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Abstract. Reusing ontologies and their terms is a principle and best practice that most ontology development
methodologies strongly encourage. Reuse comes with the promise to support the semantic interoperability and to
reduce engineering costs. In this paper, we present a descriptive study of the current extent of term reuse and
overlap among biomedical ontologies. We use the corpus of biomedical ontologies stored in the BioPortal repository,
and analyze different types of reuse and overlap constructs. While we find an approximate term overlap between
25–31%, the term reuse is only <9%, with most ontologies reusing fewer than 5% of their terms from a small
set of popular ontologies. Clustering analysis shows that the terms reused by a common set of ontologies have
>90% semantic similarity, hinting that ontology developers tend to reuse terms that are sibling or parent–child
nodes. We validate this finding by analysing the logs generated from a Protégé plugin that enables developers to
reuse terms from BioPortal. We find most reuse constructs were 2-level subtrees on the higher levels of the class
hierarchy. We developed a Web application that visualizes reuse dependencies and overlap among ontologies, and
that proposes similar terms from BioPortal for a term of interest. We also identified a set of error patterns that
indicate that ontology developers did intend to reuse terms from other ontologies, but that they were using different
and sometimes incorrect representations. Our results stipulate the need for semi-automated tools that augment
term reuse in the ontology engineering process through personalized recommendations.

Keywords: Descriptive Study, Ontologies, Biomedical Domain, Term Reuse, Term Overlap, Composite Mappings,
Visualization

1. Reuse in biomedical ontologies

The biomedical research community has been
one of the earliest adopters of ontologies to tackle
the challenges of efficient knowledge organization,
optimized information retrieval and effective anno-
tation of datasets. Researchers have used ontolo-
gies for various purposes such as knowledge man-
agement, semantic search, data annotation, data
integration, exchange, decision support and rea-
soning [5,32]. For example, i) the National Cancer
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Institute Thesaurus (NCIT) has been used as a
reference terminology for cancer data [35], ii) the
Gene Ontology (GO) has been ubiquitously used
for enrichment analysis on gene sets obtained from
microarray experiments [3], and iii) the System-
atized Nomenclature of Medicine-Clinical Terms
(SNOMED CT) has been used for the electronic
exchange of clinical health information [37].

Over the years, ontology development has be-
come a reuse-centric process [34,38]. All method-
ologies strongly encourage reuse while building
new ontologies, be it at the level of an ontology,
or at the level of individual terms [2,7]. In the lit-
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erature, we may find two areas that benefit from
reuse: i) ontology engineering, in which experts
can reuse already existing ontology structures, and
thus reduce the engineering costs; and ii) ontology
application, in which reuse supports the semantic
interoperability among different datasets and ap-
plications. For example, the 11th revision of the
International Classification of Diseases (ICD-11)
reuses terms from SNOMED CT to support its
use in electronic health records [31,41]; while fed-
erated search engines benefit from reuse by being
able to query multiple, heterogeneous knowledge
sources without the need for extensive ontology
alignment [19].
Several large, collaborative efforts are trying to

streamline the development of interoperable, logi-
cally well-formed and accurate biomedical ontolo-
gies. They deal with ontological term overlap and
reuse in different ways. For example, one of the key
aims of the Open Biological and Biomedical On-
tologies (OBO) Foundry [36] is to create a set of
orthogonal ontologies by: i) defining each term in
exactly one ontology, and referring it in other on-
tologies using its Internationalised Resource Iden-
tifier (IRI), or ii) using the xref mechanism to
create references between similar terms in differ-
ent ontologies [28]. Another prominent example is
the Unified Medical Language System–UMLS [4],
which uses the notion of a Concept Unique Iden-
tifier (CUI) to map terms with similar meaning in
different terminologies a posteriori. Figure 1 shows
examples for the different types of reuse (IRI, CUI
and xref ) employed by various ontology develop-
ment projects.

Fig. 1. Types of Reuse: a) CUI reuse: Diabetes Mellitus
terms in SNOMED CT and ICD-9CM are mapped to the
same CUI, b) IRI reuse: RNA Binding defined in the GO
ontology is reused in GEXO ontology using the same IRI;
xref reuse: the latter term is reused in the GRO Ontology
via a xref annotation

.

For the purpose of this work, we define a term
to be a class in an ontology. A term usually has a

preferred label, other labels, synonyms, and other
properties. We define as term reuse the situation
in which the same term is present in two or more
ontologies either by the direct use of the same
IRI, or via explicit references (xref ) and map-
pings (CUI). We further classify the reuse: (1)
reuse of an ontology, through the means of the im-
port mechanism available in OWL [43], meaning
that the entire source ontology is imported into
the target ontology; and (2) reuse of terms from
one source ontology into another. In many cases,
experts reuse not only one term from one ontol-
ogy, but rather subsets of terms from multiple on-
tologies (e.g., subtrees). We define as term over-
lap the situation in which two terms are similar,
when compared using their labels or synonyms. If
we subtract from the set of all overlap terms the
reused ones (term overlap–term reuse), we will get
a set of terms that could have been reused poten-
tially, but have not been in practice. We call this
set the overlap–reuse gap. Ideally, we should try
to minimize this gap.

For this research, we use the entire set of
biomedical ontologies stored in BioPortal [45], an
open content repository of biomedical ontologies
and terminologies. The key contributions of this
research can be described as follows:

1. We provide a systematic study of the current
state of reuse and overlap across biomedical
ontologies.

2. We propose and implement a new approach
to determine term overlap across ontologies
using composite mappings.

3. We develop a clustering method to help iden-
tify patterns of reuse using semantic similar-
ity among ontology terms, and validate the re-
sults using the BioPortal Import Plugin logs.

4. We implement a Web application that can
search for similar and reused terms in Bio-
portal ontologies, and that can visualize reuse
dependencies and overlap among ontologies.

5. We discuss the state and challenges of reuse
in biomedical ontologies.

All results of this paper, as well as all developed
visualization tools, are available online at:
http://onto-apps.stanford.edu.
The paper is structured as follows: Section 2 de-

scribes the related work to this research. Section 3
presents the methods that we used for our descrip-
tive study. Section 4 details the results of apply-
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ing the research methods, and then we discuss our
findings in Section 5.

2. Related Work

2.1. Benefits and challenges of reuse

Ontology reuse is recommended in the method-
ologies and guidelines outlined by several engineer-
ing groups as a means to develop modular, in-
teroperable, accurate and cost-effective ontologies
[10,26,38]. Bontas et al. [6] provide several real-
world use cases for the benefits of ontology reuse
in biomedicine and eRecruitment. By empirically
analyzing methodologies, methods and tools cur-
rently used, Simperl et al. [34] identify the research
and development challenges for ontological knowl-
edge reuse to become a feasible alternative to other
ontology-development strategies. In essence, reuse
can be increased through the development of prag-
matic methods and semi-automated tools that op-
timally exploit human and computational intelli-
gence for reusing ontologies through a context- and
task-sensitive approach [34]. Ontology modulari-
sation techniques (i.e., extracting parts of an on-
tology using some structural or logical properties)
are also an important factor in supporting reuse.
Researchers have undertaken comprehensive stud-
ies of existing modularization techniques [11,29].

2.2. Tools to support reuse

There are only a few tools that support term
reuse in biomedical ontologies. OntoFox [46] is
a Web-based application that allows users to re-
trieve terms, selected properties, and annotations
from the source ontologies, using MIREOT prin-
ciples [9]. The BioPortal Import Plugin [23,24]
is an extension of the Protégé ontology edi-
tor [27] that allows the importation of terms, their
properties and class subtrees from BioPortal on-
tologies. The MIREOT Protégé Plugin [15] and
DOG4DAG [44] are also Protégé plugins that pro-
vide term importations from external ontologies.
ProtégéLov [12] allows reuse of terms from the
Linked Open Vocabularies repository [42] using
owl:equivalentClass and rdf:subClassOf ax-
ioms. All these tools require the users to have prior
knowledge of the ontologies where their desired
term of interest exists.

2.3. Previous analyses of reuse and overlap

Matentzoglu et al. [22] provide a method to ana-
lyze the overlap between automatically-downloaded
OWL ontologies from the Web. Ontologies with
90% overlap or containment relations were con-
sidered similar. Poveda et al. [30] analyzed the
landscape of reuse in the ontologies referenced in
Linked Open Data (LOD). The results indicate
that over 40% of the terms are reused from other
vocabularies, 67% of which are reused by imports,
and the rest by referencing the term IRI.

In 2010, a systematic analysis of the member
and candidate ontologies in the OBO Foundry in-
dicated that the OBO Foundry had made signifi-
cant progress over a period of two years towards
the goal of orthogonality [14]. However, term over-
lap — percentage of similar terms between the
OBO Foundry ontologies, also increased [14].

Five years later, we conducted a study [20] to
investigate the level of reuse across all the biomed-
ical ontologies stored in BioPortal [45]. Both these
studies carried out simple lexical comparisons of
the term labels to determine term overlap. Even
though effective, this naive method tends to leave
out terms that represent the same concept but
have lexically–different term labels (e.g., "Cardiac
Muscle" and "Myocardium"). For the three types
of reuse observed in the biomedical domain (IRI,
xref and CUI, Figure 1), we estimated term reuse
using a simple metric (Equation 1).

Reuse = unique reused terms
total terms (1)

We found term reuse to be 3.1%, 3.9% and 4.1%
for the three reuse types respectively, whereas, we
found a term overlap of 14.4%. We also found that
most ontologies reuse less than 5% of their terms.
These terms are reused from a small set of popular
ontologies only. We presented some use cases, in
which the developers reused terms with different,
and often, incorrect representations.

In this paper, we will extend this research by
providing a new approach to determine term over-
lap, a better metric to estimate term overlap and
reuse, and a deeper understanding of how ontology
developers reuse terms.
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Fig. 2. Worflow of all the steps required to estimate the average term reuse and overlap statistics across the BioPortal
Ontologies, as well as clustering and BioPortal Import Plugin Log analysis to detect any reuse patterns. The steps of the
workflow are: (1) Ontology Pre-processing, (2) Term Reuse, (3) Term Overlap, (4) Clustering, and (5) Log Analysis.

3. Methods

For our descriptive study, we employed sev-
eral methods that aim to: (i) estimate the level
of term reuse and term overlap across biomed-
ical ontologies, (ii) extract reuse patterns from
BioPortal ontologies, and (iii) extract reuse pat-
terns from time-stamped BioPortal Import Plu-
gin logs. These methods are inspired from text
mining, graph theory and unsupervised learning.
We make the results available through interac-
tive visualizations and a search application (http:
//onto-apps.stanford.edu). Figure 2 describes
the workflow of our methodology and the methods
used stepwise. The structure of this section follows
the numbered steps of the workflow.

3.1. Datasets

We used two datasets for our study: (i) a dump
of BioPortal ontologies to analyse term reuse (Step
2) and overlap (Step 3), as well as to perform the
clustering (Step 4); and (ii) the logs of the BioPor-
tal Import Plugin to analyze the patterns of reuse
in user ontologies (Step 5).

3.1.1. BioPortal ontologies
We obtained a triplestore dump of the BioPor-

tal ontologies in N-triples format that contained
509 distinct ontologies as of January 1, 2015. This
dump did not contain some ontologies that were
deprecated or merged with existing ontologies, or
added to BioPortal after January 1, 2015. After re-
moving ontological views (i.e. O1 ⊆ O2), we were
left with 377 distinct biomedical ontologies (Fig-
ure 2, Step 1). These ontologies include 8 OBO
Foundry member ontologies (GO, CHEBI, PATO,
OBI, ZFA, XAO, PR and PO), 105 OBO Foundry
candidate ontologies (e.g., OGMS, HP) and 31
UMLS Terminologies (e.g., SNOMED CT, ICD-9).

3.1.2. BioPortal Import Plugin logs
The BioPortal Import Plugin, an extension to

the Protege ontology editor, allows users to import
terms and sub-trees from BioPortal ontologies into
their own ontology [23,24]. The plugin invokes the
BioPortal REST API to search the BioPortal on-
tologies, and also to import terms.

We obtained the logs of REST calls that the plu-
gin made to BioPortal. The logs are time and IP-
stamped, and span the period from 26th Septem-
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Listing 1: An anonymized excerpt of the BioPortal Import Plugin Logs

10. XX.XXX.XX - - [16/ Dec /2011:14:26:12 -0800] "GET / bioportal / search / Subthalamus /?
ontologyids =1053& objecttypes = class & maxnumhits =20 HTTP /1.1"

10. XX.XXX.XX - - [16/ Dec /2011:14:26:14 -0800] "GET / bioportal /path /44507/? source =fma:
Subthalamus & target =root HTTP /1.1"

10. XX.XXX.XX - - [16/ Dec /2011:14:26:14 -0800] "GET / bioportal / concepts /44507? conceptid =
http %3A%2F%2 Fsig.uw.edu %2 Ffma %23 Anatomical_entity HTTP /1.1"

ber, 2011 – 14th May, 2013 (∼20 months). Listing
1 shows an excerpt of these logs.
Even though we did not have access to the

user ontologies into which these imports were per-
formed, these logs were an important source of in-
formation of terms that were reused together in
user ontologies. We used these logs to identify pat-
terns of reuse (Figure 2, Step 5).

3.2. Identifying Term Reuse

For the purpose of this work, we define as term
reuse the situation in which the same term is
present in two or more ontologies, either by the
direct use of the same IRI, via explicit xref refer-
ences, or via CUI mappings.
To identify term reuse (Figure 2, Step 2), we

used the BioPortal corpus (Section 3.1.1), and de-
fined three reuse constructs:

1. IRI - two terms share the same IRI,
2. xref - two terms are linked through the xref

annotation [28], and
3. CUI - two terms are mapped to the same

UMLS CUI.

We iterated over all the axioms in each of the
377 BioPortal ontologies to extract class term
IRIs, their labels, synonyms, xref links and UMLS
CUI mappings, when available. From the 5,718,275
class terms, we used the three constructs (same
IRI, xref annotation, and CUI mapping) to extract
the set of terms that satisfy any of the three reuse
criteria (Figure 1). For the first two reuse types
(IRI and xref ),1 we identified the source ontology
for each term using a heuristic approach described
previously [20]. For each ontology, we calculated:

1UMLS CUI reuse was excluded, as we could not identify
the source ontology for a CUI.

1. The percentage of terms reused using the first
two constructs from other ontologies (IRI and
xref ),

2. The total number of ontologies reused from,
3. The percentage of terms reused by other on-

tologies,
4. The total number of other ontologies reusing

terms,
5. CUI-mapped terms among other ontologies,
6. Reuse among all distinct pairs of ontologies.

Using these metrics, we determined those on-
tologies that reused the maximum number terms
from other ontologies, and also those ontologies
whose terms were reused the most.

We generated a graph G, where the terms identi-
fied through IRIs represent nodes (Figure 3a). The
number of ontologies in which the term is reused
is represented as an attribute of each node. An
xref annotation is shown as a unidirectional ar-
row, whereas all terms mapped to the same CUI
are interlinked with each other using bidirectional
arrows. A component of a graph is a subgraph in
which any two nodes (terms) are connected to each
other by paths, and the subgraph is connected to
no additional node in the main graph. Due to the
nature of these ontological terms (generally dis-
tinct for a given ontology), we produced a graph
composed of different, disjoint components (e.g.,
T1, T2 and T3 are different components in Figure
3a). This graph can be divided based on the type
of the edges, and thus yields three modules corre-
sponding to our three reuse constructs:

IRI reuse module - the graph module containing
only IRI edges (an undirected edge links two terms
with same IRI),
xref reuse module - the graph module containing
only xref edges (a directed edge links the source
term and the referenced term via xref ), and
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CUI reuse module - the graph module containing
only CUI edges (an edge links two terms that are
mapped to the same CUI).

For each reuse module, we calculated the term
reuse across all biomedical ontologies using the
equation given below, where N represents the to-
tal number of terms extracted (5, 718, 275), Mr

is a reuse module, composed of k components
{T0, T1, . . . , Tk}. Each component Tj is formed
from nj terms, i.e. {t0j , t1j , . . . , tnj} ∈ Tj . The
number of terms in a component Tj must follow
1 < nj < N (i.e., components with a single term
are not allowed). All terms in one component are
reused forms for the same term. We calculate term
reuse for each of the three different reuse modules:

Reuse =
∑

j|Tj∈Mr
nj − k

N
(2)

The above equation serves as a better metric
to estimate term reuse as compared to the previ-
ous metric (Equation 1). The equation calculates
the percentage of terms in BioPortal that are not
unique, but are reused, unlike the previous metric,
which did not include the count of reused versions
of a term.

3.3. Detecting Term Overlap through composite
mappings

For the purpose of this work, we define term
overlap as the situation in which two terms are
similar, when compared using their labels or syn-
onyms. To detect term overlap (Figure 2, Step 3),
we use the BioPortal corpus (described in Sec-
tion 3.1.1).
In our initial approach [20], we normalized the

term labels by converting them to lowercase and
then removing all non-alphanumeric characters.
We performed naïve string matching to deter-
mine the potential term overlap. However, we re-
alized that the terms with labels such as "Cardiac
Muscle", "Heart Muscle", "Muscle of Heart"
and "Myocardium" would be treated as separate
terms in this approach, when these terms are the
same and should be treated as term overlap.
To overcome this limitation, we considered us-

ing composite mappings in the current approach.
Given a mapping from A → B and from B → C,
where terms A ∈ O1, B ∈ O2 and C ∈ O3

and O1,O2,O3 are different ontologies, a map-
ping from A → C is called a composite mapping
[39]. This approach, which leverages transitivity of
terms, has been used in the past to match unstruc-
tured vocabularies using a background ontology,
where O2 is a background ontology [1]. An exam-
ple of such a composite mapping is shown in the
table below.

Term A (O1) Term B (O2) Term C (O3)
Heart Muscle → Muscle of Heart Myocardium

Cardiac Muscle → Cardiac Muscle
Table 1

An example of a composite mapping. A column represents
the term shown in the header. The content of a column
contains different labels (preferred labels, synonyms, etc.)
associated to the term. An arrow indicates that a label of a
term is mapped to the label of another term. This example
shows how we can map Term A defined in O1 to Term C
defined in O3 using a composite mapping.

We extended this notion to generate graphs of
such composite mappings (M) between different
terms across all BioPortal ontologies, without pre-
defining any particular ontology as a background
ontology. We extracted preferred labels (L), exact
synonyms (SE ), related synonyms (SR), and other
synonyms (SO) from the sources listed in Table 2.

Set Source
L skos:prefLabel, rdfs:label, dc:title
SE OBO:hasExactSynonym, skos:altLabel
SR OBO:hasRelatedSynonym, OBO:IAO_0000118
SO OBO:hasNarrowSynonym, OBO:hasBroadSynonym,

under IAO:000015, rdfs:comment, skos:definition
Table 2

Sources for labels and synonyms to generate composite
mappings

We normalized the labels and synonyms, by first
removing a set of 126 common English stop words
(e.g. “of”), and then converting them to count
vectors. We calculated cosine similarities between
each pair of these string vectors and established
a mapping, if the similarity was > 95%. Due to
the size and relative reduced importance of SO, we
also considered bi-gram phrases of words in simi-
larity calculations.

We generated 5 different overlap modules from
different combinations of composite mappings:

1. LG : {∀m ∈ LL}
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Fig. 3. Cartoon representations of the a) Reuse, b) Overlap : LEROG and c) Overlap−Reuse : LEG−{Reuse} modules. In
a) Terms A and E are defined in two ontologies using same IRI. The green, dotted arrow in Reuse module is a xref mapping
from E → A, whereas the green, bidirectional arrow means the terms G and H are mapped to same CUI. In b) and c) the
two disjoint components T1 and T2 are composed of {A, B, C, D, E} and {F, G, H} terms respectively. The darkened path
C → A→ D represents a sample composite mapping, formed by different edge types.

2. LEG : {∀m ∈ LL ∪ LSE ∪ SESE}
3. LERG : {∀m ∈ LL ∪ LSE ∪ LSR ∪ SESE ∪

SESR ∪ SRSR}
4. LEROG : {∀m ∈ LL ∪ LSE ∪ LSR ∪ LSO}
5. XG : {∀m ∈M}

The LG overlap module contains only the map-
pings performed using the properties from the L
set defined in Table 2 (that is, skos:prefLabel,
rdfs:label, dc:title). The LEG overlap mod-
ule includes besides the label–label mappings, also
the label–exact synonym and exact synonym–exact
synonym mappings.
The final XG overlap module contains all

the composite mappings in M. We removed
the edges that were present in the three reuse
modules from LEG (i.e., overlapping terms that
were already reused), to find the overlap–reuse
gap. This new module is called LEG − {Reuse},
where {Reuse} = {IRI} ∪ {xref} ∪ {CUI}. The
LEROG overlap module and LEG − {Reuse}
module are shown in Figure 3b and c.
In the next step, we identified those terms that

had the same source ontology and identifier, but a
different IRI representation, and no explicit map-
pings (e.g., OBO:owlapi/fma#FMA_31396 was used
instead of OBO:FMA_31396). Such situations show
that ontology developers intended to reuse a term,
but they used different, and sometimes incorrect
term representations. These situations do not rep-
resent actual reuse, and we marked such cases as
intent for reuse (Section 5). We removed any in-

terconnecting edges between terms that show an
intent for reuse in LEG−{Reuse} to generate the
final module LEG − {Reuse, Intent}.
We calculated term overlap for each overlap

module using the metric described in Equation
2, where all nodes (terms tij) in Tj (connected
component of composite mappings) of the overlap
module Mo can be considered singular (Figure 3).

For each the five overlap modules, we conducted
an empirical analysis on the composition of the
term labels of 100 randomly selected components
to determine the threshold of the maximum dis-
tance (mapping hops) between two leaf nodes, for
which any component Tj can be considered to be
‘pure’ (i.e., contains terms that can still be consid-
ered similar). We identified the maximum distance
(i.e., mapping hops) for which the components are
still ‘pure’ to lie between [8,10], depending on the
overlap module.

We called the components that have mappings
exceeding the maximum distance Hybrid Compo-
nents. These components are “hybrid” because
they contain terms that are likely not similar to
each other, usually because of a faulty mapping.
In essence, the hybrid components can also be bro-
ken down into smaller components that are joined
by one incorrect edge caused by a faulty mapping.
Term nodes in these smaller components may be
similar to each other. In the example from Table 3,
term t3 has a faulty synonym Intercalated disk
that links two smaller, relevant components T1a

and T1b creating a hybrid component T1.
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Component (T1a) Component (T1b)
t1 Myocardium t4 Intercalated Disk
t2 Cardiac Muscle t5 Intercalated-Disc
t3 Heart Muscle t6 Discus Intercalatus
t3 (Intercalated disc) → t7 Intercalated Disc

Table 3
An example of a hybrid component T1, composed of terms
{ti|i = 1, 2, . . . , 7}. T1 can be broken into two smaller, rel-
evant components T1a and T1b that are connected by an
incorrect mapping caused due to a synonym of term t3.

We calculated another term overlap estimate,
which we called Non-hybrid Term Overlap, by ex-
cluding hybrid components from consideration in
our metric. By excluding hybrid components alto-
gether from this estimate, we set a lower bound on
our estimated term overlap.

3.4. Clustering to detect patterns of reuse

One goal of this work is to investigate whether
the reuse within biomedical ontologies occur in
certain patterns that can be identified algorithmi-
cally. To this end, in Step 4 of our workflow (Fig-
ure 2), we used a two-phase clustering approach on
the IRI module that we defined in Section 3.1.1.
As a reminder, the IRI reuse module contains only
IRI edges that link terms that share the same IRI.
We excluded the CUI and xref reuse modules

from this analysis, as CUI mappings and xref an-
notations are generally established a posteriori in
the engineering process.
Using the terms in the IRI reuse module, we

generated a term–ontology matrix. The rows con-
tain the terms that have been reused at least once
(i.e., the term appears in at least 2 ontologies with
the same IRI), and the columns contain the ontol-
ogy in which the term appears. Whether a term
exists in an ontology or not was indicated as 1
or 0 respectively, resulting in a very large, sparse,
binary matrix.
As our term–ontology matrix X is categorical

(n terms, m ontologies), we used a k–modes algo-
rithm [18] over 100 simulations with different k to
partition the terms into large, disjoint clusters (k).
The initial step is similar to the the k–means algo-
rithm, where k unique terms are selected as clus-
ter centroids Z = {Z1, Z2, . . . , Zk}. k–modes algo-
rithm assigns a term Xi to a cluster whose cen-
troid Zl has the minimum distance d(Xi, Zl) to it.
δ(xj , zj) checks if the term and the cluster centroid

are present/absent together for one ontology Oj

(∴ δ(xj , zj) = 0). After each term is assigned to a
cluster, new centroids are generated for each clus-
ter based on the modes of values for each ontology
Oj (i.e. if more terms in a cluster Zl are present
in Oj then zl,j = 1). Until the cluster centroids
are stable, we iterated over these steps. Over 100
simulations, the value of k is chosen with a de-
sirable measure of cluster compactness (minimum
spread of each cluster) and separation (maximum
distance between cluster centroids).

δ(xj , zj) =
{

0 if (xj = zj)
1 if (xj 6= zj) (3)

d(Xi, Zl) =
m∑

j=1
δ(xi,j , zl,j) (4)

For each pair of terms in each cluster, we com-
puted a similarity score as follows:

Sim(A, B) = ω1

( |OA ∩ OB |2

|OA ∪ OB |

)
+ω2

( |SPA ∩ SPB |
|SPA ∪ SPB |

)
(5)

In the equation above, OA ∩ OB indicates the
set of common ontologies between terms A and B.
SPA = {x|x ⊇ A}, and SPA ∩ SPB indicates the
set of common super terms of A and B.

As can be seen, the similarity measure is a
weighted distribution of common ontologies and
Jaccard semantic similarity. ω1 > ω2, as we want
to discern how ontology developers reused terms
based on the set of ontologies in which these terms
co-occur. We consider the proportion of shared
terms, to reduce the impact of owl:Thing and
other upper-level ontology terms which would be
reused in many ontologies.

We generated a term–term affinity matrix A,
where Aij ≥ 0 represents the similarity between
the terms i and j. We used Spectral Clustering
[25] over this matrix to further partition each large
cluster. This method uses the largest eigenvectors
of the similarity matrix to perform dimensional-
ity reduction before using k–means clustering in
the fewer dimensions. We performed 100 simula-
tions with different values of ω1 and ω2 to isolate
sub-clusters that are composed of terms from one
source ontology only. Based on the current state of
tools that support reuse, as well as the mental pro-



MR. Kamdar et al. / An Analysis of Term Reuse and Overlap across Biomedical Ontologies 9

cessing of the ontology developers, terms or groups
of terms reused together in one session originate
from the same source ontology.

3.5. Analyzing BioPortal Import Plugin Logs

In step 5 of our workflow (Figure 2), we ana-
lyzed the logs generated by the BioPortal Import
plugin (see Section 3.1.2). We used this analysis
for two purposes: (1) to gain knowledge on other
reuse patterns that occur in user ontologies, and
(2) to validate whether the insights generated from
our clustering analysis are accurate.
The entries in the BioPortal logs are generated

as the user does certain operations in the user
interface of the plugin. For example, if the user
searches for a term in a BioPortal ontology using
the plugin, the log will record a line correspond-
ing to the search REST call made to BioPortal
(see Listing 1). An import operation in the plugin
would trigger other REST calls.
As we do not have access to the user ontolo-

gies into which the BioPortal terms have been im-
ported, the only sources we have are the time- and
IP-stamped BioPortal call logs. Therefore, we had
to reverse-engineer these logs to find out the ac-
tions that the users have taken in the user inter-
face, and to identify which BioPortal terms are
being reused (i.e., imported) together.
We documented the algorithm we used to

reverse-engineer the logs in the additional online
materials (http://onto-apps.stanford.edu).
As a result of running the reverse-engineering

algorithm on BioPortal logs, we obtained term sets
that have been reused (i.e., imported) together in
user ontologies. Then, we mapped the extracted
terms to existing terms in the current version of
the source BioPortal ontology to find the overall
depth of tree imports and the location of these
terms and subtrees. We used this information as
an additional source of reuse patterns, and also
to validate the hypotheses made from clustering
analysis (Section 3.4).

4. Results

We now present the results of each of the meth-
ods that compose our workflow (Figure 2), de-
scribed previously in Section 3.

4.1. Reuse

Previously, we found that most ontologies reuse
less than 5% of the total terms in their current
versions, using either the same IRI or through xref
annotations [20]. Out of 377 BioPortal ontologies,
156 did not reuse any term using the IRI con-
struct, and 315 did not reuse through xref. More-
over, ontologies reused terms from a small set of
popular ontologies only. More than 250 ontolo-
gies have no terms reused. Figure 4 shows his-
tograms of the percentage of terms that are reused
by other ontologies. We also observed that there
are 20 ontologies that exhibit reuse between 95%
to 100% of their total terms. These ontologies are
developed by reusing combinations of multiple on-
tologies (e.g., CCONT reuses terms from EFO,
NCBITAXON, ORDO, and 19 other ontologies).

Using our CUI construct, we found: i) popular
UMLS terminologies such as ICD10CM (ICD10 -
Clinical Modification), LOINC (Logical Observa-
tion Identifiers Names and Codes), HL7 (Health
Level Seven Reference Implementation Model,
Version 3) and MESH (Medical Subject Head-
ings) to be composed primarily of unshared,
unique terms, ii) procedural terminologies such as
HCPCS (Healthcare Common Procedure Coding
System), CPT (Current Procedural Terminology)
and ICD10PCS (ICD10 - Procedure Coding Sys-
tem) have very few terms mapped to the same
CUI, and iii) Several new terms were introduced
in ICD10CM during the migration from ICD9CM,
potentially impacting reuse [20].

The 16 ontologies whose terms are reused the
most from the first 2 constructs (IRI and xref ) are
shown in Figure 5. The plot indicates the number
of ontologies (#) that reuse terms from a given
ontology as dots, and the percentage of terms (%)
that are reused with respect to the number of
terms in their current version as bars. For exam-
ple, 95.2% of the total terms in the current ver-
sion of GO are reused using the same IRI by 74
ontologies. Also, 3.7% of the total GO terms are
xref -linked in 37 ontologies.

It is easily noticeable that most of these are pop-
ular or upper-level ontologies, some of which have
more than 100% of their terms reused (e.g., we
found 101 different versions of Basic Formal On-
tology - BFO IRIs, whereas the current version
only has 39 terms). As we have discussed [20], this
anomaly is due to the fact that ontology devel-
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Fig. 4. Histogram depicting the number of ontologies that reuse a given percentage (%) of terms from other ontologies in
their current versions by the same IRI or xref annotation. Most ontologies reuse fewer than 5% of their terms.

Fig. 5. Top 16 ontologies whose terms are reused the most through IRI and xref constructs. Number of ontologies reusing
(#) and percentage (%) of terms reused with respect to the terms in their current version.

opers tend to reuse terms with different versions,
notations, or namespaces, that are sometimes in-
correct and have no explicit mappings to the orig-
inal term. We do not consider this case as reuse,
but rather an intent for reuse, and we discuss it
in Section 5.
Using the updated metric described in Sec-

tion 3.2, we found term reuse to be 6.63% for the

IRI reuse module, 5.98% for the xref reuse mod-
ule, and 8.39% for the CUI reuse module.

4.2. Overlap

4.2.1. Term Overlap
In our previous work [20], we determined term

overlap using a naive approach. We found a to-
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Row Overlap Module Terms Components Term Hybrid Components Non-hybrid
# # # Overlap (TO) # (Terms #) TO
1 LG 2,230,636 781,007 25.39% 10 (1,119) 25.37%
2 LEG 2,485,478 759,571 30.18% 1,187 (279,635) 25.31%
3 LERG 2,565,928 755,816 31.65% 725 (361,120) 25.35%
4 LEROG 2,475,905 744,314 30.28% 868 (289,090) 25.24%
5 XG 2,620,032 746,993 32.75% 270 (431,831) 25.21%
6 LEG − {Reuse} 1,789,407 553,114 21.62% 182 (195,139) 18.21%
7 LEG − {Reuse, Intent} 1,232,149 284,499 16.57% 178 (192,475) 13.21%

Table 4
Term overlap (actual and hybrid-adjusted) estimated for
different overlap modules composed of different mappings.

tal of 2, 023, 854 terms sharing 752, 177 unique la-
bels across the BioPortal ontologies. Using the new
metrics described in Section 3.3, we can calculate
this naive term overlap to be 22.23%. In addition,
the new metrics allowed us to compute more pre-
cise overlap statistics that we show in Table 4.
The LG module is the most similar to our pre-

vious naive term overlap method, as this mod-
ule contains only mappings ∀m ∈ LL (label–label
mappings). However, there is a substantial in-
crease in the level of the term overlap from 22.23%
to 25.37% (non-hybrid term overlap).
Once we include also the other types of map-

pings using synonyms (rows 2–6 in Table 4), the
term overlap gradually increases all the way up
to 32.75%, although the number of hybrid compo-
nents also increases. It is noteworthy to see that
the non-hybrid term overlap is almost similar to
the term overlap of LG module (≈ 25%).

Rows 6 and 7 in Table 4 show that after
removing all the three reuse modules (cf. Sec-
tion 3.3), the term overlap decreases—the range
is (18.21%, 21.62%). On evaluating the LEG −
{Reuse, Intent}, we find that the term overlap
drops down to (13.21%, 16.57%). Obviously, this
term overlap statistic captures only the intent for
reuse rather than actual reuse.

4.2.2. Ontology Overlap
As a next step, we investigate how the term

overlap reflects on ontology overlap. Therefore,
we mapped the nodes in the LEG − {Reuse}
module to their respective ontologies, and cre-
ated an edge between all the pairs of ontologies,
if there existed an edge between the nodes (i.e.,
∀e = (n1, n2), s.t. e ∈ LEG − {Reuse}, n1 ∈
{O1,O2}, n2 ∈ {O3} ⇒ {e(O1,O3), e(O2,O3)}).
After removing all the terms and aggregating all

edges between two ontology nodes to a single edge
with a weight w =

∑
e, we have an undirected

ontological overlap graph with edges depicting the
term overlap between two ontologies.

We generated a directed sub-graph (Figure 6)
between those ontologies that have more than 30%
term overlap with respect to any one of the con-
nected ontologies. Note that, for simplicity, Fig-
ure 6 only includes the OBO Foundry member and
candidate ontologies (blue squares), UMLS termi-
nologies (red circles), and a few popular ontolo-
gies in BioPortal (green octagons). If we were to
include all the ontologies in this graph, it would
have created an indecipherable visualization. The
interactive visualization is available in the online
materials (http://onto-apps.stanford.edu).
Figure 6 shows that there is substantial over-

lap among ontologies generated independently
through the OBO Foundry and UMLS method-
ologies. The overlap between BFO and the OBO
Foundry candidate ontologies is caused by the
fact that the candidate ontologies import BFO
as their upper-level ontology, but they use dif-
ferent (incorrect) IRI representations. It is also
noteworthy to see that the UMLS terminologies
for adverse events, namely World Health Orga-
nization Adverse Reaction Terminology (WHO-
ART), Coding Symbols for a Thesaurus of Adverse
Reaction Terms (COSTART), and the Medical
Dictionary for Regulatory Activities (MEDDRA),
have substantial term overlap. The lower region
of the graph shows several anatomical ontolo-
gies (CARO, UBERON, XAO, TAO, FMA, MA,
TGMA, etc.), in which term overlap is obvious
(similar anatomical features), but is debatable—
most terms represent anatomical parts that may
not be necessarily equivalent, as they belong in
different organisms. Finally, the top-right corner
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Fig. 6. 30% term overlap among different BioPortal ontologies. For simplicity, only the OBO Foundry member and candidate
ontologies (blue squares), UMLS terminologies (red circles), and a few popular ontologies in BioPortal (green octagons) are
shown here.

shows the overlap between the RxNorm Vocabu-
lary and the Drug Ontology (DRON). These re-
sults and the intent for reuse are described in de-
tail in Section 5.

4.3. Clustering

The first step of our two-phase clustering ap-
proach was to use a k-modes algorithm over sim-
ulations for k = 2 → 100. We computed cluster
compactness and separation by computing the co-
sine distance between the set of ontologies in one

cluster against another. The desired cluster com-
pactness and separation value was found to be at
k = 6, after which we would have overlapping clus-
ters, or clusters with single terms.

The primary ontological composition of the clus-
ters was determined from the ontologies common
among terms in a cluster, and is shown in Ta-
ble 5. It should be noted that IRI reuse was rarely
found in UMLS terminologies with the exception
of NCBITAXON, NCIT, and SNOMED CT. The
primary ontological composition of the terms in
the large clusters either consists of: i) ontologies
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that frequently reuse terms from one major source
ontology (e.g. CHEBI, GO, NCIT, DOID) in that
cluster, or ii) one main ontology that reuses terms
from multiple other ontologies and exhibits >90%
reuse, e.g. CCONT.

Cluster Ontologies
Cluster 1 HINO, BIOMODELS, CHEBI, CCO, DRON, BDO
Cluster 2 GO, NIFSTD, GO-EXT, FYPO, CCO, NIGO, CL
Cluster 3 GWAS_EFO_SKOS, EFO, EFOGWAS, CCONT, CLO
Cluster 4 SYN, CSEO, SOPHARM, SNPO, IFAR, NCIT
Cluster 5 PHENOSCAPE-EXT, UBERON, NIFSTD, CL, CLO
Cluster 6 NIFSTD, ERO, DOID, CLO, NIFCELL, NIFDYS

Table 5
Primary ontological composition of the clusters

We computed an affinity matrix among all pairs
of terms in a given cluster using weights ω1 =
0.85, ω2 = 0.15. These values were again generated
after a set of 100 simulations, so that most of these
sub-clusters are generally composed of individual
source ontologies.
After executing spectral clustering using the

affinity matrix, we divided all the term pairs in
each sub-cluster in 2 bins, based on their Jac-
card semantic similarity measure (<0.9 in Bin 1,
and >0.9 in Bin 2). We plotted the proportion
of term pairs in each bin for each cluster. Clus-
ter 4 is shown in Figure 7. In Cluster 4, a larger
proportion of term pairs in any given sub-cluster
have a semantic similarity in the range of (0.9–
1.0) (> 70%), indicating that these are either sib-
ling terms or one term is the direct superclass of
another. Generally, we found this to be the case
for all the large clusters of the first kind. This
finding likely indicates that ontology developers
reusing terms from one main source ontology tend
to reuse hierarchical subtrees mainly composed of
terms with parent–child or sibling relations. This
was less evident in the second kind of the large
clusters where the proportion ranged between 30–
60% of term pairs.
We mapped these sub-clusters to their loca-

tion in the source ontology. We found that most
of these 2-level substructures are located in the
higher or upper-middle levels of the ontology.
Hence, developers reuse terms from the higher lev-
els in the ontological hierarchy of a small set of
popular ontologies, and seldom reuse leaf nodes.

Fig. 7. Proportion of term pairs with semantic similarity in
a given range for each sub-cluster.

4.4. BioPortal Import Plugin Log Analysis

We found a total of 3,538 distinct IP addresses
originating from 90 different countries, from which
ontology developers used the BioPortal Import
Plugin to search and reuse terms from BioPortal
ontologies. We were able to isolate 5,755 individ-
ual terms and 2,139 ontological subtrees imported
from 40 different ontologies in 516 distinct ses-
sions. For an IP address, a session indicates the
time period that has no intermittent breaks of > 1
hour between two REST API calls. We found a to-
tal of 195,894 terms that users imported using the
plugin. Out of these, we were able to map 193,601
terms to terms in the current versions of the Bio-
Portal ontologies. The remaining terms were ei-
ther deprecated, or terms such as, owl:Thing and
time#datetimedescription that do not have a
designated source ontology.

The top 10 ontologies with the maximum num-
ber of sessions were SNOMEDCT, NCIT, BFO,
ABA-AMB, FMA, GO, RCD, AMINO-ACID, HP
and IAO, whereas with the maximum number of
terms were in ICD10PCS, SNOMEDCT, NCIT,
ICD9CM, LOINC, BIRNLEX, ABA-AMB, FMA,
RCD and SHR.

The ontologies that were reused the most
through the plugin, both by the maximum number
of sessions or by the maximum number of terms,
are shown in Figure 8. The total number of ses-
sions observed, total number of single term im-
ports, total number of structures imported, and
total number of terms imported are shown as a
bar plot. The structure of the content imported
from each source ontology is shown across the
depth of an ontology — the imported structures
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are shown as translucent blue polygon and the
terms imported (either single or as a group) are
shown as circular constructs, grouped according to
the level. The depth of the ontology was retrieved
from BioPortal repository. The width of the struc-
ture on each level is indicative of the number of
terms imported on that level in log scale. The ra-
dius of the circular construct represents the total
number of terms on that level. For clarity pur-
poses, we have only shown 4 ontologies — FMA,
ICD10PCS, NCIT and SNOMEDCT. The website
(http://onto-apps.stanford.edu) contains in-
teractive versions of these plots with 16 different
ontologies.
In general, we found that, on an average more

people tend to reuse terms from OBO Foundry on-
tologies (higher number of sessions detected) than
UMLS terminologies using the Bioportal Import
Plugin, with the exception of NCIT and SNOMED
CT. However, the users, who import UMLS termi-
nologies, tend to reuse more number of terms, in
the form of complete hierarchical structures, dur-
ing a single import session.
In the cases of ICD10PCS and ICD9CM, we

found that the users reuse the entire hierarchy
of these ontologies starting from the root node,
into their target ontology. We observed the same
pattern also in the case of the BFO, but it is
expected as it is an upper level ontology. In al-
most all the other cases, we found that the ontol-
ogy developers simply reuse terms from the higher
or upper–middle levels in an ontological hierar-
chy, and the lower leaf nodes and structures are
seldom reused. This reuse pattern can be seen
in the FMA ontology in Figure 8. We found the
same reuse pattern in GO, CHEBI, NCBITAXON
and LOINC (http://onto-apps.stanford.edu).
As is clearly evident from the SNOMED CT and
NCIT, most ontology developers generally import
2–level sub-trees composed of parent–child and
sibling terms. These structures are represented as
triangular polygons of similar dimensions along
the midline of the respective visualizations in Fig-
ure 8 with a higher opacity than other structures.

4.5. Reuse and Overlap Visualization on the Web

One of the contributions of our work is a
general-purpose visualization of reuse and over-
lap among biomedical ontologies that employs the
reuse and overlap modules, which we generated

as part of this work. The Web application also
allows users to search for similar terms by pro-
viding any string or an IRI as an input. In case
of a string, the application matches the name to
the set of the most similar terms that have it as
a label or a synonym. We believe such an ap-
plication is of general interest, and we make it
available to the community through our website
(http://onto-apps.stanford.edu/).

The application does a depth-first search against
the XG module, and returns all composite map-
pings, in which each term is a node of. The re-
sults are displayed in a tabular, or a force-directed
network layout. The interactive force-directed net-
work visualization allows users to explore reuse de-
pendencies and overlap among BioPortal ontolo-
gies. Our website also provides access to the mod-
ule graphs, and the analysis results of the BioPor-
tal Import Plugin logs.

5. Discussion

5.1. Term Reuse

As seen in Figure 4, we are seeing the full spec-
trum of reuse from 0−100%, but in general, reuse
is fairly low. Not only do most ontologies in Bio-
Portal never reuse terms, their terms are also never
reused by other ontologies, which is contrary to
the reference-application paradigm considered in
the ontology engineering process. However, we did
find some ontologies that are approaching com-
plete reuse. For example, the Mental Functioning
Ontology (MF) [17], reuses 91.33% of its terms
from 6 different ontologies. Our clustering analysis
shows that not only single terms are reused, but
also entire hierarchical structures of the source on-
tologies are reused. Ontology engineers need semi-
automated tools to support both cases.

Generally, well-established ontologies and con-
trolled terminologies do not reuse terms from other
ontologies. Usually, these ontology are built by
large organizations (e.g., NCI, WHO, IHTSDO).
Some of these organizations are making concerted
efforts to take advantage of reuse. For example,
ICD-11 and SNOMED CT are trying to define a
common core ontology to be reused by both [31].
Such collaborations may generate a set of best
practices for ontology reuse in the future.
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Fig. 8. BioPortal Import Plugin Log Analysis: Few ontologies that are reused the most through the BioPortal Import Plugin
are shown — FMA, ICD10PCS, NCIT and SNOMED CT. The lower plot indicates the total number of sessions observed,
the total number of single terms imported, the total number of structures imported, and the total number of terms imported
in log scale. The upper plot indicates the content imported from each ontology spanning across its depth. Each structure
imported is represented as a translucent polygon, whereas the single terms are grouped as circular shapes for each level.

Through the empirical analysis of the BioPor-
tal Import Plugin logs, as well as, the generated
clusters and overlap modules, we found some reuse
patterns that show that ontology developers have
the intention to reuse terms. Essentially, these are
IRI patterns that generally have the same iden-
tifier and source ontology, but that are reused
from different versions of the source ontology, or
represented using different notations or names-
paces. These patterns cannot be considered as
term reuse, as the IRIs use different, and often in-
correct, representations for the same terms, and no
explicit CUI or xref mappings were found. Hence,
the advantages of term reuse can not be experi-
enced. By using the correct IRI representation, the
term overlap could be reduced substantially. We
summarize these IRI patterns in Table 6, and pro-
vide a few examples for each. We also indicate the
recommended representation, where possible.
We found several cases, in which an ontol-

ogy reuses the same terms from different ontolo-
gies, and these terms are not linked by a reuse
construct. For example, the BioModels Ontology
(BIOMODELS) reuses the same terms from two
different ontologies: i) Hepatic Oval Stem Cell
from Cell Ontology (CL) and Foundational Model
of Anatomy (FMA), and ii) Xanthopore from CL
and Gene Ontology (GO). Even if these terms are

likely equivalent, there is no reuse construct that
links them.

Based on the observations from this study that
show only modest reuse among biomedical ontolo-
gies, we believe that ontology engineers would ben-
efit from better guidelines, along with improved
tools, to increase term reuse.

5.2. Term Overlap

In 2010, a systematic analysis of all the OBO
Foundry ontologies outlined consistent term over-
lap, yet minimum term reuse, and commented on
the limitations and challenges to achieve orthogo-
nality [14]. Five years later, we extended this anal-
ysis and estimated term reuse and overlap over the
entire continuum of biomedical ontologies (includ-
ing UMLS terminologies) in the BioPortal repos-
itory. We found that we are still very far from
achieving desirable term reuse [20]. Most ontolo-
gies exhibit considerably less than 5% reuse or no
reuse through any constructs, and generally reuse
terms from only a small set of ontologies.

The OBO Foundry mandates reuse by candi-
date ontologies from the member ontologies un-
der its orthogonality aim. However, there is still
substantial term overlap present among biomedi-
cal ontologies, including OBO Foundry ontologies.
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Type Source Representation Few Observed Examples
Versions BFO www.ifomis.org/bfo/1.1* (AERO) Adverse Event Reporting Ontology

www.ifomis.org/bfo/1.0 (SAO) Subcellular Anatomy Ontology
NCIT NCIT:C53037* (NCIT) National Cancer Institute Thesaurus

NCIT:Cerebral_Vein (CSEO) Cigarette Smoke Exposure Ontology
Notations FMA OBO:FMA_31396* (VO) Vaccine Ontology

OBO:owlapi/fma#FMA_31396 (BIOMODELS) BioModels Ontology
OBO:owl/FMA#FMA_31396 (EP) Cardiac Electrophysiology Ontology
OBO:fma#Cartilage_of_inferior. . . BioPortal Import Plugin Logs

Namespaces BFO www.ifomis.org/bfo/ (ADO) Alzheimer’s Disease Ontology
purl.obolibrary.org/obo/BFO_ (IDO) Infectious Disease Ontology

SNOMED CT ihtsdo.org/snomedct (SNOMED CF) SNOMED Clinical Findings
purl.bioontology.org/ontology/SNOMEDCT (IFAR) Fanconi Anemia Ontology

FMA sig.uw.edu/fma# (BDO) Bone Dysplasia Ontology
purl.obolibrary.org/obo/FMA_ (SDO) Sleep Domain Ontology

Table 6
Different kinds of IRI representations observed in BioPortal
ontologies and BioPortal Import Plugin logs.
(*) marks the recommended representation(s).

In our previous analysis, we used a conserva-
tive approach to determine term overlap. As a re-
sult, lexically–different terms that may be similar,
and can be categorized under term overlap, were
considered different. Using our approach of tok-
enization and removal stop words, we were able
to map terms with labels such as "Muscle of
Heart" and "Heart Muscle", whereas, through
different overlap modules of composite mappings
from preferred labels and synonyms, we were
able to link "Heart Muscle", "Cardiac Muscle",
"Myocardium", and also terms in other languages
such as “Myocarde”@FR and “Herzmuskel”@DE.
The estimated term overlap through these overlap
modules ranges from 25%–31.5%.
Our approach for detecting overlap has certain

limitations.
1. Terms with labels such as "Second phalange

of the third finger" and "Third phalange
of the second finger", and also "WAS Gene"
(Wiskott-Aldrich syndrome) and "Gene" will be
grouped together — due to count vectors and the
exclusion of the stop word “was” respectively.

2. Lexically-similar terms in different ontologies may
represent different concepts (e.g., anatomical con-
cepts like spleen between Zebrafish Anatomy
(ZFA) and Xenopus Anatomy (XAO)).

3. Some biomedical ontologies use different classes for
the same concept to show evolutionary or develop-
mental stages (e.g. Myocardium in Human Devel-
opment Anatomy, Timed (EHDA) and Abstract

(EHDAA) ontologies). We group these classes un-
der term overlap, but they may be different.

4. Some ontologies may instantiate a synonym rela-
tion between terms that can actually have an “is
part of” relation. This choice can lead to false com-
posite mappings (e.g. Cranium has the synonyms
Skull in the Teleost Anatomy Ontology (TAO)).

5. Some ontologies use chemical formulas as syn-
onyms. Terms with the same chemical formula
may be stereoisomeric molecules or completely
different compounds (e.g., (+)-Menthofuran and
Safranal (C10H14O)). This challenge has also
been seen during alignment of different biomedical
vocabularies for federated search, where Aspirin
and Acetylsalicylic acid are the same but
L-Glucose and D-Glucose are not the same [16].

Hence, the term overlap estimates should be
seen cautiously, and can serve as an upper bound
to the actual term overlap. Overlapping nodes
that are at a path distance of more than 2 edges
are generally different, especially if the edges e /∈
{LL,LSE}. To bring these estimates closer to ac-
tual overlap, we introduced the concept of bigram
similarity for e ∈ SOSO and hybrid components,
and the resultant term overlap is closer to the one
derived from the LG module.

5.3. Clustering

One of the key challenges that we encountered
while clustering was the fact that we were deal-
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ing with a large number of terms (compared to
the features), resulting in a large n × m matrix
where n >>> m. Also, as the initial matrix con-
sisted only of the IRI-reused term–ontology pairs
that are reused on an average between 2–3 ontolo-
gies, we had a very sparse binary matrix. There
are various methods to deal with this such large,
multi-dimensional matrices, ranging from MapRe-
duce [8] to simple candidate generation [21]. Our
two-phase approach allowed us to divide the term–
ontology pairs into large distinct clusters of terms
shared between some common group of ontologies.
We could then also include the semantic hierarchy
of these terms in the different shared ontologies
for a subsequent spectral clustering. We believe
that our similarity equation can be extended to
incorporate other features such as co-occurrence
of these terms in PubMed annotations, and our
generated term–term affinity matrix can be used
in a item-based collaborative filtering method to
generate recommendations for reuse.
From clustering, we claim the following hy-

potheses: i) ontology developers reuse hierarchical
subtrees along with single terms, ii) the proportion
of term pairs that have parent–child or sibling re-
lations can be very high, especially if the reuse oc-
curs from one main source ontology and iii) these
terms are located on higher levels or upper-middle
levels of ontological depth.

5.4. BioPortal Import Plugin Log Analysis

As was observed from our term reuse analysis
across BioPortal ontologies, ontology developers
only import terms from a small set of popular on-
tologies in BioPortal using the BioPortal Import
Plugin. From our analysis of the logs, it is apparent
that: i) ontology engineers have imported hierar-
chical subtrees of varying depths along with single
terms, ii) the most common reuse structures are 2-
level structures - parent–child structures (triangles
with a higher opacity in Figure 8), and iii) these
structures and terms are located in the higher and
upper-middle levels of the ontological hierarchy.
Hence, we can say that the claims made from

our clustering analysis (Section 5.3) are validated
through our BioPortal Import Plugin log analysis.
As future work, we plan to do a more formal vali-
dation of this finding. Moreover, for some ontolo-
gies that were common between both our analysis
(e.g. NCIT, GO and FMA), we found a substantial

similarity between some sub-clusters and the reuse
structures extracted from the logs (results online).
The similarity ranged between 70–100% for NCIT
structures. This similarity can suggest either the
ontologies developed using the BioPortal Import
Plugin were saved back to BioPortal repository, or
there are recurrence patterns in some ontologies
that are reused frequently in different ontologies.

From this validation, we can postulate that our
approach used for the two-phase clustering pro-
cess, using the similarity equation and the term–
term affinity matrices, accurately captures the
thought process of the ontology engineer, when she
reuses terms, and it can be coupled with the Bio-
Portal Import Plugin to provide reuse recommen-
dations in the future. The clustering only used the
terms in the IRI reuse module, and might be bi-
ased towards OBO Foundry ontologies, and not
generate enough UMLS recommendations (as they
are seldom reused using the same IRI). Hence,
our initial term–ontology matrix and the similar-
ity equation will need to be extended to deal with
this bias.

5.5. Future Work

All ontology development methodologies en-
courage reuse with several advantages, such as cost
reduction, quality control, semantic interoperabil-
ity, EHR mining and query federation, cited in fa-
vor of reuse [6,19,31,41]. However, our extensive
analysis suggests that ontology developers do in-
tend to reuse terms, but often, they are not able
to do so correctly. Converting the intent for reuse
into actual reuse can help increase term reuse, and
reduce term overlap (Section 4.2).

We plan to provide personalized reuse recom-
mendations for ontology developers through a
WebProtégé plugin (http://webprotege.stanford.
edu) [40]. The plugin will use our term–term affin-
ity matrix (Section 3.4) and an item–based collab-
orative filtering method [33] to generate person-
alized recommendations for ontology developers,
based on their target ontology and the engineer-
ing task at hand. These recommendations will be
provided through a visual recommendation plugin
built inside WebProtégé, where ontology develop-
ers can drag and select their terms of interest for
reuse. This plugin may also keep developers in-
formed, when the representation of the term in the
source ontology changes.
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We believe that our Web application will allow
ontology developers to search for similar terms in
other ontologies, while our visualization of over-
lap and reuse dependencies may guide develop-
ers to reuse terms in their own ontology based
on the structure of ontologies in related domains.
Our composite mappings approach may serve as a
complement to the existing BioPortal mappings,
which are currently generated through naive string
matching algorithms [13]. We also plan to develop
a term–centric visualization that summarizes ev-
erything known about a particular term in Bio-
Portal, and presents it to developers and domain
experts through an interactive interface. Our hope
is that this visualization will enable ontology de-
velopers to serendipitously discover and reuse ex-
isting knowledge.

6. Conclusion

We estimated the level of reuse and overlap
in a corpus of 337 ontologies from the BioPor-
tal repository. We developed novel methods for
detecting reuse and overlap in biomedical ontolo-
gies. Our findings show a term overlap of approxi-
mately 25.31–30.18%, and term reuse of less than
9%. Most ontologies reuse less than 5% of their
terms from a small set of popular ontologies, with
terms from several ontologies never being reused.
We found strong indications that users actually
intended to reuse terms, but in many cases they
used incorrect representations. We also identified
common error patterns in term reuse. Our hope is
that the results of this work may be used to de-
velop better guidelines and tool support with the
aim to enhance reuse, and minimize overlap among
biomedical ontologies.
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