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Abstract. This paper demonstrates that the presence of blank nodes in RDF data represents a problem for distributed processing
of SPARQL queries. It is shown that the usual decomposition strategies from the literature will leak information—even when
information derives from a single source. It is argued that this leakage, and the proper reparational measures, need to be accounted
for in a formal semantics. To this end, the standard set-based SPARQL 1.1. semantics is generalized with a parameter representing
execution contexts. This makes it possible to keep tabs on the naming of blank nodes across execution contexts, which in turn
makes it possible to articulate a decomposition strategy that is provably sound and complete wrt. any selection of RDF sources
even when blank nodes are allowed. Alas, this strategy is not computationally tractable. However, there are ways of utilizing
knowledge about the sources, if one has it, that will help considerably.
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1. Introduction

This paper is concerned with giving a general the-
oretical foundation for the semantics of distributed
SPARQL processing. It was inspired in part by the ob-
servation that whilst a number of distributed SPARQL
processors exist already, foundational work that allows
one to study their relative behaviour in a principled
manner is still in short supply.

In most ways, the present study can be regarded as
a sequel to [39], in which the concept of a federa-
tion scheme was first introduced. Essentially, a feder-
ation scheme is a theoretical device that captures for-
mally the conditions under which a particular feder-
ation strategy will yield sound and complete answer
sets. Contrapositively, it can be regarded as a way of
characterizing the behaviour of the federation strategy
in question by making theoretically explicit when it
will miss answers and why. While [39] gave several
examples of sound and complete ways of decompos-
ing and evaluating a query over a set of sources, these
results were valid under the proviso that the contribut-
ing sources do not employ blank nodes for encoding

information. The main contribution of the present pa-
per is to remove this restriction thus giving, for the first
time we believe, a fully general declarative semantics
for distributed processing of basic graph patterns in
SPARQL.

There is a singular tension in the Resource Descrip-
tion Framework between, on the one hand, the strictly
local validity of blank nodes and, on the other, the
global pretensions of the data model. RDF affords a
knowledge representation language for making asser-
tions that are meant to be valid in a global or Web-wide
scope. Yet, it recognizes the existence of entities that
cannot be referenced outside their source of origin, and
that cannot be identified across query execution con-
texts.

The Semantic Web community is deeply ambigu-
ous in its attitude towards blank nodes. The Linked
Data community generally shuns them—in Bizer they
are discussed under the heading “RDF features best
avoided in the Linked Data context” [19]. On the other
hand, asserting the existence of something that one
is not willing to name is generally recognized as in-
dispensable for design patterns that rely on express-
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ing general logical concepts such as e.g. n-ary rela-
tions, lists, sets or classes. However one sees it, there
is no getting around the well-documented prevalence
of blank nodes on the Web—a fact which is not likely
to change anytime soon.

In rough outline, the problem with blank nodes is
that if a federator is to combine information across
SPARQL endpoints, then it will have to join suitably
small fragments of information from different sources.
This in turn involves evaluating suitably small sub-
queries to get at all the partial answers that are re-
quired for answering the global query in full. Alas,
in the process patterns may happen to be broken up
that match a partial answer in a single source where
a blank node figures in join position. If so, then that
partial answer cannot be put back together afterwards,
because the blank nodes that were previously joined
will no longer be identifiable as the same node. The
situation poses somewhat of a dilemma, and resolving
it requires rather profound, though not too complex,
amendments to the SPARQL 1.1. semantics.

The layout and specific contributions of this paper
are as follows: Section 3 identifies and describes the
adverse effect of blank nodes on distributed query pro-
cessing. Section 4 provides the semantic prerequisites
for working out a solution to the said dilemma. This
consists mainly in generalizing the SPARQL 1.1. se-
mantics by adding a formal parameter for execution
contexts to the notion of an answer set. The concept
of an execution context is left largely implicit in the
SPARQL 1.1. specification. In the distributed setting,
it is a condition sine qua non for an adequate semantics
and therefore needs to be formalized. Section 5 flexes
the new semantical machinery by providing an exis-
tence theorem showing that if an answer to a query ex-
ists in a set of contributing sources taken as a whole,
then there is a way to retrieve it even allowing for
blank nodes. Section 6 reviews the federation-schemes
framework as developed in [39] as a prerequisite for
the next section. It does not contribute any new results
per se, but merely adapts the relevant concepts and def-
initions to the generalized semantics developed in Sec-
tion 4. Finally, Section 7 ties the threads together by
abstracting from the existence theorem in Section 5 a
federation scheme that gives sound and complete an-
swer sets in the absence of any knowledge about the
structure of the sources, blank nodes allowed. However
this section also shows that there is a rather steep price
to pay for ignorance when blank nodes are involved.
More specifically, it is shown that the distributed query
answering in the presence of blank nodes when no

knowledge is available is inherently hard. Different
ways to mitigate the situation are sketched based on
obtaining knowledge either by regimentation of the
sources or by probing them, pointing to interesting
lines of future research.

2. Related work

A tripartite classification of approaches to SPARQL
federation is explicit in Görlitz and Staab [14] and im-
plicit in Betz et al. [8] and Hose et al. [21].

Lookup-based federation: Also known as federation-
by-traversal, or follow-your-nose traversal [4], itera-
tively downloads and evaluates data based on links
(usually as prescribed by the Linked Data principles
[9]) from one dataset into another. The answer to a
query is composed by cumulatively adding answers
from incoming data during the traversal process. This
approach is exemplified by e.g. [15,16,17,18] and [24].

Warehousing: Broadly understood, warehousing cov-
ers approaches that seek to collect or assemble all data
of relevance ahead of query time into a respository that
behaves as if it is a centralized single store. This area
naturally shades off into cloud computing [36], dis-
tributed file systems, and big data technologies. Re-
cent efforts in this direction focus on the use of clus-
ter technology such as MapReduce and Hadoop e.g.
[12,20,22,23,25] and [31], Spark e.g. [11] and GraphX
e.g [35].

Distributed query processing: Distributed query pro-
cessing relies on analysing a query to identify a set
of relevant RDF graphs—with or without the aid
of statistics—to which subqueries can be assigned.
Like federation-by-traversal and unlike warehousing,
queries are evaluated remotely. Examples of this ap-
proach include [3,7,29,33] and [38].

If the issue were pressed, the present paper would
be most naturally classified as belonging to the field
of distributed query processing. However, it does not
really advocate ‘an approach’ to SPARQL federation.
Rather, it aims to articulate and develop a set of seman-
tical primitives in terms of which any federation engine
ought to be describable. To the authors’ knowledge it
is the first foundational study of distributed query pro-
cessing that allots to blank nodes a clearly described
role in a strictly logico-mathematical theory.
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It should be said that the tripartite classification
mentioned above is very rough, and cuts across impor-
tant and interesting distinctions in the literature. Con-
versely, there are subfields within federation that cut
across it. It can plausibly be argued for instance that
scalability and optimization are issues that are largely
independent, or at least not tightly coupled with, any
one particular approach. On the contrary, a lot of work
seems to be going on here with more general signifi-
cance.

To mention but a few, there is the area of adaptive
query answering that explores how the evaluation of a
query may be adjusted at run-time e.g. by reordering
joins [2] or in order by exploiting approximate mem-
bership functions reducing HTTP requests [40]. There
is also a fair bit of activity in the field of caching, data
replication and load balancing. Thus, [28] explores
the use of replicated fragments of data graphs in or-
der to mimimize the size of intermediate results, whilst
[41,42] adresses client-server load balancing through
the use of so called Triple Pattern Fragments (TPFs).

Finally, current trends in OBDA (Ontology-based
Data Access) seem to be shifting emphasis onto OBDI
(Ontology-based Data Integration). For instance [10]
is concerned with the problem of how to utilize
owl:sameAs links to extend query-rewriting to mul-
tiple sources. The interest in owl:sameAs statements
overlaps a theme in [30], only whereas the latter can
be seen as a wareousing approach the former is a dis-
tributed query processing approach.

3. Problem description.

It seems reasonable, by default at least, to require of
a distributed query processor that it neither misses nor
invents answers; all and only the answers that are war-
ranted by the sum total of information contained in the
contributing sources should, if there are no overriding
reasons to the contrary, be returned.

To illustrate what is meant here by ‘the sum total
of information’, consider the two RDF graphs in Fig-
ures 1 and 2 respectively, call them source A and B.
As should be apparent, they encode information about
trophies won by Roger Federer and Raphael Nadal in
Grand Slam tournaments.1 Now, according to source
A the Wimbledon tournament is a Grand Slam tour-

1It is a slightly modifed version of an example from [20].

:TennisPlayer :GSTournament

_:b1 :Wimbledon

"2003"

:Federer

_:b2 :FrenchOpen

"2009"

rdf:type

:w
in
s

:wins

:event

:year

rdf:type

:event

:year

Fig. 1. RDF source A

nament but the French Open is not. One may assume
that this is an unintentional omission on behalf of the
curator of the data set. The missing piece of informa-
tion is provided by source B, however, so when the two
sources are merged, as in Figure 3, all tennis events
become appropriately classified. Therefore, the query
in figure 4—which asks for the name of a player and
the year in which he won a Grand Slam tournament—
when evaluated against the merge of the sources A and
B, returns the answer in figure 5

:TennisPlayer :GSTournament

_:b1 "2010"

:Nadal :FrenchOpen

_:b2 "2011"

rdf:type

:wi
ns

:wins :ev
ent

:year

rdf:type
:year

:event

Fig. 2. RDF source B

This answer set strictly includes that which is ob-
tained by evaluating the query in figure 4 against each
source separately before taking the union of the result,
viz. figure 6. In other words, the sum of the whole is
bigger than the sum of the parts. Specifically, the total
amount of information contained by the two sources
combined, resides not only in what each of them can
contribute separately, but in also in the combination or
join of elements across sources.

A distributed query processor should, in the absence
of a good reason for sacrificing completeness, query
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"2003"
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Fig. 3. The union of sources A and B modulo renaming of blank
nodes.

SELECT ?name ? y e a r WHERE {
? a t h l a : T e n n i s P l a y e r .
? a t h l : wins ? x .
? x : e v e n t ? e v e n t .
? x : y e a r ? y e a r .
? e v e n t a : GSTournament . }

Fig. 4. Get Grand Slam triumphs

name year
“Roger Federer" 2003
“Roger Federer" 2009
“Rafael Nadal" 2010
“Rafael Nadal" 2011

Fig. 5. Answer over the merge of A and B

name year
“Roger Federer" 2003
“Rafael Nadal" 2010
“Rafael Nadal" 2011

Fig. 6. Union of answers over A and B

the whole. That is, by combining results from partial
queries evaluated separately against source A and B,

it should return the table in Figure 5 as the answer to
query in Figure 4.

Generalizing from the present example one thus ar-
rives at the following intuitive criterion of adequacy for
a distributed query processor: the same answer should
be returned as that which would be obtained were the
query to be evaluated over the merge of the contribut-
ing sources. This concept of adequacy will have to be
made more precise later, for there is leeway for differ-
ent interpretations of it due to the appeal to the ’same-
ness’ of answer sets. For now, however, and in rela-
tion to the example at hand, the question becomes: how
must the query in figure 4 be decomposed and pro-
cessed (vagueness intended) in order to satisfy the ad-
equacy criterion?

Given the obviousness of all that has been said so
far, it is somewhat surprising that there is no simple an-
swer to this question. This is due to the fact that source
A and B—as recommended by the Semantic Web Best
Practices and Deployment Working Group—use blank
nodes for expressing three-place predicates, in this
case the predicate “X wins Y in year Z”. Therefore, the
information expressed by the graphs depends on joins
on blank nodes. In the distributed case, such a join, if it
is not handled with special care, will quickly become a
drain through which information will leak. As we shall
see, this has to do with anaphoric reference being lost
whenever the same blank node is processed in two sep-
arate execution contexts.

It is interesting to register that none of the more
straightforward and better known query-decomposition
strategies from the literature will work for this ex-
ample. Consider for instance the even decomposition,
so called in [39] (cf. Section 6) as implemented in
DARQ [33]. This is the decomposition that evalu-
ates each triple pattern (from the global query, let’s
call it) against every source that may contain an an-
swer for it (meaning that the RDF property from the
triple pattern in question occurs in that source). For
instance, the even decomposition will evaluate both
of the triple patterns ?x :event ?event and ?x
:year ?year from the query in figure 4 separately
against each of A and B. Collecting the solutions, say,
from source source A in separate tables we have the
answer sets in figures 7 and 8.

Here, the identifiers for blank nodes have been given
distinct subscripts c and d to signify that they are not
to be treated as the same names. This is mandatory ac-
cording to SPARQL 1.1. specification which requires
every distinct query to be treated as a separate query
execution context. More precisely, every query defines
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?x ?event
_:b1c :Wimbledon

_:b2c :FrenchOpen

Fig. 7. Answers to ?x :event ?event over A

?x ?year
_:b1d 2003
_:b2d 2009

Fig. 8. Answers to ?x :year ?year over A.

a distinct and sealed scope for blank node identifiers,
which means that a blank node from one execution
context cannot be referenced in another. From a logical
point of view this is an entirely legitimate restriction.
Blank nodes are similar to existential variables and ex-
istential variables are anaphors within the same quan-
tificational context only. Nevertheless, it is detrimen-
tal for the even distribution, because join information
is not preserved by the two tables. In sum, the even
distribution is not a decomposition strategy that can be
relied on to remain faithful to the ‘sum total’ of infor-
mation contained in the contributing sources.

The problem generalizes, for no other well-known
decomposition strategy fares any better. Take the one
implemented in FedX [38] for instance. The FedX de-
composition is similar to DARQ except that it groups
triple patterns that are satisfiable by a single source
only—so called exclusive groups—source into the
same sub-query. This strategy is studied under the
name of the standard decomposition in [39].

Exclusive groups anchor the triples involved to the
same execution context, so they may in fortuitous
cases solve the problem. However, the example cur-
rently under consideration shows that this is not in gen-
eral so. Indeed, in the cases where it is so, it comes
down to luck, because exclusivity has nothing to do es-
sentially with blank nodes. In particular, there are no
exclusive groups in the query in figure 4 wrt. source
A and B, so the even and standard decompositions are
the same in this case.

As a final example, consider the decomposition
strategy implemented in ADERIS [26]. ADERIS eval-
uates the maximal sub-pattern of the global pattern
that is potentially answerable by a source against that
source and before taking the union of the results. In the
present example, all of the RDF properties in the query
occur in both of the sources A and B. Hence, the whole
query is evaluated against each of the sources, and the

final result is the union of the respective answer sets.
But, as we have seen, this produces the table in figure
6 which misses the cross-site join that relates Roger
Federer to his 2009 win.

Taking stock, these examples can be taken to show
the following: If answering a query involves joins on
blank nodes, then the granularity of the decomposition
of that query matters a great deal. If the query is split
to finely, then answers from a single source may be
lost due to the loss of join information linking the par-
tial answers. If on the other hand the query is split too
coarsely, then cross-site joins may be lost. From a se-
mantical point of view, distributed query answering is
essentially about balancing these two opposing forces.

The delicateness of this balancing act has not been
fully appreciated yet it seems: while it is reasonable to
expect a distributed query processor to do better than
to just collect solutions to the global query from each
of the sources, it may so happen that the very attempt
to do so, i.e. the attempt to harvest information by uti-
lizing cross-site joins, is the very thing that causes it to
do worse, because if there are joins on blank nodes in
a contributing source, then that source will leak solu-
tions if the global query is decomposed too finely.

As for the question of whether there even is a de-
composition that can be made to work, the answer is
affirmative for the example at hand, viz. the decompo-
sition below:

P1 := {?x :event ?event., ?x :year ?year}
P2 := {?athl a :TennisPlayer.}
P3 := {?athl :wins ?x.}
P4 := {?event a :GSTournament.}

The crucial thing about this decomposition is first, that
it groups together those triple patterns that match a join
on a blank node, thus ensuring that the join arguments
are kept within one and the same execution context so
as not to lose anaphoric reference (P1). Secondly, it
is also of crucial importance that all other triples are
shipped as singletons, or else cross-site joins would be
lost (P2 − P4). It is not difficult to show that the pro-
cedure that takes the union JPiKA ∪ JPiKB for each
i ∈ [1, 4] before folding the results into a single an-
swer set by joins, produces the outcome in figure 5.
Yet, this solution is specific to the problem at hand
and depends on detailed knowledge about the shape of
the graphs being queried. For instance, one needs to
know that the variable ?x will be mapped to a blank
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node—something that cannot, needless to say, be read
off from the query alone.

We have the work cut out for us then: first it is nec-
essary to show that irrespective of the shape of graphs,
if a solution to a query is warranted by the merge of
the contributing sources, then there is decomposition
from which that solution can be reconstructed. Sec-
ondly, it must be shown that it is possible to abstract
from these particular solutions a general federation
scheme that yields a correct and exhaustive answer set
in the absence of any knowledge about the sources,
even whilst allowing for joins on blank nodes. In order
to do so, however, it will be necessary to generalize
the SPARQL 1.1. semantics with an extra parameter
representing execution contexts—a topic for the next
section.

4. Adding execution contexts to the SPARQL
semantics.

The formal developments that follow are based on
the standard set semantics of SPARQL 1.1. (cf. [5]),
as far as it goes. “As far as it goes”, because that se-
mantics is designed for the case where a single query
is evaluated against a single source in a single exe-
cution context. But what is distinctive about the dis-
tributed setting, is that the overall answer to the dis-
tributed query is assembled from partial answers to
partial queries each one of which represents a distinct
execution context. These contexts matter a great deal
from a semantical point of view as they constitute dis-
joint name spaces for blank node, which in turn influ-
ences the semantics of joins.

Execution contexts are not formally defined in the
SPARQL 1.1. semantics, which therefore lacks the ex-
pressive power to define distributed query processing.
However, the following passage provides a fairly ro-
bust basis for a formal reconstruction: “Since SPARQL
treats blank node identifiers in a results format docu-
ment as scoped to the document, they cannot be un-
derstood as identifying nodes in the active graph of the
dataset. If DS is the dataset of a query, pattern solu-
tions are therefore understood to be not from the active
graph of DS itself, but from an RDF graph, called the
scoping graph, which is graph-equivalent to the active
graph of DS but shares no blank nodes with DS or with
[the query]” [32].

The scoping graph mentioned here is a purely the-
oretical construct—it is just another namespace for
blank nodes. In other words, SPARQL distinguishes

between the scopes of a query, the queried data and the
result, stipulating that blank nodes cannot be shared
between them. This has important formal ramifications
that will be explored shortly, after the requisite seman-
tic concepts have been introduced.

The following notational conventions will be adopt-
ed from here on: curly braces are omitted from single-
tons in set-theoretic expressions as well as from argu-
ments of functions if no confusion is likely to ensue,
e.g. P∪ t instead of P∪{t} and f(t) instead of f({t}).
Also, when f is a function and A a subset of f ’s do-
main, then f(A) will be used as a shorthand for the set
of elements b such that b = f(a) for some a ∈ A. If f
is a function, dom(f) and ran(f) are its domain and
range respectively.

Turning now to RDF specifics, let U,B and L
denote pairwise disjoint infinite sets of IRIs, blank
nodes, and literals respectively. In conformity with the
nomenclature of [5], IL abbreviates I ∪ L and T ab-
breviates I∪B∪L. These latter sets will be referred to
collectively as RDF terms, and RDF terms will be de-
noted individually by ui, vj . Here, as everywhere else,
indexes will be omitted when idle. An RDF triple is an
element (u1, u2, u3) ∈ (I∪B)×I×(I∪B∪L). If it is
mnemonically convenient, terms in triples may be de-
noted by their roles as subject, predicate and object of
that triple; (s, p, o). If the elements of a triple is irrel-
evant to the discussion, an RDF triple will be denoted
ai where the ‘a’ is meant to stand for ‘assertion’. If x
is a triple pattern or a triple then πn(x) is the projec-
tion of x onto its nth coordinate, presuming of course
n ≤ 3. An RDF graph is a finite set of RDF triples.
RDF graphs are denoted G with or without subscripts.
RDF graphs will be referred to interchangeably as a
sources, endpoints or datasets. These terms will tend
to be used for different emphasis in order to make the
terminology more suggestive.

Turning now to SPARQL queries, let V be an in-
finite set of variables. Variables are denoted by lower
case letters in the range of x to z with a question mark
prepended. Variables may also be counted as terms, in
which case they too are denoted ui.

Definition 4.1. A basic graph pattern (BGP) is either

1. a singleton {t}where t is a triple pattern in (IL∪
V )× (I ∪ V )× (IL ∪ V ), or

2. a union Pi ∪ Pj of BGPs Pi and Pj .
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Thus, ti denotes triple patterns and Pi denotes BGPs.
For any BGP P , var(p) denotes the set of variables in
P . In order to avoid tedious limiting cases in proofs, it
will be assumed that the set of triple patterns is disjoint
from the set of RDF triples, that is, a triple pattern is
assumed to contain at least one variable. By definition
4.1 (1), it is also assumed not to contain blank nodes.
These assumptions incur no loss of generality.

Following [5], SPARQL queries will be identified
with basic graph patterns. In other words, the distinc-
tion between the syntax and the semantics of SPARQL
queries will deliberately be blurred. Queries does not
become syntactic entities per se but rather sets of such,
that is, they are sets of triple patterns. This is math-
ematically convenient and simplifies formal develop-
ments without loss of precision. Abiteboul et al. [1]
establishes precedent in this respect.

In the SPARQL 1.1. specification answers to simple
conjunctive queries aka. basic graph patterns are for-
malized in terms of solution mappings, which are par-
tial functions µ of type V −→ T . The relevant defini-
tion, giving the answer JP KG to a basic graph pattern
P evaluated over an RDF graph G, reads:

Definition 4.2. Let G be an RDF dataset, and P a
BGP. Let µ(t) denote the triple obtained by replacing
the variables in t according to µ, and let var(t) denote
the set of variables occurring in t. Then

1. JP KG =df {µ | dom(µ) = var(t) and µ(t) ∈ G},
if P is a triple pattern t, or

2. JP KG =df JPiKG ./ JPjKG, if P = Pi ∪ Pj .

Here dom(µ) denotes the domain of µ and µ(P ) is
understood as the set of all (µ(u1), µ(u2), µ(u3)) for
(u1, u2, u3) ∈ P . Individual µ will be called solu-
tions whereas sets JP KG will be called answer sets.
The join ./ of answer sets is defined as the set of
pairwise unions of compatible maps where µi and µj
are compatible if x ∈ dom(µi) ∩ dom(µj) implies
µi(x) = µj(x).

This is the standard set-based definition of answer
sets, but keeping the SPARQL 1.1. specification’s no-
tion of a scoping graph in mind, it is already not en-
tirely accurate—not even for a single source and a sin-
gle execution context. For if a solution µ(t) to t over
G happens to contain a blank node, it follows that µ(t)
is not strictly speaking an element in G. Rather, the re-
lationship between µ(t) is a weaker one: µ being a so-
lution to t over G means that there is an a ∈ G such
that µ(t) and a are the same up to renaming of blank
nodes. This in turn is just to say that µ(t) and a simply

entail each other, where the following theorem from
[20] may serve as the definition of simple entailment:

Theorem 4.1 (Simple entailment). An RDF graph Gi
entails an RDF graph Gj , written Gi � Gj , iff there is
an RDF homomorphism h from Gi to Gi.

The concept of an RDF homomorphism that figures
in this definition will be defined shortly. Henceforth,
whenever two answer sets are said to be the same, this
is intended to mean that they simply entail each other,
i.e. that they are simply equivalent. To belabour the ob-
vious, this is what was hinted at in section 3 when it
was said that the ‘sameness’ of answer sets would have
to be made precise.

The upshot of this is that even in the single-source
case, SPARQL semantics can be seen to have an equiv-
alential basis. It is not all bad news. On the contrary,
it fits hand-in-glove with distributed query processing,
for as soon as the equivalential basis of answer sets
over a single source is made formally explicit it gen-
eralizes straightforwardly to answer sets obtained by
combining solutions from different execution contexts.

The notational apparatus will have to be amended
slightly. Starting with a countably infinite set of con-
texts C (definition pending) what is required is a fam-
ily of pairwise disjoint sets of blank nodes to match. It
suffices to just stipulate that {Bc}c∈C is the family of
sets Bc obtained by making a copy of B in which each
element is indexed by the context c. To lighten the no-
tation the union of all these sets of blank nodes, one
for each context, will henceforth be denoted B. The set
ST of SPARQL terms may now be defined as

ST =df IL ∪ B

This is to be kept distinct from T , the set of RDF terms.
The latter is the stuff that RDF graphs are made of, the
former is the stuff that solutions to queries are made
of. The same blank node is never contained in both.

Returning now to RDF homomorphisms:

Definition 4.3. Given two RDF graphs Gi and Gj , an
RDF homomorphism is a function h : Gi −→ Gj such
that all of the following hold:

1. h(u) = u for u ∈ IL,
2. h(u) ∈ T if u ∈ B, and
3. (h(u1), h(u2), h(u3)) ∈ Gj if (u1, u2, u3) ∈ Gi.
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This definition differs from the standard only in that
the range of functions has been extended with the new
(countable) set of blank nodes. As for the concept of
an execution context, viz. the following definition:

Definition 4.4 (Execution context). An execution con-
text is a bijection c : T −→ ST which is such that

1. u ∈ IL implies c(u) = u,
2. u ∈ B implies c(u) ∈ Bc,

The idea now, is to let the partial map µ, as defined
in the standard semantics, figure merely as the math-
ematical relationship between a graph pattern and a
graph that is to be portrayed by solutions proper. Stated
differently, µ is no longer considered a solution per se,
rather a solution µc is a mapping µ modulo a context
c that provides the solution with a unique set of names
for its blank nodes:

Definition 4.5. Given a µ : V −→ T and a context c,
µc : V −→ ST is defined as follows:

1. µc(u) = µ(u) whenever µ(u) ∈ IL
2. µc(u) = c(µ(u)) otherwise.

Generalizing definition 4.2 accordingly yields.

Definition 4.6 (Generalized evaluation). Let G denote
a set of RDF sources, then:

1. JP KcG =df {µc |µ ∈ JP KG}
2. JP KcG =df JPiKcG ./ JPjKcG, if P = Pi ∪ Pj .
3. JP KcG =df JP Kc⋃

Gi∈G
Gi.

The following pair of lemmas is unglamorous but im-
portant:

Lemma 4.2. An execution context c is an RDF homo-
morphism from µ(P ) to µc(P ).

Proof. Suppose µ ∈ JP KG, and (µ(u1), µ(u2), µ(u3)) ∈
µ(P ) for (u1, u2, u3) ∈ P , where u1, u2, u3 ∈ IL∪V .
Then, by definition 4.6 (1) µc ∈ JP KcG i.e. (µc(u1),
µc(u2), µc(u3)) ∈ µc(P ). By the RDF semantics,
µ(u2) ∈ I from which it follows that µ(u2) = µc(u2)
by definition 4.5 (1), hence µc(u2) ∈ I . Now, as-
sume wlog. that µ(u1), µ(u3) ∈ B, as the case for
µ(u1), µ(u3) ∈ IL would proceed as for u2 above.

By definition 4.5 (1) and (2), we then have (c(µ(u1)),
µ(u2), c(µ(u3))) ∈ µc(P ), and by definition 4.4 (1)
we have c(µ(u2)) = µ(u2). Therefore (c(µ(u1)), c(µ(u2)),
c(µ(u3))) ∈ µc(P ) and hence c satisfies definition 4.3
(3). That c also satisfies definition 4.3 (1) and (2) is
immediate from definition 4.4.

Lemma 4.3. The converse of a context c is an RDF
homomorphism.

Proof. By Lemma 4.2, c is a homomorphism which by
definition 4.4 is bijective. Hence c−1 is a graph homo-
morphism. To verify that it is in fact an RDF homo-
morphism it suffices to note that definition 4.3 (1) im-
poses the same restriction as definition 4.4 (1) and that
definition 4.4 (2) is a stronger requirement than defini-
tion 4.3 (2).

Taking stock so far, there is no longer such a thing as
the set of answers to a BGP P over a graph G, strictly
speaking. When blank nodes are involved there are in-
finitely many distinct such sets, one for each context
c. These sets are all simply equivalent, though, which
just means that they answer the query in essentially the
same way:

Corollary 4.4. If var(P ) ⊆ dom(µ) then µ(P ),
µc(P ) and µd(P ) are all simply equivalent irrespec-
tive of the choice of c and d.

Proof. By Lemma 4.2 and 4.3 c is an RDF homo-
morphism from µ(P ) to µc(P ) and c−1 is an RDF
homomorphism in the converse direction. By Theo-
rem 4.1 then µ(P ) a` µc(P ). By similar reasoning
µ(P ) a` µd(P ), and by the property of euclideanness
for equivalence relations µc(P ) a` µd(P ).

Turning now to distributed query answering and its
semantics, its formalization is a matter of generalizing
the ./ relation to apply to answer sets from different
sources and parametrized by different execution con-
texts:

JPiKcG ./ JPjKdH

Such expressions will henceforth be stipulated to de-
note the set of unions µc ∪ µ′d of pairs of compatible
maps µc ∈ JPiKcG and µ′d ∈ JPjKdH . There are a few
things to note:

Theorem 4.5. There is in general no context e such
that JPiKcG ./ JPjKdH = JPi ∪ PjKeG∪H .

Proof. It suffices to argue the case whereG = H . Sup-
pose for reduction that there is such a context e for ev-
ery P := Pi ∪ Pj and every source G. Then it is pos-
sible to choose P , G, µc and µd in such a way that
µe = µc ∪ µd, where µc ∈ JPiKcG and µd ∈ JPjKdG,
although ran(µc) ∩ Bc 6= ∅ and ran(µd) ∩ Bd 6= ∅.
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But then ran(µe) ∩ Bc 6= ∅ and ran(µe) ∩ Bd 6= ∅,
either of which contradicts clause (2) of the definition
4.4 of contexts.

What this means is that there is in general no alge-
bra on contexts and sources that allows one to reduce
JP1KcG ./ JP2KdG to a single execution context. In par-
ticular we do not have JP KcG ./ JP KdG = JP Kc∪dG or
anything of the sort. This is as it should be. Distributed
queries do not run in a single execution context. Theo-
rem 4.5 simply reflects this fact.

As a consequence of this, there are two different
things that need to be recognized as solutions to a
query: first, any solution to the query over a single
source, and secondly, any solution obtained by join-
ing partial answers from different sources or contexts.
Call the latter intercontextual joins, and let them be
denoted with (possibly subscripted) ρ. Intercontextual
joins generalizes cross-site joins: whereas a cross-site
join is an intercontextual join, the converse does not
necessarily hold. The ρ notation will be used primarily
as a convention for indicating in the relevant parts of a
proof or line of reasoning that an appeal to a context is
neither required nor apt. We have:

Theorem 4.6. Let Gm and Gn be two RDF graphs
that are standardized apart. If ρ ∈ JPiKcGm

./ JPjKdGn

then there is a context e such that µe ∈ JPi ∪
PjKeGm∪Gn

and µe(Pi ∪ Pj) a` ρ(Pm ∪ Pn) .

Proof. By definition 4.6 (2) it suffices to show the
property for a µe in JPiKeGm∪Gn

./ JPjKeGm∪Gn
.

So suppose ρ ∈ JPiKcGm
./ JPjKdGn

. Then ρ ∈
JPiKcGm∪Gn

./ JPjKdGm∪Gn
whence ρ = µc ∪ µ′d for

µc in the first and µ′d in the second of the join ar-
guments. By Corollary 4.4 µc(Pi) a` µe(Pi) for an
arbitrarily chosen e, and µ′d(Pj) a` µ′e(Pj) for the
same e. From the former it follows by Theorem 4.1
that there is a pair (h1, g1) of RDF homomorphisms
such that h1 maps µc(Pi) into µe(Pi) and g1 maps
µe(Pi) back into µc(Pi). From the latter it follows
that there is a pair (h2, g2) linking µ′d(Pj) and µ′e(Pj)
in the same way. Thus, since ρ = µc ∪ µ′d entails
ρ(Pi ∪ Pj) = µc(Pi) ∪ µ′d(Pj), it only remains to
show that A) h1 ∪ h2 is an RDF homomorphism from
µc(Pi)∪µ′d(Pj) to µe(Pi)∪µe(Pj) and that B) g1∪g2

is a homorphism in the converse direction.
For A) it suffices to show that h1 ∪ h2 is well-

defined, i.e. that h1 and h2 are compatible. So, suppose
for reduction that there is a t ∈ dom(h1) ∩ dom(h2)
such that h1(t) 6= h2(t). By the definition of an RDF
homorphism tmust be a blank node. However, the con-

texts c and d, by definition 4.4, have disjoint ranges
when restricted to blank nodes, so t /∈ dom(h1) ∩
dom(h2) contrary to assumption.

for B) the reasoning is entirely similar to A) so
suppose for reduction that there is a t ∈ dom(g1) ∩
dom(g2) such that g1(t) 6= g2(t). Then again t must
be a blank node, by the definition of an RDF homo-
morphism. However Gm and Gn have been assumed
to be standardized apart so t /∈ dom(g1) ∩ dom(g2)
contrary to assumption.

As this argument can obviously be extended to all
finite unions of BGPs by a straightforward induction,
it is in effect akin to a soundness result: as long as
execution contexts do not share blank node identifiers
with one another or with RDF graphs, and as long as
the scope of RDF graphs are treated as mutually exclu-
sive, distributed query processing, understood as as-
sembling intercontextual joins across sources and con-
texts, never produces solutions that are not warranted
by the union of those sources.

5. There is always a solution.

To recapitulate briefly, the point of introducing an
explicit parameter for execution contexts is to be able
to reason about the total information content held by a
set of answers each of which was generated by a differ-
ent query over a distinct source—the total information
content being given by the join over all these sets. Now,
as each query will set up a separate scope for blank
node identifiers that is disjoint from all others, answer
sets cannot in the distributed case be joined freely. In
particular, any join on blank nodes, if it spans two or
more execution contexts, must be deemed a false posi-
tive. Conversely, any join on blank nodes that refers to
a single context is ok. In other words, execution con-
texts is essentially a way to keep tabs on legitimate and
illegitimate joins.

The present section is concerned with the first of the
tasks that were defined towards the end of section 3
which, having introduced execution contexts into the
SPARQL semantics, it is now possible to address: the
aim is to show that irrespective of the shape of graphs,
if a solution to a query is warranted by the merge of the
contributing sources, then there is decomposition from
which that solution can be reconstructed.
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The investigative strategy that is adopted here is to
reverse-engineer the problem by showing that every
solution over the merge of the contributing sources in-
duces a decomposition that fits the bill. More specif-
ically, the idea is to let those parts of the given solu-
tion that have joins on blank nodes, and blank nodes
only, dictate how the corresponding query pattern is to
be decomposed; for if a graph pattern is connected by
blank nodes only, it must derive from a single source,
so the sub-query that matches it must be grouped and
evaluated in a single execution context. A definition
of connectedness that covers both RDF graphs and
SPARQL query patterns will be required:

Definition 5.1. Let d, e and f be triples over any set-
theoretic universe U . There is a path from d to f if:

1. d and f share an element, or
2. there are paths from d to e, and from e to f .

A set S ⊆ U3 is connected, if there is a path between
every pair of elements of S.

Next, we shall be interested in those subpatterns Pi
of a global query P that selects connected subgraphs of
the source being queried. These subgraphs are further
required to only have blank nodes in join position, and
to be maximal in this respect. If Pi selects a subgraph
matching this description, then it will be called a b-
component of P :

Definition 5.2. Let µg be any solution in JP KgG and let
Pi ⊆ P . Then Pi is a b-component of P iff

1. µg(Pi) is connected.
2. If am, an ∈ µg(Pi) and πi(am) = u = πj(an)

for some i, j ∈ {1, 3} then u ∈ B.
3. Pi is maximal wrt. 1 and 2.

In the limiting case, definition 5.2 makes every triple
pattern that does not, modulo µg , select an assertion
with blank nodes in it a b-component. This is an im-
portant case to keep track of in the following.

Example 5.1. Consider the merge of the RDF graphs
A and B in figure 3 and the query in figure 4. Let µg be
the solution that assigns

?athl 7→ "Federer"

?x 7→ _ : bg

?event 7→ : FrenchOpen

?year 7→ "2009"

Then the b-components of the query, relative to µg , are
given by the decomposition in section 3, namely

P1 := {?x :event ?event., ?x :year ?year}
P2 := {?athl a :TennisPlayer.}
P3 := {?athl :wins ?x.}
P4 := {?event a :GSTournament.}

Although this example seems to indicate otherwise,
it is a fact of some importance that µg(P ) being a b-
component does not entail that P is connected. Con-
sider the following example:

Example 5.2. Put G := {(b, p1, o1), (b, p2, o2)}
where b is assumed to be a blank node. Let P :=
{(?x, p1, o1), (?y, p2, o2)}. Then any µg ∈ JP KgG
maps both ?x and ?y to b. Since G is connected, and
maximally so, µg(P ) is consequently a b-component.
Yet, P itself is not connected.

The significance of this is that one cannot limit ones’
view to connected subqueries when searching for a
complete federation scheme. There will be more to say
about this in the next section.

It will be convenient to have a notation that assem-
bles all the b-components that a particular solution in-
duces:

Definition 5.3. The set of b-components of P relative
to µg is picked out by the function f(µg, P ).

The next two lemmas record some important proper-
ties about f as so defined.

Lemma 5.1. f(µg, P ) partitions P .

Proof. According to definition 5.2 the empty set is
not a b-component, hence any Pi ∈ f(µg, P ) is non-
empty. For exhaustiveness we need to show that

P =
⋃

Pi∈f(µg,P )

Pi

The right-to-left inclusion is trivial. For the con-
verse suppose t ∈ P . If t is a b-component then
{t} ∈ f(µg, P ), so there is nothing to prove. If not,
then, since µg(t) satisfies definition 5.2 (1) and (2) (the
second vacuously), it must violate definition 5.2 (3). I.
e. {t} is not maximal wrt. definition 5.2 (1) and (2).
Hence, {t} can be expanded to a set Pi ⊆ P such that
Pi ∈ f(µg, P ), which completes the verification of
exhaustiveness.

It remains to show that the elements of f(µg, P ) are
pairwise disjoint. So, let Pi, Pj be an arbitrarily chosen
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pair of elements of f(µg, P ) and assume for the sake
of contradiction that a ∈ Pi ∩ Pj for Pi 6= Pj . There
are two cases to consider:
Case 1. a contains no blank nodes: Then, by definition
5.2 the singleton set {a} is a b-component. Since b-
components are maximal it follows that Pi = {a} =
Pj and therefore Pi = Pj contrary to assumption.
Case 2. a contains a blank node.: There are two sub-
cases: either Pi ⊂ Pj , or Pi 6⊆ Pj .
Case 2.1. Pi ⊂ Pj : Then Pi is not maximal as per
definition 5.2(3), hence not a b-component (contradic-
tion).
Case 2.2. Pi 6⊆ Pi: Since they are both b-components,
they each are connected only on blank nodes. How-
ever, since they overlap on a, this means that Pi ∪ Pj
is also a b-component contradicting the maximality of
either of Pi and Pj .

Lemma 5.2. f is a function.

Proof. Let x := (µg, P ) and suppose (x, Yi), (x, Yj) ∈
f , we need to show that Yi = Yj . Suppose for re-
duction that Yi 6= Yj , say wlog. P ′ ∈ Yi \ Yj . Since
P ′ ∈ Yi it is a b-component of P relative to µg . By
Lemma 5.1, Yj is a partition of P , so P ′ ⊆

⋃
Yj . How-

ever, P ′ /∈ Yj , thus there are two cases to consider:
Case 1. P ′ is a proper subset of a cell in Yj , that is,
P ′ ⊂ P ′′ ∈ Yj . Then contrary to assumption P ′ is not
a b-component.
Case 2. P ′ is split among cells in Yj , that is, there
exists a P ′′ ∈ Yj s.t. P ′ 6⊆ P ′′ ∈ Yj but P ′ ∩ P ′′ 6= ∅.
Since P ′ and P ′′ are b-components, they each satisfy
5.2 (1) and (2). But since P ′ ∩P ′′ 6= ∅ this is true also
of P ′ ∪P ′′ contradicting the maximality of P ′ and P ′′

in this respect.

The combined significance of these two lemmas
may be explained as follows: Lemma 5.2 fixes a sin-
gle set f(µg, P ) of sub-patterns of P , which according
to Lemma 5.1 mutually exhausts P . Taken together,
therefore, they show that talk of f(µg, P ) as one de-
composition of P is legitimate. This decomposition
has special properties:

Lemma 5.3. Let P be a query, G =
⋃
i∈I Gi a set of

sources that are standardized apart, and µg ∈ JP KgG .
Then, for any Pi ∈ f(µg, P ) there exists a source
Gk ∈ G such that µ′c ∈ JPiKcGk

and µg(Pi) a` µ′c(Pi)
for any execution context c.

Proof. Put µ′ := (µ|vars(Pi)). Then µ′ ∈ JPiKG . By
Corollary 4.4 it suffices to show that µ′ ∈ JPiKGk

for
some Gk ∈ G . The proof subdivides into two cases:
Case 1. µ′(Pi) contains blank nodes: Suppose for re-
duction that there is no single Gk ∈ G with µ′ ∈
JPiKGk

. Then µ′ ∈ JPiKG means that µ′(Pi) must
span at least two sources Gk, Gj ∈ G . Now, µ′(Pi)
is connected, since Pi ∈ f(µg, P ), so it is possi-
ble to choose triple patterns tm, tn ∈ Pi such that
am := µ′(tm) ∈ Gj , an := µ′(tn) ∈ Gk and such
that {am, an} is connected. By definition 5.2 (2) am
and an share a blank node. However, this contradicts
the assumption that Gk and Gj are standardized apart.
Case 2. µg(Pi) does not contain a blank node: Then
Pi is a singleton {a}, so the desired result follows im-
mediately.

In words, Lemma 5.3 demonstrates that every ele-
ment Pi of f(µg, P ) is such that there exists a single
source in the set of sources in question capable of an-
swering Pi in a manner equivalent to µg . Needless to
say, therein lies the essence of federation, or more ac-
curately, one half of it. The other “half” is given by
Lemma 5.4:

Lemma 5.4. SupposePm, Pn ∈ f(µg, P ), µ′c(Pm) a`
µg(Pm) and µ′′d(Pn) a` µg(Pn) . Then µ′c(Pm) ∪
µ′′d(Pn) a` µg(Pm ∪ Pn).

Proof. Suppose the conditions of the theorem hold.
Since µg(Pm ∪ Pn) = µg(Pm) ∪ µg(Pn) it suffices
to show µ′(Pm) ∪ µ′′d(Pn) a` µg(Pm) ∪ µg(Pn). By
Theorem 4.1, this in turn reduces to demonstrating the
existence of an RDF homorphism from left to right
and one from right to left. By Lemma 5.3 the theorem
holds for each of the component patterns. That is, there
is a pair of RDF homomorphisms (h1, g1) of µ′c(Pm)
to µg(Pm) and back, and a pair (h2, g2) of µ′′d(Pn) to
µg(Pn) and back. We show that (h1 ∪ h2, g1 ∪ g2) is a
pair of RDF homomorphisms of µ′c(Pm) ∪ µ′′d(Pn) to
µg(Pm) ∪ µg(Pn) and back.

For h1 ∪ h2, it is necessary to verify first of all that
it is well-defined, i.e. that for any u, v ∈ ST if u = v
then h1(u) = h2(v). The verification subdivides into
two cases depending on the sets to which u and v be-
long. To ease the notation put h+ := h1 ∪ h2.
Case 1. u, v ∈ B. If u, v ∈ µ′c(Pm) then h+(u) =
h1(u) = h1(v) = h+(v). Similarly, if u, v ∈ µ′′d(Pn)
then h+(u) = h2(u) = h2(v) = h+(v). Suppose
therefore wlog. that u ∈ µ′c(Pm) and v ∈ µ′′d(Pn).
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Then it follows by definition 4.4 (2) that u 6= v so
well-definedness holds vacuously.
Case 2. u, v ∈ IL: Then since h1 and h2 are RDF
homomorphisms, they are the identity on u and v,
whence

h+(u) = (h1 ∪ h2)(u)

= h1(u) ∪ h2(u)

= u

= v

= h1(v) ∪ h2(v)

= (h1 ∪ h2)(v)

= h+(v)

It remains to verify that h+ is an RDF homomor-
phism, so suppose (s, p, o) ∈ µ′c(Pm)∪µ′′d(Pn). Then
either (s, p, o) ∈ µ′c(Pm) or (s, p, o) ∈ µ′′d(Pn).
Hence, either h+((s, p, o)) = h1((s, p, o)) or either
h+((s, p, o)) = h2((s, p, o)). In both cases h+ is an
RDF homomoprhism, since both of h1 and h2 are. This
completes the case for h1 ∪ h2.

For g1 ∪ g2, put g+ := g1 ∪ g2. To verify that g+ is
well-defined it suffices to check the case where u, v ∈
B, the other one being similar to that for h+.

Suppose that either u, v ∈ µg(Pm) or u, v ∈
µg(Pn) holds. In the former case h+ = h1 and in the
latter h+ = h2. The desired result follows immedi-
ately from either by the functionality of h1 and h2. It
suffices, therefore, to confirm that µg(Pm) and µg(Pn)
do not share blank nodes.

Suppose for contradiction and without loss of gen-
erality that (bg, pi, oi) ∈ µg(Pm) and (bg, pj , oj) ∈
µg(Pn). Then µg(Pm)∪(bg, pj , oj) remains connected
and connected by blank nodes only, that is it satisfies
definition 5.2(1) and (2). Choose t ∈ Pn such that
(bg, pj , oj) = µg(t). Then µg(Pm ∪ t) = µg(Pm) ∪
(bg, pj , oj). Since f(µg, P ) is a partition we have
Pm ⊂ Pm ∪ t, hence Pm is not maximal wrt. defini-
tion 5.2(1) and (2), contradicting Pm ∈ f(µg, P ). This
completes the verification that g+ is well-defined.

The verification that g+ is an RDF homomorphism
is exactly like that for h+, so the proof is complete.

It may be worthwhile to pause to register what it is
that makes this proof work: it is essentially a question

of building larger RDF homomorphisms from smaller
ones. This requires certain simple conditions to be met,
most importantly that the union of functions be a func-
tion. Since the smaller functions in question are RDF
homomorphisms, and RDF homomorphisms by defini-
tion map URIs and literals to themselves, the only way
this could go wrong is if the mapped element were a
blank node. However, this cannot happen for the left
to right direction, since execution contexts have dis-
joint ranges, and it cannot happen for the right to left
direction since the solutions in question do not share
blank nodes. Thus the theorem flows from two things:
the relativization of answer sets to execution contexts
and the splitting of queries into b-components.

It is now possible to prove the converse of Theorem
4.6 and the main result of this section:

Corollary 5.5. Let G :=
⋃
i∈I Gi be a set of sources,

standardized apart, and let µg ∈ JP KgG . Then there is
a partition P1, . . . , Pn of P such that, ρ ∈ JPmKc1G1

./
. . . ./ JPnKcnGn

for arbitrarily chosen c1, . . . , cn and
µg(P ) a` ρ(P ) .

Proof. Suppose the conditions of the corollary hold.
Put P1, . . . , Pn = f(µg, P ). By Lemma 5.1 we have
P = P1∪. . .∪Pn. Lemma 5.3 entails that for every Pk
there exists a source, say Gk, a context, say ck, and a
solution mapping, say µk, such that µkck ∈ JPkKckGk

and
µkck(Pk) a` µg(Pk). By extension of Lemma 5.4 to
finite unions it follows that µ1

c1(P1)∪. . .∪µncn(Pn) a`
µg(P1)∪ . . .∪ µg(Pn) = µg(P ). Therefore, selecting
ρ := µ1

c1 ./, . . . , ./ µ
n
cn proves the corollary.

Whereas Theorem 4.6 says that cross-site joins can
never be incorrect, provided that tabs are kept on exe-
cution contexts, Corollary 5.5 states that every solution
to a query P returned by the merge of the contributing
sources is contained in the join of the separate evalu-
ation of the cells of some decomposition of P . Thus
there is always a solution distributed in the contributed
sources if there is a solution in their union modulo re-
naming of blank nodes—i.e. in their merge.

What Corollary 5.5 does not say, is how to obtain
this decomposition when we do not know the struc-
ture of the sources. It was only possible to prove that
a decomposition exists by assuming prior knowledge
of a solution that can be used to partition the query.
But of course, such a solution cannot be assumed to
be available if federation is to produce information one
does not already possess. It remains, therefore, to ab-
stract from Theorems 4.6 and 5.5 a general federation
scheme that will deliver all solution, and only solu-
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tions, over any set of contributing sources in the ab-
sence of any knowledge about them. For this, we shall
need the concept of a federation scheme.

6. Federation schemes

The concept of a federation scheme was first intro-
duced in [39] as a mathematical abstraction for reason-
ing about the distributed query answering process. It
is meant to highlight the two complementary aspects
of this process, which may be taken to consists respec-
tively in decomposing a query over a set of sources
and in assembling an answer to it from the partial an-
swers returned by each contributing source. A federa-
tion scheme is thus a pair (E, δ) of a decomposition
function δ and an evaluation rule E. Intuitively a de-
composition function is responsible for assigning sub-
queries to contributing sources, whereas an evaluation
rule is responsible for applying joins and unions (or
in general any operation on answer-sets) in the right
measure and order.

The soundness and completeness of a federation
scheme is a relationship that holds wrt. a set of sets of
contributing sources—or, in a more suggestive termi-
nology, a set of selections of contributing sources: the
federation scheme specifies how a graph pattern is to
be distributed and evaluated over the selection, the set
of selections defines the permissible ways of choos-
ing sources over which to distribute the decomposed
query. Stated differently, each selection of sources rep-
resents a constellation of datasets that is a good match
for the federation scheme in question in the sense
that the federation scheme will neither invent nor ig-
nore answers when applied to that selection. Border-
ing on circularity, one might say that a set of selec-
tions of RDF datasets represents a way of choosing
RDF datasets that keeps a federation scheme correct
and exhaustive. The role of soundness and complete-
ness theorems is thus to act as chopsticks (borrowing
a metaphor from Makinson [27]) to pin down a feder-
ation scheme and a set of selections that is perfectly
matched.

The present section recalls the essentials of this
formal framework, and generalizes it to the new
equivalence-based semantics for distributed queries as
set out in the previous section.

The minimal amount of knowledge one needs about
a set of sources in order to distribute a query over them,
is to know their signatures. Here a signature is under-

stood essentially as the set of concrete predicates of
an RDF graph or of a SPARQL pattern. The following
definition covers both cases:

Definition 6.1. Let S be a BGP or a set of RDF triples.
The signature of S written sig(S) is defined as

sig(S) =df S
2 ∩ I

where S2 denotes the projection of S onto its second
coordinates.

Note that variables and blank nodes do not add to the
signature of a graph pattern, and that blank nodes do
not add to the signature of an RDF graph. Using signa-
tures to route subqueries is a common stratagem in the
literature (cf. [13] and [38]).

Definition 6.2. If P is non-empty, then

ΣG (P ) =df {G ∈ G : sig(P ) ⊆ sig(G)}

Otherwise ΣG (P ) =df ∅.

It is a simple consequence of definitions 6.1 and 6.2
that if a2 ∈ V ∪ B for some triple pattern a, that is,
if a has a variable or blank node in predicate position,
then ΣG (a) = G for any G . A consequence of this is
that a triple pattern that has a blank node or variable
in predicate position will be routed to all datasets in a
selection.

Definition 6.3 (Decomposition function). A decom-
position function is a binary function δ that takes a set
of RDF datasets G and a BGP P and returns a set of
pairs (Pi,Gj) such Pi 6= ∅ and such that all of the fol-
lowing hold:

1. Gj ⊆ ΣG (Pi)
2. if (P1,Gi), (P2,Gj) ∈ δ(G , P ) and P1 = P2 then

Gi = Gj
3.

⋃
(Pi,Gj)∈ δ(G ,P ) Pi = P

Clause (1) prevents a decomposition function from
behaving erratically when it comes to assigning sub-
queries to datasets. That is, a BGP is only assigned to
datasets that can potentially answer it. Clause (2) en-
sures that the value of a decomposition function on any
selection of datasets G and any BGP P is itself a func-
tion, that is, that every subquery of P is assigned to
exactly one subset of G . Finally, clause (3) expresses
a necessary condition for soundness: δ distributes P
over G only if P is decomposed into sub-queries that
jointly exhaust P . Note that δ as so defined is a partial
function, that is, (1) and (3) can not be satisfied for ar-



14 Federation across blank nodes.

bitrary choices of G and P , reflecting the fact that the
accumulated signature of the datasets may not cover
the signature of the global query. If it does then δ will
henceforth be said to be defined at G and P .

6.1. Examples of decomposition functions

Section 3 mentioned the notion of an exclusive
group of a query P relative to a selection of datasets
G . This concept can be defined as :

Definition 6.4. The subpattern of BGP P that is ex-
clusive to a dataset G, relative to a set of RDF datasets
G , is the set:

EG(P ) =df {t ∈ P : ΣG (t) = {G}}

A triple pattern that is not an element of an exclusive
group is called a non-exclusive triple pattern relative to
the same selection of datasets.

In this form, definition 6.4 goes back to [38].
The following theorem, the proof of which can be

found in [39], gives examples of decomposition func-
tions:

Theorem 6.1. Let G be any set of RDF datasets and
P any BGP. Stipulate that (Pi,Gi) ∈ δ(G , P ) iff Gi =
ΣG (Pi) and one of the following conditions hold:

1. Even decomposition: Pi is a singleton t ∈ P .
2. Standard decomposition: either

a) Pi is a non-exclusive singleton t ∈ P , or
b) Pi = EG(P ) for some G ∈ G

3. Prudent decomposition: either

a) Pi is a non-exclusive singleton t ∈ P , or
b) Pi is a maximal connected subset of EG(P )

for some G ∈ G

Then δ is a decomposition function in the sense of def-
inition 6.3.

Example 6.1. Consider the query in listing 1. This is
query LS5 from the FedBench suite [37] which asks for
all drugs from Drugbank, together with the URL of the
corresponding page stored in KEGG and the URL to
the image derived from ChEBI.

The signature of the query divides among the Fed-
Bench datasets as specified in table 1. Presupposing
this division, table 2 gives the even, standard and pru-
dent decompositions respectively. Blocks in a column
correspond to subqueries and are labelled with the

SELECT ? drug ? keggUr l ? cheb i Image WHERE {
? drug r d f : t y p e drugbank : d r u g s .
? drug drugbank : keggCompoundId ? keggDrug .
? drug drugbank : gener icName ? drugBankName .
? keggDrug b i o 2 r d f : u r l ? keggUr l .
? cheb iDrug p u r l : t i t l e ? drugBankName .
? cheb iDrug b i o 2 r d f : image ? cheb i Image .

}

Listing 1: Query LS5 from FedBench

datasets to which that subquery is assigned. For in-
stance, the standard decomposition assigns the sub-
query consisting of line 2 and 3 to KEGG, since 2 and
3 form and exclusive group for it. The non-exclusive
triple pattern in line 4, in contrast, is assigned to both
KEGG and ChEBI.

Table 1
Decomposition of the signature of query LS5.

Signature element/property Endpoint

rdf:type All
drugbank:keggCompundId Drugbank
drugbank:genericName Drugbank
bio2rdf:url KEGG, ChEBI
purl:title KEGG, ChEBI
bio2rdf:image ChEBI

The standard- and prudent decompositions of LS5
over KEGG, ChEBI and Drugbank are identical for
this particular selection of datasets. The difference be-
tween them is revealed by reducing the selection to
ChEBI and Drugbank only, viz. table 3. Here, the stan-
dard decomposition assigns the subquery consisting of
line 4,5 and 6 to ChEBI, since this larger set now con-
stitutes an an exclusive group for ChEBI. Note, how-
ever, that its join-graph is not connected since none of
the variables in line 4 occur in line 5 or 6. Therefore,
the prudent decomposition divides {4, 5, 6} into its two
join-connected components {4} and {5, 6} which are
both assigned to ChEBI, only this time as separate sub-
queries.

6.2. Evaluation rules

Turning now to the notion of an evaluation rule, it
suffices to define it abstractly as a function that pro-
duces a set of answers, in the form of intercontextual
joins (cf. the previous section), from a decomposition:
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Table 2
Decomposition of LS5 over KEGG, ChEBI and Drugbank

Nr. Triple pattern even standard prudent

1 ?drug rdf:type drugbank:drugs All All All
2 ?drug drugbank:keggCompoundId ?keggDrug Drugbank
3 ?drug drugbank:genericName ?drugBankName Drugbank Drugbank Drugbank
4 ?keggDrug bio2rdf:url ?keggUrl KEGG, ChEBI KEGG, ChEBI KEGG, ChEBI
5 ?chebiDrug purl:title ?drugBankName KEGG, ChEBI KEGG, ChEBI KEGG, ChEBI
6 ?chebiDrug bio2rdf:image ?chebiImage ChEBI ChEBI ChEBI

Table 3
Decompositions of LS5 over ChEBI and Drugbank

Nr. Triple pattern even standard prudent

1 ?drug rdf:type drugbank:drugs Both Both Both
2 ?drug drugbank:keggCompoundId ?keggDrug Drugbank
3 ?drug drugbank:genericName ?drugBankName Drugbank Drugbank Drugbank
4 ?keggDrug bio2rdf:url ?keggUrl ChEBI ChEBI
5 ?chebiDrug purl:title ?drugBankName ChEBI
6 ?chebiDrug bio2rdf:image ?chebiImage ChEBI ChEBI ChEBI

Definition 6.5 (Evaluation rule). An evaluation rule is
a function E that takes any decomposition δ(G , P ) and
returns a set of variable mappings ρ : V → ST .

Obviously, this definition hides great variety. Next:

Definition 6.6. A federation scheme is a pair (E, δ)
consisting of an evaluation rule and a decomposition
function.

The following particular evaluation rule is a general-
ization to a semantics parametrized by contexts of the
so-called collect-and-combine rule from [39]:

Definition 6.7 (Collect-and-combine rule). Put ∆ :=
δ(G , P ). If δ is not defined at G and P then Ec(∆) =df

∅, otherwise

Ec(∆) =df ./ {[P1]Gi : (P1,Gi) ∈ ∆}

where [P ]G =df

⋃
G∈G JP KcG.

The collect and combine rule is relatively simple.
It takes each element in a decomposition, executes it
against each source that covers its signature, and col-
lects the results. Then it forms the coordinatewise join
of the resulting set. Peeking ahead to the next section,
this rule turns out to be too simple for the case where
blank nodes are involved, but may serve as a concrete
example to aid intuition.

Note that the sets [P ]G are not themselves param-
eterized by context. As they will figure only as argu-

ments to intercontextual joins, the contexts drop out of
view at this point.

6.3. Completeness.

Recapitulating briefly, the properties of soundness
and completeness are relations that hold between fed-
eration schemes on the one hand and sets of selections
of RDF datasets on the other. The former specifies how
a graph pattern is to be distributed and evaluated, the
latter defines the permissible ways of selecting sources
over which to distribute the decomposed query.

One will want the federation scheme in question and
the selection of sources to be perfectly matched, mean-
ing that if a global query is processed according to
the scheme it will neither invent solutions nor ignore
any that are warranted by the sum total of informa-
tion in the contributing sources. Recalling that same-
ness of solutions is defined in terms of simple equiva-
lence, this gives the following definition of the sound-
ness and completeness of a federation scheme wrt. to
a set of selection of sources:

Definition 6.8. Let {Gi}i∈I be a set of selections of
RDF graphs. A federation scheme (E, δ) is complete
wrt. {Gi}i∈I if for every i ∈ I , µc ∈ JP KcGi

implies
that there is a ρ ∈ E(δ(Gi, P )) such that ρ(P ) a`
µc(P ). It is sound if the converse holds.

This definition differs from that of [39] where
soundness and completeness is defined in terms of
set-inclusion as E(δ(Gi, P )) = JP KcGi

. That’s fine if
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one disregards blank nodes, i.e. assumes that there are
none, for if there are no blank nodes then contexts are
idle whence answer sets do not need to be parameter-
ized. The inclusion-based semantics of [5] will then
be sufficiently expressive to give a characterisation of
the semantics of distributed queries. In the opposite
case, however, contexts are needed to keep tabs on the
separate scopes for blank nodes. Therefore emphasis
must be shifted from set-inclusion onto simple equiva-
lence, as explained in section 4. Definition is adjusted
accordingly.

Taking sets of selections of sources (that is, sets of
sets of sources) as the semantic correlate of decompo-
sition schemes facilitates the formalization of differ-
ent degrees of knowledge about the structure and con-
tent of the sources that a query is distributed over. At
the extreme end of this spectrum one finds the zero-
knowledge case, i.e. the case where nothing is known
about the tributary sources apart from their respective
signatures. The zero-knowledge case, of course, cor-
responds to the absence of any restriction on how to
make a selection of sources to distribute a query over,
i.e. it corresponds to the set of all selection of sources.
Stolpe [39] proves the following:

Theorem 6.2. Suppose δ is the even-, standard or pru-
dent decomposition. Then (Ec, δ) is sound and com-
plete wrt. the set of all selections of RDF graphs, pro-
vided none of the selected graphs contain blank nodes.

However, Theorem 6.2 does not generalize. That
is, neither the even-, standard nor prudent decomposi-
tion guarantees completeness of query answering un-
der the collect-and-combine rule when blank nodes are
allowed.

7. A zero-knowledge complete federation scheme.

Consider the following distribution function and
evaluation rule:

Definition 7.1. Let G be a set of sources, P a query
pattern, and put Gi =df ΣG (Pi). Then

δb(G , P ) =df {(Pi,Gi) : Pi ⊆ P,Gi 6= ∅}

It is immediate by this definition, that if δb is defined at
G and P then δb(G , P ) includes at least one partition
of P . Indeed, peeking ahead to Theorem 7.1, it can be
shown to contain a sufficient number of subsets of P

Table 4
Summary of notation

Nomenclature description

tr a triple pattern
P a conjunctive graph pattern
G an RDF graph
sig(P ) the signature/the set of predicates of P
ΣG (P ) the datasets in G whose signature cover P
G a set of RDF graphs
var(P ) the variables occurring in P
µ partial function from variables to RDF terms
µc solution mapping, blank nodes derive from c

ρ a join across multiple execution contexts
dom(µc) the domain of µc
JP KcG P evaluated over G in context c
JP KcG P evaluated over the union of G in context c
[P ]G the union of evaluating P over each G ∈ G

to reconstruct any partition of P that is induced by a
solution µg over the merge of G . This is what matters
to completeness, of course.

Definition 7.2. Let G and P be as in definition 7.1.
For any distribution ∆ of a query pattern P let P(∆)
denote the set of partitions of P contained in ∆. Then

Eb(∆) =df

⋃
{(Pi,Gi)}i∈I∈P(∆)

Ec({(Pi,Gi)}i∈I)

It should be evident that Eb is a straightforward gener-
alization of Ec. More precisely, Eb is simply the union
of the results of applying Ec to each partition of P that
the distribution function delivers. We have:

Theorem 7.1. The federation scheme (Eb, δb) is sound
and complete wrt. the set of all selections of sources.

Proof. For completeness, let G be any selection of
sources and suppose µg ∈ JP KgG . By the defini-
tion of Eb it suffices to find a set {(Pi,Gi)}i∈I ∈
P(∆) such that there is a ρ ∈ Ec({(Pi,Gi)}i∈I) with
ρ(P ) a` µg(P ). Now, by Corollary 5.5 there is a par-
tition P1, . . . , Pn of P such that, ρ ∈ JPmKcmGm

./
. . . ./ JPnKcnGn

for arbitrarily chosen c1, . . . , cn, and
µg(P ) a` ρ(P ). We need to show first of all that this
partition is an element of P(δd(G , P )). This is imme-
diate, because ρ ∈ JPmKcmGm

./ . . . ./ JPnKcnGn
and

µg(P ) a` ρ(P ) implies that ΣG (Pi) 6= ∅ for every
Pi thus satisfying definition 7.1. Now, by the defini-
tion of Ec we have Ec({(Pi,Gi)}i∈I) = [Pm]Gm

./
. . . ./ [Pn]Gn so it suffices to show that ρ is in
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the right hand side of this equality. By definition 6.7
we have JPiKciGi

⊆ [Pi]Gi
for every i ∈ [m,n].

By monotony for ./ under set inclusion, therefore,
JPmKcmGm

./ . . . ./ JPnKcnGn
⊆ [Pm]Gm

./ . . . ./
[Pn]Gn = Ec({(Pi,Gi)}i∈I), as desired.

As for the soundness direction of the proof, this is
just Lemma 4.6, so the proof is complete.

A few comments on this result are in order: Al-
though the completeness of (Eb, δb) is achieved, at
the end of the day, by grouping together in a sin-
gle sub-query those triple patterns that are needed to
capture a join on a blank node, this does not entail
that the sub-queries themselves are connected. Exam-
ple 5.2 showed as much. Therefore, in the absence of
knowledge about the structure of the data, the distri-
bution function δd has to cast a very wide net indeed.
δd(G , P ) thus contains one pair for every subset of P
such that the signature of P in its entirety is covered
by at least one source.

When one cannot make any assumptions about the
structure and content of the contributing sources, there
seems to be no other solution than to evaluate all the
possible partitions of the original query that involves
only cells whose signature is covered by a source. In-
deed, this can easily be seen to be not only a sufficient,
but also a necessary condition for completeness, for if
one of these partitions is skipped it is straightforward
to tailor a selection of sources that correspond to just
that partition.

Alas, in the limiting case where G contains sources
with identical signatures, the distribution δd(G , P ) is
isomorphic to the powerset of P , which in turn means
that the number of partitions that must be processed by
the evaluation rule is the Bell number corresponding to
the cardinality of P . This requires an exponential num-
ber of steps and so is not computationally tractable.
There seems to be no way around this conclusion; fed-
eration over data sources containing blank nodes is in-
herently hard.

The obvious remedy for this is to make sure that
one has some knowledge about the sources, either by
imposing requirements on them or by probing them.
By ‘probing’ is here understood an initial round of
queries, typically but not necessarily SPARQL ASK
queries, designed to detect patterns in the data, typ-
ically concerning the placement of blank nodes, that
can be exploited for decomposing the global query. A
condition that simplifies things a great deal, and that
involves both regimentation and probing is the follow-
ing:

Definition 7.3 (Uniformity). A dataset G := {Gi}i∈I
is a uniform selection of sources, or just uniform, if
for all patterns P it is the case that if µc ∈ JP KcG and
µ′d ∈ JP KdG then f(µc, P ) = f(µ′d, P ).

To be sure, uniformity is a lot to ask for. It is a
global requirement that demands that the same type of
information be encoded by the same graph pattern in
all the sources where it occurs. Uniformity does not,
however, limit the space of eligible patterns. That is, it
does not say anything specific about how the data must
look, only that an encoding pattern must be employed
consistently across all contributing sources. This need
not be as strict as it sounds, since it will be the case
for instance if each source is individually consistent in
this sense and if in addition the contributing sources all
provide solutions to different sub-patterns.

From a theoretical point of view, uniformity is inter-
esting for two reasons: first, a very limited amount of
probing suffices. In fact, a single solution to the global
query is enough to determine a sound and complete
federation scheme. Secondly, the evaluation rule Ed
only has to process a single partition, and thus reduces
to Ec. All this is recorded in the following simple def-
inition and accompanying theorem:

Definition 7.4 (Induced distro). Let µc ∈ JP KcG . The
distribution induced by µc is defined as the function
δµc such that (Pi,Gk) ∈ δµc iff

1. Gk ⊆ G ,
2. ΣG (P ) = Gk, and
3. Pi ∈ f(µc, P )

Theorem 7.2. Let G be a uniform selection of sources.
Then (Ec, δµc

) is sound and complete wrt. to {G }.

Proof. Soundness is already established. For com-
pleteness, suppose µ′g ∈ JP KgG . We need to show that
there is a ρ ∈ E(δµc

(G , P )) such that ρ(P ) a` µ′g(P ).
Clearly there is a ρ′ ∈ E(δµ′

g
(G , P )) with the re-

quired properties since δµ′
g

is induced by µ′g . But by
uniformity E(δµc(G , P )) = E(δµ′

g
(G , P )) so we are

done.

Summing up, one might say that Theorem 7.1 and
7.2 constitute different extremes of a combinatorial
spectrum. The former gives a complete federation
scheme in which the number of required partitions of
a query grows exponentially in the size of the query,
whereas the latter gives a federation scheme where the
number of required partitions is constant with c = 1.
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It follows that any blend of probing and regimentation
will land you somewhere in-between.

Of course, with perfect knowledge about the struc-
ture of the sources, probing will not be necessary at
all. A perfect knowledge-case would be one where
the contributing sources could be expected to conform
to a predefined schema e.g. a resource shape [34]. In
such a case, distributed query processing can be done
efficiently without having to sacrifice the expressive
power that comes with blank nodes.

Exploring the space between Theorem 7.1 and 7.2
should provide a rich field for for research. It is left for
the future.

8. Conclusion

It has been demonstrated that the presence of blank
nodes in RDF data represents a problem for distributed
processing of SPARQL queries. Even though the facts
of the matter are fairly simple, they seem as yet to have
slipped by unnoticed, and none of the usual decompo-
sition strategies from the literature solves it.

To mend the situation, this paper has introduced a
semantics for distributed query processing in which
the notion of an execution context is explicit. This
makes it possible to keep tabs on the naming of blank
nodes across execution contexts, which in turn makes
it possible to articulate a decomposition strategy that
is provably sound and complete wrt. any selection
of RDF sources even when blank nodes are allowed.
Alas, this strategy is not computationally tractable.
However, there are ways of utilizing knowledge about
the sources, if one has it, that will help considerably.
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