others were made available in the
context of the Linked Open Data initiative built
around DBpedia. One of the greatest challenges of
this new big set of data is querying it. In order
to fill the gap between end users and formal lan-
guages like SPARQL, more approaches emerged:
querying in full natural language [15], or in Con-
trolled Natural Languages [6], [5], [10], or incre-
mental query building [24].

The suitability of interfaces in natural languages
for querying linked data is justified by more rea-
sons. Frequently, the linked data is described by

*Corresponding author.

E-mail: anca.marginean@cs.utcluj.ro

means of large terminologies. Connections between
datasets are encouraged by the very essence of the
concept of linked data. Consequently, the lack of
detailed knowledge about the structure of the data
makes the querying task tedious, even for users
well adjusted to the semantic web technologies. A
controlled natural language could hide the com-
plexity from the user, without important limita-
tions on the expected expressivity. At the same
time, building a restricted natural language with a
well defined semantic is feasible, especially in the
context of the large adoption of ontologies, and
more recently, of their lexicalization [8].

Querying databases with meaning representa-
tion languages that rely on natural language is
an old idea. The CHILL system [23] used such
a language for querying Geobase, a set of Pro-
log facts. The specialized parser for the language
was learned through inductive logic programming.
More recently, statistical machine learning was

1570-0844/16/$27.50 c© 2016 – IOS Press and the authors. All rights reserved

2

used. With an increasing popularity, controlled na-
tural languages (CNLs) aim at giving an intu-
itive representation of formal representations with
a trade-off between precision of formal languages
and ambiguity, but high expressivity, of natural
languages. A comparative analysis of controlled
natural languages can be found in [13].

In this line, we propose a system, GFMed, based
on application grammars manually built with
Grammatical Framework (GF) [17]. All GFMed
resources are available at http://cs-gw.utcluj.
ro/~anca/GFMed. The goal is to provide a natu-
ral, yet precise way of querying linked data, with
the help of a subset of natural language. The rela-
tion between the meaning of expressions in natural
language and the constructors of description log-
ics guided the process of building the grammars.
This relation is also analyzed in [8], [12], while
GF is also used for linked data in [5], [7]. The
targeted linked data is biomedical data, described
in Diseasome, SIDER and DrugBank. These three
sets were proposed in Task 2, Biomedical question
answering over linked data, of the Question An-
swering over linked data challenge (QALD-4) [18].
GFMed’s CNL consists of a grammar for ques-
tion answering that covers questions from QALD
benchmark and that is evaluated on them.

DrugBank is part of the project Bio2RDF [4]
and contains chemical, pharmacological and phar-
maceutical data about drugs with comprehensive
drug target information. Diseasome provides infor-
mation about human disease-gene networks, while
SIDER relates drugs to their adverse reactions.
The linked data version of Diseasome publishes a
network of 4300 disorders and disease genes, as
well as possible drugs for diseases. SIDER includes
4192 side effects, 996 drugs and 99423 drug/side
effect pairs. The three datasets are connected, dis-
eases from Diseasome are related to drugs de-
scribed in DrugBank, DrugBank drugs are related
to SIDER drugs with the relation owl:sameAs and
there are side effects from SIDER that are also
diseases.

Grammatical Framework is a special purpose
programming language with a high support for
multilingual applications. Therefore, starting from
the grammars proposed for querying in English, a
multilingual system was investigated, with Roma-
nian as the second natural language.

The article is structured in 6 sections. Section
2 introduces the GF resource library that we pro-

Natural language question

Natural Language Grammar

Abstract Grammar

SPARQL grammar

SPARQL query

Linked Data:
DrugBank, SIDER,
Diseasome

Grammatical
Framework

Fig. 1. Querying linked data with natural language

pose for SPARQL, together with a very brief de-
scription of the proposed CNL. Section 3 describes
the main functions from the abstract and concrete
grammars which define the controlled language.
Section 4 introduces our first attempt in building
a multilingual language for querying biomedical
data. Related work is analyzed in Section 5, while
some conclusions are drawn in Section 6.

2. Controlled natural languages with GF for
linked data

The general workflow of a system for querying
linked data with GF is detailed in Figure 1. The
user inputs the query in natural language and a
SPARQL query is generated with the help of the
GF grammars.

GF grammars are divided into abstract and con-
crete grammars. An abstract grammar defines ca-
tegories and functions. Each category stands for
a set of trees. Functions produce trees of certain
categories. The linearization types and functions
are defined in concrete grammars. For each cate-
gory, a linearization type is defined and for each
function, a linearization function. Based on the
abstract grammar and the concrete grammars for
each language, GF is able to translate a phrase
from one language to another by parsing it first
into an abstract tree and then linearizing it by
means of the concrete grammars.

GF has comprehensive libraries for syntax, lex-
icon and inflections in 36 languages [17]. CNLs
built with GF, including ours, rely on these li-
braries for syntax, morphological paradigms use-
ful for introduction of new elements in the lexicon,
and coordination.

The abstract grammar of a CNL built with GF
stands for the CNL’s semantic model [2]. The syn-

3

mkStatement : Triplet -> Statement=

\vp -> {s=vp.subj ++ vp.prop.s ++ vp.obj; extra=""; aggreg=no};

mkStatementwithAddit : Triplet -> Str -> Statement=

\vp, adit -> {s=vp.subj ++ vp.prop.s ++ vp.obj; extra=adit; aggreg=yes};

mkFilterStatement : PropertyT -> Str -> Str -> Statement=

\p, x, v2 -> case p.vt of {

String => {s="FILTER(regex(" ++ v2 ++ "," ++ x ++ ", ’i’))"; extra=""; aggreg=no};

Number => {s="FILTER(" ++ v2 ++ "=" ++ x ++ ")"; extra=""; aggreg=no}};

mkNotFilter : Triplet -> Statement=

\t -> {s="FILTER NOT EXISTS {" ++ t.subj ++ t.prop.s ++ t.obj ++ "}"; extra=""; aggreg=no};

addStatement :Triplet -> Statement ->Statement =

\vp, st -> let s1=mkStatement vp

in {s=s1.s ++ "." ++ st.s; extra=st.extra; aggreg=st.aggreg};

addStatement2 : Statement -> Statement -> Statement =

\st1, st2 -> {s=st1.s ++ "." ++ st2.s; extra=st1.extra ++ st2.extra;

aggreg=case st1.aggreg of {

yes => yes;

no => st2.aggreg} };

Fig. 2. Operators which create graph patterns

mkEmptyTriplet : PropertyT -> Triplet =

\p -> {subj=""; prop=p; obj=""};

addSubj : Str -> Triplet -> Triplet=

\s, vp -> {subj=s; prop=vp.prop; obj=vp.obj};

Fig. 3. Operators which create a Triplet

tax of the CNL is defined by the concrete gram-
mars for natural languages. In case of the SPARQL
concrete grammar, since SPARQL is a formal lan-
guage, the patterns described in this grammar
could also be considered as the CNL’s semantic.

2.1. SPARQL resource library

The first step in using GF for querying linked
data is to have proper support for the language
SPARQL. There is another SPARQL-based re-
trieval interface for structured data [6], [5], yet, we
preferred to define our own resource for SPARQL,
with a set of types and operators. In a previous
attempt to query touristic linked data [20], we did
not use any GF module of type resource in writing
the SPARQL concrete grammar. But, SPARQL-
dedicated types and operators ease the process of
building compact SPARQL grammars. We covered
basic elements of SPARQL 1.1, with a limited sup-
port for term constraints, aggregates and negation,
and no support for property paths of length differ-
ent from 1, optional graph pattern, or assignment.

Two main types were defined: Triplet and
Statement. The type

Triplet : Type = {subj, obj : Str; prop :
PropertyT}

is a structure with three components: two string
components for the subject and the object, and a
structure for the property. The structure

PropertyT : Type = {s : Str; vt : ValueType}

for the property includes two fields: a string for the
name of the property and a field of the enumerated
type ValueType. This field stores the type of the
values of the property. The enumerated type has
two values: String and Number. The type of the
property is important in using the correct opera-
tor inside of FILTER expressions. For the moment,
only equality and the regex operators are included.
By default, the regex operator is used for proper-
ties that have strings as values, while the equality
operator is used for the properties with numerical
values.

The type

Statement : Type = {s : Str; extra :
Str; aggreg : AggregationType}

is a structure with three fields. It corresponds to
a graph pattern formed by one or more triple pat-
terns. The first component is the string expressing
the graph pattern and it will be part of the WHERE

clause. The third component, aggreg, has two pos-
sible values, yes and no, stating whether aggre-
gates and solution modifiers, such as GROUP BY,

ORDER BY or LIMIT are required. The field extra

4

contains the expression for the solution modifiers
in case they exist. When two statements are con-
catenated, their extra fields are concatenated.

A set of operators were defined on these types.
There are operators that create incomplete triple
patterns, such as mkEmptyTriplet or addSubj

from Figure 3. A subset of the operators that
create graph patterns is mentioned in Figure
2. The operator mkStatement concatenates the
fields of a Triplet and creates a graph pat-
tern with only one triple pattern. The operator
mkStatementWithAddit creates a statement with
a non-empty string for the extra field. The opera-
tor mkFilterStatement details the default behav-
ior for FILTER expressions for the two defined pro-
perty types. In order to support other datatypes,
the enumerated type ValueType must be extended
with other types, and a new field can be added to
PropertyT allowing explicit specification in this
function of the behavior for properties with a cer-
tain type of values. The last two operators build
graph patterns with more than one triple pat-
tern. The operator addStatement adds a triple
pattern to a graph pattern, while the function
addStatement2 concatenates two graph patterns.

Finally, there is a set of operators that create the
strings for SELECT and ASK queries (Figure 4). The
operator mkQuery applies to a string that includes
the variables to appear in the query results and to
a graph pattern. The final string is built according
to whether solution modifiers are part of the query
or not.

2.2. Brief description of GFMed CNL

The GFMed CNL aims at querying biomedical
knowledge bases. The set of interrogative or im-
perative sentences includes which, what, are there,
list and give me type sentences. The entities for
which some data are queried are: diseases, drugs,
genes, targets, side-effects. The entities can be re-
ferred: i) by their name (e.g. lepirudin, rickets,
fever), ii) by a named category to which they be-
long (e.g. approved drugs, metabolic class), or iii)
by a category defined through a certain property,
as the ones mentioned in Table 1 (e.g. drugs that
treat rickets, diseases associated to lrrc8). The ex-
pressivity of the CNL is enlarged by the fact that
these three types can be composed, e.g. side-effects
of drugs that treat diseases associated to growth

Table 1

Classes of resources to express in CNL

drugs that are possible drugs for a disease

drugs that interact with another drug or food

drugs that target/are involved in something

drugs with/without a certain side effect

drugs with a certain value for a datatype property

diseases that have a drug as possible drug

diseases associated to a gene

diseases that are subtype of another disorder

diseases with a certain value for a datatype property

side effects of a drug

genes associated to a disease

food that interacts with a drug

hormone 1. Besides questions about these entities,
certain information about properties are also cov-
ered: highest value of melting point, least common
chromosomal location.

The first two types of entity references are ob-
tained from the three datasets and are part of the
lexicon. For the third type, a set of about forty
words is included in the lexicon, e.g. number, of,
distinct, involve, target, drug, together with the
names of the properties defined by the terminol-
ogy of the three datasets, e.g. predicted solubility,
affected organisms, brand name, route of elimina-
tion. The next section gives a detailed description
of how this CNL is built.

3. DL-based questions for biomedical linked data

Description Logics (DLs) [3] are a family of
knowledge representation languages that can be
used to represent the knowledge of an applica-
tion domain in a structured and formally well-
understood way. In the description logic ALC, con-
cepts are built using the set of constructors formed
by negation, conjunction, disjunction, value re-
striction, and existential restriction. Extensions of
ALC introduce inverse roles, number restrictions
(N ,Q) and concrete domains(O). Even though the
three targeted datasets are not all providing for
DLs descriptions or ontologies, approaching them
from a DL perspective indicates ways to efficiently
split possible questions in semantic chunks that
have straightforward translations to SPARQL and
are highly composable.

GFMed, the proposed system, consists mainly
of a GF grammar for the application domain given

5

mkQuery : Str -> Statement -> Str=

\var, b -> case b.aggreg of {

yes =>"select "++ var ++ "where {" ++ b.s ++ "}" ++ b.extra;

no => "select distinct" ++ var ++ "where {" ++ b.s ++ "}" };

mkInnerQuery : Str -> Statement -> Str=

\var, b-> "{ select " ++ var ++ "where {"++ b.s++"}}";

mkAskQuery: Statement -> Str=

\b -> "ask{" ++ b.s ++ "}";

Fig. 4. Operators which create SELECT and ASK queries

Abstract Biomedical

Concrete English Grammar Concrete SPARQL Grammar

English Syntax English Lexicon SPARQL Lexicon SPARQL Syntax

SIDER Diseasome DrugBank

SPARQL ResourcesGF English library

Fig. 5. The main grammars and resources used by GFMed

Table 2

Main categories of GFMed grammars

Category English Examples and Short Explanation

Category

X NP X ∈ {Drug, TargetConcept, Gene, Disease, SideEffect, SIDERDrug}
DrugBankProperty CN MeltingPoint, GeneralFunction, DosageForm, PredictedWaterSolubility,

Manufacturers, Indication, Target, Interacting, FoodInteraction,...

SIDERProperty CN SideEffect

DiseasomeProperty CN AssociatedGene, PossibleDrug, ClassDegree, Degree, Class, Size, SubtypeOf,

ChromosomalLocation

Property CN any kind of property from the above three

XClass NP classes formed of a single named X entity (Lepirudin), or from drugs described by a
criterion (drugs that target Prothrombin)

DrugClass, TargetClass, SideEffectClass, SIDERDrugClass, DiseaseClass,

GeneClass, PropertyClass

Criterion-
ForXClassY

criterion for getting a class of X, expressed by a Y syntactic structure

NP Lepirudin as possible drug

Adv with Lepirudin as possible drug

AP treated with Lepirudin, indicated for Fever

VP treat Tuberculosis

RCl whose possible drug is Lepirudin, whose possible drugs interact with Lepirudin

ClSlash Lepirudin is used for

Question QS which drugs interact with food

Utterance Utt utterances from affirmative clauses (List the drugs that...) or from question clauses

(What are the drugs that ...)

by SIDER, Diseasome and DrugBank datasets.

GFMed also includes some minor preprocessing

of questions and post-processing of translation re-

sults, mainly in order to deal with structures in-

volving numeric values, e.g. values for water sol-

ubility, or free text, like different names of foods.

6

Figure 5 shows the main grammars: an abstract
grammar and two concrete grammars. For each
concrete grammar, lexicons derived from SIDER,
Diseasome and DrugBank were generated. Many
syntactic structures in both English and SPARQL
were driven by the datasets’ terminology.

For domain-specific applications, the GF ab-
stract grammar must state the main semantic ca-
tegories and trees of the language. For GFMed we
introduced the following categories: Drug, Target,
Disease, Gene, SideEffect and SIDERDrug cor-
responding to the main resources in the tar-
geted datasets. We also introduced the catego-
ries DrugBankProperty, DiseasomeProperty and
SIDERProperty for describing the properties of
the same datasets. For each mentioned resource
category, classes of these semantic entities are
described, resulting DrugClass, DiseaseClass,
GeneClass, TargetClass and SideEffectClass.
Trees for these categories are built either from a
single named resource, or from a restriction on a
property. For each XClass there are one or more
CriterionForXClass categories, where the class
can be obtained from the Criteria for that class.
For example, drugs that interact with food

is a DrugClass tree, while interact with food

is a CriterionForDrugClass. In other words,
trees of type CriterionForXClass are subtrees of
XClass trees. Table 2 depicts the main categories
together with their English linearization category
and some examples or explanations.

The core of the abstract grammar consists of
functions to build trees. GFMed’s functions can be
categorized in i) functions that describe property
restrictions, ii) functions for transforming a crite-
rion of a class into a class or for transformations
between different types of classes and properties,
iii) functions expressing queries.

In the concrete SPARQL grammar built on top
on our SPARQL resource library, each property
from the targeted datasets is linearized to a value
of type Triplet, initially with null object and sub-
ject. These two are filled in during the lineariza-
tion of different restriction functions. One of them
must be a resource or a previously introduced vari-
able. In the later case there must exist a triplet
where this variable is bound. The other one is filled
in with a newly introduced variable that will be
either included in the SELECT clause of the query,
or will become the subject or the object of an-
other triplet, when more functions are composed.

Table 3

Examples of class expressions and assertions in Diseasome

DL

Constructor Examples

existential
restriction

∃PossibleDrug.ApprovedDrugs - diseases
treated with at least one drug from the

category of ApprovedDrug

∃PossibleDrug−1.DiseasesWithDegree1

- drugs that treat diseases with Degree 1

universal

restriction

∀PossibleDrug.{Bextra} - diseases

treated only with Bextra

individual

assertion

Rickets:Disease - Rickets is a disease

role asser-

tion

(Rickets,Calcitriol):PossibleDrug -

Rickets has Calcitriol as possible drug

In order to be able to do this, the linearizations
of XClass or of the associated criteria are struc-
tures consisting of i) the name of the new variable
and ii) the body that includes complete triplets
and possible aggregations or filters in a Statement

structure.
When dealing with hasValue restrictions, the

SPARQL linearization must include different types
of filters according to the datatype of the property.
In order to identify the correct filter, SPARQL lin-
earization of each DrugBank, Diseasome, SIDER
property includes also the type, Number or String,
in addition to its complete name.

3.1. Building trees for property restrictions

In DLs, there are two types of roles or prop-
erties: object properties and datatype properties.
Object properties relate individuals of two con-
cepts, while datatype properties relate an individ-
ual of one concept to a value of a certain datatype.
For example, the object property SideEffect con-
nects the resources PenicillinG and Fever. Dif-
ferently, the Mechanism of Action property re-
lates the drug Lepirudin to a string value.

Object properties Object properties and datatype
properties are treated differently in the GFMed
grammar. When it comes to object properties, the
DL existential restriction ∃R.C on property R de-
scribes the set of individuals having as value of the
property (role) R an individual from the concept C.
For example, ∃PossibleDrug.FeverInducingDrug
is a restriction on property PossibleDrug whose
interpretation, if it exists, is the set of all diseases
that have at least one possible drug from the class

7

WithPossibleDrug : DrugClass -> DiseaseClass; - - diseases treated with D
WithPossibleDrugCriterion : DrugClass -> CriterionForDiseaseClass; - - treated with D
WithPossibleDrugCriterionClSlash : DrugClass -> CriterionForDiseaseClassClSlash; - - D is used for
WithPossibleDrugCriterionNP : DrugClass -> CriterionForDiseaseClassNP; - - D as possible drug
WithPossibleDrugCriterionAdv : DrugClass -> CriterionForDiseaseClassAdv; - - with D as possible drug
WithPossibleDrugCriterionRCl : DrugClass -> CriterionForDiseaseClassRCl; - - whose possible drug is D
WithPossibleDrugCriterionRCl VP : CriterionForDrugClassVP -> CriterionForDiseaseClassRCl;

- - whose possible drug interacts with D
WithPossibleDrugCriterionRCl Adj : CriterionForDrugClassAdj -> CriterionForDiseaseClassRCl;

- - whose possible drug is associated with D

Fig. 6. Functions for diseases expressed as restrictions on the property PossibleDrug

WithPossibleDrug[Criterion] dc = - - SPARQL linearization for ∃PossibleDrug.〈drugclass〉
let disc = addSubj ”?dis” (addObj dc.var PossibleDrug)
in {var = ”?dis”;

body = addStatement2 (addStatement2 (mkStatement disc) (mkDiseaseStatement ”?dis”))
dc.body};

Fig. 7. SPARQL linearization function for diseases expressed as restrictions on the property PossibleDrug

FeverInducingDrug. Here, FeverInducingDrug

stands for all drugs that have fever as a side ef-
fect and it is a value restriction with value Fever

on the property SideEffect. Some more exam-
ples are given in Table 3. The correspondence be-
tween linguistic phrases of our CNL and their cor-
responding DL expression ensures composability
of functions from the concrete grammars based on
the their types.

Each DL constructor can be expressed in na-
tural language in more than one way, either as
noun phrase (NP), verbal phrase (VP), adjec-
tival phrase (AP), verb-phrase-modifying adverb
(Adv), relative clause (RCl) or clause with some
missing part (ClSlash). These syntactic categories
are defined by the GF library. Each DL construc-
tor identified at a conceptual level corresponds
to more functions which build trees at the con-
crete English level, one for each possible syntactic
structure. All the English alternatives for express-
ing a conceptual DL constructor have the same
SPARQL linearization. This is somehow expected,
as SPARQL is a formal language tightly related to
DLs. The first 6 functions from Figure 6 model re-
strictions on the property possibleDrug with val-
ues in DrugClass. Their SPARQL linearization,
which is one for all, is mentioned in Figure 7.

In a similar manner, functions for restrictions
on the inverse property of PossibleDrug are de-
fined. They allow for statements about drugs used
to treat a certain disease or a disease class. For
all object properties, the abstract and concrete

grammars include sets of functions to express ex-
istential and value restrictions on them. Since
classes formed from only one named drug are rec-
ognized by the CNL, hasValue restrictions on ob-
ject properties can be treated in the same way
as existential restrictions. Other properties treated
similarly to possibleDrug are associatedGene,

sideEffect, target, interactionDrug1.
Within this approach, treated by interferon

beta-1a is parsed as (WithPossibleDrugsCri-

terion (SingleDrug DB00060)), and its lineariza-
tion is the SPARQL graph pattern

?dis ds:diseasome/possibleDrug

db:drugs/DB00060 .

?dis a ds:diseasome/diseases.

Datatype properties When it comes to restric-
tions on datatype properties, the English methods
to express them are not anymore particular to each
property, therefore it is possible to treat all with
the same set of functions. Some examples are de-
scribed in Figure 8. The property becomes one
of the functions’ parameters. The most important
issue is that it is not possible to include all ac-
tual values in the grammar, because the set of val-
ues is not finite. This issue can not be completely
solved in GF. The proposed solution is to in-
clude in the grammar generic trees with a dummy
string. If the translation to SPARQL succeeds, the
dummy value is replaced in the generated query
during post-processing. Since the values for these
restrictions tend to appear at the end of the ques-

8

ValueRestriction : DrugBankProperty -> CriterionForDrugClass - - solubility of XX
ValueRestrictionAdj : CriterionForTargetClass - - involved in XX
ValueRestrictionRCl : DrugBankProperty -> CriterionForDrugClassRCl

- - whose route of elimination involves XX
DiseaseValueRestriction : DiseasomeProperty -> CriterionForDiseaseClassNP

- - chromosomal location of XX
DiseaseValueRestrictionRCl : DiseasomeProperty -> CriterionForDiseaseClassRCl

- - whose subtype involves XX
LowestNumber : Property -> CriterionForDrugClass - - lowest number of side effects
DiseaseWithLowestValue : DiseasomeProperty -> CriterionForDiseaseClassNP - - with lowest size
LowestNumberValue : Property -> PropertyClass; - - least common chromosome location

Fig. 8. Functions for restrictions on datatype properties

tion, e.g. Give me the side effects of drugs

with a solubility of 3.24e-02 mg/mL, in the
preprocessing phase the string value is replaced
with the dummy value and the question to be
parsed becomes Give me the side effects of

drugs with a solubility of XX. This is parsed
as

[GiveSIDERProperty SideEffect

[ToDrugClass [ValueRestriction

Solubility]]],

where SideEffect indicates the object property
whose value is asked for. The content of the inner-
most brackets represents the drugs indicated by
the transformation to DrugClass of a value restric-
tion on the datatype property Solubility. An-
other possible solution for covering numerical val-
ues for these restrictions could be based on the GF
support for integers and floating point numbers.

Cardinality restrictions, either on datatype or
object properties, are not covered in the current
version of the CNL, but they can be included with-
out much effort: the current SPARQL resource
already has support for inner queries. However,
the number of functions for restrictions on ob-
ject properties would double. The conjunction of
DL classes that correspond to main entities of
the CNL is covered for a limited subset, for ex-
ample causes fever and anemia. The disjunc-
tion operator is not covered, while the negation
is partially covered, e.g. without side effects,
without fever as side effect.

Other described constructors include Highest-

Number, LowestNumber, ZeroNumber, which treats
number of properties, or HighestValue, and
LowestValue which deal with values of properties.
For example, the least common chromosome lo-

cation is interpreted as [LowestNumberValue

(HighestNumber (DbToProperty Indication))

the highest number of indications

?drug db:drugbank/indication ?vp. -- WHERE clause

count(distinct ?vp) as ?c -- SELECT clause

group by ?drug order by desc(?c) limit 1 -- the

extra field

(WithPossibleDrugsCriteria (ToDrugClass GasState))

treated by drugs with gas state

?dis ds:diseasome/possibleDrug ?drug .

?dis a ds:diseasome/diseases .

?drug db:drugbank/state ?state .

FILTER(regex(?state , ’gas’ , ’i’))

Fig. 9. Examples for datatype properties

ChromosomeLocation], where ChromosomeLoca-

tion is a DrugBank property. SPARQL aggrega-
tion and solution modifiers are used for these con-
structors, as it can be seen in the SPARQL lin-
earization of the function HighestNumber:

HighestNumber p =
let hn = addSubj ”?drug” (addObj ”?vp” p)
in{
var = ”COUNT(DISTINCT ?vp) as ?c, ?drug”;
body = mkStatementwithAddit hn

”GROUP BY ?drug ORDER BY desc(?c)
LIMIT 1”};

Figure 9 details two examples. The first uses
the function HighestNumber. The resulting graph
pattern for the WHERE clause is stored in the com-
ponent s of the structure Statement (from the
SPARQL resource library), and the description for
the aggregation function is stored in the compo-
nent extra of the same structure Statement. A
second example includes a filter on the value of the
property state from DrugBank.

3.2. Transformation functions

For composability reasons, transformation func-
tions are defined for getting from a criterion to a

9

[WithPossibleDrugsCriteria

[ToDrugClass [ToDrugClassCriteria [SIDERZeroNumber SideEffect]]]]

treated by drugs with no side effect

?dis ds : diseasome/possibleDrug ?drug.
?dis a ds : diseasome/diseases.
FILTER NOT EXISTS {?siderdrug sd : sider/sideEffect ?vp}.
?siderdrug a sd : sider/drugs.

}
t1

?drug owl : sameAs ?siderdrug

 t2

 t3

 t4

Fig. 10. Abstract tree and concrete linearizations in English and SPARQL for an example with two transformation functions:

class, or for getting from one dataset to another.
The former are important for English lineariza-
tion, while the latter play an important role in
SPARQL linearization.

The first transformation functions take crite-
ria and build from them the upper level lin-
guistic structures needed in queries. For ex-
ample, in order to get to the Noun Phrase
drugs used for Rickets from the Adjectival
Phrase used for Rickets, there is a transfor-
mation from CriterionForDrugClassAdj to Drug-
Class that adds the noun drugs to the lineariza-
tion of the AP. In the same way, the phrase
drugs that are used for Rickets is obtained
from the same criterion by another transforma-
tion function. When building SPARQL queries,
these transformation functions do not alter the
linearization of the Criterion, because the cor-
responding SPARQL triplets are already com-
pletely built. The only exception from this rule is
met for the negation of a criterion. For example,
fever as side effect is the criterion, drugs

with fever as side effect is a drug class,
and drugs without fever as side effect is
its negation. The functions ToSIDERDrugClass

and ToSIDERDrugClass Without are both defined
on the same criterion, and their linearizations in
SPARQL are the following:

ToSIDERDrugClass csdc = csdc;
ToSIDERDrugClass Without csdc =
{var = csdc.var;
body = addStatement2

(mkNotFilter1 csdc.body)
(mkSIDERDrugStatement csdc.var)};

The only domain-dependent part from the
SPARQL linearization of the function ToSIDER-

DrugClass Without is the function mkSIDERDrug-

Statement. The clear separation between domain-
dependent and -independent fragments from the

majority of the SPARQL linearizations facilitates
both the extension of the CNL and porting the
CNL to another domain.

The second type of transformations deals with
queries requesting access to more datasets. In this
case, English linearization does not alter the ob-
ject of transformation, while the SPARQL lin-
earization introduces new variables and sameAs
statements, i.e. based on owl:sameAs. For exam-
ple, the function DBToSIDERDrug converts the class
of DrugBank drugs to the class of SIDER drugs.
Its SPARQL linearization introduces a new vari-
able ?siderdrug that is related with owl:sameAs

to the variable of the function’s parameter:
DBToSIDERDrug : DrugClass -> SIDERDrugClass;
DBToSIDERDrug d =

{var = ”?siderdrug”;
body = addStatement2

(mkSameAsStatement ”?siderdrug” d.var)
d.body}; - - concrete SPARQL

DBToSIDERDrug d = d; - - concrete English
An example for the composition of two trans-

formation functions is given in Figure 10. The in-
nermost tree t1 is a criterion for a class of SIDER
drugs [SIDERZeroNumber SideEffect]. The tree
t2=[ToDrugClassCriteria t1] is determined by
a transformation function between the sets SIDER
and DrugBank, while t3 = [ToDrugClass t2] cor-
responds to a transformation from a criterion to a
class.

3.3. Functions for queries

Several types of queries were identified: give,
list, which, what, for/with which, and is/are there.
They are applied to one class, one criterion, or
to a list of classes or criteria for classes (Fig-
ure 11). The questions mostly deal with re-
source classes and criteria for these classes and

10

WhichDisease2 : DiseaseClass -> Question; - - which are the diseases caused by D?
WhichDisease : CriterionForDiseaseClass -> Question; - - which diseases are caused by D?
WhichTargetAdj : ValueRestrictionAdj -> Question; - - which targets are involved in XX?
WhatPropertyValue : PropertyClass -> Question; - - which is the least common chromosome location?

Fig. 11. Functions for queries

less with properties. An exception to this rule
is the function WhatPropertyValue. This func-
tion applies to arguments of type PropertyClass

instead of a resource class, because it queries
for information about a property class and not
about a property of some resource. For exam-
ple, the question which is the least common

chromosome location is parsed to the abstract
tree [WhatPropertyValue [LowestNumberValue

[DBToProperty ChromosomeLocation]]].
The advantage of the described approach is

the flexibility in the composition of trees and
trees constructors, based on their types and trans-
formation functions. For example, drugs that

interact with the drugs used for diseases

treated by tetracycline is parsed to the ab-
stract tree

t3=[ToDrugClass withThatVP [DDrugClass-

CriterionVP t2]]

where

t2=[AdjToDrugClass [PossibleDrugs-

ForCriterionAdj t1]]

is the tree for the class of drugs that are used for
diseases in t1. The tree

t1=[ToDiseaseClass [WithPossibleDrugs-

Criterion [SingleDrug DB00759]]]

stands for a DiseaseClass of diseases treated
by tetracycline. DB00759 is the DrugBank ID for
tetracycline. The abstract tree t3 is linearized in
the SPARQL concrete grammar to a query whose
result consists of drugs which interact with tetra-
cycline, and also other drugs used to treat the
same diseases as tetracycline.

The grammars can be used not only for trans-
lating natural language questions into SPARQL,
but also for translating SPARQL queries into na-
tural language questions, for the phrases that are
not altered by the pre/post-processing of GFMed.
For example, the query

SELECT DISTINCT ?possDrug

WHERE { ds:diseases/173

ds:diseasome/possibleDrug ?possDrug }

Algorithm 1 NaturalLanguage2SPARQL
toLowerCase(question)

replacedText=””

answer=translation(question)
if (answer does not contain FAIL) then

find abstractTreek with minimal size

return SPARQLLink of abstractTreek
else

while (answer contains FAIL)&& (question is not

empty) do
replacedText+=lastWord(question)

question=removeLastWord(question)

answer=translation(question+XX)
end while

end if

if (answer does not contain FAIL) then
find abstractTreek with minimal size

query ← substitute(XX, replacedText,
SPARQLLink)

return query

end if

function translation(phrase)

abstractTreei ← PARSE(phrase)
SPARQLLini ← LINEARIZE(abstractTreei)

return (i > 0) ?
⋃
i

{SPARQLLini, abstractTreei}

: FAIL

end function

is translated into several NL expressions, such as
give me possible drugs for breast cancer,
which drug treats breast cancer, list the

drugs that are used for breast cancer.

3.4. Pre- and post-processing

GF comes with an HTTP server that supports
REST services for its main functionality, as trans-
lation or parsing. GFMed includes i) the abstract
grammar and the concrete grammars for English
and SPARQL described previously, and ii) a Java
standalone application that interfaces with the GF
translation service based on these grammars.

The standalone application includes a prepro-
cessing module, a module for consuming the trans-
lation service, and a post-processing module. Al-
gorithm 1 describes the main steps of the transla-
tion from a natural language to SPARQL.

11

Preprocessing includes a simple transformation
of the question to lowercase, and a failure handling
method. When the translation module gets a fail-
ure from the server, the failure handling method
repeatedly trims the last word of the question and
replaces the trimmed sequence with the dummy
string XX. This is done in order to deal with
value restrictions, for example drugs with water

solubility of 3.24e-02 mg/mL.
A special case of this trimming is done for situ-

ations where a list of free text values is included
in the question. Question 13 from the QALD test
set is an example for this situation: it includes
the phrase drugs whose mechanism of action

involves norepinephrine and serotonin, with
mechanism of action as a datatype property.
In this case, the preprocessing includes a step
where the question is split at the string and. Thus,
the previously mentioned phrase becomes drugs

whose mechanism of action involves XX and

YY. In case the translation works, XX is replaced
with norepinephrine, and YY with serotonin.
A much more efficient preprocessing alternative
that will be explored as future work is to use the
morphological analysis from GF and replace those
words that are not found in the lexicon.

The transformation functions from a dataset to
another are not protected against redundant ap-
plication. It is possible to transform a drug from
DrugBank to a drug from SIDER, just to re-
turn back to a drug from DrugBank. Therefore
the parsing step could return more alternative ab-
stract trees of variable size, with redundant appli-
cation of the transformation functions as one fac-
tor that increases size. The post-processing mod-
ule searches for the abstract tree with the smallest
size, where the size of a tree is the number of in-
cluded nodes. Once the tree is found, its SPARQL
linearization is extracted. In case it was a value
restriction, solved by the failure handling method,
some replacements are done.

3.5. Generated lexicons

GF grammars must know, at compilation time,
all the tokens that are part of the analyzed
text. Therefore, GFMed includes lexicons for both
SPARQL and English formed of all drugs, targets,
diseases, genes, and side effects extracted from the
three datasets (Figure 5).

Table 4

Number of resources described in lexicon

Dataset Distinct Distinct Considered

Resource Ids Names properties

DrugBank

1470 22872

db:name,

Drug db:synonym

db:brandName

DrugBank
4553 3784 drugbank:name

Target

Diseasome
4213 3642 diseasome:name

Disease

Diseasome
3919 4328

rdfs:label,

Gene owl:sameAs

SIDER
1737 2398

sd:sideEffect-

SideEffect Name

Table 5

Results of GFMed in Task 2 of QALD-4

Total/ Right/ Recall Precision F-measure

Processed Partially

25/25 24/1 0.99 1 0.99

These lexicons where generated from the data
sources available on the sites of the three datasets,
either by using SPARQL endpoints, or by parsing
RDF files. Also, the same results were obtained
from executing SPARQL queries on the QALD-
provided endpoint. Special attention was given to
side effects, drugs, and genes. For the same ID
of a side effect more synonym names are known,
expressed through the property sideEffectName.
For one drug ID in DrugBank, there are also more
names and synonyms. Furthermore, as the name,
the synonyms and the brand names of a drug can
appear in a question, English linearization of each
drug includes alternatives expressed by values of
the properties name, synonym, and brandName. For
genes, besides the property rdfs:label, it was
considered the property owl:sameAs that relates
some genes to DBpedia resources. Extended names
for genes are extracted from these resources.

Table 4 shows the number of resources identified
in this way, giving both the number of distinct IDs
and distinct names for each category.

3.6. Evaluation

The system was evaluated against training and
test questions of Task 2 in QALD-4. The results on
the test questions are shown in Table 5. GFMed

12

correctly parsed all the questions, except one. It
partially parsed question 21, Give me the drug

categories of Desoxyn, for which it obtained
0.85714 recall and precision 1, meaning that all
the answers retrieved by the proposed query were
correct, but they were not complete. The reason
for this is that Desoxyn is a brand name for drugs
with DrugBank IDs DB00182, DB01576, DB01577.
We wrongly assumed that one brand name can be
associated either to only one drug, or to several
drugs but with consistent descriptions. The drug
DB00182 has one more category compared to the
other two drugs: amphetamines. GFMed identified
the drug as being DB01577, so it missed this cat-
egory. Given the fact that more drugs with dif-
ferent names and different descriptions can have
the same brand name, the lexicon should treat the
names differently from brand names.

4. First steps towards a multilingual system

Grammatical Framework is a programming lan-
guage for multilingual grammars. Therefore, start-
ing from GFMed’s concrete grammar for English,
the first steps were made towards a multilingual
system. The Romanian language was considered,
besides English.

4.1. Multilingual grammar

The default GF mechanism for building mul-
tilingual application grammars is through incom-
plete grammars that are language independent.
Such a grammar was created for the described
CNL without any significant changes. The incom-
plete grammar is extended by two concrete gram-
mars, one for English and one for Romanian. Lexi-
cons were generated for both languages. The name
of the properties from the schemas of the three
sets were translated manually in Romanian.

In Figure 12, two two-place adjectives are de-
fined in the English and the Romanian lexicons.
In the incomplete grammar, they are used in lin-
earizations of two criteria for either the property
possibleDrugs or its inverse. Figure 12 also con-
tains an example of a property from DrugBank,
Route of Elimination, as it is defined in the Ro-
manian lexicon.

For efficiency reasons, some constructions were
not included in the GF Romanian library [9]. The

- - English lexicon
UsedFor A2 = P.mkA2 ”used” for Prep;
Treated A2 = P.mkA2 ”treated” by8means Prep

|P.mkA2 ”treated” with Prep;

- - Romanian lexicon
UsedFor A2 = P.mkA2 (P.mkA ”utilizat”) for Prep;
Treated A2 = P.mkA2 (P.mkA ”tratat”) with Prep

|P.mkA2 (P.mkA ”tratat”) by8means Prep;
Route of Elimination CN = mkCN

(P.mkN2 (P.mkN ”cale” ”căi”)
(P.mkPrep ”de” Ac))

(mkNP (P.mkN ”eliminare”));

- - incomplete grammar
WithPossibleDrugsCriteria dc =

mkAP Treated A2 dc;
PossibleDrugsForCriterionAdj disc =

mkAP UsedFor A2 disc;

Fig. 12. Functions from lexicons and incomplete grammar

main problems in using the GF library for Ro-
manian were identified for expressing relational
nouns and genitive relative phrases. Unlike English
prepositions, Romanian prepositions have cases,
and the nouns and adjectives have different forms
for different cases. GF’s resource library has a
good support for these cases, but we experienced
a problem with expressing nouns in the genitive
case due to the expected presence of the possessive
article (a, al, ai, ale, alor). The correct forms are
solubilitatea medicamentului, solubilitate
a medicamentului, efect advers al medica-

mentului, where the presence of the posses-
sive article is variable. A proper solution is to
add rules for dealing with this variable pres-
ence. For the moment, the surrogate solution was
to use the preposition pentru (for), which re-
quires a noun in accusative. For example, the
phrase side effect of the drug corresponds
to efect advers pentru medicamentul, which
means side effect for the drug.

Nonetheless, these problems, particular to the
chosen language, are less relevant for the current
goal, which is to test the possibility to add a new
language. The incomplete grammar covers the ma-
jority of the functions from our CNL. This justi-
fies the conclusion that the addition of other lan-
guages requires effort mostly only for the transla-
tion of the lexicon, which can be done with sim-
ple dictionaries, except for the domain-dependent
names of the queried resources.

13

4.2. The Romanian names for human diseases

Apart from having phrases of common sense
knowledge expressed in different languages, an im-
portant issue in building multilingual systems is
the domain-specific terminology. When there are
structured versions of the terminology in different
languages, the problem is easier to solve. For ex-
ample, Medical Dictionary for Regulatory Activi-
ties (MedDRA) is a multilingual terminology de-
veloped in order to provide a single standardized
international medical terminology which can be
used for regulatory communication and evaluation
of data pertaining to medicinal products for hu-
man use. Unfortunately, Romanian is not included
in the set of used languages.

However, based on existing classifications of dis-
orders as OMIM (Online Mendelian Inheritance
in Man), ICD (International Classification of Dis-
eases) and Orphanet, we investigated a solution to
build a Romanian lexicon for the named diseases
from Diseasome.

OMIM captures the relation between genes and
disorders. Each disorder has an OMIM code. This
catalog is continuously updated. The initial bipar-
tite graph from Diseasome was built on the OMIM
version from 2005 [11], while the 2012 version of
Diseasome was extended with drugs.

ICD-10 classification is the 10th revision of the
International Classification of Diseases and Re-
lated Health Problems. There is a Romanian ver-
sion of the Australian version ICD-10-AM, that
is used in Romanian hospitals. Diagnosis Related
Group (DRG)1 provides for an application that
includes this classification.

Orphanet is a portal for rare diseases, led by
a consortium of around 40 countries. One of its
freely accessible services is a classification of dis-
eases elaborated using existing published expert
classifications2. The included alignments between
disorders and external terminologies or resources,
as OMIM, ICD10, MeSH (Medical Subject Head-
ings), UMLS (Unified Medical Language System)
and MedDRA, are characterized in order to specify
if the terms are perfectly equivalent (exact map-
pings) or not. There are versions for 7 languages,
but again Romanian is not included.

1www.drg.ro
2www.orphadata.org/cgi-bin/inc/product1.inc.php

Bio2RDF [4] is a project that aims at provid-
ing linked data for the Life Sciences and includes
many medical resources formalized in RDF. DBpe-
dia also contains information for diseases, includ-
ing OMIM, MeSH or ICD identifiers, and names
in different languages. One way to use it for the
task of building a Romanian lexicon is to rely on
a mapping between English and Romanian names
without the use of ICD classification. For other
languages this could be an acceptable solution, but
in case of Romanian, the small number of DBpedia
resources in this language make it inappropriate.
The alternative is to rely on DBpedia for identifi-
cation of ICD codes from OMIM codes or names,
followed by the use of the Romanian version of
ICD-10AM. A first problem is the incompleteness
of the OMIM and ICD codes in DBpedia. Another
problem is the inconsistency with the referred
classifications. For example, for Acute myeloid

leukemia, DBpedia gives the OMIM code 602439,
which in OMIM is moved to 601626.

With this analysis, the current solution for
building the Romanian lexicon for diseases follows
the following steps:

1. The labels of the diseases are obtained from
Diseasome.

2. The ICD code is searched in the linked data
version of OMIM from Bio2RDF. The search
is done either on the disease’s label or on the
OMIM code extracted from the label (in case
it is included). The used endpoint is http:

//cu.omim.bio2rdf.org/sparql.
3. The ICD code is searched in Orphanet, again

based on the name or the OMIM code. In
case it is found, the type of the mapping is
extracted, too.

4. The Romanian terms are extracted from the
Romanian classification ICD-10-AM based
on the identified ICD code. If the ICD code
was obtained at step 2, the mapping is con-
sidered exact. Otherwise, the type of Or-
phanet mapping is analyzed, and in case it is
an exact mapping, only the Romanian term
is kept. In case the mapping is not exact, the
initial English label is concatenated to the
Romanian term.

Table 6 includes some examples of obtained terms.
For example, for the disease with OMIM code
180920, Orphanet mentions two mappings to ICD-

14

Table 6

Romanian terms for diseases

Label in Diseasome ICD10 Romanian term

beta-
ureidopropionase

deficiency

E79.8
(NTBT)

(eng)+alte tulbu-
rari de metabolism

al purinelor si pir-

imidinei

abetalipoproteinemia E87.6

(NTBT)

(eng)+deficit ı̂n

lipoproteine

aplasia of lacrimal

and salivary

glands, 180920

Q38.4

(ND)

malformatii con-

genitale ale glan-

delor si canalelor
salivare

hepatocellular car-

cinoma

C22.0 (E) carcinom al celulei

hepatice

classified disorders, both having the status of not
decided (ND), and one of them has Q38.4 code.

The steps 2 and 3 are alternatives for finding
the ICD code. None of them is complete, and their
combination is also incomplete. From 4213 dif-
ferent Diseasome resources, using only Orphanet,
1210 Romanian terms were found, including all the
mapping types, not only the exact mappings. By
using also OMIM Bio2RDF, the number increases
to 1815 terms. Their correctness relies solely on
the existing data in the queried resources. It must
be emphasized that the process of building the lex-
icon can be improved through i) a more detailed
filtering by the name of the disease in Orphanet,
since for example, in Diseasome, the phrase type
ii is used and in Orphanet it appears as type 2 ;
ii) the extensive use of synonyms of diseases from
Orphanet. Medical competence is needed to val-
idate the resulted lexicon and to solve mappings
different from the exact one.

A question parsed and linearized with GFMed
grammars that include the generated lexicon for
Romanian terms of diseases in shown in Figure 13.
The Java GUI of GFMed is meant only for testing
the grammars combined with the pre- and post-
processing steps. For the end user, the fridge mag-
net type interface included in GF might be appro-
priate, since it supports incremental parsing and
completion.

5. Related work

With the recent boost in available linked data
and ontologies, the interest in extending the lexical
context of ontologies increased as well [1]. A recent

result in extending ontologies with a richer lexical
layer is the ontology-lexicon model lemon [8],[16].
This model proposes design patterns for the most
common lexicalizations of labels from ontologies.
The model was used in a manual approach of
building an ontology-derived lexicon for DBpedia
[19]. The building process consists of creating de-
scriptions of verbalizations for classes and proper-
ties from ontologies. A significant part of DBpedia
ontology was covered, 98% of the classes and 20%
of the properties. Similat to this approach, GFMed
grammars are built manually, starting from the
schemas of datasets to be queried. Patterns are
identified in our approach starting from DL con-
structors, mainly restrictions on properties. The
patterns are described directly in GF, based on
our own SPARQL resource library. The GF func-
tions correspond to DL constructors, facilitating
their composition in a similar way to DL.

Manual development of the grammars strongly
restricts the scalability of our approach. The se-
mantics of the targeted linked data, biomedical
data from Diseasome, SIDER and DrugBank, is
narrower compared to DBpedia. Nevertheless, the
required precision in tackling medical data can be
obtained with a manual approach. A very recent
result in the automatic derivation of lexicons in
lemon format is described in [21].

SQUALL [10] is another controlled natural lan-
guage that allows for a translation into SPARQL
queries, relying on Montague grammars. Unlike
SQUALL, GFMed is appropriate for multilingual
development due to the fact that is a controlled na-
tural language built with GF. GF was previously
used in multilingual systems for querying linked
data in [7], [6], [5]. Compared to cultural heritage
linked data, the biomedical domain calls for high
composability of the recognized expressions due to
the strong relations between the involved entities,
like drugs and diseases.

Another CNL for the biomedical domain was
created with Attempto Controlled English (ACE)
for stating facts about interaction between pro-
teins [14]. In contrast to this, GFMed CNL is a
querying language, and the queried data is linked
data, so it requires a translation of the identi-
fied meaning to SPARQL. The transitions between
concrete syntax, semantics and then back to con-
crete syntax are easily captured with GF concrete
and abstract grammars. Furthermore, the CNL
from [14] is restricted to English, while GFMed in-

15

Fig. 13. An example of the multilingual version of GFMed, with the Romanian term for disorder

cludes also a controlled natural language for Ro-
manian.

An incremental construction of queries is de-
scribed in [24]. Relevant concepts and properties
are identified at each step and the user can choose
one. The use of the ontology is the shared point
with our approach, but in our case the user does
not interact with the ontology but uses natural
language to express his needs.

From a completely different perspective, [22]
and [25] propose learning and pattern matching for
querying linked data in natural language. Ambi-
guity and named entity recognition are not easy to
tackle within these approaches, unlike the case of
controlled natural languages. But their important
advantage is scalability and domain independence.
Nevertheless, if we consider Romanian instead of
English as querying language, the limited existing
resources for processing this language hamper the
application of many approaches based on learn-
ing and pattern matching and sustain approaches
based on GF and its resources for Romanian.

6. Conclusion

A controlled natural language for querying
biomedical linked data was introduced. The lan-

guage is able to cover questions over more datasets,
complex questions with different linguistic struc-
tures, and questions that involve lists and free
text. It is built with Grammatical Framework by
following a methodology based on DL construc-
tors. The functions defined in GFMed’s grammar
are highly composable, due to their relation with
DL constructors. This relation, together with the
fact that the main categories of the abstract gram-
mar map to the types of the main entities from
the queried datasets, makes an extension of the
queried datasets with, for example, linked data
about medical publications possible. A general GF
resource for SPARQL was also introduced. The
steps followed in building the language are not
specific to the biomedical area. We consider that
porting to a different domain is facilitated by three
elements: i) the split between criteria for a class
and the class, with criteria expressed with different
syntactic categories, ii) the transformation func-
tions, either from one criteria to a class, or from
one dataset to another, iii) the operators from the
SPARQL resource. In the same time, the manual
character of the language building process limits
the scalability and claims for future work in the
automatic derivation of GF functions from ontolo-
gies extended with lexical layer.

16

The proposed system also addresses multilin-
guality. Romanian was investigated in addition to
English. In order to obtain Romanian terms for
diseases from Diseasome, a method based on more
international classifications was analyzed, employ-
ing mainly the resources which follow the princi-
ples of linked data.

References

[1] K. Angelov and R. Enache. Typeful Ontologies with
Direct Multilingual Verbalization. In M. Rosner and

N. E. Fuchs, editors, Controlled Natural Language:

Second International Workshop, CNL 2010, Maret-
timo Island, Italy, September 13-15, 2010. Revised Pa-

pers, pages 1–20, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg. doi:10.1007/978-3-642-31175-8 1.
[2] K. Angelov and A. Ranta. Implementing Con-

trolled Languages in GF. In N. E. Fuchs, edi-
tor, Controlled Natural Language: Workshop on Con-

trolled Natural Language, CNL 2009, Marettimo Is-

land, Italy, June 8-10, 2009. Revised Papers, pages
82–101, Berlin, Heidelberg, 2010. Springer Berlin Hei-

delberg. doi:10.1007/978-3-642-14418-9 6.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description

Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press, New York, 2003.
[4] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault,

and J. Morissette. Bio2RDF: Towards a Mashup

to Build Bioinformatics Knowledge Systems. Jour-
nal of Biomedical Informatics, 41(5):706–716, 2008.

http://dx.doi.org/10.1016/j.jbi.2008.03.004.
[5] M. Damova, D. Dannélls, and R. Enache. Multilingual

Retrieval Interface for Structured Data on the Web. In

Workshop of Natural Language Interfaces for Web of
Data (NLIWoD), International Semantic Web Con-

ference (ISWC), Trentino, Italy, 2014.

[6] M. Damova, D. Dannélls, R. Enache, M. Mateva,
and A. Ranta. Multilingual Natural Language In-

teraction with Semantic Web Knowledge Bases and
Linked Open Data. In P. Buitelaar and P. Cimi-
ano, editors, Towards the Multilingual Semantic Web:
Principles, Methods and Applications, pages 211–226.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
doi:10.1007/978-3-662-43585-4 13.

[7] D. Dannélls, A. Ranta, R. Enache, M. Damova, and
M. Mateva. Multilingual Access to Cultural Heritage
Content of the Semantic Web. In Proceedings of the

7th Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities, pages 107–

115, Sofia, Bulgaria, 2013. Association for Computa-
tional Linguistics.

[8] B. Davis, R. Enache, J. Grondelle, and L. Preto-
rius. Multilingual Verbalisation of Modular Ontolo-

gies Using GF and lemon . In T. Kuhn and N. E.
Fuchs, editors, Proceedings of Controlled Natural Lan-
guage: Third International Workshop, CNL 2012,

Zurich, Switzerland, August 29-31, 2012, pages 167–

184, Berlin, Heidelberg, 2012. Springer Berlin Heidel-

berg. doi:10.1007/978-3-642-32612-7 12.
[9] R. Enache, A. Ranta, and K. Angelov. An Open-

Source Computational Grammar for Romanian. In

A. Gelbukh, editor, Proccedings of Computational Lin-
guistics and Intelligent Text Processing: 11th Inter-

national Conference, CICLing 2010, Iaşi, Romania,

March 21-27, 2010, pages 163–174, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. doi:10.1007/978-3-

642-12116-6 14.
[10] S. Ferré. SQUALL: A Controlled Natural Language as

Expressive as SPARQL 1.1. In E. Métais, F. Meziane,

M. Saraee, V. Sugumaran, and S. Vadera, editors, Pro-
ceedings of Natural Language Processing and Informa-

tion Systems: 18th International Conference on Appli-

cations of Natural Language to Information Systems,
NLDB 2013, Salford, UK, June 19-21, 2013, pages

114–125, Berlin, Heidelberg, 2013. Springer Berlin Hei-

delberg. doi:10.1007/978-3-642-38824-8 10.
[11] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs,

M. Vidal, and A.-L. Barabási. The Human
Disease Network. Proceedings of the National

Academy of Sciences, 104(21):8685–8690, 2007.

doi:10.1073/pnas.0701361104.
[12] J. Grondelle and C. Unger. A Three-Dimensional

Paradigm for Conceptually Scoped Language Technol-

ogy. In P. Buitelaar and P. Cimiano, editors, Towards
the Multilingual Semantic Web: Principles, Methods

and Applications, pages 67–82. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2014. doi:10.1007/978-3-662-
43585-4 5.

[13] T. Kuhn. A Survey and Classification of Con-

trolled Natural Languages. Computational Linguis-
tics, 40(1):121–170, 2014. doi:10.1162/COLI a 00168.

[14] T. Kuhn, L. Royer, N. E. Fuchs, and M. Schröder.
Improving Text Mining with Controlled Natural Lan-

guage: A Case Study for Protein Interactions. In

U. Leser, F. Naumann, and B. Eckman, editors,
Proceedings of Data Integration in the Life Sci-

ences: Third International Workshop, DILS 2006,
Hinxton, UK, July 20-22, 2006, pages 66–81,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
doi:10.1007/11799511 7.

[15] V. Lopez, V. Uren, E. Motta, and M. Pasin.
AquaLog: An Ontology-driven Question Answer-

ing System for Organizational Semantic Intranets.

Web Semantics: Science, Services and Agents
on the World Wide Web, 5(2):72–105, 2007.
http://dx.doi.org/10.1016/j.websem.2007.03.003.

[16] J. McCrae, D. Spohr, and P. Cimiano. Linking Lexical
Resources and Ontologies on the Semantic Web with

Lemon. In G. Antoniou, M. Grobelnik, E. Simperl,
B. Parsia, D. Plexousakis, P. Leenheer, and J. Pan,

editors, Proceedings of The Semantic Web: Research
and Applications: 8th Extended Semantic Web Con-
ference, ESWC 2011, Heraklion, Crete, Greece, May
29-June 2, 2011, pages 245–259, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg. doi:10.1007/978-3-
642-21034-1 17.

17

[17] A. Ranta. The GF Resource Grammar Library. Lin-

guistic Issues in Language Technology, 2(2), 2009.

[18] C. Unger, C. Forascu, V. Lopez, A. N. Ngomo,
E. Cabrio, P. Cimiano, and S. Walter. Question An-

swering over Linked Data (QALD-4). In L. Cappellato,

N. Ferro, M. Halvey, and W. Kraaij, editors, Work-
ing Notes for CLEF 2014 Conference, Sheffield, UK,

September 15-18, 2014, volume 1180 of CEUR Work-

shop Proceedings, pages 1172–1180, Aachen, Germany,
Germany, 2014. CEUR-WS.org.

[19] C. Unger, J. McCrae, S. Walter, S. Winter, and
P. Cimiano. A lemon lexicon for DBpedia. In H. Sebas-

tian, F. Agata, B. Caroline, M. Pablo, and K. Dimitris,

editors, Proceedings of 1st International Workshop on
NLP and DBpedia, co-located with the 12th Interna-

tional Semantic Web Conference (ISWC 2013), Octo-

ber 21-25, Sydney, Australia, pages 103–108, Aachen,
Germany, Germany, 2013. CEUR-WS.org.

[20] B. Varga, A. D. Trambitas-Miron, A. Roth,

A. Marginean, R. R. Slavescu, and A. Groza. LELA -
A Natural Language Processing System for Romanian

Tourism. In M. Ganzha, L. Maciaszek, and M. Pa-

przycki, editors, Proceedings of the 2014 Federated
Conference on Computer Science and Information

Systems, Warsaw, Poland, September 7-10, 2014,

pages 281–288. IEEE, 2014. doi:10.15439/2014F323.
[21] S. Walter, C. Unger, and P. Cimiano. ATOLL

- A framework for the automatic induc-
tion of ontology lexica. Data & Know-

ledge Engineering, 94, Part B:148–162, 2014.
http://dx.doi.org/10.1016/j.datak.2014.09.003.

[22] K. Xu, S. Zhang, Y. Feng, and D. Zhao. Answering Na-
tural Language Questions via Phrasal Semantic Pars-

ing. In C. Zong, J.-Y. Nie, D. Zhao, and Y. Feng, edi-

tors, Proceedings of Natural Language Processing and
Chinese Computing: Third CCF Conference, NLPCC

2014, Shenzhen, China, December 5-9, 2014, pages

333–344, Berlin, Heidelberg, 2014. Springer Berlin Hei-
delberg. doi:10.1007/978-3-662-45924-9 30.

[23] J. M. Zelle and R. J. Mooney. Learning to Parse
Database Queries Using Inductive Logic Program-

ming. In Proceedings of the Thirteenth National Con-

ference on Artificial Intelligence - Volume 2, AAAI’96,
pages 1050–1055. AAAI Press, 1996.

[24] G. Zenz, X. Zhou, E. Minack, W. Siberski, and

W. Nejdl. From Keywords to Semantic Queries
- Incremental Query Construction on the Seman-

tic Web. Web Semantics: Science, Services and

Agents on the World Wide Web, 7(3):166–176, 2009.
http://dx.doi.org/10.1016/j.websem.2009.07.005.

[25] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and

D. Zhao. Natural Language Question Answering over
RDF: a Graph Data Driven Approach. In Proceedings

of the 2014 ACM SIGMOD International Conference
on Management of Data, pages 313–324, New York,

NY, USA, 2014. ACM. doi:10.1145/2588555.2610525.

