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Abstract. In the latest years, more and more structured data is published on the Web and the need to support typical Web users to
access this body of information has become of crucial importance. Question Answering systems over Linked Data try to address
this need by allowing users to query Linked Data using natural language. These systems may query at the same time different
heterogenous interlinked data sets, that may provide different results for the same query. The obtained results can be related by a
wide range of heterogenous relations, e.g., one can be the specification of the other, an acronym of the other, etc. In other cases,
such results can contain an inconsistent set of information about the same topic. A well known example of such heterogenous
interlinked data sets are language-specific DBpedia chapters, where the same information may be reported in different languages.
Given the growing importance of multilingualism in the Semantic Web community, and in Question Answering over Linked Data
in particular, we choose to apply information reconciliation to this scenario. In this paper, we address the issue of reconciling
information obtained by querying the SPARQL endpoints of language-specific DBpedia chapters. Starting from a categorization
of the possible relations among the resulting instances, we provide a framework to: (i) classify such relations, (ii) reconcile
information using argumentation theory, (iii) rank the alternative results depending on the confidence of the source in case of
inconsistencies, and (iv) explain the reasons underlying the proposed ranking. We release the resource obtained applying our
framework to a set of language-specific DBpedia chapters, and we integrate such framework in the Question Answering system
QAKiS, that exploits such chapters as RDF data sets to be queried using a natural language interface.
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1. Introduction

In the Web of Data, it is possible to retrieve hetero-
geneous information items concerning a single real-
world object coming from different data sources, e.g.,
the results of a single SPARQL query on different end-
points. It is not always the case that these results are
identical, it may happen that they conflict with each
other, or they may be linked by some other relation like
a specification. The automated detection of the kind of
relationship holding between different instances about
a single object with the goal of reconciling them is an
open problem for consuming information in the Web
of Data. In particular, this problem arises while query-
ing the language-specific chapters of DBpedia [24].
Such chapters, well connected through Wikipedia in-
stance interlinking, can in fact contain different infor-
mation with respect to the English version. Assum-
ing we wish to query a set of language-specific DBpe-
dia SPARQL endpoints with the same query, the an-
swers we collect can be either identical, or in some
kind of specification relation, or they can be contra-
dictory. Consider for instance the following example:
we query a set of language-specific DBpedia chap-
ters about How tall is the soccer player Stefano Tac-
coni?, receiving the following information: 1.88 from
the Italian chapter and the German one, 1.93 from the
French chapter, and 1.90 from the English one. How
can I know what is the “correct” (or better, the more
reliable) information, knowing that the height of a per-
son is unique? Addressing such a kind of issues is the
goal of the present paper. More precisely, in this paper,
we answer the research question:

– How to reconcile information provided by the
language-specific chapters of DBpedia?

This open issue is particularly relevant to Question
Answering (QA) systems over DBpedia [23], where
the user expects a unique (possibly correct) answer to
her factual natural language question. A QA system
querying different data sources needs to weight them
in an appropriate way to evaluate accordingly the in-
formation items they provide. In this scenario, another
open problem is how to explain and justify the answer
the system provides to the user in such a way that the
overall QA system appears transparent, and as a con-
sequence, more reliable. Thus, our research question
breaks down into the following subquestions:

1. How to automatically detect the relationships
holding between information items returned by
different language-specific chapters of DBpedia?

2. How to compute the reliability degree of such in-
formation items to provide a unique answer?

3. How to justify and explain the answer the QA sys-
tem returns to the user?

First, we need to classify the relations connecting
each piece of information to the others returned by
the different data sources, i.e., the SPARQL endpoints
of the language-specific DBpedia chapters. We adopt
the categorization of the relations existing between
different information items retrieved with a unique
SPARQL query proposed by Cabrio et al. [13]. Up to
our knowledge, this is the only available categorization
that considers linguistic-based fine-grained relations
among the information items returned by language-
specific DBpedia chapters, given a certain query. This
categorization considers ten positive relations among
heterogenous information items (referring to widely
accepted linguistic categories in the literature), and
three negative relations meaning inconsistency. Start-
ing from this categorization, we propose the RADAR
(ReconciliAtion of Dbpedia through ARgumentation)
framework, that adopts a classification method to re-
turn the relation holding between two information
items. This first step results in a graph-based represen-
tation of the results set where each information item is
a node, and edges represent the identified relations.

Second, we adopt argumentation theory [18], a suit-
able technique for reasoning about conflicting infor-
mation, to assess the acceptability degree of the in-
formation items, depending on the relation holding
between them and the trustworthiness of their infor-
mation source [15]. Roughly, an abstract argumen-
tation framework is a directed labeled graph whose
nodes are the arguments and the edges represent a con-
flict relation. Since positive relations among the argu-
ments may hold as well, we rely on bipolar argumenta-
tion [14] that considers also a positive support relation.

Third, the graph of the results set obtained after the
classification step, together with the acceptability de-
gree of each information item obtained after the argu-
mentation step, is used to justify and explain the re-
sulting information ranking (i.e., the order in which the
answers are returned to the user).

We evaluate our approach as standalone (i.e., over
a set of heterogeneous values extracted from a set of
language-specific DBpedia chapters), and through its
integration in the QA system QAKiS [9], that exploits
language-specific DBpedia chapters as RDF data sets
to be queried using a natural language interface. The
reconciliation module is embedded to provide a (possi-
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bly unique) answer whose acceptability degree is over
a given threshold, and the graph structure linking the
different answers highlights the underlying justifica-
tion. Moreover, RADAR is applied over 300 DBpedia
properties in 15 languages, and the obtained resource
of reconciled DBpedia language-specific chapters val-
ues is released.

Even if information reconciliation is a way to en-
hance linked data quality, this paper does not address
the issue of linked data quality assessment and fu-
sion [25,7], nor ontology alignment. Finally, argumen-
tation theory in this paper is not exploited to find agree-
ments over ontology alignments [17]. Note that our
approach is intended to reconcile and explain the an-
swer of the system to the user. We do not think that
such a kind of explanations would be possible with
alignment, but we do not claim that our solution is
better. Exploring the alignment-based solution is an
open future work. In our paper, we have addressed
the open problem of reconciling and explaining a re-
sults set from language-specific DBpedia chapters first
using well known conflict detection and explanation
techniques, i.e., argumentation.

We are not aware of any other available QA system
that queries several information sources (in our case
language-specific chapters of DBpedia) and then it is
able to verify the coherence of the proposed results set,
and show why a certain answer has been provided. The
merit of the present paper is to describe the proposed
framework (i.e., RADAR 2.0) with the addition of an
extensive evaluation over standard QA data sets.

In the remainder of the paper, Section 2 presents our
reconciliation framework for language-specific DBpe-
dia chapters, Section 3 reports on the experiments run
over DBpedia to evaluate it, and Section 4 describes its
integration in QAKiS. Section 5 reports on the related
work. Finally, some conclusions are drawn.

2. RADAR 2.0: a Framework for Information
Reconciliation

The RADAR 2.0 (ReconciliAtion of Dbpedia thro-
ugh ARgumentation) framework for information rec-
onciliation is composed by three main modules (see
Figure 1). It takes as input a collection of results from
the same SPARQL query raised against the SPARQL
endpoints of the language-specific DBpedia chapters
(Section 3 provides more details about the chapters
considered in our experimental setting). Given such re-
sults set, RADAR retrieves two kinds of information:

(i) the sources proposing each particular element of
the results set, and (ii) the elements of the results set
themselves. The first module of RADAR (module A,
Figure 1) takes each information source, and following
two different heuristics, assigns a confidence degree to
the source. Such confidence degree will affect the rec-
onciliation in particular with respect to the possible in-
consistencies: information proposed by the more reli-
able source will obtain a higher acceptability degree.
The second module of RADAR (module B, Figure 1)
instead starts from the results set, and it matches ev-
ery element with all the other returned elements, de-
tecting the kind of relation holding between these two
elements. The result of such module is a graph com-
posed by the elements of the results set connected with
each other by the relations of our categorization. Both
the sources associated with a confidence score and the
results set under the form of a graph are then pro-
vided to the third module of RADAR, the argumenta-
tion one (module C, Figure 1). The aim of such mod-
ule is to reconcile the results set. The module considers
all positive relations as a support relation and all neg-
ative relations as an attack relation, building a bipo-
lar argumentation graph where each element of the re-
sults set is seen as an argument. Finally, adopting a
bipolar fuzzy labeling algorithm relying on the con-
fidence of the sources to decide the acceptability of
the information, the module returns the acceptability
degree of each argument, i.e., element of the results
set. The output of the RADAR framework is twofold.
First, it returns the acceptable elements (a threshold is
adopted), and second the graph of the results set is pro-
vided, where each element is connected to the others
by the identified relations (i.e., the explanation about
the choice of the acceptable arguments returned).

In the remainder of this section, we will describe
how the confidence score of the sources is computed
(Section 2.1), and we will summarize the adopted cat-
egorization detailing how such relations are automat-
ically extracted (Section 2.2). Finally, the argumenta-
tion module is described in Section 2.3.

2.1. Assigning a confidence score to the source

Language-specific DBpedia chapters can contain
different information from one language to another,
providing more specificity on certain topics, or filling
information gaps. Moreover, the knowledge of certain
instances and the conceptualization of certain relations
can be culturally biased. For instance, we expect to
have more precise (and possibly more reliable) infor-
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Fig. 1. RADAR 2.0 framework architecture.

mation on the Italian actor A. Albanese on the Italian
DBpedia, than on the English or on the French ones.

To trust and reward the data sources, we need to cal-
culate the reliability of the source with respect to the
contained information items. In [11], an apriori confi-
dence score is assigned to the endpoints according to
their dimensions and solidity in terms of maintenance
(the English chapter is assumed to be more reliable
than the others on all values, but this is not always the
case). RADAR 2.0 assigns, instead, a confidence score
to the DBpedia language-specific chapter depending
on the queried entity, according to the following two
criteria:

– Wikipedia page length. The chapter of the longest
language-specific Wikipedia page describing the
queried entity is rewarded with respect to the oth-
ers, following [6] that demonstrates that the arti-
cle length is a very good predictor of its precision.
The length is calculated on the Wikipedia dump
of the considered language (# of characters in the
text, ignoring image tags and tables). The longest
page is assigned a score equal to 1, and a propor-
tional score is assigned to the other chapters.

– Entity geo-localization. The chapter of the lan-
guage spoken in the places linked to the page of
the entity is rewarded with respect to the others
(assuming that if an entity belongs to a certain
place or is frequently referred to it, it is more
likely that the DBpedia chapter of such country
contains updated and reliable information). All
Wikipedia page hyperlinks are considered, and
their presence in GeoNames1 is checked. If exist-

1http://www.geonames.org/

ing, the prevalent language in the place (follow-
ing the GeoNames matching country-language2)
is extracted, and to the corresponding chapter is
assigned a score equal to 1. A proportional score
is then assigned to the other chapters (i.e. if an
entity has e.g. 10 links to places in Italy and 2 to
places in Germany, the score assigned to the Ital-
ian DBpedia chapter is 1, while for the German
chapter is 0.2).

Such metrics (whose appropriateness for our purposes
has been tested on the development set, see Section
3.1) are then summed, and normalized with a score
ranging from 0 to 1, where 0 is the less reliable chapter
for a certain entity and 1 is the most reliable one. The
obtained scores are then considered by the argumenta-
tion module (Section 2.3) for information reconcilia-
tion.

2.2. Relations classification

Cabrio et al. [13] propose a classification of the se-
mantic relations holding among the different values
obtained by querying a set of language-specific DB-
pedia chapters with a certain query. More precisely,
such categories correspond to the linguistic phenom-
ena (mainly discourse and lexical semantics) holding
among heterogeneous values obtained querying two
DBpedia chapters at a time, given a subject and an on-
tological property. In the following, we list the posi-
tive relations between values resulting from the data-

2Such table connecting a country with its language can be
found here http://download.geonames.org/export/
dump/countryInfo.txt.
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driven study in [13]. Then, in parallel, we describe how
RADAR 2.0 addresses the automatic classification of
such relations.

identity i.e., same value but in different languages
(missing SameAs link in DBpedia).
E.g., Dairy product vs Produits laitiers

acronym i.e., initial components in a phrase or a
word. E.g., PSDB vs Partito della Social

Democrazia Brasiliana

disambiguated entity i.e., a value contains in the
name the class of the entity. E.g., Michael

Lewis (Author) vs Michael Lewis

coreference i.e., an expression referring to another ex-
pression describing the same thing (in particu-
lar, non normalized expressions). E.g., William
Burroughs vs William S. Burroughs

Given the high similarity among the relations belong-
ing to these categories, we cluster them into a unique
category called surface variants of the same entity.
Given two entities, RADAR automatically detects the
surface variants relation among them, if one of the
following strategies is applicable: cross-lingual links3,
text identity (i.e. string matching), Wiki redirection
and disambiguation pages.

geo-specification i.e., ontological geographical knowl-
edge. E.g., Queensland vs Australia

renaming i.e., reformulation of the same entity name
in time. E.g., Edo, old name of Tokyo

Given the way in which renaming has been de-
fined in [13], it refers only to geographical renam-
ing. For this reason, we merge it to the category geo-
specification. RADAR classifies a relation among two
entities as falling inside this category when in the
GeoNames one entity is contained in the other one
(geo-specification is a directional relation between
two entities). We also consider the alternative names
gazette included in GeoNames, and geographical in-
formation extracted from a set of English Wikipedia

3Based on WikiData, a free knowledge base that can be read and
edited by humans and machines alike http://www.wikidata.
org/, where data entered in any language is immediately available
in all other languages. In WikiData, each entity has the same ID
in all languages for which a Wikipedia page exists, allowing us to
overcome the problem of missing SameAs links in DBpedia (that
was an issue in DBpedia versions prior to 3.9). Moreover, WikiData
is constantly updated (we use April 2014 release).

infoboxes, such as Infobox former country4

or Infobox settlement.

meronymy i.e., a constituent part of, or a member of
something. E.g., Justicialist Party is a part
of Front for Victory

hyponymy i.e., relation between a specific and a gen-
eral word when the former is included within the
latter. E.g., alluminio vs metal

metonymy i.e., a thing/concept not called by its own
name, but by the name of something intimately
associated with that thing/concept. E.g., Joseph
Hanna vs Hanna-Barbera

identity:stage name i.e., pen/stage names pointing
to the same entity. E.g., Lemony Snicket vs
Daniel Handler

We cluster such semantic relations into a category
called inclusion.5 To detect this category of relations,
RADAR exploits a set of features extracted from:

MusicBrainz6 to detect when a musician plays in a
band, and when a label is owned by a bigger label.

BNCF (Biblioteca Nazionale Centrale di Firenze)
Thesaurus7 for the broader term relation be-
tween common names.

DBpedia, in particular the data sets connecting Wiki-
pedia, GeoNames and MusicBrainz trough the
sameAs relation.

WikiData for the part of, subclass of and instance of
relations. It contains links to GeoNames, BNCF
and MusicBrainz, integrating DBpedia sameAs.

Wikipedia contains hierarchical information in: in-
foboxes (e.g. property parent for companies,
product for goods, alter ego for biogra-
phies), in categories (e.g., Gibson guitars),
“see also” sections and links in the first sentence
(e.g., Skype was acquired by [United States]-
based [Microsoft Corporation]).

4For instance, we extract the property “today” connecting histor-
ical entity names with the current ones (reconcilable with GeoN-
ames). We used Wikipedia dumps.

5Royo [26] defines both relations of meronymy and hyponymy
as relations of inclusion, although they differ in the kind of inclu-
sion defined (hyponymy is a relation of the kind “B is a type of A”,
while meronymy relates a whole with its different parts or members).
Slightly extending Royo’s definition, we joined to this category also
the relation of metonymy, a figure of speech scarcely detectable by
automatic systems due to its complexity (and stage name, that can
be considered as a particular case of metonymy, i.e., the name of the
character for the person herself).

6http://musicbrainz.org/
7http://thes.bncf.firenze.sbn.it/
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Inclusion is a directional relation between two entities
(the rules we apply to detect meronymy, hyponymy and
stage name allow us to track the direction of the rela-
tion, i.e. if a→ b, or b→ a).

Moreover, in the classification proposed in [13], the
following negative relations (i.e., values mismatches)
among possibly inconsistent data are identified:

text mismatch i.e. unrelated entity. E.g., Palermo vs
Modene

date mismatch i.e. different date for the same event.
E.g., 1215-04-25 vs 1214- 04-25

numerical mismatch i.e. different numerical values.
E.g., 1.91 vs 1.8

RADAR labels a relation between entities/objects as
negative, if every attempt to find one of the posi-
tive relations described above fails (i.e., negation as a
failure). For numerical values, a numerical mismatch
identifies different values.8

The reader may argue that a machine learning ap-
proach could have been applied to this task, but a su-
pervised approach would have required an annotated
data set to learn the features. Unfortunately, at the mo-
ment there is no such a training set available to the re-
search community. Moreover, given the fact that our
goal is to produce a resource as precise as possible for
future reuse, the implementation of a rule-based ap-
proach allows us to tune RADAR to reward precision
in our experiments, so that to accomplish our purpose.

2.3. Argumentation-based information reconciliation

This section begins with a brief overview of abstract
argumentation theory, and then we detail RADAR 2.0
argumentation module.

An abstract argumentation framework (AF) [18]
aims at representing conflicts among elements called
arguments, whose role is determined only by their rela-
tion with the other arguments. An AF encodes, through
the conflict (i.e., attack) relation, the existing conflicts
within a set of arguments. It is then interesting to iden-
tify the conflict outcomes, which, roughly speaking,
means determining which arguments should be ac-
cepted, and which arguments should be rejected, ac-
cording to some reasonable criterion.

8At the moment no tolerance is admitted, if e.g. the height of a
person differs of few millimeters in two DBpedia chapters, the rela-
tion is labeled as numerical mismatch. We plan to add such tolerance
for information reconciliation as future work.

The set of accepted arguments of an argumentation
framework consists of a set of arguments that does not
contain an argument conflicting with another argument
in the set. Dung [18] presents several acceptability se-
mantics that produce zero, one, or several consistent
sets of accepted arguments. Roughly, an argument is
accepted (i.e., labelled in) if all the arguments attack-
ing it are rejected, and it is rejected (i.e., labelled out)
if it has at least an argument attacking it which is ac-
cepted. Figure 2.a shows an example of AF. The ar-
guments are visualized as nodes of the argumentation
graph, and the attack relation is visualized as edges.
Gray arguments are the accepted ones. Using Dung’s
acceptability admissibility-based semantics [18], the
set of accepted arguments is {b, c}. For more details
about acceptability semantics, we refer the reader to
Baroni at al. [2].

However, associating a crisp label, i.e., in or out, to
the arguments is limiting in a number of real life situ-
ations where a numerical value expressing the accept-
ability degree of each argument is required [19,15,20].
In particular, da Costa Pereira et al. [15] have pro-
posed a fuzzy labeling algorithm to account for the
fact that arguments may originate from sources that are
trusted only to a certain degree. They define a fuzzy
labeling for argument A as α(A) = min{A(A), 1 −
maxB:B→A α(B)} where A(A) is given by the trust
degree of the most reliable source that offers argument
A, and argumentB is an argument attackingA. We say
that α(A) is the fuzzy label of argument A. Consider
the example in Figure 2.a, if we have A(a) = A(b) =
A(c) = 0.8, then the algorithm returns the following
labeling: α(a) = 0.2 and α(c) = α(b) = 0.8.

Since we want to take into account the confidence
associated to the information sources to compute the
acceptability degree of arguments, we rely on the com-
putation of fuzzy confidence-based degrees of accept-
ability. As the fuzzy labeling algorithm [15] exploits a
scenario where the arguments are connected by an at-
tack relation only, in Cabrio et al. [11] we have pro-
posed a bipolar version of this algorithm, to consider
also a positive, i.e., support, relation among the argu-
ments (bipolar AFs) for the computation of the fuzzy
labels of the arguments.

LetA be a fuzzy set of trustful arguments, andA(A)
be the membership degree of argument A in A, we
have thatA(A) is given by the trust degree of the most
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Fig. 2. Example of (a) AF , (b) a bipolar AF , and (c) example provided in the introduction modeled as a bipolar AF .

reliable (i.e., trusted) source that offers argument A9,
and it is defined as follows: A(A) = maxs∈src(A) τs
where τs is the degree to which source s ∈ src(A) is
evaluated as reliable. The starting confidence degree
associated to the sources is provided by RADAR’s first
module. The bipolar fuzzy labeling algorithm [11] as-
sumes that the following two constraints hold: (i) an
argument cannot attack and support another argument
at the same time, and (ii) an argument cannot support
an argument attacking it, and vice versa. These con-
straints underlie the construction of the bipolar AF it-
self. In the following, the attack relation is represented
with→, and the support relation with⇒.

Definition 1. Let 〈A,→,⇒〉 be an abstract bipolar
argumentation framework where A is a fuzzy set of
(trustful) arguments, →⊆ A × A and ⇒⊆ A × A
are two binary relations called attack and support, re-
spectively. A bipolar fuzzy labeling is a total function
α : A → [0, 1].

Such an α may also be regarded as (the member-
ship function of) the fuzzy set of acceptable arguments
where the label α(A) = 0 means that the argument is
outright unacceptable, and α(A) = 1 means the argu-
ment is fully acceptable. All cases inbetween provide
the degree of the acceptability of the arguments which
may be considered accepted at the end, if they over-
come a given threshold.

A bipolar fuzzy labeling is defined as follows10,
where argument B is an argument attacking A and C
is an argument supporting A:

Definition 2. (Bipolar Fuzzy Labeling) Let α be a
bipolar fuzzy labeling. We say that α is a bipolar
fuzzy labeling if and only if, for all arguments A,
α(A) = avg{min{A(A), 1 − maxB:B→A α(B)};
maxC:C⇒A α(C)}.

9We follow da Costa Pereira et al. [15] choosing the max operator
(“optimistic” assignment of the labels), but the min operator may be
preferred for a pessimistic assignment.

10For more details about the bipolar fuzzy labeling algorithm, see
Cabrio et al. [11].

Table 1
BAF : A→ B,B → C,C → A,D ⇒ C

t αt(A) αt(B) αt(C) αt(D)

0 1 0.4 0.2 1
1 0.9 0.2 0.6 1
2 0.65 0.15 ↓ ↓
3 0.52 0.25
4 0.46 0.36
5 0.43 0.4
6 0.41 ↓
7 0.4
8 ↓

When the argumentation module receives the ele-
ments of the results set linked by the appropriate re-
lation and the confidence degree associated to each
source, the bipolar fuzzy labeling algorithm is raised
on the argumentation framework to obtain the accept-
ability degree of each argument. Consider the exam-
ple in Figure 2.b, if we have A(a) = A(d) = 1,
A(b) = 0.4 and A(c) = 0.2, then the fuzzy labeling
algorithm returns the following labels: α(a) = α(b) =
0.4, α(c) = 0.6, and α(d) = 1. The step by step com-
putation of the labels is shown in Table 1. Figure 2.c
shows how the example provided in the introduction is
modeled as a bipolar argumentation framework, where
we expect to have the Italian DBpedia chapter as the
most reliable one being Stefano Tacconi an Italian soc-
cer player. The result returned by the bipolar argumen-
tation framework is that the “correct” answer is 1.88.
A more precise instantiation of this example in the QA
system is shown in the next section.

The fact that an argumentation framework can be
used to provide an explanation and justify positions
is witnessed by a number of applications in different
contexts [3], like for instance practical reasoning [27],
legal reasoning [4,5], medical diagnosis [21]. This is
the reason why we choose this formalism to recon-
cile information, compute the set of reliable informa-
tion items, and finally justify this result. Other possi-
ble solutions would be (weighted) voting mechanisms,
where the preferences of some voters, i.e., the most
reliable information sources, carry more weight than
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the preferences of other voters. However, voting mech-
anisms do not consider the presence of (positive and
negative) relations among the items within the list, and
no justification beyond the basic trustworthiness of the
sources is provided to motivate the ranking of the in-
formation items.

Notice that argumentation is needed in our use case
because we have to take into account the trustworthi-
ness of the information sources, and it provides an ex-
planation of the ranking, which is not possible with
simple majority voting. Argumentation theory, used as
a conflict detection technique, allows us to detect in-
consistencies and consider the trustworthiness evalua-
tion of the information sources, as well when propos-
ing a single answer to the users. As far as we know,
RADAR integrated in QAKiS is the first example of
QA over linked data system coping with this problem
and providing a solution. Simpler methods would not
allow to cover both aspects mentioned above. We use
bipolar argumentation instead of non bipolar because
we have not only the negative conflict relation but also
the positive support relation among the elements of the
results set.

3. RADAR experimental setting and evaluation

In this section, we describe the data set on which we
evaluate the RADAR framework (Section 3.1), and we
discuss the obtained results (Section 3.2). Moreover,
in Section 3.3 we describe the resource of reconciled
DBpedia information we create and release.

3.1. Data set

To evaluate the RADAR framework, we rely on the
data set presented in Cabrio et al. [13], the only avail-
able annotated data set of possibly inconsistent infor-
mation in DBpedia language-specific chapters up to
our knowledge. It is composed of 400 annotated pairs
of values (extracted from English, French and Ital-
ian DBpedia chapters), a sample that is assumed to
be representative of the linguistic phenomena holding
among values in DBpedia chapters. Note that the size
of the DBpedia chapter does not bias the types of re-
lation identified among the values, nor their distribu-
tion, meaning that given a specific relation (property),
each DBpedia chapter deals with that property in the
same way. We randomly divided such data set into a
development (to tune RADAR) and a test set, keeping

the proportion among the categories distribution.11 Ta-
ble 2 reports on the data set statistics, and shows how
many annotated relations belong to each of the cate-
gories (described in Section 2.2).

3.2. Results and discussion

Table 3 shows the results obtained by RADAR on
the relation classification task on the test set. As base-
line, we apply an algorithm exploiting only cross-
lingual links (using WikiData), and exact string match-
ing. Since we want to produce a resource as precise
as possible for future reuse, RADAR has been tuned
to reward precision (i.e., so that it does not generate
false positives for a category), at the expense of re-
call (errors follow from the generation of false nega-
tives for positive classes). As expected, the highest re-
call is obtained on the surface form category (our base-
line performs even better than RADAR on such cat-
egory). The geo-specification category has the lowest
recall, either due to missing alignments between DB-
pedia and GeoNames (e.g. Ixelles and Bruxelles are
not connected in GeoNames), or to the values com-
plexity in the renaming subcategory (e.g., Paris vs First
French Empire, or Harburg (quarter) vs Hambourg). In
general, the results obtained are quite satisfying, fos-
tering future work in this direction.

Since we consider text mismatch as a negative class
(Section 2.2), it includes the cases in which RADAR
fails to correctly classify a pair of values into one of the
positive classes. For date and numerical mismatches,
f1=1 (detecting them is actually a trivial task, and
therefore they are not included in Table 3. See footnote
8). Overall positive means that RADAR correctly un-
derstands the fact that the different answers to a certain
query are all correct and not conflicting. RADAR pre-
cision in this case is 1, and it is important to underline
this aspect in the evaluation, since this confirms the re-
liability of the released reconciled DBpedia with this
respect. The overall positive result is higher than the
partial results because in the precision of partial val-
ues we include the fact that if e.g., a surface form re-
lation is wrongly labeled as geo-specification, we con-
sider this mistake both as a false negative for surface
form, and as a false positive for geo-specification. This

11The data set is available at http://www.airpedia.org/
radar-1.0.nt.bz2. The original work is based on DBpedia
3.9, but we updated it to DBpedia 2014. Thus, we deleted one pair,
since the DBpedia page of one of the annotated entities does not
exist anymore.
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Table 2
Statistics on the data set used for RADAR 2.0 evaluation

data set # triples # annotated positive relations # annotated negative relations

surface-form geo-specific. inclusion text mismatch date mismatch numerical mismatch

dev set 104 28 18 20 13 13 12

test set 295 84 48 55 36 37 35

total 399 112 66 75 49 50 47

Table 3
Results of the system on the relations classification

system Relation category precision recall f1

RADAR 2.0

surface form 0.91 0.83 0.87
geo-specification 0.94 0.60 0.73
inclusion 0.86 0.69 0.77
overall positive 1.00 0.74 0.85
text mismatch 0.45 1 0.62

baseline

surface form 1.00 0.44 0.61
geo-specification 0.00 0.00 0.00
inclusion 0.00 0.00 0.00
overall positive 1.00 0.21 0.35
text mismatch 0.21 1 0.35

means that RADAR is very precise in assigning posi-
tive relations, but it could provide a less precise classi-
fication into finer-grained categories.

3.3. Reconciled DBpedia resource

We applied RADAR 2.0 on 300 DBpedia proper-
ties - the most frequent in terms of chapters map-
ping such properties, corresponding to the 47.8% of
DBpedia instantiated properties. We considered ∼5M
Wikipedia entities. The outcoming resource, a sort
of universal DBpedia, counts ∼50M of reconciled
triples, from 15 DBpedia chapters: Bulgarian, Catalan,
Czech, German, English, Spanish, French, Hungarian,
Indonesian, Italian, Dutch, Polish, Portuguese, Slove-
nian, Turkish. Notice that we did not consider the end-
point availability as a requirement to choose the DB-
pedia chapters: data are directly extracted from the re-
source.

For functional properties, the RADAR framework is
applied as described in Section 2. On the contrary, the
strategy to reconcile the values of non functional prop-
erties is slightly different: when a list of values is ad-
mitted (e.g. for properties child or instruments),
RADAR merges the list of the elements provided by
the DBpedia chapters, and ranks them with respect to
the confidence assigned to their source, after reconcil-

ing positive relations only (there is no way for lists
to understand if an element is incorrect or just miss-
ing, e.g. in the list of the instruments played by John
Lennon). But since the distinction between function-
al/non functional properties is not precise in DBpedia,
we manually annotated the 300 properties with respect
to this classification, to allow RADAR to apply the cor-
rect reconciliation strategy, and to produce a reliable
resource. In total, we reconciled 3.2 million functional
properties, with an average accuracy comparable to the
one described in Table 3.12

Moreover, we carried out a merge and a light-weight
reconciliation of DBpedia classes applying the strat-
egy “DBpedia CL” [1] (e.g., Michael Jackson is clas-
sified as a Person in the Italian and German DBpe-
dia chapters, an Artist in the English DBpedia and a
MusicalArtist in the Spanish DBpedia. The most
specific class is the last one, so the entity Michael Jack-
son becomes MusicalArtist in every language).

4. Integrating RADAR in a QA system

We integrate RADAR into a QA system over lan-
guage-specific DBpedia chapters, given the impor-

12Available here: http://qakis.org/resources.htm
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tance that information reconciliation has in this con-
text. Indeed, a user expects a unique (and possibly cor-
rect) answer to her factual natural language question,
and would not trust a system providing her with dif-
ferent and possibly inconsistent answers coming out
of a black box. A QA system querying different data
sources needs therefore to weight in an appropriate
way such sources in order to evaluate the information
items they provide accordingly.

As QA system we selected QAKiS (Question An-
swering wiKiFramework-based System) [9], because
it allows i) to query a set of language-specific DB-
pedia chapters using a natural language interface, and
ii) its modular architecture can be flexibly modified to
account for the proposed extension. QAKiS addresses
the task of QA over structured knowledge-bases (e.g.
DBpedia) [10], where the relevant information is ex-
pressed also in unstructured forms (e.g. Wikipedia
pages). It implements a relation-based match for ques-
tion interpretation, to convert the user question into
a query language, making use of relational patterns
(automatically extracted from Wikipedia), that capture
different ways to express a certain relation in a lan-
guage. The actual version of QAKiS targets questions
containing a Named Entity (NE) related to the an-
swer through one property of the ontology, as Which
river does the Brooklyn Bridge cross?. Such questions
match a single pattern.

In QAKiS, the SPARQL query created after the
question interpretation phase is sent to a set of lan-
guage-specific DBpedia chapters SPARQL endpoints
(i.e., English, French, German and Italian) for answer
retrieval. The set of retrieved answers from each end-
point is then sent to RADAR 2.0 for answer reconcil-
iation. To test RADAR integration into QAKiS13, the
user can select the DBpedia chapter she wants to query
besides English (that must be selected as it is needed
for NE recognition), i.e., French, German or Italian
DBpedia. Then the user can either write a question or
select among a list of examples. Clicking on the tab
Reconciliation, a graph with the answers provided by
the different endpoints and the relations among them
is shown to the user (as shown in Figures 3 and 4
for the questions How tall is Stefano Tacconi?, and
List the children of Margaret Thatcher, respectively).
Each node has an associated confidence score, result-
ing from the fuzzy labeling algorithm (described in
Section 2.3). Moreover, each node is related to the oth-

13Demo at http://qakis.org

ers by a relation of support or attack, and a further
specification of such relations according to the cate-
gories described in Section 2.2 is provided to the user
as answer justification of why the information items
have been reconciled and ranked in this way.

4.1. QA experimental setting

To provide a quantitative evaluation of RADAR in-
tegration into QAKiS on a standard data set of natu-
ral language questions, we consider the questions pro-
vided by the organizers of the QALD challenge (Ques-
tion Answering over Linked Data challenge), now at
its fifth edition, for the DBpedia track.14 More specifi-
cally, we collect the questions sets of QALD-2 (i.e. 100
questions of the training and 100 questions of the test
sets), the test set of QALD-4 (i.e. 50 questions), and
the questions sets of QALD-5 (50 additional training
questions with respect to the previous years training
set, and 59 questions in the test sets). These 359 ques-
tions correspond to all the questions released in the five
years of the QALD challenge (given the fact that the
questions of QALD-1 are included into the question
set of QALD-2, and the question set of QALD-3 is the
same as QALD-2, but translated into 6 languages, and
the training sets of QALD-4 and 5 include all the ques-
tions of QALD-2). QALD-3 also provides natural lan-
guage questions for Spanish DBpedia, but given that
the current version of QAKiS cannot query the Span-
ish DBpedia, we could not use this question set.

We extract from this reference data set of 359 ques-
tions, the questions that the current version of QAKiS
is built to address (i.e. questions containing a NE re-
lated to the answer through one property of the on-
tology), corresponding to 26 questions in QALD-2
training set, 32 questions in QALD-2 test sets, 12 in
QALD-4 test set, 18 in QALD-5 training set, and 11 in
QALD-5 test set. The discarded questions require ei-
ther some forms of reasoning (e.g., counting or order-
ing) on data, aggregation (from data sets different from
DBpedia), involve n-relations, or are boolean ques-
tions. We consider these 99 questions as the QALD
reference data set for our experiments.

4.2. Results on QALD answers reconciliation

We run the questions contained into our QALD ref-
erence data set on the English, German, French and

14http://greententacle.techfak.
uni-bielefeld.de/~cunger/qald/index.php?x=
home&q=5



E. Cabrio et al. / A RADAR for information reconciliation in Question Answering systems 11

Fig. 3. QAKiS + RADAR demo (functional properties)

Fig. 4. QAKiS + RADAR demo (non functional properties)
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Italian chapters of DBpedia. Since the questions of
QALD were created to query the English chapter of
DBpedia only, it turned out that only in 43/99 cases at
least two endpoints provide an answer (in all the other
cases the answer is provided by the English chapter
only, not useful for our purposes). For instance, given
the question Who developed Skype? the English DB-
pedia provides Skype Limited as the answer, while the
French one outputs Microsoft and Microsoft Skype Di-
vision. Or given the question How many employees
does IBM have?, the English and the German DBpedia
chapters provide 426751 as answer, while the French
DBpedia 433362. Table 5 lists these 43 QALD ques-
tions, specifying which DBpedia chapters (among the
English, German, French and Italian ones) contain at
least one value for the queried relation. This list of
question is the reference question set for our evalua-
tion.

We evaluated the ability of RADAR 2.0 to correctly
classify the relations among the information items pro-
vided by the different language-specific SPARQL end-
points as answer to the same query, w.r.t. a manually
annotated goldstandard, built following the methodol-
ogy in Cabrio et al. [13]. More specifically, we evalu-
ate RADAR with two sets of experiments: in the first
case, we start from the answers provided by the dif-
ferent DBpedia endpoints to the 43 QALD questions,
and we run RADAR on it. In the second case, we add
QAKiS in the loop, meaning that the data we use as
input for the argumentation module are directly pro-
duced by the system. In this second case, the input are
the 43 natural language questions.

Table 4 reports on the results we obtained for the two
experiments. As already noticed before, QALD data
set was created to query the English chapter of DB-
pedia only, and therefore this small data set does not
capture the variability of possibly inconsistent answers
that can be found among DBpedia language-specific
chapters. Only three categories of relations are present
in this data, i.e., surface forms, geo-specification, and
inclusion, and for this reason RADAR has outstanding
performances on it when applied on the correct map-
ping between NL questions and the SPARQL queries.
When QAKiS is added into the loop, its mistakes in
interpreting the NL question and translating it into
the correct SPARQL query are propagated in RADAR
(that receives in those cases a wrong input), decreasing
the total performances.

Notice that in some cases the question interpreta-
tion can be tricky, and can somehow bias the evalu-
ation of the answers provided by the system. For in-

stance, for the question Which pope succeeded John
Paul II?, the English DBpedia provides Benedict XVI
as the answer, while the Italian DBpedia provides also
other names of people that were successors of John
Paul II in other roles, as for instance in being the Arch-
bishop of Krakow. But since in the goldstandard this
question is interpreted as being the successor of John
Paul II in the role of Pope, only the entity Benedict XVI
is accepted as correct answer.

When integrated into QAKiS, RADAR 2.0 outper-
forms the results obtained by a preliminary version
of the argumentation module, i.e. RADAR 1.0 [11],
for the positive relations classification (the results of
the argumentation module only cannot be strictly com-
pared with the results obtained by RADAR 2.0, since i)
in its previous version the relation categories are differ-
ent and less fine-grained, and ii) in [11] only questions
from QALD-2 were used in the evaluation), showing
an increased precision and robustness of our frame-
work. Note that this evaluation is not meant to show
that QAKiS performance is improved by RADAR. Ac-
tually, RADAR does not affect the capacity of QAKiS
to answer questions: RADAR is used to disambiguate
among multiple answers retrieved by QAKiS in order
to provide to the user the most reliable (and hopefully
correct) one.

One of the reasons why RADAR is implemented as
a framework that can be integrated on the top of a QA
system existing architecture (and is therefore system-
independent), is because we would like it to be tested
and exploited by potentially all QA systems querying
more than one DBpedia chapter (up to our knowledge
QAKiS is the only one at the moment, but given the po-
tential increase in the coverage of a QA system query-
ing multiple DBpedia language-specific chapters [10],
we expect other systems to take advantage of these in-
terconnected resources soon).

5. Related work

The present paper is an extended version of our pre-
vious work [12,11,8], introducing RADAR 1.0. The
following common points are present: the idea of us-
ing argumentation theory to detect inconsistencies over
the results set of a question answering system exploit-
ing DBpedia, and the bipolar extension of the original
fuzzy labeling algorithm [15] to judge arguments’ ac-
ceptability in presence of both support and attack rela-
tions. However, the present paper presents a substantial
extension with respect to this preliminary work. More
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Table 4
Results on QALD relations classification

system Relation category precision recall f1

RADAR 2.0 (only)

surface form 1.00 0.98 0.99
geo-specification 0.88 0.80 0.84
inclusion 0.80 1.00 0.88
overall positive 1.00 0.98 0.99

baseline

surface form 1.00 0.97 0.98
geo-specification 0.00 0.00 0.00
inclusion 0.00 0.00 0.00
overall positive 1.00 0.86 0.92

QAKiS + RADAR 2.0

surface form 1.00 0.59 0.74
geo-specification 0.88 0.80 0.84
inclusion 0.80 1.00 0.88
overall positive 1.00 0.63 0.77

QAKiS + baseline

surface form 1.00 0.58 0.74
geo-specification 0.00 0.00 0.00
inclusion 0.00 0.00 0.00
overall positive 1.00 0.52 0.68

QAKiS + RADAR 1.0 [11]
overall positive 0.54 0.56 0.55

(on QALD-2 questions only)

specifically, the main enhancements are reported in the
following:

Relations categorization : RADAR 2.0 exploits the
categorization we introduced in [13], as men-
tioned in Section 2.2. However, the work pre-
sented in [13] is purely theoretic and the contribu-
tion on this side is to study how to make RADAR
2.0 match these linguistic-based relations with re-
spect to the DBpedia use case. Moreover, the cat-
egorization of the possible relations holding be-
tween the information items we adopt here is dif-
ferent (more linguistically-motivated) and more
fine-grained than the one we used in [11]. This
fine-grained categorization allows for a more in-
sightful justification graph;

Relations extraction : the relations holding between
the elements of the results set are here automat-
ically extracted with the application of more ro-
bust techniques than in [11]. More precisely, the
way RADAR 2.0 extracts these relations in an au-
tomated way is different from the way RADAR
1.0 extracts them: RADAR 2.0 adopts external re-
sources to improve the extraction of the correct
relation, such as MusicBrainz, the BNCF (Bib-
lioteca Nazionale Centrale di Firenze), DBpedia
and Wikipedia, GeoNames, and WikiData;

Evaluation : While in [8] only data from QALD-2
have been used, here we use all data available

from the QALD challenges (all editions), and the
Italian chapter of DBpedia is added as RDF data
set to be queried with QAKiS (not present in our
previous works on the topic). Moreover, the re-
sults presented in this paper show a higher pre-
cision with respect to the results obtained with
RADAR 1.0 and reported in [11] (f1 increments
from 0.55 to 0.77 for the positive relations classi-
fication if we consider QALD-2 data only). In ad-
dition, the new evaluation considers 15 DBpedia
chapters instead of the 3 chapters used in [8], i.e.,
English, German and French;

Resource : differently from [11] where no resource
resulted from the inconsistencies detection pro-
cess, here we generate a resource applying the
proposed framework to 15 reconciled language-
specific DBpedia chapters, and we release it.

State of the art QA systems over Linked Data gen-
erally address the issue of question interpretation map-
ping a natural language question to a triple-based rep-
resentation (see [23] for an overview). Moreover, they
examine the potential of open user friendly interfaces
for the SW to support end users in reusing and query-
ing the SW content. None of these systems considers
language-specific DBpedia chapters, and they do not
provide a mechanism to reconcile the different answers
returned by heterogenous endpoints. Finally, none of
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them provides explanations about the answer returned
to the user.

Several works address alignment agreement based
on argumentation theory. More precisely, Laera et
al. [22] address alignment agreement relying on ar-
gumentation to deal with the arguments which attack
or support the candidate correspondences among on-
tologies. Doran et al. [16] propose a methodology to
identify subparts of ontologies which are evaluated as
sufficient for reaching an agreement, before the argu-
mentation step takes place, and dos Santos and Eu-
zenat [17] present a model for detecting inconsisten-
cies in the selected sets of correspondences relating on-
tologies. In particular, the model detects logical and ar-
gumentation inconsistency to avoid inconsistencies in
the agreed alignment. We share with these approaches
the use of argumentation to detect inconsistencies, but
RADAR goes beyond them: we identify in an au-
tomated way relations among information items that
are more complex than sameAs links (as in ontology
alignment). Moreover, these approaches do not con-
sider trust-based acceptance degrees of the arguments,
lacking to take into account a fundamental component
in the arguments’ evaluation, namely their sources.

We mentioned these works applying argumentation
theory to address ontology alignment agreements as
examples of applications of this theory to open prob-
lems in the Semantic Web domain. Actually, the two
performances cannot be compared to show the superi-
ority of one of the two approaches, as the task is dif-
ferent.

6. Conclusions

In this paper, we have introduced and evaluated the
RADAR 2.0 framework for information reconciliation
over language-specific DBpedia chapters. The frame-
work is composed of three main modules: a module
computing the confidence score of the sources depend-
ing either on the length of the related Wikipedia page
or on the geographical characterization of the queried
entity, a module retrieving the relations holding among
the elements of the results set, and finally a module
computing the reliability degree of such elements de-
pending on the confidence assigned to the sources and
the relations among them. This third module is based
on bipolar argumentation theory, and a bipolar fuzzy
labeling algorithm [11] is exploited to return the ac-
ceptability degrees. The resulting graph of the results
set, together with the acceptability degrees assigned to

each information item, justifies to the user the returned
answer and it is the result of the reconciliation process.
The evaluation of the framework shows the feasibility
of the proposed approach. Moreover, the framework
has been integrated in the question answering system
over Linked Data called QAKiS, allowing to reconcile
and justify the answers obtained from four language-
specific DBpedia chapters (i.e. English, French, Ger-
man and Italian). Finally, the resource generated ap-
plying RADAR to 300 properties in 15 DBpedia chap-
ters to reconcile their values is released.

There are several points to be addressed as future
work. First, the user evaluation should not be underes-
timated: we will soon perform an evaluation to verify
whether our answer justification in QAKiS appropri-
ately suits the needs of the data consumers, and to re-
ceive feedback on how to improve such visualization.
Second, at the present stage we assign a confidence
score to each source following two criteria, however
another possibility is to leave the data consumer itself
to assign such confidence degree to the sources de-
pending on the kind of information she is looking for.
Finally, the proposed framework is not limited to the
case of multilingual chapters of DBpedia. The general
approach RADAR is based on allows to extend it to
various cases like inconsistent information from mul-
tiple English data endpoints. The general framework
would be the same, the only part to be defined are the
rules to extract the relations among the retrieved re-
sults. Investigating how a module of this type can be
adopted as a fact checking module is part of our future
research plan.
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Table 5
QALD questions used in the evaluation (in bold the ones correctly answered by QAKiS; x means that the corresponding language specific
DBpedia chapter (EN, FR, DE, IT) contains at least one value for the queried relation; dbo means DBpedia ontology)

ID, question set question dbo relation EN FR DE IT

84, QALD-2 train Give me all movies with Tom Cruise. starring x x x

10, QALD-2 train In which country does the Nile start? sourceCountry x x

63, QALD-2 train Give me all actors starring in Batman Begins. starring x x x x

43, QALD-2 train Who is the mayor of New York City? leaderName x x x

54, QALD-2 train Who was the wife of U.S. president Lincoln? spouse x x

6, QALD-2 train Where did Abraham Lincoln die? deathPlace x x x

31, QALD-2 train What is the currency of the Czech Republic? currency x x x x

73, QALD-2 train Who owns Aldi? keyPerson x x x

20, QALD-2 train How many employees does IBM have? numberOfEmployees x x x x

33, QALD-2 train What is the area code of Berlin? areaCode x

2, QALD-2 test Who was the successor of John F. Kennedy? successor x x

4, QALD-2 test How many students does the Free University numberOfStudents x x x
in Amsterdam have?

14, QALD-2 test Give me all members of Prodigy. bandMember x x

20, QALD-2 test How tall is Michael Jordan? height x x x

21, QALD-2 test What is the capital of Canada? capital x x x x

35, QALD-2 test Who developed Skype? product x x

38, QALD-2 test How many inhabitants does Maribor have? populationTotal x x

41, QALD-2 test Who founded Intel? foundedBy x x x

65, QALD-2 test Which instruments did John Lennon play? instrument x x

68, QALD-2 test How many employees does Google have? numberOfEmployees x x x

74, QALD-2 test When did Michael Jackson die? deathDate x x x

76, QALD-2 test List the children of Margaret Thatcher. child x x

83, QALD-2 test How high is the Mount Everest? elevation x x x

86, QALD-2 test What is the largest city in Australia? largestCity x x

87, QALD-2 test Who composed the music for Harold and Maude? musicComposer x x x

34, QALD-4 test Who was the first to climb Mount Everest? firstAscentPerson x x

21, QALD-4 test Where was Bach born? birthPlace x x x x

32, QALD-4 test In which countries can you pay using the West currency x x
African CFA franc?

12, QALD-4 test How many pages does War and Peace have? numberOfPages x x

36, QALD-4 test Which pope succeeded John Paul II? successor x x

30, QALD-4 test When is Halloween? date x x

259, QALD-5 train Who wrote The Hunger Games? author x x

280, QALD-5 train What is the total population of Melbourne, Florida? populationTotal x x x

282, QALD-5 train In which year was Rachel Stevens born? birthYear x x x x

283, QALD-5 train Where was JFK assassinated? deathPlace x x x x

291, QALD-5 train Who was influenced by Socrates? influencedBy x x

295, QALD-5 train Who was married to president Chirac? spouse x x

298, QALD-5 train Where did Hillel Slovak die? deathPlace x x x x

7, QALD-5 test Which programming languages were influenced by Perl? influencedBy x x x x

18, QALD-5 test Who is the manager of Real Madrid? manager x x

19, QALD-5 test Give me the currency of China. country x x

32, QALD-5 test What does the abbreviation FIFA stand for? name x x x

47, QALD-5 test Who were the parents of Queen Victoria? parent x x x



16 E. Cabrio et al. / A RADAR for information reconciliation in Question Answering systems

References

[1] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto
Lavelli. Automatic expansion of dbpedia exploiting wikipedia
cross-language information. In ESWC, pages 397–411, 2013.

[2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin.
An introduction to argumentation semantics. Knowledge Eng.
Review, 26(4):365–410, 2011.

[3] Trevor J. M. Bench-Capon, D. Lowes, and A. M. McEnery.
Argument-based explanation of logic programs. Knowl.-Based
Syst., 4(3):177–183, 1991.

[4] Trevor J. M. Bench-Capon and Giovanni Sartor. Theory based
explanation of case law domains. In ICAIL, pages 12–21, 2001.

[5] Floris Bex and Douglas Walton. Burdens and standards of
proof for inference to the best explanation. In Radboud
Winkels, editor, Legal Knowledge and Information Systems -
JURIX 2010: The Twenty-Third Annual Conference on Legal
Knowledge and Information Systems, Liverpool, UK, 16-17
December 2010, volume 223 of Frontiers in Artificial Intelli-
gence and Applications, pages 37–46. IOS Press, 2010.

[6] Joshua E. Blumenstock. Size matters: Word count as a mea-
sure of quality on wikipedia. In Proceedings of the 17th In-
ternational Conference on World Wide Web, WWW ’08, pages
1095–1096, New York, NY, USA, 2008. ACM.

[7] Volha Bryl and Christian Bizer. Learning conflict resolution
strategies for cross-language wikipedia data fusion. In WWW
(Companion Volume), pages 1129–1134, 2014.

[8] Elena Cabrio, Alessio Palmero Aprosio, and Serena Villata.
Reconciling information in dbpedia through a question an-
swering system. In Matthew Horridge, Marco Rospocher, and
Jacco van Ossenbruggen, editors, Proceedings of the ISWC
2014 Posters & Demonstrations Track a track within the 13th
International Semantic Web Conference, ISWC 2014, Riva del
Garda, Italy, October 21, 2014., volume 1272 of CEUR Work-
shop Proceedings, pages 49–52. CEUR-WS.org, 2014.

[9] Elena Cabrio, Julien Cojan, Alessio Palmero Aprosio,
Bernardo Magnini, Alberto Lavelli, and Fabien Gandon.
Qakis: an open domain qa system based on relational patterns.
In Procs of ISWC 2012 (Posters & Demos), volume 914, 2012.

[10] Elena Cabrio, Julien Cojan, and Fabien Gandon. Mind the cul-
tural gap: bridging language specific dbpedia chapters for ques-
tion answering. In Philipp Cimiano and Paul Buitelaar, editors,
to appear in Towards the Multilingual Semantic Web. Springer
Verlag, 2014.

[11] Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gan-
don. Argumentation-based inconsistencies detection for
question-answering over dbpedia. In NLP-DBPEDIA@ISWC,
2013.

[12] Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gan-
don. Hunting for inconsistencies in multilingual dbpedia with
qakis. In Eva Blomqvist and Tudor Groza, editors, Proceedings
of the ISWC 2013 Posters & Demonstrations Track, Sydney,

Australia, October 23, 2013, volume 1035 of CEUR Workshop
Proceedings, pages 69–72. CEUR-WS.org, 2013.

[13] Elena Cabrio, Serena Villata, and Fabien Gandon. Classifying
inconsistencies in dbpedia language specific chapters. In Procs
of LREC-2014, 2014.

[14] Claudette Cayrol and Marie-Christine Lagasquie-Schiex.
Bipolarity in argumentation graphs: Towards a better under-
standing. In Procs of SUM 2011, volume 6929 of LNCS, pages
137–148. Springer, 2011.

[15] Célia da Costa Pereira, Andrea Tettamanzi, and Serena Villata.
Changing one’s mind: Erase or rewind? In Procs of IJCAI
2011, pages 164–171. IJCAI/AAAI, 2011.

[16] Paul Doran, Valentina Tamma, Ignazio Palmisano, and Terry
Payne. Efficient argumentation over ontology correspon-
dences. In Procs of AAMAS 2009, pages 1241–1242, 2009.

[17] Cássia Trojahn dos Santos and Jérôme Euzenat. Consistency-
driven argumentation for alignment agreement. In Procs of OM
2010, CEUR Workshop Proceedings 689, 2010.

[18] Phan M. Dung. On the acceptability of arguments and its fun-
damental role in non-monotonic reasoning, logic programming
and n-person games. Artif. Intell., 77(2):321–358, 1995.

[19] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Par-
sons, and Michael Wooldridge. Weighted argument systems:
Basic definitions, algorithms, and complexity results. Artif. In-
tell., 175(2):457–486, 2011.

[20] Anthony Hunter. A probabilistic approach to modelling uncer-
tain logical arguments. Int. J. Approx. Reasoning, 54(1):47–81,
2013.

[21] Anthony Hunter and Matthew Williams. Aggregating evidence
about the positive and negative effects of treatments. Artificial
Intelligence in Medicine, 56(3):173–190, 2012.

[22] Loredana Laera, Ian Blacoe, Valentina Tamma, Terry Payne,
Jérôme Euzenat, and Trevor Bench-Capon. Argumentation
over ontology correspondences in MAS. In Procs of AAMAS
2007, pages 1–8, 2007.

[23] Vanessa Lopez, Victoria S. Uren, Marta Sabou, and Enrico
Motta. Is question answering fit for the semantic web?: A sur-
vey. Semantic Web, 2(2):125–155, 2011.

[24] Pablo Mendes, Max Jakob, and Christian Bizer. DBpedia: A
multilingual cross-domain knowledge base. In Procs of LREC
2012. ELRA, 2012.

[25] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer.
Sieve: linked data quality assessment and fusion. In Procs of
the Joint EDBT/ICDT Workshops, pages 116–123. ACM, 2012.

[26] Ana Rojo. Step by Step: A Course in Contrastive Linguistics
and Translation. Peter Lang, 2009.

[27] Douglas Walton. Explanations and arguments based on practi-
cal reasoning. In Thomas Roth-Berghofer, Nava Tintarev, and
David B. Leake, editors, Explanation-aware Computing, Pa-
pers from the 2009 IJCAI Workshop, Pasadena, California ,
USA, July 11-12, 2009, pages 72–83, 2009.


