
Undefined 0 (2015) 1–0 1
IOS Press

One Size Does Not Fit All: Logic-based
Clustering for On-the-fly Semantic Web
Service Composition and Verification
Khai Huynh, Tho Quan, and Thang Bui
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology, VietNam
E-mail: {htkhai, qttho, thang}@cse.hcmut.edu.vn

Abstract. Recently, web service composition has been emerging widely since it is obviously hopeless to develop a specific web
service which can single-handedly fulfill completely a requirement posed from clients. Preferably automatic, this task requires
an efficient mechanism to semantically well-define the web services, which are perfectly fulfilled by the usage of ontology in
semantic web services. Since ontological concepts are commonly comprehensive among computer-based systems, semantic web
services can be not only composed precisely, but also verified efficiently from their functionality and QoS (Quality of Services)
constraints.

However, composition and verification tasks always suffer from huge computational cost, which make clustering approaches
naturally considered. However, typical clustering techniques neither ensure the soundness nor completeness of a composition
solution. In this paper, we suggest a logic-based approach for clustering of semantic web services. The clustering results are then
further applied for service composition and verification in an on-the-fly manner. In theoretical aspect, our approach achieves both
soundness and completeness. As for practical result, our metric of logic-based similarity generates more reasonable clusters,
resulting in significant performance improvement enjoyed in our experiments.

Keywords: Logic-based Semantic Web Service Clustering, Logic-based Semantic Web Service Similarity, Web Service
Clustering, Web Service Composition, Web Service Formal Definition

1. Introduction

1.1. Web Service Composition and Verification

Nowadays, advent of web service is considered as
a technology bringing a revolution operations of on-
line B2B (Business to Business) and B2C (Business
to Customer) applications. The basic value of web ser-
vices is that it provides standard ways to access to the
packaged and stand-alone systems. Software was writ-
ten by various programming languages and running on
various platforms can use web services to communi-
cate with each others in order to handle and process
data via the Internet.

Service-Oriented Architecture (SOA) is an approach
used to create an architecture based upon the use of

services [1]. However, when a web service usually pro-
vides a simple functionality, a single service can not
meet the client requirement in many practical cases.
For example, if a user wants to travel, he or she not
only wants to book a flight to a City , but also be be-
ing exposed with Sightseeing of this city, and in the
meantime taking care of the price of nearby Hotel.
Once locating suitable hotel, the user may want to
make the Reservation and perform a Payment. It
prompts the issue of Web Service Composition (WSC),
the process to produce composite web service, which
is a collection of services that will be executed in a
specific order to serve a user requirement.

Each web service has functional and non-functional
(or Quality of Service – QoS) properties [2]. Func-
tional properties are the input and output of a web ser-

0000-0000/15/$00.00 c© 2015 – IOS Press and the authors. All rights reserved

2 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

vice. They represent the functionality of the service.
The user requirement on functional properties is called
hard constraint. In addition to those functional prop-
erties, there are many QoS properties of web services,
such as the response time, execution cost, availability,
etc. For example, all web services described in Table
1, which provide the functions related to a travel book-
ing process, have their QoS property on response time
(respTime). The user requirement on QoS properties is
called soft constraint.

There have been much studies on WSC recently.
These studies are based on different approaches [3].
Some approaches only deal with the hard constraint
using the theory of artificial intelligence (AI) planning
as [4] [5] [6] [7]. There are typical frameworks in this
approach have been proposed such as PORSCE II [4],
OWLS-XPlan [5], etc.

However, as QoS is concerned, it is significant that
the composed web service should satisfy the soft con-
straints. This is a complex verification task since we
need to take into account all of QoS of each individual
web service, which may yield different results when
combined in different manners [2]. As such, the inte-
grated task of web service composition and verifica-
tion suffers from a huge complexity in order to find all
of possible compositions and verifies each of them.

Model checking [8] has been attracted much atten-
tion, since it provides a solid mathematical background
to handle the above discussed issue. There are various
model-checking-based approach for web service com-
position such as [9], [10], [11], [12]. However, most of
them (such as [9] or [12]) rely on composition schema
which is a combination of all possible composition so-
lutions (based on the hard constraint). A model is then
developed from this schema to be verified. A model is
basically a finite state machine based on which a model
checker can verify a property by exploring all of pos-
sible states. In our context, the goal of verification is to
choose the composition which satisfies all of QoS.

These approaches have two drawbacks. The first one
is computation complexity. That is, we have to create
the composition schema based on hard constraint. This
is a NP-hard problem [13]. The second one is the fre-
quent changes in user requirements. Whenever the re-
quirements change, a new schema and the correspond-
ing model have been built again before we can verify
and choose the suitable composition for the user. This
is very costly.

Our previous work presents in [14] has addressed
the second problem. In [14], we adopt the formal defi-
nition of Labelled Transition System (LTS) [15] to for-

mally represent all of concerned web services as a sin-
gle LTS-based model, known as LTS4WS. In order to
compose and verify web services, [14] uses an on-the-
fly approach combining with some heuristics allowing
early termination to be applied for unfeasible composi-
tion. Moreover, the LTS4WS is only needed to be gen-
erated once and remained unchanged (until the repos-
itory changes). When it supports various composition
purpose, thus we do not need to rebuild the model for
every user requirement.

1.2. Semantic Web and Semantic Web Service

The Semantic Web identifies a set of technologies,
tools and standards that support the vision of the
web associated with meaning form the basic building
blocks of an infrastructure [16]. It provides a process
level description for the web service that in addition to
functional information, models the preconditions and
post conditions of the process that can be inferred the
evolution of the domain logically.

Semantic web service is the software component
that provide dynamic service discovery, composition
and invocation of web services and facilitate auto-
mated handling of web services for the users. Seman-
tic web and web services are synergistic: the seman-
tic web transforms web into a repository of computer
readable data, while web services provide tools for the
use of that data. Concept of Semantic Web Service
(SWS) has been established [17][18] officially for a
decade.

The SWS research area started in the early 2000s.
The main goal of SWS approaches is the automation
of service discovery and service composition in a SOA
[19]. The web service descriptions are described se-
mantically using ontology [20], thus specifying their
interface in a machine-readable manner.

For example, the service SightseeingCityService in
Table 1 is represented as in Fig. 1. In which, Fig. 1a is
the WSDL [21] description of web service. It does not
contain semantic aspect. The input (output) parameters
are specified as the atomic data types, such as string,
int, float, etc., or the structure of these data types. Fig.
1b shows the specification of web service in OWL-S
[22]. A semantic web service in OWL-S is also con-
sidered as an ontology. It is an upper ontology of OWL
[23] and visually represented as in Fig. 1c. The in-
puts and outputs are specified as ontologies. These on-
tologies are taken from an ontology structure which is
graphically visualized rely on the idea of T-Box and
A-Box [24] as in Fig. 1d. Basically, a T-Box captures

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 3

[. . .]
<wsdl:definitions>

<wsdl:types>
<xsd:element name="City" type="CityType"/>
<xsd:element name="Sightseeing" type="SSType"/>
<xsd:simpleType name="CityType">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="SSType">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

</wsdl:types>
<wsdl:message name="get_CITYResponse">
[. . .]
</wsdl:message>
[. . .]
<wsdl:portType name="SightseeingCitySoap">
[. . .]
</wsdl:portType>
<wsdl:binding name="SightseeingCitySoapBinding">
[. . .]
</wsdl:binding>
<wsdl:service name="SightseeingCityService">
[. . .]
</wsdl:service>

</wsdl:definitions>

(a) The WSDL description

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#">
<service:Service rdf:ID="SightseeingCityService">

<service:presents rdf:resource="#SCProfile"/>
<service:describedBy rdf:resource="#SCProcessModel"/>
<service:supports rdf:resource="#SCGrounding"/>

</service:Service>
<profile:Profile rdf:ID="SCProfile">

<profile:hasInput rdf:resource="#Sightseeing"/>
<profile:hasOutput rdf:resource="#City"/>
<profile:has_process rdf:resource="SCProcess" />

</profile:Profile>
<process:AtomicProcess rdf:ID="SCProcess">

<process:hasInput rdf:resource="#Sightseeing"/>
<process:hasOutput rdf:resource="#City"/>

</process:AtomicProcess>
<process:Input rdf:ID="Sightseeing">

<process:parameterType rdf:datatype="&Sch;#anyURI">
http://127.0.0.1/ontology/travel.owl#Sightseeing

</process:parameterType>
</process:Input>
<process:Output rdf:ID="City">

<process:parameterType rdf:datatype="&Sch;#anyURI">
http://127.0.0.1/ontology/travel.owl#City

</process:parameterType>
</process:Output>

</rdf:RDF>

(b) The OWL-S description

SightseeingCityService

SCProfile SCGrounding SCProcessModel

presents supports describedBy

SCProcess

has_process
hasPrecondition hasResult

Sightseeing City

hasInput
hasOutput

hasInput hasOutput hasPrecondition hasResult

(c) A part of semantic web service ontology (OWL-S)

Travel

Concepts

Area

Rural Area Urban Area

Accommodation Sightseeing

City

Hotel

The T-Box

located-at

subclass-of subclass-ofsubclass-of

subclass-ofsubclass-of subclass-of

subclass-of

«Travel
Concepts»

«Area» «Accommodation»
«Sightseeing»

HaLong Bay

«Sightseeing»

BaNa Hills

belong-to

«Urban

Area»

belong-to

«Hotel»

Metropole

«Hotel»

Sofitel

belong-to

«City»

HaNoi

«City»

HoChiMinh

«City»

DaNang

belong-to

The A-Box

(d) The domain ontology

Fig. 1. An example about description of web service SightseeingCityService

4 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

the relations between concepts and an A-Box describes
instances of concepts.

1.3. Web Service Clustering

Even though the research on [14] has achieved some
improvements, it still suffers from the state space ex-
plosion problem in verifying large-scale repository of
web services. It is also a big issue in this area, which is
commonly addressed by clustering. In which, the cal-
culation of distance between web services when per-
forming clustering will based on the features extracted
from textual web service description, such as [25],
[26], etc., or based on ontological semantic, such as
[27], [28], [29], [30], etc., or combined both of them
[31].

The typical approach by most of those works is to
cluster web services into several clusters, mostly based
on the information extracted from the input, output and
description of the services. The most suitable clusters
to the user requirement are then selected to be used in
composition.

Although those clustering-based approaches reduce
the number of web services considered as candidates
for the composition solution, they still face the diffi-
culty on deciding the size and number of the selected
clusters. If only a few clusters are selected, we may
miss some solutions. In contrast, if too many clus-
ters are selected, the problem space may be enlarged
unnecessarily. In other words, one cannot ensure the
soundness nor the completeness of the solutions sug-
gested from clustering approaches.

In this paper, we propose a novel approach on logic-
based clustering for the semantic web service compo-
sition and verification. In this approach, web service is
represented by a logical expression. A dataset of web
services is grouped into clusters based on the calcula-
tion of the similarity between their logical expression.
Each cluster is also represented by a logical expression
so-called Representative Logical Expression. We then
prove that our clustering method ensures the soundness
and completeness of the composition solution.

Contributions. The contributions of this paper are
summarized as follows:

– Proposed an approach which combines clustering
and model checking for composition and verifica-
tion of web services. This approaches extends the
work in [14] in which web services can be com-
posed and verified in on-the-fly manner w.r.t var-
ious kinds of constraint. This work is enhanced

with clustering technique to enjoy significant im-
provement of performance.

– Presented a logic-based approach to present web
services and clustering results. This approach
contributes in threefold as follows: (i) logic-based
representation that allows us to integrate cluster-
ing results with formal representation of model
checking effectively; (ii) introduce a logic-based
similarity of web services which presents more
reasonable clustering result; and (iii) the compo-
sition approach has been proved to be sound and
complete.

Outline. The rest of the paper is organized as fol-
lows: Section 2 presents the motivating example. In
Section 3, we present detail about the preliminaries.
Section 4 presents about logic-based web service clus-
tering. This is the main section of this paper. Section 5
supplies the case study and the experiments are repre-
sented in Section 6. Section 7 is for the related works
and the conclusion and future work are presented in
Section 8.

2. Motivating Examples

Suppose that we have a web services repository
with 10 web services as in Table 1, and the user
would like to book a tour. The user then provides the
place to travel to (Sightseeing) and the date of the
travel (Dates), and requires the prices of some ho-
tels (Price) near by the Sightseeing and their reser-
vation (HotelReservation). Besides these functional
requirements (hard constraint), the user also ask for
the quality of service (soft constraint), such as the
response time (respT ime) of web services must not
exceed 30 seconds. In addition, the user also wants
to know about Price before the HotelReservation
when the price is the important information to choose
the hotel. This requirement can be represented as a
temporal relationship between web services. These re-
quirements are shown in Table 2.

Example 1. The advantage of web service clustering

As mentioned in the earlier text, the work of [14]
will build the LTS model for the input web service
(LTS4WS) and explore the state space in order to com-
pose and verify the web services. The LST4WS model
of the web services in Table 1 is illustrated in Fig. 2a.
At every composing step, [14] will examine all web
services to generate the real states (and their heuristic

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 5

HR

CH

HC

HP

SC

SCH

CS

ARA

ABS

AWS

s0

(a) The LTS4WS model [14]

SC

...
...

...
...

10
st

at
es

...
...

...
...

CH

10
st

at
es

...
...

...
...

...
...

...
...

HR

10
st

at
es

HP

10
st

at
es

(b) The expanded state space

Fig. 2. The model and expanded state space of unclustered web service repository

HR

CH

HC

HP

SC

SCH

CS

ABS

ARA

AWS

s0

(a) The LTS4WS model and its normal clustering

. . .SC CH HP HR
...

...
...

7
st

at
es

...
...

...
7

st
at

es

...
...

...
7

st
at

es

...
...

...
7

st
at

es

Using the same cluster(s) for every step (every visited state)

(b) The expanded state space

Fig. 3. The model and expanded state space of combined feature and semantic-based clustered web service repository [31]

HR

HC

HP

CH

CS

SC

SCH

ARA

ABS

AWS

s0

(a) The LTS4WS model and its logic-based clustering

5 states

2 states

3 states 3 states

SC CH HP HR

...

Using different clusters at each step (each visited state)

(b) The expanded state space

Fig. 4. The model and expanded state space of Logic-based clustered web service repository

values) before choosing a best state (ie. the current best
composition). This process is visually represented in
Fig. 2b. It is easy to see that, the number of expanded
(examined) states is very large, although [14] returns a
very good composition (that has also been verified). In
general, [14] will expanded at least n∗m states, where
m is the length of the composition and n is the number
of input web services. The approach in [14] still suffers
from the memory usage and time consuming.

In this example, [14] returns the composition as
{SC • CH • HP • HR}. It also means that, many
web services never involve in any step of the compo-
sition process. Therefore, some studies proposed some
solutions to reduce the set of candidate web services
that can be used in a web service composition. It can
be done by clustering the input web services into clus-
ters such that only some related clusters (of web ser-
vices) are used in a case. The other clusters will be

6 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

Table 1
The Travel Booking web service repository

Service Name Input(s) Output(s) respTime

1 HotelReserve-
Service (HR)

Dates,
Hotel

HotelRe-
servation

5

2 CityHotelService
(CH)

City Hotel 3

3 HotelCityService
(HC)

Hotel City 3

4 HotelPriceInfo-
Service (HP)

Hotel Price 10

5 SightseeingCity-
Service (SC)

Sightseeing City 2

6 SightseeingCity-
HotelService (SCH)

Sightseeing City,
Hotel

16

7 CitySightseeing-
Service (CS)

City Sightseeing 4

8 AdventureRural-
AreaService (ARA)

Adventure RuralArea 5

9 ActivityBeach-
Service (ABS)

Activity Beach 5

10 AreaWeather-
Service (AWS)

Area Weather 5

Table 2
Requirements for Travel Booking web service

Kinds of con-
straint

Value(s)

Hard constraint:
Input: Dates, Sightseeing

Output: Price,HotelReservation

Soft constraint: ResponseT ime ≤ 30

Temporal relation-
ship:

�(¬HotelReservation ∪ Price)

put away in that case. Thus, the number of web ser-
vices that will be expanded in each composition step is
smaller, and the performance of the whole process will
be improved.

The work in [31], a combined feature and semantic-
based web services clustering approach, groups the
web services in Table 1 into 3 clusters: the first con-
sists of 7 web services when their functional properties
are related, the second consists of the 8th and 10th web
services when their semantic related on the Area and
RuralAreal and the last consists of only the 9th. The
clustering is represented in Fig. 3a.

Applying this clustering approach to the composi-
tion and verification method in [14], only 7 web ser-
vices in the first cluster will be consider as the in-
put web services. Obviously, the number of expanded

states at every composition step is reduced to 7, the
total expanded states will be only

∑
(ni) ∗ k, where∑

(ni) is the number of web services of the chosen
clusters. The expanded state space in this case is shown
in Fig. 3b.

Unfortunately, in some cases, the throw away web
services may be the answer. And the composition re-
sulted from the approach may not be optimized (in
term of quality of service) when the set of input web
services has been restricted before hand.

Instead of examining all web services in the cho-
sen clusters at every composition step, we can exam-
ine web services in the most appropriate cluster first.
The web services in the next appropriate cluster and
the rest can be considered later in the backtrack stage
of the composition process. So, in most of the case,
when only the number of web services in one cluster is
expanded then this approach has the same performance
as the above. When there is no restriction on the input
web services, there is no missing solution and there is
a chance for optimization.

Example 2. The advantage of logic-based web service
clustering

Considering only semantic and features may lead to
the case that in the same group (cluster), some web ser-
vices may be contradictory in term of logical meaning,
even though they have the same semantic and features.
For example, the web services CityHotelService (take
Hotel and return City) and HotelCityService (take City
and return Hotel) are in the same cluster when they
have the same semantic. At a particular composition
step, if we have the City and need the Hotel, then, obvi-
ously, we will consider only the service CityHotelSer-
vice, not HotelCityService. They are logically opposite
and should not be in the same cluster. The same ob-
servation could be applied to the pair of CitySightsee-
ingService and SightseeingCityService.

Using our observation on logical aspect, the set of
web services in Table 1 can be clustered into three
groups consist of five web services, three web services
and two web services, respectively. They are illustrated
in Fig. 4a. It is easy to observe that, the logical op-
posite web services HotelCityService (HC) and City-
HotelService (CH) are now groups into two different
clusters. So then, there is no contradiction when exam-
ining web services of a selected cluster at every com-
position step.

The proposed clustering approach is in Section 4.4.
In general, the similarity of any two web services
is calculated using both logic-based similarity and

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 7

semantic-based similarity. In this example, HR, HC,
HP are grouped into one cluster when there are sim-
ilar both in logic and semantic. Similarly, the web
services CH and CS are grouped into one cluster
and web services AWS, ABS, ARA, SCH , SC are
grouped into another.

Moreover, we can assign a logic expression to
each cluster as an abstract web service. For exam-
ple, the logic expressions of the above clusters are
“Hotel → something”, “City → something”, and
“SightSeeing ∧ Area → something”, respectively.
Note that, the SightSeeing andArea are grouped into
one when on our ontology, the Area is more similar to
the SightSeeing than Hotel or City.

At every composition step, a cluster can be selected
if its abstract web service matches the current logical
expression representing the user requirement. As men-
tioned in Example 1, when there are many matched
clusters at the same time, the most appropriate cluster
will be selected, the rest will be asked to wait.

In this special example, the composition only ex-
panded 13 states in total (see Fig. 4b). It is much better
than the previous approach (13 states vs. 28 states in
Fig. 3b). Of course, when all the web services in the
selected cluster are checked without success (in build-
ing a composition), the web services in a waiting clus-
ter will be considered and expanded. In this case, the
performance will be affected.

Importantly, there is no missing solution when there
is no banned web service and there is a chance of opti-
mization as mentioned earlier in this text.

Before proposing our approach on logic-based clus-
tering, the background knowledge on ontology, seman-
tic web service, modeling web service will be repre-
sented in the next Section.

3. Preliminaries

3.1. Ontology and Semantic Web Service

Ontology is a shared conceptualization of the world.
Ontologies provide a common understanding of a par-
ticular domain and also provide a set of well-founded
constructs to building meaningful higher level knowl-
edge for specifying the semantics of terminology sys-
tems [16]. The ontology is defined as follow:

Definition 1 (Ontology). An ontology consists of four
elements (C,AC , R,X), where C represents a set of
concepts, AC represents a collection of attributes sets,

one for each concept, and R = (RT , RN) represents
a set of relationships, which consists of two elements:
RN is a set of nontaxonomy relationships and RT is
a set of taxonomy relationships. Each concept ci in C
represents a set of objects, or instances, of the same
kind. Each object oij of a concept ci can be described
by a set of attributes values denoted by AC(ci). Each
relationship ri(cp, cq) in R represents a binary asso-
ciation between concepts cp and cq , and the instances
of such a relationship are pairs of (cp, cq) concept ob-
jects. X is a set of axioms. Each axiom in X is a
constraint on the concept’s and relationship’s attribute
values or a constraint on the relationships between
concept objects. The constraints can be described us-
ing the SWRL [32] format.

Example 3. Let TO is the Travel ontology, TO =
(C,AC , R,X), where its components are endowed as
follows:
C={“Travel Concepts", “Area", “Rural Area", “Ur-
ban Area", “Accommodation", “City", “Hotel", “Sightseeing"}
AC(“City")={“Name", “Weather"}
AC(“Hotel")={“Name", “Rating"}
AC(“Sightseeing")={“Name", “Type"}
RT ={subclass-of(“Hotel",“Accommodation"),

subclass-of(“City", “Urban Area"),
subclass-of(“Sightseeing",“Travel Concepts"),
subclass-of(“Accommodation",“Travel Concepts"),
subclass-of(“Area",“Travel Concepts"),
subclass-of(“Rural Area",“Area"),
subclass-of(“Urban Area",“Area")}

RN={located-at(“Hotel",“City"),
near-to(“City", “City"),
near-to(“Sightseeing",“City")}

X={Implies(Antecedent(subclass-of(I-variable(x1)
I-variable(x2))) Consequent(superclass-of(I-variable(x2)
I-variable(x1))))

Implies(Antecedent(located-at(I-variable(x1)
I-variable(x2))) Consequent(belong-to(I-variable(x2)
I-variable(x1))))

Implies(Antecedent(near-to(I-variable(x1)
I-variable(x2))) Consequent(near-to(I-variable(x2)
I-variable(x1)))) }

Generally speaking, TO consists of a set of con-
cepts, start with Travel Concepts, whose instances can
be any concepts related to travel domain. In our con-
text, we consider some of concepts: Area, Rural Area,
Urban Area, Accommodation, Sightseeing. City is a
subconcept of Urban Area and Hotel is a subconcept
of Accommodation. In this example, we have two in-

8 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

stances of Sightseeing: HaLong Bay and BaNa Hills;
three instances of City: HaNoi, HoChiMinh, DaNang;
and two instances of Hotel: Metropole, Sofitel. To
graphically visualize this ontology, we use the T-Box
and A-Box structure [24] as in Fig. 1d.

OWL-S [22] is an upper ontology based on OWL
(Ontology Web Language [23]). OWL-S is used in or-
der to describe knowledge concerning semantic web
services. Using OWL-S, the semantic description of
web services can be understood by machines as well as
humans. Therefore, it enables intelligent agents to dis-
cover, invoke and compose web services automatically
[4]. A web service description in OWL-S is comprised
of [22]:

– Service Profile: contains the information describ-
ing what the service accomplishes, limitations
on service applicability and quality, and require-
ments that the service requester must satisfy to
use the service.

– Process Model: describes the way an agent com-
municate and use the service.

– Service Grounding: contains the detailed descrip-
tion of how the client can access a service, such
as communication protocols.

In particular, the information on the Service Profile is
used in the process of discovering and composing ser-
vices.

Definition 2 (Web Service). A web serviceW is a 5-
tupleW = (N ,D,P, E ,Q), where:

– N is the unique name ofW ,
– D is the description of web service,
– P is the pre-condition that must be satisfied be-

foreW is invoked,
– E is the expression describing the effect (or post-

condition) afterW is invoked,
– Q is a set of QoS properties, each QoS property

comes in name/value pair, such as {respT ime =
3}.

Definition 3 (Semantic Web Service). A semantic web
serviceW is a web service, associated with an ontol-
ogy, SWS = (W,O), where:

– W is the web service is defined in Definition 2,
– O is the ontology used to semantic description for

the semantic web service, O is defined in Defini-
tion 1.

Example 4. Consider the semantic web service Sight-
seeingCityService, which takes the name of place to

travel to (Sightseeing) and returns the name of city
(City) near by or contains the Sightseeing. Its response
time (respTime) is 5 seconds. The SightseeingCitySer-
vice is given by the Definition 3 as follows:

SightseeingCityService = (W,O), where:

– W = (SightseeingCityService,
“Return the City which the Sightseeing belong to",
Sightseeing == 1,
City = 1; respT ime+ = 5,
respT ime = 5)

– O is an ontology is given in Example 3.

3.2. Representation of Web Service as Model

In order to acquire the model checking into the
composition and verification, the web service problem
must be represented as model. In this section, the def-
initions of Labelled Transition System (LTS) and LTS
for web services (LTS4WS), which are used in repre-
senting the ws system as model checking model, will
be defined.

Definition 4 (Labelled Transition System). A Labelled
Transition System (LTS) is a 4-tupleL = (S, s0, L, δ),
where:

– S is a set of states,
– s0 ∈ S is the initial state,
– L is a set of action labels,
– δ : S × L× S is a transition relation. For conve-

nience, we use s a−→ s′ to denote (s, a, s′) ∈ δ.

A transition may also have a pre-condition, a condi-
tion that must always be true before firing the transition
and an effect expression that expresses the effect after
the transition is fired. An LTS with the transitions have
pre-condition and effect expression is called guarded
LTS.

Definition 5 (LTS for Web Services). Let WS = {
W1,W2, ...,Wn} be a set of web services. A Labelled
Transition System for Web Services (LTS4WS) of Lw

is an LTS LWS = ({s0}, s0, L, δ), where:

– {s0} is a set of states which has only one state s0,
– s0 is the initial state,
– L = {W1,W2, ...,Wn}, w.r.t the notation de-

scribed in Definition 2,
– δ is a set of transition relations of the form s0

Wi−−→
s0.

Example 5. The LTS4WS model for 10 web services
in Table 1 is defined as follows:

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 9

– Number of state(s): 1 (s0)
– The initial state: s0
– The set of label actions: L = {HR, CH , HC,
HP , SC, SCH , CS, ARA, ABS, AWS}

– The set of transition relations: δ = {s0
HR−−→ s0,

s0
CH−−→ s0, s0

HC−−→ s0, s0
HP−−→ s0, s0

SC−−→ s0,
s0

SCH−−−→ s0, s0
CS−−→ s0, s0

ARA−−−→ s0, s0
ABS−−−→

s0, s0
AWS−−−→ s0}

This LTS4WS model is represented visually in Fig.
2a.

Using this model, a model checker will search over
the state space generated from this LTS model for
states that satisfy the user requirement specified by
hard, soft and temporal relationship constraints. For
example, with the model as in Fig. 2a and the user re-
quirement as in Table 2, the searching state space is
visually represented as in Fig. 2b. Note that we can
always prune the paths that violate the constraints at
any time. As mentioned in Section 1, work of [14] has
an effective searching strategy when it integrated the
heuristics into searching and traversing the state space.

4. Logic-based Web Service Clustering

4.1. Logic Representation of Web Service

Definition 6 (Logic Expression of Web Service). A
web service is formally defined by the features on input
and output as follow:

WS ≡ fin → fout ≡

fin1
∧ . . . ∧ finm

→ fout1 ∧ . . . ∧ foutn (1)

where:

– fin: the logic expression represented the input
functional properties and the preconditions,

– fout: the logic expression represented the output
functional properties and the effects.

– fini
, foutj are the terms or ontologies which be-

long to the domain of 2(C×A
C×R×X) – the power

set of (C×AC ×R×X). Where, C, AC , R, and
X are defined in Definition 1.

Example 6. Let WS1 be the HotelReservationService
service. WS1 takes Hotel and Dates, returns infor-
mation about HotelReservation. We have:

Web services

Web Service Description

(OWL-S)

ID
Inputs

Preconditions
Outputs

Effects

Logic expressions

Name: Left → Right

Fig. 5. Web service to logic expression mapping

– f1in: Hotel ∧Dates
– f1out: HotelReservation.

or: WS1 ≡ Hotel ∧Dates→ HotelReservation

4.2. OWL-S to Logic Expression Translation

The OWL-S to logic expression translation is the
process which extracts the information about name, in-
put, output, precondition, and effect of web services
and converts them to the elements of logic expressions.
LetWSPi be a profile of web service ith and fi be the
transformed logic expression, respectively. Each ele-
ment is transformed as follows:

– The name of logic expression is the ID of service
profile: name(fi) =WSPi.ID

– The left-hand side of logic expression is the input
and precondition of the web service:
left(fi) =

⋃n
k=1WSPi.hasInputk ∪⋃m

k=1WSPi.hasPreconditionk
– The right-hand side of logic expression is the out-

put and effect of the web service:
right(fi) =

⋃n
k=1WSPi.hasOutputk ∪⋃m

k=1WSPi.hasEffectk

This translation process is described as a mapping in
Fig. 5. An example of an OWL-S to logic expression
transformation is presented in Fig. 6. In Fig. 6, the
OWL-S description describes the SightseeingCitySer-
vice, which has Sightseeing ontology as the input, City
ontology as the output, and the relation popular as
the precondition. This precondition describes that the
Sightseeing must be a popular place. The OWL-S de-
scription is then transformed into the following logic
expression: Sightseeing∧popular(Sightseeing)→
City.

10 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

Fig. 6. OWL-S to logic expression translation example

4.3. Logic-based Semantic Web Service Similarity

Web service clustering is based on the similarity of
web services. In our approach, we propose a novel
metric of logic-based similarity between two semantic
web services being represented as two logic formulas.
Intuitively, our metric is evolved from classical simi-
larity metrics as follows:

– Feature-based similarity: We extract features
from the representative logic formulas, based on
which their similarity is computed.

– Ontology-based similarity: We use ontology-
based measure to evaluate the similarity the con-
cepts involved the logic formulas. Thus, two sim-
ilar ontological concepts will be deemed higher
similarity degree.

– Logic-based similarity: Finally, logic interpreta-
tion is employed for the final similarity mea-
sure. We use over-approximation to get an over-
approximated formula from the original formu-
las, based on which the similarity is computed.
The idea is that if two formulas are logically sim-
ilar, their over-approximated formula would also
be similar to the original ones.

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 11

4.3.1. Feature-based Similarity
To calculate the feature similarity between two logic

expressions, we have to determine the common part
and the different part of two expressions. The common
part and the different part are determined by the fol-
lowing definitions:

Definition 7 (Common part of logic expressions). Let
f and g are two logic expressions. The common part
(C) of two expressions is defined as follow:

C = f ∩ g = {∀fi ∈ f} ∩ {∀gj ∈ g} (2)

Whereas, fi, gj are atomic terms in f and g, respec-
tively. Let a be the common factor between f and g.

a = |C|

Example 7. Let f1 and f13 be the two logic expres-
sions in Example 13, we have:
f1 = Dates ∧Hotel→ HotelReservation
f13 = ¬Hotel∨¬Dates∨City∨HotelReservation

C = {Dates,Hotel,HotelReservation}
a = |C| = |{Dates,Hotel,HotelReservation}|

= 3

Definition 8 (Different part of logic expressions). Let
f and g be two logic expressions. The different part
(D) of two expressions is defined as follow:

D = (f∪g)\C = ({∀fi ∈ f}∪{∀gj ∈ g})\C
(3)

Whereas, fi, gj are atomic terms in f and g respec-
tively. Let b be the different factor between f and g.

b = |D|
2

Example 8. Let f1 and f13 are two logic expressions
in Example 13, we have:
f1 = Dates ∧Hotel→ HotelReservation
f13 = ¬Hotel∨¬Dates∨City∨HotelReservation

D = {City}
b = |D|

2 = |{City}|
2 = 1

2

Definition 9 (Feature-based Similarity). Let f and g
be two logic expressions represented of two web ser-
vices. The feature-based similarity (SimFe) of f and
g is calculated based on the following formula:

SimFe(f, g) =
a

(a+ b)
(4)

Whereas, a and b are defined in Definition 7 and
Definition 8.

Example 9. With the f1 and f13 logic expression in
Example 13 and the value of common part, different
part is calculated in Example 7 and Example 8, we
have the feature similarity of them:

SimFe(f1, f13) =
3

(3+ 1
2)

= 6
7 ≈ 0.86

Similarly, we have SimFe(f3, f13) =
2
3 ≈ 0.67.

4.3.2. Ontology-based Similarity
In feature-based similarity calculation, one needs to

identify the common part and different part of two
logic formulas. It is done by simply matching the terms
in two formulas.

However, as the terms involved in logic formula of a
semantic web service are in fact ontological concepts,
we can enhance the feature-based similarity by intro-
ducing the ontology-based similarity. It is very simi-
lar to feature-based similarity, however, two terms are
considered in the common part if their corresponding
concepts are ontologically similar.

The semantic similarity between two sets of ontolo-
gies is calculated based on the average similarity of
each pair of ontologies:

SimOn(OnSet1, OnSet2) =

1

(n×m)

n∑
i=1

m∑
j=1

Simc(On1i, On2j) (5)

Whereas, Simc(Ci, Cj) is the concept similarity of
two concept Ci and Cj on the ontology hierarchical
tree.

The influencing factors of concept similarity based
on hierarchy are the following [28]:

1. Depth of the hierarchy: The domain ontology hi-
erarchy is deeper, shows that the more exhaustive
is the concept classification, and the more similar
is the two concepts in the hierarchy.

2. The steps of the shortest path: The more steps of
two concepts, the distance of them is farther, and
the less similar is the two concepts.

3. Depth of concept: If the two concepts are deeper,
it means the concepts are analyzed more compre-
hensive. So the semantic should be more simi-
lar. The similarity is positive with the sum depths
of two concepts, and inverse proportion with the
difference depths between two concepts.

12 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

4. The concepts density: Similar with the depth of
concepts, if the concept has more brother con-
cepts, it means the concepts are analyzed more
comprehensive. So the concepts which have
greater density, the similarity should be higher.

Through the analysis above, the depth and path of
concepts measurements is calculated as follows:

Dep(Ci, Cj) =
1

2
× (di + dj)

depth
× 1

(max(|di − dj |, 1)
(6)

Path =
1

shortest_path(Ci, Cj)
(7)

– di, dj : depth of Ci, Cj respectively.
– shortest_path(Ci, Cj): number of nodes on the

shortest path from Ci to Cj

– depth: depth of ontology hierarchical tree.

Concepts density measurement depends on two ar-
eas: the amount of information, mean that the total
number of ontologies on the ontology hierarchical tree;
and the number of concepts belong to the ontologies
of the subtree starting from the current ontology of the
ontology hierarchical tree. The similarity on density is
calculated as:

Den(Ci, Cj) =
(BroCnt(Ci) +BroCnt(Cj))

NodeCnt
(8)

whereas:

– BroCnt(Ci) is the number of concepts belong to
the same concept as Ci (including Ci itself)

– NodeCnt is the number of all concepts in the do-
main ontology hierarchy.

Example 10. Support that we have the ontology tree
as in Fig. 7, the values of Dep, Path,Den of concept
H and G is calculated as follow:

– Dep(G,H) = 1
2 ×

1+2
3 ×

1
1 = 1

2
– Path(G,H) = 1

3
– Den(H,G) = 3+2

17 = 5
17

After calculating the similarity Dep, Path, and
Den, the similarity of two ontologies as follow:

Simc(Ci, Cj) = ϕ1Dep(Ci, Cj)+

ϕ2Path(Ci, Cj) + ϕ3Den(Ci, Cj) (9)

A

B C D E F G

H I J K L M

N O P Q

dj=2 di=1

depth=3

BroCnt(G)=2

BroCnt(H)=3

Fig. 7. Example about ontology tree

ϕ1, ϕ2, ϕ3 are the weights used for adjusting the ef-
fects of Dep, Path and Den, respectively. ϕ1 + ϕ2 +
ϕ3 = 1.

Example 11. The concept similarity of G and H in
Fig. 7 is:

Simc(H,G) =
1
3 ×

1
2 + 1

3 ×
1
3 + 1

3 ×
5
17 = 115

306

4.3.3. Logic-based Similarity
Even though the ontology-based similarity, en-

hanced from feature-based similarity, can improve the
similarity between two similar ontological concepts,
this similarity measure still does not sufficiently reflect
the similarity of the logic in data processing of the in-
volved web services. We handle this by introducing the
ultimate similarity measure: logic-based similarity of
semantic web services.

Definition 10 (Over approximation of two logic ex-
pression). Let f1 and f2 are two logic expressions rep-
resented of the two web services. The over approxima-
tion of two logic expressions is defined as follow:

f12 = f1⊕ f2 = f1in ∧ f2in → f1out
∨ f2out

(10)

Where, ⊕ is an over approximation operator. Then,
f12 will be simplified by a prover, such as Z3 [33].

Example 12. Support that we have three logic expres-
sions:
f1 = A→ B
f2 = B → A
f3 = A→ C

The over approximation of f1 and f2 is calculated
as follow:
f12 = f1 ⊕ f2 = A ∧B → A ∨B

= ¬A ∨ ¬B ∨A ∨B = true
The over approximation of f1 and f3 is f13 which is

calculated as follow:

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 13

f13 = f1 ⊕ f3 = A ∧A→ B ∨ C
= ¬A ∨B ∨ C

Example 13. Consider the first three web services in
Table 1. Their logic expressions are as follows:

– f1 = Dates ∧Hotel→ HotelReservation
– f2 = City → Hotel
– f3 = Hotel→ City

Some over approximation of these expressions as
follow:

– f23 = f2 ⊕ f3
= (City → Hotel)⊕ (Hotel→ City)
= (City ∧Hotel→ Hotel ∨ City) = true

– f13 = f1 ⊕ f3
= (Dates ∧ Hotel → HotelReservation) ⊕
(Hotel→ City)
= (Dates ∧Hotel) ∧Hotel
→ City ∨HotelReservation
= ¬Hotel∨¬Dates∨City∨HotelReservation

Definition 11 (Logic-based web service similarity).
Let WSA, WSB be two web services, fA, fB be the
logic expressions represented forWSA,WSB , respec-
tively, fAB be the over approximation of fA and fB as
in Definition 10. The logic-based web service similar-
ity of WSA and WSB is calculated as follows:

SimLo(WSA,WSB) =
SemFe(fA, fAB)

2

+
SemFe(fB , fAB)

2
(11)

where SemFe(f1, f2): the feature similarity be-
tween f1 and f2

The process of calculating the logic-based web ser-
vice similarity of a pair of web services is implemented
in Algorithm 1.

Example 14 (Logic-based web service similarity).
The application of Algorithm 1 to the first three web
services in Table 1 is as follows:

The over approximation logic expression of each
pair of web services:

– f12 = f1 ⊕ f2 = true
– f13 = f1 ⊕ f3 = ¬Hotel ∨ ¬Dates ∨ City ∨
HotelReservation

– f23 = f2 ⊕ f3 = true

The feature-based similarity of them:

– SemFe(f1, f12) = 0; SemFe(f2, f12) = 0

Algorithm 1 Calculates the logic-based similarity of
two logical expression services

Input: A pair of web services – WS1,WS2

Output: The value of logic-based web service simi-
larity of WS1,WS2 – S

Process:
1: Build the logic expression for each web service –
f1, f2 as in Definition 6;

2: Calculate the over approximation expression f12
of f1, f2;

3: Using Z3 prover [33] to simplify f12;
4: Calculate the number of common factor (a) and

different factor (b) of each pair f1 − f12, f2 − f12
follow the Equation 2 and Equation 3;

5: Calculate the feature-based similarity
SimFe(f1, f12) and SimFe(f2, f12) by Equation
4; with the common part is calculated by the
semantic-based similarity by Equation 5;

6: Calculate the logic-based web service similar-
ity – S of WS1,WS2 from SimFe(f1, f12) and
SimFe(f2, f12) by Equation 11;

7: Return S;

– SemFe(f2, f23) = 0; SemFe(f3, f23) = 0
– SemFe(f1, f13) =

6
7 ; SemFe(f3, f13) =

2
3

And the logic-based similarity of each pair of web
services:

– Sim(WS1,WS2)

= SemFe(f1,f12)+SemFe(f2,f12)
2 = 0

– Sim(WS2,WS3)

= SemFe(f2,f23)+SemFe(f3,f23)
2 = 0

– Sim(WS1,WS3)

= SemFe(f1,f13)+SemFe(f3,f13)
2 =

6
7+

2
3

2 = 16
21

4.4. Logic-based Web Service Clustering

To perform clustering, we apply the K-means algo-
rithm [34], one of the most popular clustering tech-
nique. Determining the number of clusters is an im-
portant problem of clustering algorithms in general. In
the web service composition, suppose that we have N
services clustered into k clusters. Each cluster has the
average of N/k services. At each step of the compo-
sition, we need k comparisons to select the most ap-
propriate cluster from k clusters. Then, we perform
N/k comparisons in examining all web services in the
selected cluster. Thus, the number of comparisons in
each composition step will be k + N/k. Our objec-

14 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

tive is minimizing this value, and this value minimized
when k = b

√
Nc.

Another important problem is how to form the rep-
resentative element for each cluster. Note again that
our web services are represented by logic expres-
sions. Therefore, our representative is also defined us-
ing logic expression.

Definition 12 (Representative Element). Let F =
{f1, f2, . . . , fk} is a cluster of logic expressions, the
representative element (fr) of F is defined as follow:

fr =
⊎
fi =

f1in∨f2in∨· · ·∨fkin
→ f1out

∧f2out
∧. . .∧fkout

(1 ≤ i ≤ k) (12)

where
⊎

is the representative operator of every
logic expression fi.

The proof about the soundness and completeness of
the representative element is given in Fig. 8.

Example 15. Support that three web services Hotel-
ReservationService, CityHotelService, and HotelPri-
ceInfoService (the first three web services in Table 1)
are clustered into a cluster. Then, the representative
logical expression of this cluster is:

fr = f1] f2] f3
= (Dates ∧Hotel) ∨ City ∨Hotel→

HotelReservation ∧Hotel ∧ Price
= City ∨Hotel→

HotelReservation ∧Hotel ∧ Price
After determining the number of clusters and the

method of identifying cluster representative element,
the K-means algorithm [34] is used to implement our
logic-based web service clustering. The result of this
algorithm is a set of logic expression clusters, each rep-
resenting by a logic expression (the representative). It
is also the group of the corresponding web services.

Example 16. The result of the logic-based clustering
for the web services in Table 1 is in Table 3. In that
table, the third column is for the logic expressions rep-
resenting the corresponding clusters.

5. Case Study

For the set of web services in Table 1, the results of
web service composition using mentioned approaches
are shown on Table 4. It is easy to see that, the OnThe-

Table 4
The case study results

Approach Expanded
states

Visited
states

Unclustered 150 16
Combined feature and
semantic-based clustering [31]

105 16

Our approach: Logic-based
clustering

34 10

Table 5
The experimentation datasets

Dataset No. of web
service

Description

Travel
Booking (TB)

20 Including web services providing in-
formation to serve the travel booking

Book Store
(BS)

40 Including services for books purchas-
ing, payment, delivery to customer

Online Film
Store (OFS)

60 Including services support to search,
purchase and watch the online movies

Medical
Services (MS)

80 Services support to lookup hospital,
treatment, medicine, etc.

Education
Services (EDS)

100 Services related to education such as
scholarship, courses, degrees, etc.

Economy
Services (ECS)

200 Including services provided informa-
tion on goods, restaurant, food, etc.

Global 1000 1000 random services from OWLS-
TC [35].

FlyWSCV tool [14] with logic-based clustering only
fired 13 transitions, visited 10 states (∼ 9 steps), and
expanded 34 states (around 34/9 ∼ 3.8 states at each
step in average). It is much better than the original tool
itself and the normal clustering approach, which ex-
panded 150 states and 105 states, respectively.

6. Experimentation

In this section, we will present the experimental re-
sults of our approach. To evaluate, we use the frame-
work OnTheFlyWSCV [14] to compose web services.
Our experiments work on the real datasets obtained
from the project OWLS-TC [35]. OWLS-TC provides
over 1000 semantic web services classified into dif-
ferent domains and described by OWL-S [22]. In this
dataset, we select seven sub datasets with the number
of web services is varied 20 to 1000 services as shown
in Table 5.

We conduct the experiment scenario based on three
approaches. These are unclustered approach; Com-

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 15

Table 3
The Travel Booking clustered web service repository

Clusters Web services The representation logical expression

Cluster 1 Activity BeachService (ABS)
AdventureRuralAreaService (ARA)
AreaWeatherService (AWS)
SightseeingCityService (SC)
SightseeingCityHotelService (SCH)

Activity ∨Adventure ∨Area ∨ Sightseeing →
Beach ∧RuralArea ∧Weather ∧ City

Cluster 2 CityHotelService (CH)
CitySightseeingService (CS)

City → Hotel ∧ Sightseeing

Cluster 3 HotelReserveService (HR)
HotelCityService (HC)
HotelPriceInfoService (HP)

Hotel→ City ∧ Price ∧HotelReservation

Proof. Soundness: fr |= fi,∀i ∈ {1, . . . , k}
We need to prove fr (frin → frout

) represented for all fi (fiin → fiout
). It means, suppose that we have the

representative element (fr), we will have all fi in the cluster which fr represented, or fr |= fi (∀i ∈ 1, . . . , k)

fiin
assumption

f1in ∨ ... ∨ fiin ∨ ...
∨i

fr ≡ f1in ∨ ... ∨ fiin ∨ ...→ f1out
∧ ... ∧ fiout

∧ ... ∧ fkout

premise

f1out
∧ . . . ∧ fiout

∧ . . . ∧ fkout

→ e

fiout

∧e

fiin → fiout
≡ fi

→ i

Proof. Completeness: fgin → fiin |= fgin → frin
Suppose that there is a web service (represented by fi) in cluster that can be used to compose the goal service
(represented by fg), fgin → fiin . Then, the representative element (fr) must satisfy the goal service, fgin → frin .

fgin
∨i

fgin → fiin
premise

fiin
→ e

f1in ∨ . . . ∨ fiin ∨ . . . ∨ fkin
≡ frin

∨i

fgin → frin
→ i

Fig. 8. Proving the soundness and completeness of representation element

16 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

bined feature and semantic-based web service cluster-
ing approach – the approach was proposed in [31]; and
Logic-based web service clustering approach – the ap-
proach is proposed in this paper. The experiments were
executed on a PC with core i5-5200 processor (4 x 2.7
Ghz), 8.0 Gb of RAM, running on Windows 7 64-bit
operating system. The result of experiments is evalu-
ated in three aspects: The number of expanded states,
the number of visited states, and the execution time.
The experiment results are analyzed statistically in Ta-
ble 6 and Fig. 9.

The experimental results confirm our hypothesis
that the clustering helps in reducing the number of ex-
panded states (see Fig. 9a). Of course, our logic-based
approach reducing that number significantly.

Note that, the heuristic algorithm in the OnTheFly-
WSC tool always chooses the best way to travel in the
state space. The number of visited states in general
shows the number of best states that have been cho-
sen during the search. For the original and the second
approach, when the "best" states (based only on fea-
tures and semantic) are the same, the behaviors of the
algorithms in both approaches are the same, then the
number of visited states are the same. (Of course, they
could be slightly different in practice.) (Fig. 9b)

In our approach, when the contradictory web ser-
vices cannot be in the same cluster, then the number
of "best" states are smaller, then the number of vis-
ited states obviously smaller. Unfortunately, it is just a
slightly improvement on the performance. (Fig. 9b)

When the execution time mostly depends on the
number of expanded states and visited states, the sec-
ond approach is faster than the original one and our
approach is the best (Fig. 9c)

7. Related Works

7.1. Web Service Clustering

In this section, we discuss the works related to web
service clustering. Kumara et al. [31] proposed a term-
similarity approach to calculating the semantic sim-
ilarity of Web services. Firstly, it uses an ontology-
learning method. If this fails to calculate the similar-
ities, it then uses an information retrieval (IR)-based
method. The ontology learning uses Web service de-
scription language (WSDL) documents to generate on-
tologies by examining the hidden semantic patterns
that exist within the complex terms used in service fea-
tures. In IR method, authors use both thesaurus-based

and search-engine-based (SEB) term similarities. To
address the second issue in service clustering, [31]
proposes an approach that identifies the cluster cen-
ter as cluster representative by combining the service-
similarity value with the term frequency-inverse doc-
ument frequency (TF-IDF) value of the service name,
which reflects the importance of a service to its cluster.

The research in [27] proposed a non-logic-based
matchmaking approach that uses correlated topic model
[36] to extract topics from semantic service descrip-
tions and search for services in the topic space where
heterogeneous service descriptions are all represented
as a probability distribution over topics. In this re-
search, authors utilized the Correlated Topic Model
(CTM) to extract latent factors and the correlation be-
tween these topics to propose an efficient Web Ser-
vice Hierarchical Clustering. Based on the hierarchi-
cal nodes (clustered groups) and the extracted topics,
a set of matched services can be returned by compar-
ing the similarity between the query and the related
cluster, rather than computing the similarity between
the query and each service in the dataset. To archive
this, this approach uses the Formal Concept Analysis
(FCA) [37] formalism to organize the constructed hi-
erarchical clusters into concept lattices according to
their topics. Thus, service discovery may be achieved
more easily using the concept lattice.

Xie et al. [28] proposed an ontology-based semantic
web service clustering approach. To cluster web ser-
vices, it calculates the semantic Web service similar-
ity based on function similarity. The authors then de-
sign the matching method for inputs and outputs of
web service based on the functional similarity. The
web service similarity is based on an accurate con-
cept semantic similarity of the domain ontology. A do-
main ontology hierarchy is defined to describe the con-
cept semantic information. In this research, the con-
cept semantic similarity is discussed from several as-
pects, such as the path between two concepts, the path
weight, the density of concepts, and the antisense rela-
tionship. In the kernel, [28] uses the K-means cluster-
ing technique to cluster web services, and then recom-
mends the similar services to Web service consumer.
The cluster will improve the efficiency of Web service
discovery.

7.2. Web Service Composition

Research community has a lot of work related to
WSC problem. WSC only involves the functional
properties (hard constraints) is the classic problem of

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 17

Table 6
Experimentation results

Datasets Approaches Expanded
states

Visited
states

Execution
time (s)

TB (20)
Unclustered 1,100 56 0.250
Combined feature and semantic-based clustering [31] 825 56 0.210
Logic-based clustering 316 35 0.155

BS (40)
Unclustered 3,880 98 0.913
Combined feature and semantic-based clustering [31] 3,007 98 0.726
Logic-based clustering 781 60 0.545

OFS (60)
Unclustered 9,060 152 1.102
Combined feature and semantic-based clustering [31] 6,946 152 0.915
Logic-based clustering 1,425 89 0.682

MS (80)
Unclustered 16,720 210 2.597
Combined feature and semantic-based clustering [31] 12,331 210 2.022
Logic-based clustering 2,143 119 1.538

EDS
(100)

Unclustered 27,400 275 5.570
Combined feature and semantic-based clustering [31] 20,824 275 4.579
Logic-based clustering 3,021 151 3.294

ECS
(200)

Unclustered 102,800 515 28.198
Combined feature and semantic-based clustering [31] 76,586 515 23.030
Logic-based clustering 8,324 287 18.273

Global
(1000)

Unclustered out-of-memory out-of-memory out-of-memory
Combined feature and semantic-based clustering [31] out-of-memory out-of-memory out-of-memory
Logic-based clustering 91,457 1,429 597.228

SOA, which are mostly based on the theory of planning
of the artificial intelligence field (AI Planning) such
as [4] and [5]. PORSCE II [4] is a framework imple-
menting the WSC based on the requirements on input
and output of the services. Similarly, OWLS-XPlan [5]
also uses web services expressed by OWL-S to trans-
form the problem from WSC domain to planning do-
main and uses the planner named XPlan, constructed
by author. Some recent studies are based on abstract
models such as Petri net or Colored Petri net [10], [11]
to compose web services.

Fan et al. [10] proposed an approach to construct-
ing the reliable service composition. It formalized the
component web service as a Petri net, which pro-
vides means to observe the behaviors and the rela-
tionship of components. The transaction attributes, re-
liability and failure processing mechanisms are ar-
ticulated. The composition mechanism systematically
integrates these schemas into a transaction mapping
model. Based on this, [10] proposed a reliable com-
position strategy and its enforcement algorithm, which
can verify the behaviors of service composition at de-
sign time or after runtime to repair design errors. The

operational semantics and related theories of Petri nets
help prove the effectiveness of the proposed method.

Maung et al. [11] had the approach similar to Fan et
al. [10]. However, [11] used Colored Petri net (CPN)
instead of Petri net. A Colored Petri net is a high level
Petri net that provides a significant increase in the ex-
pressiveness and compactness of Petri net models.

Jingjing et al. [38] proposed the web service com-
position model based on timed automata. The pro-
posed approach designed the formal model and its
construction algorithm; provide a web service inter-
face description language and composition automa-
tion engine. In particular, Jingjing et al. defined the
Timed Automata for Web Service (TAW) and Timed
Automata for WSC (TAC) models. In order to build
these models from web service descriptions, [38] also
provided the corresponding algorithms. After all, [38]
built the composition automation engine to compose
web services automatically.

WSC methods which combine functional proper-
ties (hard constraints) and QoS properties (soft con-
straints) has been proposed in [2]. In [2], the authors
applied genetic algorithm (GA) to solve the problem
with each possible composition encoded as a gene, in

18 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

TB (20) BS (40) OFS (60) MS (80) EDS (100) ECS (200)

N
u
m

b
er

 o
f

ex
p

an
d

ed
 s

ta
te

s

Datasets

Unclustered

Feature and sematic
based clustering
Logic-based clustering

(a) Visual comparison between approaches according to the number of expanded states

0

100

200

300

400

500

600

TB
(20)

BS
(40)

OFS
(60)

MS
(80)

EDS
(100)

ECS
(200)

N
u

m
b

er
 o

f

v
is

it
ed

 s
ta

te
s

Dataset

(b) Visual comparison according to the number of visited states

0

5

10

15

20

25

30

TB
(20)

BS
(40)

OFS
(60)

MS
(80)

EDS
(100)

ECS
(200)

E
x
ec

u
ti

o
n
 t
im

e

(s
ec

o
n
d
)

Datasets

(c) Visual comparison according to execution time

Fig. 9. Visual representation of the experimental results

order to calculate value for specific kinds of QoS prop-
erties. However, this study only provides us a mech-
anism to choose the best (possible) composition from
a set of composition ways (full composition schema)
rather than composes from the component web ser-
vices. Besides, the application of genetic algorithms
has increased the complexity of the problem and thus
very difficult to apply in practice.

A different approach proposes of automated recov-
ery when a WSC fall into the failure state (a web ser-
vice could not be accessed or unsatisfied the user re-
quirement) [12]. With this approach, we have to have a
full composition schema described in BPEL [39] lan-
guage, which is transformed into a Labelled Transi-
tion System (LTS), monitored by a monitor automata.
When an error arises (a state that can not be reached,
corresponding to a web service can not be accessed),
the system will start calculating to choose the recov-
ery plan by using the genetic algorithm. The difference
between [12] and [2] is that the size of gene in [12] is

unfixed, which depends on the number of backtracking
steps from the error state.

7.3. Web Service Verification

In the field of web service verification, most of cur-
rent approach verify hard or soft constraints separately.
WS-Engineer [40] is a typical work for the web service
verification based on functional properties. In [40], au-
thors described a model-based approach to the analysis
of service interactions for web service choreography
and their coordinated compositions. The approach em-
ploys several formal analysis techniques and perspec-
tives, and applies these to verify the web service com-
position. The resulted web service composition was
described as a BPEL process. Then, this process will
be specified using the Finite State Process (FSP) al-
gebra notation. The verification was done on this FSP
model by using the Finite State Machine (FSM).

Another study that intends to verify combined func-
tional and non-functional requirements of WSC, is in-

Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification 19

troduced by Chen et al. [41]. This approach was im-
plemented as the VeriWS tool [9]. VeriWS [9] takes in
a full composition schema expressed in BPEL schema,
then transforms that schema into a LTS model and
uses a model checker to verify (the model). VeriWS
will show the composition which satisfies the user con-
straints, both hard and soft constraints.

Recently, Khai et al. [14] proposed a fast and for-
malized approach for web service composition and
verification, named Heuristics-based On-the-fly Web
Service Composition and Verification. In the proposed
approach, authors simultaneously compose and verify
web services on both hard, soft, and temporal relation-
ship constraints in an on-the-fly manner. [14] used the
model checking theory and built the model from all
of component web services (not from a composition
schema as in [9]), so-called LTS4WS model – an ex-
tension of LTS model. In addition, [14] also proposed
some heuristics based on web service characteristics to
improve the state space searching performance of the
model checker. This approach was implemented as a
framework, known as OnTheFlyWCV.

8. Conclusion

In this paper, we proposed a logic-based web ser-
vices clustering method. The clustering method im-
proves the web service composition and verification
when it allows the system chooses the small set of web
services which suitable for user requirement on logi-
cal aspect. Moreover, when the clustering based only
on the web services repository, it can be done before
hand independently with the service to the user re-
quirements. In order words, the cluster web services
can be used for any kind of user requirements and be
only changed when the repository changes.

Our clustering approach is proven the soundness and
completeness rigorously, and certainly does not miss
any solution as the others because we do not discard
any cluster. At each composition step, we preferred to
use the cluster which is evaluated as the best suitable.

Also through this paper, we have some contribu-
tions about the logical representation of Web service;
the method to calculate the logic-based similarity be-
tween logical expressions represented for web ser-
vices through the over approximation operator; and the
method to build the representative logical expression
that represent for web service cluster.

Our logic-based web service clustering approach
was implemented and run experiments through tool

OnTheFlyWSCV[14]. The results shown that the sys-
tem parameters such as the number of expanded states,
the number of visited states, and the processing times
are better than other existing approaches.

However, in this work, we are inspired by the work
of [28] to proposed our semantic-based similarity
methods as part of our web service similarity method.
We do believe that there may be many other meth-
ods than that we have proposed. It could be investi-
gated in the near future. Also, in this work, we have
use the K-means clustering algorithm, when it is the
most popular algorithm in the field. Unfortunately, in
this research area, many other algorithms have been
proposed such as K-medoids [42], agglomerative hier-
archical clustering methods [43], etc. The experimen-
tation on the pros and cons of using other clustering
algorithms has not been done yet. It is another future
work.

References

[1] W. B. Williams, Service-oriented architecture, Information
Security Management Handbook: Social Networking, vol. 6,
2012, pp. 317.

[2] M. AllamehAmiri, V. Derhami, and M. Ghasemzadeh, Qos-
based web service composition based on genetic algorithm,
Journal of AI and Data Mining, vol. 1, no. 2, pp. 63-73, 2013.

[3] N. H. Rostami, E. Kheirkhah, and M. Jalali, Web services com-
position methods and techniques: A review, International Jour-
nal of Computer Science, Engineering & Information Technol-
ogy, vol. 3, no. 6, 2013.

[4] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and
I. Vlahavas,The PORSCE II framework: Using AI planning for
automated semantic web service composition, The Knowledge
Engineering Review, vol. 28, no. 02, pp. 137-156, 2013.

[5] Klusch, Matthias, A. Gerber, and M. Schmidt, Semantic web
service composition planning with OWLS-Xplan, In Proceed-
ings of the AAAI Fall Symposium on Semantic Web and
Agents, Arlington VA, USA, AAAI Press. 2005.

[6] Doliwa, Dariusz, et al., PlanICS – A web service composition
toolset, In Fundamenta Informaticae, vol. 112, no. 1, pp. 47-71,
2011.

[7] Niewiadomski, Artur, W. Penczek, and J. Skaruz, Hybrid Ap-
proach to Abstract Planning of Web Services, In SERVICE
COMPUTATION 2015: The Seventh International Confer-
ences on Advanced Service Computing, pp. 35-40, 2015.

[8] C. Baier, and J. P. Katoen, Principles of model checking, Cam-
bridge: MIT press, vol. 26202649, 2008.

[9] M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong, VeriWS: A
tool for verification of combined functional and non-functional
requirements of web service composition, in Proceedings of the
36th International Conference on Software Engineering. ACM,
2014, pp. 564-567.

[10] G. Fan, H. Yu, L. Chen, and D. Liu, Petri net based techniques
for constructing reliable service composition, Journal of Sys-
tems and Software, vol. 86, no. 4, pp. 1089-1106, 2013.

20 Khai Huynh et al. / One Size Does Not Fit All: Logic-based Clustering for On-the-fly Semantic Web Service Composition and Verification

[11] Y. W. M. Maung, and A. A. Hein, Colored petri-nets (CPN)
based model for web services composition, IJCCER, vol. 2, pp.
169-172, 2014.

[12] T. H. Tan, M. Chen, É. André, J. Sun, Y. Liu et al., Auto-
mated runtime recovery for QoS-based service composition,
in Proceedings of the 23rd international conference on World
wide web. International World Wide Web Conferences Steer-
ing Committee, 2014, pp. 563-574.

[13] E. Pejman et al., Web service composition methods: A survey,
Proceedings of the International MultiConference of Engineers
and Computer Scientists, vol. 1, 2012.

[14] H. T. Khai, Q. T. Tho, and B. H. Thang, Fast and formalized:
Heuristics-based on-the-fly web service composition and veri-
fication, in The Second NAFOSTED Conference on Informa-
tion and Computer Science (NICS), 2015, pp. 174-179.

[15] J. Tretmans, Model based testing with labelled transition sys-
tems, In Formal methods and testing, pp. 1-38, Springer Berlin
Heidelberg, 2008.

[16] J. Cardoso, Semantic Web Services: Theory, Tools, and Appli-
cations, New York, United States of America, 2007.

[17] Y. Charif, and N. Sabouret, An overview of semantic web ser-
vices composition approaches, Electronic Notes in Theoretical
Computer Science, vol. 146, no.1, pp. 33-41, 2006.

[18] E. Paikari, E. Livani, M. Moshirpour, B. H. Far, and G. Ruhe,
Multi-Agent system for semantic web service composition, In
Knowledge Science, Engineering and Management, pp. 305-
317, Springer Berlin Heidelberg, 2011.

[19] S. McIlraith, T. Son, and H. Zeng, Semantic web services. In-
telligent Systems, vol. 16, no. 2, pp: 46-53, April 2001.

[20] P. Giaretta, and N. Guarino, Ontologies and knowledge bases
towards a terminological clarification, Towards very large
knowledge bases: knowledge building & knowledge sharing,
vol. 25, 1995.

[21] R. Chinnici, J. J. Moreau, A. Ryman, and S. Weerawarana, Web
services description language (WSDL) version 2.0 part 1: Core
language, W3C recommendation 26: 19, 2007.

[22] D. Martin et al., OWL-S: Semantic markup for web services,
W3C Member Submission, 2004.

[23] D. L. McGuinness, and F. V. Harmelen, OWL web ontology
language overview, W3C recommendation 10.10, 2004.

[24] T. R. Gruber, A translation approach to portable ontology
specifications, Knowledge acquisition, vol. 5, no. 2, pp: 199-
220, 1993.

[25] Z. Zhang, Research on Web Service Clustering Based on Fea-
ture Model, Information Technology Journal vol. 13, no.9, pp.
1668-1672, 2014.

[26] L. Chen, Q. Yu, P. S. Yu, and J. Wu, WS-HFS: A Heteroge-
neous Feature Selection Framework for Web Services Mining,
In Web Services (ICWS), 2015 IEEE International Conference
on. IEEE, pp. 193-200, June 2015.

[27] A. Mustapha, M. Quafafou, and Z. Jarir, Leveraging Formal
Concept Analysis with Topic Correlation for Service Cluster-
ing and Discovery, In Web Services (ICWS), 2014 IEEE Inter-

national Conference on. IEEE, 2014.
[28] L.L. Xie, F.Z. Chen, and J.S. Kou, Ontology-based semantic

web services clustering, Industrial Engineering and Engineer-
ing Management (IE&EM), IEEE 18th International Confer-
ence on. IEEE, 2011.

[29] Y. Y. Du, Y. J. Zhang, and X. L. Zhang, A Semantic Approach
of Service Clustering and Web Service Discovery, Information
Technology Journal, vol. 12, no. 5, pp. 967-974, 2013.

[30] B. T. Kumara, I. Paik, K. R. Koswatte, and W. Chen, Ontology
learning with complex data type for Web service clustering, In
Computational Intelligence and Data Mining (CIDM), IEEE
Symposium on. IEEE, pp. 129-136, December 2014.

[31] B. T. Kumara, I. Paik, W. Chen, and K. H. Ryu, Web Ser-
vice Clustering using a Hybrid Term-Similarity Measure with
Ontology Learning, International Journal of Web Services Re-
search (IJWSR), vol. 11, no.2, pp. 24-45, 2014.

[32] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof, and M. Dean, SWRL: A semantic web rule language
combining OWL and RuleML. W3C Member submission 21:
79, 2004.

[33] L. De Moura, and N. Bjørner, Z3: An efficient SMT solver,
In Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, pp. 337-340), 2008.

[34] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern
recognition letters, vol. 31, no.8, pp. 651-666, 2010.

[35] M. Klusch et al., OWLS-TC: OWL-S service re-
trieval test collection, version 2.1, available at:
http://projects.semwebcentral.org/projects/owls-tc/.

[36] D. Blei, and J. D. Lafferty, A Correlated Topic model of Sci-
ence, In AAS 2007, pp. 17-35, 2007.

[37] Z. Azmeh, M. Huchard, C. Tibermacine, and C. Urtado, Using
Concept Lattices to Support Web Service Compositions with
Backup Services, in Proc. of ICIW’10, 2010.

[38] H. Jingjing, Z. Wei, Z. Xing, and Z. Dongfeng, Web Ser-
vice Composition Automation based on Timed Automata Appl.
Math, vol. 8, no.4, 2017-2024, 2014.

[39] D. Jordan, J. Evdemon, Alves et al., Web services business pro-
cess execution language version 2.0, OASIS standard, vol. 11,
p. 10, 2007.

[40] H. Foster, S. Uchitel, J. Magee, and J. Kramer, WS-Engineer:
A model-based approach to engineering web service composi-
tions and choreography, in Test and Analysis of Web Services.
Springer, 2007, pp. 87-119.

[41] M. Chen, T. H. Tan, J. Sun, Y. Liu, J. Pang, and X. Li, Verifica-
tion of functional and non-functional requirements of web ser-
vice composition, In Formal Methods and Software Engineer-
ing, pp. 313-328, Springer Berlin Heidelberg, 2013.

[42] H. S. Park, and C. H. Jun, A simple and fast algorithm for K-
medoids clustering, Expert Systems with Applications, vol. 36,
no. 2, pp: 3336-3341, 2009.

[43] W. H. Day, and H. Edelsbrunner, Efficient algorithms for ag-
glomerative hierarchical clustering methods, Journal of classi-
fication, vol. 1, no. 1, pp: 7-24, 1984.

