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Abstract.
Visual analytics is a costly endeavor in which analysts must coordinate the execution of incompatible visualization tools

to derive coherent presentations from complex information. Distributed environments such as the Web pose additional costs
since analysts must also establish logical connections among shared results, decode unfamiliar data formats, and engage with
broader sets of tools that support the heterogeneity of different information sources. These ancillary activities are often limiting
factors to our vision of seamless analytics, which we define as the low-cost generation and reuse of analytical resources. In
this paper, we offer a theory of analytics that formally explains how analysts can employ Linked Data to maintain and leverage
explicit connections across shared results as well as manage different representations of information required by visualization
tools. Our theory builds on the well-known benefits of interconnected data and provides new metrics that quantify the utility of
interconnected user- and task-centric, analytical applications. To describe our theory, we first introduce an extension of the W3C
PROV Ontology to model analytic applications regardless of the type of data, tool, or objective involved. Next, we exercise the
ontology to model a series of applications performed in a hypothetical but realistic and fully-implemented scenario. We then
introduce a measure of seamlessness for any chain of applications described in our Application Ontology. Finally, we extend
the ontology to distinguish five types of applications based on the structure of data involved and the behavior of the tools used.
Together, our seamlessness measure and application ontology compose our Five-Star application theory that embodies tenets
of Linked Data in a form that emits falsifiable predictions and which can be revised to better reflect and thus reduce the costs
embedded within analytical environments.
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1. Introduction

Linked Data (LD) is a large, decentralized, and
loosely-coupled conglomerate covering a variety of
topical domains and slowly converging to use well-
known vocabularies [13,35]. To more fully reap the
benefits of such diverse data, LD analysts must em-
ploy an equally diverse array of analytical tools. Mean-
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while, the Visual Analytics community (VA) has been
forging a science of analytical reasoning and interac-
tive visual interfaces to facilitate analysis of “over-
whelming amounts of disparate, conflicting, and dy-
namic information [9]." Although the VA community
has produced a vast array of tools and techniques that
could assist [28], these tools cannot be easily reused
in evolving environments such as the world of LD
analytics. The tools are typically developed to work
with very particular non-semantic representations that
make it difficult to establish and maintain connections
across analyses. Regardless of which community’s ap-
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proaches are adopted, the need to continually form
explicit and well-defined interconnections among the
triad consisting of data, analyst, and tool remains a
costly endeavor – and to benefit from both VA and LD
research, these costs need to be more clearly portrayed,
assessed, and overcome.

We attribute a large portion of analytical costs to two
major factors:

– the ability to easily apply software tools to arbi-
trary data

– the ability to easily reuse and repurpose prior an-
alytical materials

With respect to using software, the flexibility af-
forded by new APIs such as D3 [4] has resulted in a
proliferation of “one-off” visualization tools that in-
hibit low-cost reusability. These new visualizations of-
ten lack documentation describing the schema of in-
put data and can cause analysts to spend 80% of their
time uncovering hard-coded, hidden assumptions [17].
With respect to reusing prior results, even if analysts
could easily use the near two-thousand cataloged D3
visualizations1 for their own endeavors, each visual-
ization is a sink from the standpoint of subsequent an-
alysts. Derived results, including interactions and se-
lections, are not often saved or exported in forms that
can be easily used in new, subsequent analyses.

Given these cost factors, we formalize a “five-star
theory of analytics” that formally explains analytical
costs and describes how analysts can use Linked Data
to mitigate these costs. The theory combines work
from the VA and LD communities and explains ana-
lytical costs in terms of data evolution (i.e, VA the-
ory) and data structuredness (i.e., LD theory). As data
evolves into ordered forms that facilitate analytic rea-
soning, it oscillates between two levels: a high-cost,
mundane level (i.e., non-semantic) and a low-cost, se-
mantic level that maintains connections.

Figure 1 highlights that our five-star theory is just
one instance in a class of possible analytical cost the-
ories which all should contain: a model to represent
analyses, a cost metric defined in terms of the model,
and cost reduction strategies.

Our contributions and sectioning of this paper are
also illustrated in Figure 1. At the bottom of the image,
Section 2 introduces an extension of the W3C PROV
Ontology to model analytic applications regardless of

1http://christopheviau.com/d3list/ maintains a list of public D3 vi-
sualizations. The current count as of December 10, 2014 was 1,897
visualizations.
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5-Star Application Theory

rdf:type

Fig. 1. A theory of seamless analytics comprises three elements: a
model, a cost model, and cost reduction strategies.

the type of data, tool, or objective involved. Section 3
(not shown) exercises the ontology to model a series
of applications performed in a hypothetical but real-
istic and fully-implemented scenario. Section 4 intro-
duces a “measure of seamlessness” based on the cost
of performing applications in ecosystems described us-
ing our application ontology. Section 5 extends the ap-
plication ontology to distinguish five types of appli-
cations that progressively reduce the cost of analyses.
Section 6 (not shown) describes past work in the area
of analytical models and techniques for supporting in-
teroperability in analytical environments. Finally, Sec-
tion 7 (not shown) discusses future work before the
conclusion in Section 8 (not shown).

2. An Ontology of Analytical Applications

Our core Application Ontology (AO) provides a
minimal set of concepts to describe an analytical step,
herein known as an application. An application refers
to an analyst’s contextualized use of some dataset
within a tool to achieve some implicit objective, which
contrasts with prior work of modeling applications as
software components [2]. Ontologically speaking, an
application is a kind of PROV Activity [25] and is
therefore defined as “something that occurs over a pe-
riod of time and acts upon or with entities; it may
include consuming, processing, transforming, modify-
ing, relocating, using, or generating entities."

An application also associates three key entities that
we collectively refer to as the “application triad”: 1)
the input dataset, 2) the orchestrating analyst and 3)
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Fig. 2. Application Ontology Core is an extension of PROV. Appli-
cations use tools to generate new datasets which could include vi-
sualizations. Applications are informed by munging activities that
transform data representations. Figure 9 illustrates an extension to
further distinguish among our five types of applications.

the employed software tool. Figure 2 illustrates these
relations using the PROV layout conventions2 – ana-
lyst A used dataset d within tool t to derive dα during
application α. Application chains are formed when an-
alysts use prior dα’s as input to new applications, as
exemplified in Section 3. The cost of these application
chains can be assessed using the seamlessness mea-
sure introduced in Section 4. Furthermore, application
chains can be distinguished into five sub-types using
the specifications introduced in Section 5.

The distinguishing aspect of our AO is the focus on
munging activities that may be required to transform
d into an alternate form that suits tool t’s input require-
ments. Munging, also known as wrangling, is the im-
perfect manipulation of data into usable forms and has
been recognized in the Visual Analytics (VA) field for
decades, yet continues to be a ubiquitous and costly
problem [19]. We focus on munging because it persists
and dominates as a cost factor for applications.

The relationship between applications and munges
is also shown in Figure 2 using PROV, but we further
relate munging activities as also being part of the ap-
plication3.

As shown in Figure 3, we establish seven sub-
classes of munging and group them into three interme-
diate super-classes. These intermediate classes (mun-
dane, semantic, and trivial munging) are distinguished
according to a dichotomy that can be found within
Tim Berners-Lee’s Linked Data rating scheme [13].

2http://www.w3.org/2011/prov/wiki/Diagrams
3Using Dublin Core hasPart, http://purl.org/dc/terms/hasPart
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Fig. 3. Munging activities defined in terms of the Tim Berners-Lee’s
linked data scale. Not shown is content negotiation because it applies
to all data types (an ideal situation).

Broadly speaking, Berners-Lee’s scale can be used to
partition data into two groups: non-RDF and RDF. Let
D[1,3] denote the union of all data earning one, two,
or three stars according to the popular scheme, and
D[4,5] the union of all four or five-star data. We call
any dataset within D[1,3] “mundane" and any dataset
within D[4,5] “semantic," reflecting the perspective of
the Semantic Web and LD communities that more
highly rated data are easier to discover, reuse, and in-
tegrate. The seven sub-classes of munging (shim, lift,
cast, align, compute, glean, and conneg) are defined in
terms of using4 data from either D[1,3] or D[4,5] and
generating data from the same.

munge : {D[1,3], D[4,5]} 7→ {D[1,3], D[4,5]}

Mundane munges incur the highest cost and are
shown in Figure 3 with heaviest edges. Semantic
munges are less expensive than mundane munges and
are shown with medium weight lines. Finally, trivial
munges are the least expensive of all and are shown
with lightest lines. These abstract and coarse level
costs are intended to reflect the ease at which data can
be used within and across applications.

4We continue to follow PROV terminology to describe activities.

http://www.w3.org/2011/prov/wiki/Diagrams
http://purl.org/dc/terms/hasPart
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2.1. Mundane Munging

Three kinds of munging activities are common in
that they all require the analyst to understand both the
structure and semantics of mundane datasets (D[1,3]).

Shimming (shim): generates D[1,3] from D[1,3]; it is
any data transformation that does not involve
RDF and is the kind of activity that the LD com-
munity is working to ameliorate.

Lifting (lift): generates D[4,5] from D[1,3]; it cre-
ates RDF from non-RDF and has occupied the
LD community’s attention for most5 of the past
decade [27,38,21].

Casting (cast): generates D[1,3] from D[4,5]; it cre-
ates mundane forms from RDF and, unfortu-
nately, is regularly performed by many LD ap-
plications today, typically by using SPARQL to
create browser-friendly HTML or SVG.

2.2. Semantic Munging

Two kinds of munging activities are common in that
they require the analyst to understand only the seman-
tics of datasets (D[4,5]).

Aligning (align): generates D[4,5] from D[4,5]; it de-
rives new relationships from RDF and can often
be achieved using ontological mappings [29].

Computing (comp): generates D[4,5] from D[4,5]; it
derives new information from RDF that is it-
self also expressed in RDF. While aligning is a
special kind of computing, there are many other
kinds of computing that are not aligning. Com-
puting is relatively less common in current prac-
tice but can be found in a few works such as
Linking Open Vocabularies6 and SPARQL-ES
[5].

2.3. Trivial Munging

Two kinds of munging activities are common in that
they do not require the analyst to understand any of the
dataset’s structure or semantics.

Gleaning (glean): generates D[4,5] from D[1,3]; the
GRDDL7 and RDFa recommendations are both
approaches that can be used to glean RDF from
non-RDF representations without the need for
contextual knowledge.

5http://triplify.org/challenge
6http://lov.okfn.org/dataset/lov/
7http://www.w3.org/TR/grddl/

Content Negotiation (conneg): generatesD[1,5] from
D[1,5] and “refers to the practice of making avail-
able multiple representations via the same URI.”
8

3. An Analytical Scenario: Space Junk

This section presents two representative analyses
modeled according to our application ontology pre-
sented in the previous section. Both analyses are cen-
tered on the broad topic of Earth’s artificial satellites,
e.g., their locations, type distribution, and associated
launch sites. As our two analysts perform applications
and inspect generated results, they will incrementally
and serendipitously gain insight, formulate new ques-
tions, and perform subsequent applications to address
their new inquiries. Collectively, the two analyses ex-
emplify the “subsequent analyst” setting, where results
of the first analyst are re-purposed by a second analyst
with a different objective.

We use the scenario to unify the perspectives from
the Visual Analytics (VA) and Linked Data (LD) com-
munities. The VA community understands how infor-
mation evolves into ordered frames that facilitate an-
alytical reasoning [22,31,33]. The LD community un-
derstands how data structuredness (e.g., mundane or
semantic) facilitates discovery, reuse, and integration
[13,16]. We describe our representative analyses from
both perspectives: as information evolves into ordered
frames, it oscillates between mundane or semantic rep-
resentations that affect how easily results can be repur-
posed.

We also use the scenario to highlight certain “anti-
patterns,” that can degrade an analyst’s work perfor-
mance [10,19] We posit that these anti-patterns create
certain analytical “pain points” that have been well-
documented by the VA community and which are para-
phrased below:

[pp1] : understanding the structure and semantics of
data

[pp2] : reusing prior application results
[pp3] : avoiding redundant work
[pp4] : obtaining different representations of data
[pp5] : understanding tools’ input data requirements
[pp6] : obtaining the provenance of results

8http://www.w3.org/TR/webarch/

http://triplify.org/challenge
http://lov.okfn.org/dataset/lov/
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/webarch/
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Finally, the applications described in this section are
instances of the application class described in the pre-
vious section. To identify these application instances,
we use subscripts, for example, α1 denotes the first ap-
plication an analyst performs. We also use subscripts
to identify the result generated by a specific applica-
tion, for example, dα1

denotes the result generated by
the first application. Finally, we use a pair of subscripts
to identify an intermediate result, for example, d1,2 de-
notes the dataset generated by the second munge of the
first application. To disambiguate among applications
and datasets across the two analyses, we will qualify
the materials using the analyst’s name, for example:
Amy’s α1 or Bart’s α1.

3.1. Amy’s Analysis

Amy, a student enrolled in a physics course, is learn-
ing about satellite launch trajectories and becomes cu-
rious about the amount of equipment launched into
space. Although her professor states that over 2,000
functioning satellites have been launched from various
countries, she remains curious about the satellites’ lo-
cation, classification, and ownership.

3.1.1. Application 1 (α1): Where are the Satellites
Located?

Amy begins her analysis with a URL of a Key-
hole Markup Language (KML) dataset9 that describes
satellites’:

– locations in orbit
– owning countries
– launch sites

Knowing that KML is a popular format for en-
coding geographical information, she uses an off-the-
shelf Geographical Information System (GIS), such as
Google Earth, to plot the location of the satellites.

Amy’s activities are described by the provenance
trace in Figure 4, which illustrates data transformations
in terms of the seven types of munges defined in Sec-
tion 2. In her first application, α1, Amy shimmed the
KML dataset, d1,1, into a geospatial map, dα1

.
The provenance trace for Amy’s application α1 ex-

hibits a trivial case of the “flat-line” anti-pattern, which
results when applications rely exclusively on shims.
Figure 4 shows that Amy’s first application was in-
formed by a single shim operation: the transformation
of a KML dataset into a set of set of pixels that rep-

9http://apps.agi.com/SatelliteViewer/

US CIS
PRC France

Trash

Active

dα1

dα2

dα3

Fig. 5. Amy’s application results.

resent a map. This resultant map, presented at the top
of Figure 5, shows the location of over 50,000 satel-
lites scattered throughout Earth’s orbit. The map also
provides an interactive legend with a set of checkboxes
that allows Amy to toggle between the visibility of cer-
tain kinds of satellites which are classified as Rocket
Bodies, Debris, Active, or Inactive.

Realizing that many satellites are inactive, Amy
becomes interested in assessing launch efficiency by
comparing the quantity of active, “useful” satellites to
“space junk,” which she defines as rocket bodies, de-
bris, and inactive satellites. She clicks on the checkbox
associated with active satellites and un-checks all other
boxes, thus inducing a custom satellite grouping. She
takes a screen shot of the map window and transitions
into a new application, with a new objective.

http://apps.agi.com/SatelliteViewer/
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Fig. 4. Amy’s analysis described using munge glyphs.

3.1.2. Application 2 (α2): What is the Efficiency of
Satellites Launches?

Amy can begin her second inquiry by building on
materials generated in her first application:

d1,1 URL to a KML satellite dataset
dα1 map screenshot showing “useful” and “junk”

satellites

The map screenshot, dα1
, serves as Amy’s analyti-

cal frame [22] and therefore most closely corresponds
with her current understanding of satellites; there ex-
ists a set of visible satellites that Amy regards as use-
ful and another set of hidden satellites that she regards
as junk. She could use the map as a data source from
which to calculate launch efficiency, but the informa-
tion about the custom satellite groupings is embodied
by pixels (and lack of pixels) and not explicitly linked
to the underlying satellite KML. To extract the satel-
lite grouping information into a more usable form, she
would need to employ expensive [pp2] image process-
ing [34].

Fortunately, the map screenshot displays the URL
of the source KML dataset thereby supporting a kind
of natural provenance [pp6] which arbitrary analysts
could use to trivially retrieve the underlying satel-
lite KML dataset. The KML dataset, although less in-

line with Amy’s current mental model of satellites, is
at least structured. Unfortunately, Amy will have to
reestablish her “useful” and “junk” satellite groupings
from the KML file and thus redo work she performed
while interacting with the geospatial map GUI [pp3].

Using the KML dataset, Amy decides to gener-
ate a histogram showing the distribution of satellites
by type. She first re-partitions satellites into her two
groups, encodes these custom groupings using RDF,
and uses an RDF visualization tool, such as Sgvizler
[37], to generate a histogram.

This second application is described by the prove-
nance trace labeled α2 in Figure 4. The application
reuses the satellite KML data, d1,1, as indicated by the
dashed lines in the figure. Amy first used a custom
script to shim the satellite KML to a CSV file denoted
as d2,1. She then used a RDF converter10 [38] to lift the
CSV file into an equivalent RDF representation, d2,2.
A snippet of this RDF is shown below. Note that Amy
created her own URIs for launch sites and countries
instead of using existing DBPedia URIs.

< s a t e l l i t e −1> a p e x t : A c t i v e S a t e l l i t e ;

10http://www.w3.org/wiki/ConverterToRdf

http://www.w3.org/wiki/ConverterToRdf
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prov : wasDerivedFrom
< h t t p : / / example . o rg / d a t a / Eas te rnRange > ;

a c l : owner < U n i t e d _ S t a t e s > ;
geo : l a t −100.000 ;
geo : l ong 33 ;
geo : a l t 30000 .

< s a t e l l i t e −2> a : D e b r i s ;
prov : wasDerivedFrom

< h t t p : / / example . o rg / d a t a / Eas te rnRange >
a c l : owner < U n i t e d S t a t e s >
geo : l a t −130.000 ;
geo : l ong 10 ;
geo : a l t 60000 .

Once she obtained RDF, Amy used an ontology
mapping tool [29] to align her raw satellite RDF into a
new dataset, d2,3, which groups rocket bodies, debris,
and inactive satellites as nfo:Trash. She controlled
the mappings by specifying the following RDFS sub-
class axioms:

SubClassOf ( : D e b r i s n fo : Trash )
SubClassOf ( : RocketBody nfo : Trash )
SubClassOf ( : I n a c t i v e nfo : Trash )

Amy finally used an RDF visualization tool to cast
the grouped satellite data, d2,3, into a SVG histogram,
d2,3. Supposing she used a tool, such as Sgvizler [37],
she would have been required to to annotate HTML
with instructions on how and where to execute a spe-
cific SPARQL query, essentially fixing the histogram
to use only a single data source (see One-Star applica-
tions in Section 5). A web browser, in turn, shimmed
the SVG graphics into a PNG image, dα2

, which shows
the distribution of satellites by type (i.e., useful or
junk).

The segment of provenance from d1,2 to d2,2 is a
stop-gap approach to obtain RDF, which is tolerable
since standards for converting to linked data are rela-
tively new11. Ideally, Amy would have obtained RDF
using low cost techniques, such as content negotiation
[15], GRDDL, and RDFa processors [pp4]. The more
critical issue, however, is that Amy’s derived semantic
satellite groupings, d2,3, fall back down to a mundane
encoding of a histogram. Her effort to produce high-
quality RDF [14], re-group satellites, and finally com-
pute tallies on those groupings resulted in a set of SVG
rectangles that are disconnected from any of the prior
datasets.

We refer to these lift-then-cast sequences as the
“house top” anti-pattern. With Amy’s house top, in-
formation about the custom satellite groups and their
corresponding member count (i.e., sio:count) became

11R2RML is a more recent standard for mapping relational data
to RDF.

implicit in the SVG encoding; is the size of the bar
graphic the membership size, some factor of the size,
or is the graphic indicative of membership size at all?
If the histogram labels are not informative or the prove-
nance of histogram lost, it may be difficult for subse-
quent analysts to understand what the graphics repre-
sent [pp1].

The resultant histogram, shown in the center of Fig-
ure 5, provides Amy with an easy, side-by-side com-
parison of relative bar lengths, which depict the num-
ber of useful and junk satellites. Amy can clearly see
an order of magnitude difference between active satel-
lites and junk, which leads her to believe that coun-
tries are inefficient when launching space materials.
She does not know, however, which countries are most
responsible for the resulting environmental condition.
She performs the next application to explore launch ef-
ficiency on a per-country basis.

3.1.3. Application 3 (α3): What is the Efficiency of
Satellite Launches per Country?

Amy can begin her final inquiry using materials gen-
erated by her two previous applications:

d1,1 URL to a KML satellite dataset
dα1

map screenshot showing “useful” and “junk”
satellites

d2,1 CSV representation of the KML satellite dataset
d2,1 RDF representation of the KML satellite dataset
d2,3 RDF representation of satellites grouped as use-

ful or junk
d2,4 SVG histogram showing satellite distribution by

type
dα2

PNG image of a histogram depicting satellite dis-
tribution by type

Once again, Amy must choose between an analyti-
cal frame (i.e., the PNG or SVG of the histogram) en-
coded in some mundane format [pp1,pp2] or an ear-
lier, intermediate result that is easier to reuse but less
in-line with her current mental model [pp3]. She ulti-
mately decides to reuse the RDF data containing her
custom satellite groupings, d2,3, to generate a normal-
ized stacked bar chart showing launch efficiency on a
per-country basis 12

As presented by the provenance trace in Figure 4,
Amy used a custom script to cast d2,3 into a JSON file,
d3,1. A snippet of the JSON data is shown below:

12In a distributed analytical environment without LD or prove-
nance, a second analyst would unlikely be able to determine what
intermediate result would be best to use.
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{
"owner" :"United States",
"Active":259,
"Trash" :3696

}
{

"owner :"France",
"Active":114,
"Trash" :5677

}

Widgets, such as D3 stacked bars13, often impose
custom input data requirements which are not explic-
itly or formally described. The lack of documentation
forces analysts to inspect sample inputs and source
code in order to infer the complete set of ingestion re-
quirements. In Amy’s scenario, the stacked bars tool
only provided one example input CSV dataset such as
the one show below:

State, 5 Years, 5 to 13 Years, Over
AL, 310504, 552339, 259034
AK, 52083, 85640, 42153
AZ, 515910, 828669, 362642

After tediously inspecting both the example dataset
and the widget’s JavaScript code, Amy realized that
each row in the table specifies a single stacked bar. The
first column specifies the label of the bar and the fol-
lowing columns specify the sizes of the sub-bars. By
running some tests, she also realized that the input ta-
ble can specify an arbitrary number of sub-bars, with
the caveat that all stacked bars (i.e., rows) must have
the same number of sub-bars (i.e., columns) [pp5]. Ad-
ditionally, the widget can be easily modified to accept
JSON versions of the CSV file with only minor tweaks
to the data reader. With this knowledge, Amy was able
to produce a JSON dataset, d3,1 that is compliant with
the stacked bars widget.

The stacked bars widget, in turn, cast the JSON data
into a set of stacked bars encoded in SVG. Since the
widget is web-based, Amy’s third application also ex-
hibits the “SVG to PNG” transformation pattern be-
tween d3,2 and dα3 and highlights another anti-pattern
known as the “hill slide.” Hill slides are a sub pat-
tern of “house top”and thus result with a similar work-
efficiency degradation for subsequent analysts.

From the stacked bar chart, shown at the bottom
of Figure 5, Amy can see that most countries launch
space junk to some degree. The bars are normalized
and thus convey the relative efficiency of satellite
launches. Amy notices that the Common Wealth of the

13http://bl.ocks.org/mbostock/3886394

Independent States (CIS), United States, China, and
France all launch a large percentage of junk compared
to other countries.

3.2. Bart’s Analysis

Amy shows the normalized stacked bars to her
classmate Bart and exclaims her concerns about the
proliferation of space junk. She asks Bart to determine
if the United States, her home country, allows any of
other junk-producing countries to launch from its fa-
cilities and hands him all of her analytical materials
including: source datasets, intermediate datasets, and
application results. She points him to the normalized
stacked bars where she left off, but also points out
sources of information that were easiest for her to use,
namely the KML file and her RDF that groups satel-
lites as useful or junk.

3.2.1. Application 1 (α1): What other Countries
Launch Space Junk with the Help of the United
States?

To complete his task, Bart needs to find information
about:

– what kinds of satellites Amy considers junk
– which countries launch this junk
– what sites do these countries launch the junk from
– where are these sites geographically located

Reviewing a flat collection of Amy’s materials with-
out any context is a daunting task, even with point-
ers to the files she believed were easiest to work with.
The relationships among source materials, intermedi-
ate datasets, and application results are not captured
and preserved. Bart, therefore, is unable to easily de-
termine what information each dataset captures, how
the information overlaps14, and what tools were used
[pp6]. This challenge reflects the current state of ana-
lytics, where mundane data simply cannot stand on its
own as an adequate interface between prior and subse-
quent analysts.

To save time and effort, Bart contacts Amy and
asks for help addressing his aforementioned concerns,
which can be impractical in some settings. From their
interaction, both analysts determine that dataset d2,3,
which groups satellites as “useful” or “junk,” serves
as a suitable starting point for his analysis; the dataset
contains satellite attribution information as well as
Amy’s perspective regarding the classification of space

14http://www.w3.org/TR/void/

http://bl.ocks.org/mbostock/3886394
http://www.w3.org/TR/void/
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Fig. 6. Bart’s analysis described using munge glyphs.

materials, although the dataset is missing the geo-
graphic locations of launch sites.

To support his task, Bart uses a categorical visual-
ization tool, such as Aduna ClusterMap15, to generate
a cluster map that groups countries by the launch sites
they use. Bart is particularly interested in identifying
countries that are cross-categorized (i.e., countries that
use multiple launch sites), which will be rendered as
nodes within “intersection clusters”, much like Venn
Diagrams that illustrate intersection.

Bart’s application is described by the provenance
trace labeled α1 in Figure 6. Bart first issued a
SPARQL construct query to generate a new dataset,
d1,1, that categorizes countries by launch sites:

c o n s t r u c t {
? c o u n t r y vcard : h a s C a t e g o r y ? l a u n c h S i t e ;

r d f s : l a b e l ? countryName .
? l a u n c h S i t e r d f s : l a b e l ? s i t eName

}
where {

? c o u n t r y ^ a c l : owner ? s a t e l l i t e ;
a f o a f : O r g a n i z a t i o n

;
r d f s : l a b e l ? countryName .

? s a t e l l i t e a nfo : Trash ;
prov : wasDerivedFrom ? l a u n c h S i t e ;
r d f s : l a b e l ? s i t eName .

}

The property acl:owner specifies the country
that owns a satellite. The property prov:wasDerived-
From specifies the site where a satellite was launched.
Since dataset d2,3 also included Amy’s perspective on
space junk, Bart was able to restrict his solution set
to sites that launch nfo:Trash satellites. Unfortu-
nately, Amy’s data did not include geographic coor-
dinates of launch sites, preventing Bart from restrict-

15http://www.aduna-software.com/technology/clustermap

ing his solution set to only sites located in the United
States.

Bart then used a custom script to cast the resulting
dataset d1,1 into an XML file, d1,2, that conforms to
the cluster map tool’s input data requirements. Finally,
he used the cluster map tool to generate the visualiza-
tion, dα1

, which resides as PNG image of a cluster map
snapshot.

The resulting cluster visualization in the top of Fig-
ure 7 shows the global set of junk-launching sites and
countries that use them. In the cluster map, launch
sites are depicted as the shaded “octopus-like” figures
and countries are depicted as nodes within them. Bart
relies on his geographic expertise to identify launch
sites that are located in the United States, namely
the “Mid-Atlantic Regional Spaceport” and “Eastern
Range.” From these two clusters, expanded at the bot-
tom in Figure 7, Bart can see that both France and
CIS launch space junk from these facilities, as well
as from Baikonur Cosmodrome located in Kazakhstan.
He tries to save only the United States clusters, but the
tool does not allow him to export selections made in
the canvas.

As it stands, the cluster map is not immediately use-
ful to Amy; the map is not focused on the United States
and instead displays all launch sites from across the
globe. To answer her question, Amy would first need
to identify which launch sites are located in the United
States, effectively re-establishing information already
known to Bart. To reduce her workload, Bart can send
Amy:

1. a zipped file that contains both the full visualiza-
tion and a text file that lists the sites of interest

2. a manually cropped image, shown at the bottom
of Figure 7, that contains only those clusters lo-
cated in the United States

With option 1, Amy must reference a separate text
file while she browses, interprets, and gleans informa-
tion from the cluster map, essentially establishing cog-
nitive links between the text file and the figures in the
cluster map. Although this approach is high cost, Amy
is provided a global information source about launch
sites, which may be of interest to her in subsequent
analyses. With option 2, Amy is provided with only the
pertinent clusters relevant to her inquiry, but she loses
information about the broader, global perspective on
launch site usage.

Ideally, the information depicted in the cropped im-
age would be physically and semantically linked with
the larger, underlying information source from which

http://www.aduna-software.com/technology/clustermap
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dα1 CIS
France

Fig. 7. Bart’s application results. The top cluster map shows all
launch sites. The bottom cluster map shows only sites associated
with countries that launch from the United States.

the image was derived. Going even further, if Amy
had referenced DBPedia launch sites in dataset d2,3,
for example Easter Range16, Bart could have trivially
acquired the missing location information and formu-
lated a SPARQL query that matches only launch sites
with a dbp:country of United States. He then could
have easily generated a cluster map that shows only
United States launch sites. However, to further capital-
ize on Amy’s investment, the cluster map tool would
need to allow users to obtain handles on the URIs of
launch sites, so that additional information about these
resources can be acquired in subsequent analyses.

16http://dbpedia.org/page/Eastern_Range

3.3. Recap

Figure 8 provides an overview of Amy’s and Bart’s
analysis that is juxtaposed with an ideal analysis,
where every application outputs two results: a mun-
dane dataset and an equivalent, semantic version. The
dashed lines in the figure indicate that a dataset was
reused in a subsequent application.

In the actual analysis shown at the top, the final re-
sult (i.e, dα) of every application was mundane. Some
applications generated intermediate semantic datasets
but Amy did not directly draw insight from those in-
termediaries. Therefore, in every subsequent applica-
tion, the analyst had to compromise between reusing
materials that are more structured versus materials that
more closely reflect the prior mental schema of the
analyst. In practice, analysts usually choose the less
evolved materials and reproduce prior work [19]. We
see this pattern in Figure 8, where no dashed lines ex-
tend from the arrow tips corresponding to results of the
application.

In the hypothetical analysis, every application uses
semantic datasets and generates both mundane and
equivalent semantic results. Humans rely on their
broadband visual channel to receive information and,
therefore, will always need mundane representations
of information such as rendered graphics. However,
when materials are passed to subsequent analysts, it
may be more convenient for them to work with linked,
machine readable representations. We can accommo-
date both settings if more tools would generate RDFa
and GRDDL or publish results to content negotiable
servers, for example.

4. A Metric for Application Seamlessness

In the previous section, Amy and Bart each com-
posed unique application chains. Amy generated geospa-
tial plots and histograms, while Bart generated a visu-
alization that depicts categorical relationships between
entities. Each unique sequence of applications induces
a unique analytical ecosystem, E. Since Amy and Bart
each performed a unique set of applications, they each
induced a unique ecosystem, i.e., EAmy and EBart.

Formally, an ecosystem E is defined as the set of
applications that influenced17 a particular analysis:

E = {α1, α2, ..., αn}

17http://www.w3.org/TR/prov-dm/#term-influence

http://dbpedia.org/page/Eastern_Range
http://www.w3.org/TR/prov-dm/#term-influence
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Fig. 8. Juxtaposition of an actual analysis vs. an ideal hypothetical
analysis.

Each application α18 , in turn, is formally defined as
a tuple consisting of a non-empty set of munges and a
resultant dataset dα:

α = (Mα = {m1,m2, ...,mm}, dα)

The remainder of this section defines a seamlessness
metric, S, that can be used to assess the cost of ecosys-
tems from two perspectives:

1. how easily can analysts generate materials
2. how easily can those materials be used by subse-

quent analysts

To capture the two perspectives, we first define a
“result generation metric” that measures the cost for an
analyst to generate results. We then define a “reuse po-
tential” metric that predicts the ease by which future,
subsequent analysts can reuse those results. We finally
combine the generation and reuse potential metrics to
formulate the analytical seamlessness metric S.

18The set-theoretic definition of an application is an alternate ex-
pression of the OWL ontology, described in Section 2, and is better
suited for defining cost metrics.

4.1. Generation Cost

We define a score, µ, that expresses how easily an-
alysts were able to generate materials during a single
application. Since we assume that munging dominates
the cost of applications, the score is only a function of
the kinds of munges performed during an application
α.

µ(α) =

∑
m∈Mα

cost(m)∑
m∈Mα

cost(shim)
(1)

The numerator contains the actual cost of the ap-
plication, which is calculated by summing the cost of
each munge. The denominator reflects the hypotheti-
cal worst-case, where an application consists entirely
of shims. Therefore, the equation has a range of (0, 1],
where lower values indicate a better score. Note that
the lower bound is exclusive since we do not permit
munges to have a zero cost and every application must
have at least a single munge.

The generation score depends on a cost function
that maps munge types to cost values. To bound our
munge-level cost function, we first present a complete
ordering of munge costs that aligns with the partial
ternary ordering introduced in Section 3.

cost(α) > cost(shim)

cost(shim) > cost(lift) + 2 cost(align) + cost(cast)

cost(lift) > cost(cast)

cost(cast) > cost(align)

cost(align) > cost(comp)

cost(comp) > cost(glean)

cost(glean) > cost(conneg)

cost(conneg) > 0

The horizontal lines delimit the three munge groups
shown in in Figure 3; the top group corresponds with
mundane munges, the middle group corresponds with
semantic munges, and the bottom group corresponds
with trivial munges. The least expensive munge is a
conneg and the most expensive munge is a shim,
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which is a composite of lifting, aligning, and casting;
shims incur the highest cost because they require ana-
lysts to perform mental data alignments without con-
crete intermediary models. Note, however, that the cost
of a shim cannot equal the cost of the total application.
This implied gap is filled by other costs, such as vi-
sualization interpretation costs, which are discussed in
Section 7.

We use one such solution of the cost ordering con-
straints to define a munge-level cost function shown
below:

cost(m) =



20 : if shim
6 : if lift
5 : if cast
4 : if align
3 : if comp
2 : if glean
1 : if conneg

Given these munge cost bindings, we see that µ fa-
vors applications that contain a larger proportion of
trivial and semantic functions. For example, compare
Amy’s µ for her α3 and Bart’s µ for his α1, both
of which consist of three munges shown in Table 1.
Amy’s α3 consists of one cast and two shims, which
results in a µ of 0.75. Bart’s α1, on the other hand,
consists of only a single shim, which results in a µ of
0.48.

Table 1

Amy’s and Bart’s µ for each application. The scores are broken
down by actual and worst case cost.

An. α Mα actual worst µ

Amy
α1 shim 20 20 1
α2 shim, lift, align, cast, shim 55 100 0.55
α3 cast, shim, shim 45 60 0.75

Bart α1 align, cast, shim 29 60 0.48

In practice, analysts should assign munge costs that
are based on different measures, e.g., man hours, lines
of code, and commit frequencies. As long as the cost
ordering constraints are satisfied, analysts can exper-
iment with different cost valuations and obtain new
µ scores that are consistent with previously computed
rankings of their ecosystems. For example, given two
ecosystems E1 and E2, where S1(E1) < S1(E2) was

established using munge cost function c, the ranking
will hold under a different cost function c′, so long as
both c and c′ respect the same cost order constraints.
We can therefore consider c and c′ as simple scaling
factors.

4.2. Reuse Potential

We define a score that expresses how easily subse-
quent analysts can reuse materials generated by prior
analyses. Since this score is looking at the seams (i.e.,
data) between different ecosystems, the score is a func-
tion of the kind of results that are generated by appli-
cations. We assume that LD, including data that can
be trivially munged to yield LD, is easier for subse-
quent analysts to reuse. On the other hand, mundane
results such as PowerPoint slides, CSV files, and raster
images pose greater challenges [19] since these results
are rarely explicitly connected to their source materi-
als.

In the analysis described in Section 3, Bart made a
strategic decision to reuse the intermediate and struc-
tured, albeit less evolved, satellite RDF dataset instead
of the normalized histogram image. The histogram, al-
though representative of Amy’s analytical frame, is an
island from a LD standpoint and is not linked to the
source RDF information that Bart needed to complete
his task.

To embody this idea, we define the potential (pot)
function that returns a set of scaling factors whose val-
ues depend on whether Dα is mundane or semantic.
Let the function tbl return the Berners-Lee star rating
([1,5]) of a dataset, i.e., tbl(d) = s.

pot(dα) =


1

cost(shim)
: if tbl(dα) > 3

1
cost(align)

: if conneg(dα) 6= ∅
1

cost(glean)
: if glean(dα) 6= ∅

1 : otherwise

The pot function is used to reward (i.e., reduce the
value µ) applications that generate RDF. Therefore, if
a resultant dataset is encoded in RDF, the pot func-
tion provides the greatest reward since subsequent an-
alysts obtain RDF for free. If a result can be content
negotiated to obtain RDF, the function provides less
of an award since subsequent analysts would have to
interact with a server to acquire RDF. If a dataset can
be gleaned to obtain RDF, the function provides the
smallest reward since subsequent analysts would have
to perform a glean munge, which costs slightly more
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than content negotiation. Finally, if a dataset does not
satisfy any of the above conditions, the function pro-
vides no reward; a scaling factor of 1 has no effect.

Since dα can satisfy multiple conditions, the pot
function returns a set of values, one for each bucket
dα satisfies. In these cases, subsequent analysts can
choose which facet of the dataset they want to work
with. For example, an analyst may be able to glean or
content negotiate a single XML dataset, if the dataset
contained embedded RDF and was referenced by a
URL that could be content negotiated.

On the Web, capturing downstream usage of analyti-
cal results may be challenging for provenance systems.
The pot function, therefore, provides some predictive
measure about the efficiently at which downstream an-
alysts can repurpose upstream materials. With contin-
ued work in the area of provenance [26], we may soon
be able to follow up on the actual reported gains in
downstream applications and report these gains to up-
stream analysts.

Also, the pot function is not expected to accurately
reflect all work environments. Perhaps, for provenance
concerns (i.e., prov:alternateOf), a downstream
analyst prefers to keep the mundane and semantic re-
sults bundled together as gleanable datasets. In this
case, the pot can be reconfigured to provide gleanable
datasets with the greatest reward. Or perhaps file size is
important and therefore gleanable datasets should re-
turn very little reward since they pack multiple repre-
sentations into a single file.

4.3. Seamlessness Score S

We can now define the seamlessness score, S, that
is built from the µ expression and pot:

S(E) =

∑
α∈E

∑
m∈Mα

min(pot(dα))cost(m)∑
α∈E

∑
m∈Mα

cost(shim)
(2)

Unlike µ, the seamlessness metric S computes
scores for ecosystems, rather than single applications.
The seamlessness score S sums up all scaled µ scores
and normalizes these values by the hypothetical worst
case: when an ecosystem is informed entirely by
shims. As described in the previous subsection, the
scale factors are computed by the pot function, which
predicts the ease by which subsequent analysts can
reuse dα. Also, S uses the minimum value returned by
pot in order to provide the greatest rewards.

4.4. Amy’s and Bart’s Scores

Table 2 presents the seamlessness scores for Amy’s
and Bart’s ecosystem. The table breaks down the
scores in terms of µ and pot and also computes the
scaled value of µ, i.e., cost× pot.

Table 2

Amy’s and Bart’s seamlessness score S. The scores are broken down
into their constituent integration and reuse costs.

An. App. µ pot(dα) cost× pot

Amy
α1 20 1 20
α2 55 1 55
α3 45 1 45

S(EAmy) = 0.66
Bart α1 29 1 29

S(EBart) = 0.48

From the table, we see that Bart’s ecosystem, which
scored 0.48, was more seamless than Amy’s ecosys-
tem which scored 0.66. Overall, Amy performed more
shims that resulted with mundane datasets that de-
graded her work performance. Note, however, that nei-
ther analyst generated an RDF representation for any
of their resultant visualizations, dα, and thus no reduc-
tions were applied for any application, i.e., pot(dα) =
1. Also, note that Bart’s ecosystem contained only a
single application and thus his seamlessness score is
equal to his only application’s µ score presented in Ta-
ble 1.

5. Reducing Analytical Costs with Five-Star
Applications

We propose a “5-star application rating scheme” that
analysts can use to design more efficient applications
that avoid the anti-patterns and analytical pain points
described in Section 3. The rating scheme is expressed
in the form of ontological restrictions that progres-
sively reduce the space of possible munge sequences.
As the application ratings increase, the possibility of
performing certain anti-patterns decrease.

We outline these ontology restrictions by extend-
ing the application ontology, presented in Section 2,
to distinguish among five types of application sub-
classes that are illustrated in Figure 9. These sub-
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Fig. 10. Star ratings for the applications in Bart’s and Amy’s ecosys-
tems. White star indicate “conditional stars.”

classes are rated according their predicted cost, which
is expressed as an interval. We use intervals since we
are describing classes of applications, each of which
contains a set of different applications instances that
have different predicted costs. The interval thus cap-
tures the min and max predicted cost of the application
instances.

Table 3 enumerates all five application star ratings
and pairs each with their associated restriction(s). Fig-
ure 10 uses this table to rate the applications performed
by Amy and Bart in their analyses presented in Section
3.

5.1. One-star applications

One-star applications satisfy our fundamental re-
striction that the sets of analysts, tool developers, and
data providers (i.e., the application triad) of a par-
ticular application are disjoint, i.e., attr(dα) ∩ A ∩

attr(t) = ∅, where A refers to the analyst and the
function attr supports the transitive discovery of data
providers and tools developers that can be practically
achieved through SPARQL queries over provenance
traces described using our AO ontology (Section 2).
Figure 9 depicts this restriction towards the left-hand
side, where cross-hatched lines connecting the triad of
Data Providers, Analysts, and Tool Developers repre-
sent a disjoint relationship.

In the scenario presented in Section 3, Amy’s use
of the GIS tool in application α1 earns one-star since
Amy was neither the provider of the satellite data nor
the developer of the employed GIS tool; when we state
that an application instance, such as Amy’s α1, earns
one star, this is equivalent to stating that the instance
belongs to the one star application class. In contrast,
Amy’s use of the histogram tool in application α2

does not earn one star since she was required to write
HTML code. We therefore distinguish between devel-
oping munge scripts and developing the actual tool t
that generates application results, where only the latter
case precludes an application from earning one star.

Similarly to Amy’s α2, the use of government data
mash-ups19 and LOD metadata summaries such as
Linked Open Vocabularies (LOV)20 and SPARQL
Endpoint Service (SPARQL-ES)21 do not earn a star
since the tool developers are also data providers. The
LOV tree map view, for example, is immutably bound
to LOV’s underlying RDF store 22.

The one-star application restriction speaks more
from a tool developer perspective than from analysts
who use those tools. If developers would design soft-
ware with one-star applications in mind, they might re-
frain from hard-coding tools to accept only certain data
sources (e.g., a particular quad store), and thus provide
analysts with greater flexibility regarding which tools
they can use.

The one-star application class also describes a set of
possible munges sequence that we refer to as a munge
space. Since the one-star application class does not
place any restrictions on the structure of the data used
and generated, the class describes applications that
range from exclusive shims (i.e., flatlines described in
Section 3) to exclusive computes, and every possible
combination in between (i.e., housetops and hillsides).

19http://data-gov.tw.rpi.edu/demo/USForeignAid/demo-1554.
html

20http://lov.okfn.org/dataset/lov/
21http://sparqles.okfn.org/
22http://lov.okfn.org/endpoint/lov

http://data-gov.tw.rpi.edu/demo/USForeignAid/demo-1554.html
http://data-gov.tw.rpi.edu/demo/USForeignAid/demo-1554.html
http://lov.okfn.org/dataset/lov/
http://sparqles.okfn.org/
http://lov.okfn.org/endpoint/lov
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Table 3

Five-star rating scheme to assess the seamlessness of a single
application.

Rating Informal Restriction Formally

1 data providers, analysts, and tool developers are disjoint attr(D) ∩A ∩ attr(t) = ∅
2 accept data (any format) via URL; cite that URL in the future tbl(D) >= 1 ∧ URL ∈ Dα
3 accept data (RDF format) via URL; cite that URL in the future tbl(D) >= 4

4 use a tool’s input semantics (OWL, SPARQL) when preforming munges used(m,σt) ∧m ∈M
5 provide any information (RDF format) derived during use D ⊂ Dα

We depict the one-star munge space at the top in Fig-
ure 11. Without loss of generality, the munge spaces
presented in the figure:

– assume that applications are composed of two
non-trivial munges (see Section 2); one non-
trivial munge to satisfy a tool’s input require-
ments and another non-trivial munge performed
by the tool itself.

– assume that applications that accept semantic data
(i.e., D[4,5]) may be preceded with an optional
trivial munge, which is not considered in the total
cost of the application. This relaxation will allow
three-, four-, and five-star applications to ingest
gleanable and content negotiable data without be-
ing penalized23.

Because each application in this section describes
a set of possible munge sequences, we describe their
costs in terms of an interval. The lower bound specifies
the cost the cheapest possible munge sequence while
the upper bound specifies the cost of the most expen-
sive possible sequence in the munge space. Therefore,
the cost bounds for the one-star application class is ex-
pressed by the interval:

cost(α?) = [2× cost(comp), 2× cost(shim)]

= [6, 40]

5.2. Two-star applications

Two-star applications accept data via URL and al-
ways cite that URL in the future. This restriction ap-
plies to any kind of data, i.e., tbl(d) >= 1; the func-
tion tbl maps a dataset d to its star rating as determined
by Tim Berners-Lee’s scale. Like the previous rating,
two-star applications also fulfill the requirement that

23Our µ score, presented in Section 4, assigns a negligible cost to
trivial munges
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Fig. 11. Possible munge patterns associated with each application
subclass. As the application restrictions increase, the space of possi-
ble munge sequences decreases.

data providers, analysts, and tool developers are dis-
joint.

Figure 9 depicts the two-star restriction near the top,
where:

– data d is available on the Web
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– data d has an associated dcat:Distribution point-
ing to where d can be accessed

– the distribution URL is referenced by the output
dataset, dα; we depict this relationship using a
line with a semi-circle endpoint that “hugs” a sub-
circle within dα

Amy’s application α1, described in Section 3, earns
two stars. The input to the application, d1,1, was a
KML satellite dataset that was available on the Web.
Additionally, the resultant map, dα1

, contained the
URL of the input KML file, providing a simple and
natural derivation provenance [pp6].

We take Amy’s α1 as an opportunity to reinforce the
definition of an application, which we define as a class
of activities, not software entities. To earn a second
star, an application must use a web accessible dataset
and generate a result that cites that same dataset, re-
gardless of the actual IO of the employed tool. For ex-
ample, if Amy wanted to perform a two-star applica-
tion, and her employed GIS tool did not generate a map
citing the KML dataset, the burden would fall on Amy
to somehow watermark the URL of the KML into the
map, perhaps using a technique such as steganography
[20].

In contrast, the use of LOV and SPARQL-ES would
likely result with two conditional stars; both tools ac-
cept URLs (e.g., OWL files and SPARQL endpoints)
and the HTML reports these tools produce reference
those same input URLs. Conditionality refers to cases
when an application fulfills a particular star level re-
quirement but fails to fulfill the immediately-preceding
requirement(s). Although LOV and SPARQL-ES ac-
cept URLs and thus implicitly encourage analysts to
use URLs in their applications, these two tools violate
the one-star condition since the tool maintainers have
control over input data sources.

In terms of munge space, the two-star application
class is equivalent to the one-star class since two-star
applications do not restrict the structure of data con-
sumed or generated.

5.3. Three-star applications

Three-star applications accept RDF data via URL,
i.e., tbl(dα) >= 4. The data can be “pure” RDF or
embedded in a gleanable, mundane dataset. Like the
previous rating, three-star applications must also use
data available on the Web. Figure 9 presents the three-
star restriction at the top, where d is an RDF dataset.
The figure indicates that RDF is a subclass of Web, and
thus inherits a dcat:distribution URL.

Both Amy’s α3 and Bart’s α1 earn three conditional
stars. Both applications used an RDF dataset as input,
yet the applications generated results that did not refer-
ence the URLs to those input RDF datasets; the appli-
cations did not fulfill the two-star requirement. These
conditional star ratings are depicted as white stars in
Figure 10.

Applications designed around linked data browsers
[1,3,12] can earn at least three-stars iff the applications
meet the one- and two- star requirements. These tools
accept RDF and thus encourage analysts to use RDF
in their applications.

The three-star application class defines a smaller
munge space than one- and two-star application classes.
If data d is encoded in RDF, it can only be com-
puted, aligned, and cast. The three-star restriction thus
removes the possibility for flat-line and house top
munges, although hill slides are still possible. We de-
pict the three-star munge space in Figure 11.

The cost bounds for the three-star application class
is expressed by the interval:

cost(α???) = [2× cost(comp), cost(cast) + cost(shim)]

= [6, 25]

The cost bound for the three-star application class
is not only tighter than one- and two-star application
classes, but also lower since the upper cost is reduced
from 40 to 25.

5.4. Four-star applications

Four-star applications use a tool’s input seman-
tics (OWL, SPARQL) to help guide munging, i.e.,
used(m,σt)∧m ∈M . Like the previous rating, four-
star applications also accept RDF via URL. Figure 9
depicts the four-star application restriction toward the
bottom, where a munge m uses a tool t’s input seman-
tics σt during an application.

Amy and Bart did not use any tools that made
their input semantics available and, therefore, did not
perform any four-star applications. However, the Se-
mantic Automated Discovery and Integration (SADI)
framework [40] pairs services with OWL class def-
initions that describe the expected input and output
graph patterns. These OWL classes provide service
consumers with an unambiguous expression ([pp5]) of
the service’s I/O requirements, which allows agents to
coordinate service execution sequences.
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In terms of munge space, the four-star application
class is equivalent to the three-star class; no restrictions
are placed on the data consumed or generated.

5.5. Five-star applications

Five-star applications output results as linked data,
i.e., d ⊂ dα. Like the previous rating, five-star applica-
tions also accept RDF via URL and use a tool’s input
semantics during munging. Figure 9 depicts the five-
star application restriction toward the right, where the
RDF data used in an application is a subset of the gen-
erated result Dα.

Amy and Bart did not perform any applications that
generated Linked Data, and, therefore, neither of their
ecosystems contains a five-star application. Similarly,
some applications analyzing the Linked Data cloud
[14,32] do not earn five-stars since the results are typi-
cally images or journal articles. On the other hand, Tim
Berners-Lee’s tabulator [3] can be used by analysts to
perform five-star applications. As analysts make edits
to third-party RDF, tabulator emits new RDF describ-
ing those edits. Analysts can also use SADI to per-
form five-star applications, since SADI services gener-
ate RDF graphs that expand on the inputs graphs.

When applications generate LD, they eliminate a
number of analytical pain points. With LD, subsequent
analysts can more easily determine how prior results
are connected to source information and thus be bet-
ter informed about meaning of those results [pp1,pp2].
Additionally, subsequent analysts can use results as a
gateway from which to obtain more context that may
be needed for their specific tasks. Finally, applications
that generate gleanable LD or datasets that can be con-
tent negotiated to obtain LD allow subsequent analysts
to easily work with their preferred data representation
[pp4].

The five-star application class defines the smallest
munge space. Five-star applications use RDF and gen-
erate Linked Data, or results that can be trivial gleaned
to yield Linked Data. Therefore the munge space in-
cludes a best case of exclusive computes and a worst
case sequence exhibiting the“inverted house top” pat-
tern (i.e., cast-lift combination), as shown in Figure 11.
Essentially, five-star applications eliminate the possi-
bility of anti-patterns described in Section 3.

The cost bounds for the five-star application class is
expressed by the interval:

cost(α?????) = [2× cost(comp), cost(cast) + cost(lift)]

= [6, 11]

The cost bound for five-star applications is not only
tighter than the three- and four-star application classes,
but also lower since the upper cost is reduced from 25
to 11.

5.6. Boosting Amy’s Seamlessness Scores

In this section we will use Amy’s ecosystem EAmy ,
shown in Figure 4, as a baseline ecosystem to com-
pare with an alternate, ideal ecosystem Eideal, shown
in Figure 12. The ideal ecosystem, Eideal, contains
only five-star applications and exemplifies a seamless
analysis. Aside from calculating a better seamlessness
score, we will also provide intuition as to why the ideal
ecosystem alleviates certain analytical pain points.

Ecosystem EAmy contained three applications that
collectively spanned nine munges. To facilitate a more
fair comparison, we retrofitted the applications in
EAmy with additional lifts and gleans to produce
Eideal, which is five-star compliant. Therefore, our
ideal ecosystem, Eideal, also contains three applica-
tions that are designed around the same tools and ob-
jectives as EAmy .

Figure 12 shows the provenance for the applications
comprising Eideal. We assume that a LD version of
the satellite dataset, dα1

, existed prior to Amy’s ideal
analysis. Therefore, from a more global perspective,
Amy is a subsequent analyst that reused the results of
a prior, anonymous five-star application (we need this
bootstrap in order to make this first application five-
star compliant). A snippet of the satellite LD is shown
below. Note the use of DBPedia URIs to refer to launch
sites and countries.

< s a t e l l i t e −1> a p e x t : A c t i v e S a t e l l i t e ;
prov : wasDerivedFrom

< h t t p : / / d b p e d i a . o rg / page / Eas te rn_Range > ;
a c l : owner

< h t t p : / / d b p e d i a . o rg / page / U n i t e d _ S t a t e s > ;
geo : l a t −100.000 ;
geo : l ong 33 ;
geo : a l t 30000
.

< s a t e l l i t e −2> a : D e b r i s ;
prov : wasDerivedFrom

< h t t p : / / d b p e d i a . o rg / page / Mid−A t l a n t i c . . . >
a c l : owner

< h t t p : / / d b p e d i a . o rg / page / U n i t e d _ S t a t e s >
geo : l a t −110.000 ;
geo : l ong 50 ;
geo : a l t 60000
.

Amy first used a script to cast the input satellite RDF
dataset, d1,1 to a satellite KML file, d1,2. She then
generated two, alternate representations of the satel-



18 T. Lebo et al. / Analytical Seamlessness

dα1d1,1

d1,2
dα1

d2,4

d3,1 d3,2
dα3

 Amy’s α2

 Amy’s α3

 Amy’s α1 satellite.rdf
shim

cast

shim shim

efficiency.json efficiency.svg efficiency.png

cast

dα2
shim

cast

satellite.kml

d2,1
dα2

inverted house top

lift

grouped.png

dα1

liftgle
an

grouped.rdf

byType.svg byType.png

byType.rdf

d2,1
dα3

lift

inverted house top

inverted house top

Fig. 12. Amy’s ideal analysis supported entirely by five-star applications.

lite map, dα1 , one semantic and one mundane. In prac-
tice, she could have used the GIS tool to generate the
mundane version of dα1

and then developed a sepa-
rate script that “types” the satellites in d1,1 as useful
or junk. For the sake of this exercise, we’ll assume
that the GIS tool generated a gleanable image of the
map that embeds LD describing her satellite group-
ings. We consider gleanable XML and any other RDF
embedding mechanism, such as content preserved im-
ages [24], to be equivalent; these kinds of approaches
all embed semantic content into mundane datasets.

Since this application is five-star, the GIS tool pro-
vided its input semantics in the form of the SPARQL
query shown below:

s e l e c t ? geonode ? l a t ? long ? a l t
where {

? geonode geo : l a t ? l a t ;
geo : l ong ? long ;
geo : a l t ? a l t . }

Although the SPARQL query does not include infor-
mation about the particular KML format required by
the GIS tool, the conceptual description, coupled with
example KML dataset provided by tool, was enough
information for Amy to produce the appropriate KML
file, d1,2.

Amy then used the gleanable map, dα1 , as input for
her next application, α2. In EAmy , Amy was not able
to directly reuse the satellite map since it resided as
a mundane PNG image that required expensive image
processing to reuse. However, the hypothetical, glean-

able version of the map contains an embedded LD
dataset containing her custom satellite groupings. She
performs a glean to extract the satellite groups, d2,1,
directly from the map and then uses the histogram tool
to cast the dataset into an SVG histogram. Amy then
lifts the SVG to generate the application’s result, dα2 ,
which is a LD representation of the SVG histogram
[24]. Although the histogram provided its input seman-
tics, we omit them in this text.

A snippet of the LD histogram is shown below24

: b in1 a vsr : Bin ;
r d f s : l a b e l " U s e f u l S a t e l l i t e s " ;
s i o : c o u n t " 1000 " ;
owl : o n P r o p e r t y < r d f : type > ;
owl : hasVa lue < p e x t : A c t i v e S a t e l l i t e > .

: b in2 a vsr : Bin ;
r d f s : l a b e l " Junk S a t e l l i t e s " ;
s i o : c o u n t " 14000 " ;
owl : o n P r o p e r t y < r d f : type > ;
owl : hasVa lue < nfo : Trash > ;

In her final application, α3, Amy uses the satellite
groups, d21 to generate the normalized histogram. The
dataset contains her custom groupings and references
URIs of satellites published as LD, which Amy can
dereference to obtain additional information, such as
ownership and launch site information. She first cast
d2,1 into the JSON format required by the stacked bars

24The values of owl:hasProperty are references to the satel-
lite types contained in dataset d1,1 and thus enable subsequent ana-
lysts reconstitute the set of satellites that contribute to a bin count.
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widget. During this cast, Amy was guided by the in-
put semantics of the stacked bars widget, which were
expressed using the SPARQL query below:

s e l e c t ? b i n ? b inCoun t ? subBin ? subBinCount
where {

? b i n a vsr : Bin ;
s i o : c o u n t ? b inCoun t ;
dcterms : h a s P a r t ? subBin .

? subBin a vsr : Bin ;
s i o : c o u n t ? subBinCount . }

Once again, the input semantics coupled with an ex-
ample dataset, provided by stacked bars, was enough
information for Amy to produce the appropriate JSON
file, d3,1. Like applications α1 and α2, she generates
both a mundane and semantic representation of the
stacked bars.

Using the same mechanics in Section 4, we calculate
the seamlessness score for Eideal in Table 4. We also
include the seamlessness score for the older ecosystem
Eideal for comparison purposes.

Table 4
The seamlessness scores for ecosystem EAmy and Eideal.

Analyst App. cost(Mα) pot(Dα) cost× pot

Amy
α1 20 1 20
α2 55 1 55
α3 45 1 45

S(EAmy) = 0.66

Amy′
α1 31 0.5 15.5
α2 33 0.5 16.5
α3 51 0.5 25.5

S(Eideal) = 0.26

6. Related Work

Early visualization researchers developed a variety
of models to help them understand the visualization
process [6,11]. For example, Chi [8] devised a visu-
alization transform model that describes of how data
evolves from its “raw” state to a “view” state as it
passes through a four-stage pipeline. Chi’s intention
was to establish a canonical way to describe any visu-
alization technique, which would enable developers to
compare and contrast different techniques as well as
identify pipeline stages where techniques overlap [7].
Although Chi’s effort was centered on data transfor-

mation, his model lacked a cost structure that could be
used to establish metrics for rating or ranking visual-
izations.

In contrast, the Visual Analytics (VA) community
has continually developed and revised analytical cost
models for decades [33,31]. These models, however,
mainly consider cognitive costs associated with user
interactions [23] and visual pattern recognition. In par-
ticular, Patterson [30] described how analysts use vi-
sualizations to make decisions and suggested six lever-
age points that make visualizations easier to interpret.

Other VA researchers have taken a more data-centric
perspective on visualization cost. Wijk, for example,
proposed an economic model that considers the ratio of
insight gained to the cost of generating a visualization
[39]. Wijk specifically highlighted cost Ci, which cap-
tures cost of developing a visualization. It is not clear,
however, which specific factors influence Ci (e.g., an
analyst’s familiarity with programming or ability to
gather source information), leaving analysts with little
direction as to how to better quantify and mitigate that
cost.

Kandel [17], on the other hand, provided a detailed
account of the challenges analysts face when generat-
ing visualizations and even developed a tool that can
mitigate those challenges [18]. He discusses different
classes of analysts with regards to their experience and
tools they use. He also describes how each class of an-
alyst approaches the problem of munging data, deter-
mining data quality, and reusing prior results. His work
largely motivates our theory, which we believe is the
next logical step in his work; formally articulate his
analysts’ testimonies. In addition to providing motiva-
tion, Kandel also touches on how semantic data can
be used to address the challenges of formatting, ex-
tracting, and converting data to fit input data require-
ments. He even suggests that these data types should be
shared and reused across analyses, similarly to how the
Linked Data community advocates the reuse of popu-
lar vocabularies [36].

Similarly, Fink provided an account of the chal-
lenges faced in cyber-security settings [10]. He found
that, much like Kandel’s enterprise subjects, cyber se-
curity analysts are limited by their ability to cheaply
mitigate disparities among diverse data and tools. Ad-
ditionally, some analysts even noted the difficulty in
linking applications and expressed their desire for en-
vironments that support result chaining.

The models from VA provide good explanations of
how visualization quality, user experience, and work-
place politics impact analytical costs, especially when
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results must flow from one analyst to the next. These
models, however, do not emphasize how data struc-
turedness and linkability impact cost; structure in VA
refers to the conceptual schema of information rather
than the physical format in which the information re-
sides [22,31,33]. The Linked Data (LD) community,
on the other hand, has long considered the poten-
tial costs and benefits associated with publishing and
consuming structured, linked data, but not necessar-
ily in analytical settings where results flow across ana-
lysts. For example, Tim Berners-Lee is a proponent of
Linked Data because of the potential benefits afforded
to data consumers, whom can more easily discover, in-
tegrate, and reuse linked RDF 25. His scheme has been
useful in understanding the affordances to data con-
sumers in client-server settings where data is only gen-
erated by publishers, rather than peer-to-peer analyti-
cal settings, where consumers generate results and thus
become publishers themselves.

Similarly, Janowicz and Hitzler [16] describe how
the Semantic Web provides analysts with opportuni-
ties to use third-party data in contexts not envisioned
by the data provider. Analysts can use OWL to for-
mally articulate the input schema to their analytical ap-
plications, and then use those formal expressions as an
alignment target, much like our notion of input seman-
tics. In the same spirit, Heath and Bizer describe an ap-
plication architecture for LD applications, citing data
access (e.g., HTTP Get) and vocabulary mapping (i.e.,
a kind of munging) as major components [13].

7. Future Work

In terms of our seamlessness score described in Sec-
tion 4, we can enhance our cost models to consider an
analyst’s experience. Different visualizations, dα, are
easier to interpret than others, depending upon the ex-
perience and biases of an analyst as well as how well
the visual metaphor relates to the task at hand. Prior
work [39] in VA defines a usage cost, Ce, that denotes
the “perception and exploration cost” when analysts
use visualization tools. We can include Ce in our ap-
plication cost formula (i.e., the numerator in metric µ)
to derive a new and more complete cost formula:

∑
m∈Mα

cost(m) + Ce(dα)

25http://5stardata.info

We can also elaborate on the distinction between
mundane (1-3) and semantic (4-5) munges. Currently,
our model stereotypes four- and five-star data into the
same class, however, we observe significant cost dif-
ferences in creating quality five-star data [14,35] An-
alysts must have experience in good URI design and
popular vocabularies26. Additionally, analysts need to
have some grasp of RDF patterns, such as PROV qual-
ified associations and Semantic Science Integrated On-
tology (SIO)27, so they can understand how to more
effectively anchor their RDF to existing linked data in
more recognizable and discoverable ways.

We also need engineered approaches for developing
software tools that operate on Linked Data. Currently,
most VA tools do not accept and generate RDF and
thus it is up to analysts to employ munges that conform
to the Five-Star requirements. We are working to pro-
vide the Software Engineering community with a suit-
able software abstraction and set of requirements that
can guide the development of tools that better facilitate
five-star usage. These new tools would expose their in-
put semantics and generate linkages between source
data and derived visualizations.

Ultimately, we believe our theory is a first step to-
wards embodying the LD community’s assumptions,
claims, and hypothesis in a simple form that can be
used to better understand the limitations and practical
applications of LD. When our theory predicts a lower
cost that what is observed, we may be able to locate
high-cost applications and determine which munges
contribute to the inflation; perhaps ontology alignment
is still too expensive. In these cases, we may also
be able to characterize work environments where the
overhead of generating and maintaining LD is not out-
weighed by the prospective cost savings, for example,
in settings where analysts do not share results and ma-
terials.

8. Conclusion

We forged a Theory of application seamlessness that
predicts the cost of non-trivial analyses that span mul-
tiple applications. The theory is a conglomerate of
theories from the Visualization Analytics and Linked
Data communities and explains analytical costs in
terms of data evolution (i.e, Visualization Analytics

26Linked Open Vocabularies (LOV) maintains a listing of crowd
sourced vocabularies http://lov.okfn.org/dataset/lov/

27http://semanticscience.org/

http://5stardata.info
http://lov.okfn.org/dataset/lov/
http://semanticscience.org/
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theory) and data structuredness (i.e., Linked Data the-
ory). As data evolves into ordered forms that facili-
tate analytic reasoning, it jumps within a dichotomous
space of mundane and semantic formats. The theory
suggests that when data occupies the mundane space,
the cost to perform the analysis increases.

We described our theory in three parts: a Applica-
tion Ontology (AO) that describes analytic applica-
tions regardless of the type of data, tool, or objective
involved; a scoring metric to assess the cost of analyses
described in AO; and a set of cost reduction strategies
that are expressed in the form of restrictions on AO.
We demonstrated the utility of the theory by compar-
ing the actual cost and predicted cost of two analyses:
one real-world example based on the current state of
practice and an alternative, hypothetical analysis that
employs the cost reduction strategies.
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