
Semantic Web 1 (2009) 1–5 1
IOS Press

Reasoning with Data Flows and Policy
Propagation Rules
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Enrico Daga a, Aldo Gangemi b, Enrico Motta a

a Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, United Kingdom
E-mail: {enrico.daga,enrico.motta}@open.ac.uk
b Université Paris13, France and Institute of Cognitive Sciences and Technologies - CNR, Italy
E-mail: aldo.gangemi@{univ-paris13.fr,cnr.it}

Abstract.

Data oriented systems and applications are at the centre of current developments of the World Wide Web. In these scenarios,
assessing what policies propagate from the licenses of data sources to the output of a given data-intensive system is an important
problem. Both policies and data flows can be described with Semantic Web languages. Although it is possible to define Policy
Propagation Rules (PPR) by associating policies to data flow steps, this activity results in a huge number of rules to be stored
and managed. In a recent paper, we described how it is possible to reduce the size of a PPRs database by using an ontology
of the possible relations between data objects, the Datanode ontology, and applying the (A)AAAA methodology, a knowledge
engineering approach that exploits Formal Concept Analysis (FCA). In this article we check whether this reasoning is feasible
in realistic scenarios. To this purpose, we study the impact of compressing a rule base associated with an inference mechanism
on the performance of the reasoning process. Moreover, we report on an extension of the (A)AAAA methodology that includes
a coherency check algorithm, that makes this reasoning possible. We show how this compression, in addition to being beneficial
to the management of the rule base, also has a positive impact on the performance and resource requirements of the reasoning
process for policy propagation.

Keywords: Data Hub, Data Flows, Policies, Rules, Formal Concept Analysis, RDF Licenses

1. Introduction

Data oriented systems and applications are at the
centre of current developments of the World Wide
Web. Developers can access a large variety of (open)
data, and publish the result of their processing on the
Web. Emerging enterprises focus their business model
on providing value from data collection, integration,
processing and redistribution. For example, Data Hubs
collect a large variety of data sources and process them
in order to satisfy the needs of users through remote

applications [9]. Differently from a closed enterprise
environment, on the WWW the ownership and licens-
ing of the data do not belong to the owner of the end
user application, and sometimes even to the entity re-
sponsible of the data management and processing in-
frastructure.

In this complex scenario, assessing what policies
propagate from the data sources to the output of a given
data-intensive process is an important problem. Al-
tough it is possible to define Policy Propagation Rules
(PPR) by associating policies and data flow steps, this

1570-0844/09/$27.50 c© 2009 – IOS Press and the authors. All rights reserved

2 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

activity results in a huge number of rules to be stored
and managed [8]. However, it is possible to compress
a PPRs database by using an ontology of the possi-
ble relations between data objects, the Datanode on-
tology, and applying the (A)AAAA methodology, a
knowledge engineering approach that exploits Formal
Concept Analysis (FCA) [8]. In this article we study
how this reasoning can be practically performed. We
report on an extension of the (A)AAAA methodology
that includes a coherency check between the hierarchy
of the FCA lattice and the Datanode ontology, which
allows to perform reasoning with a compressed rule
base. However, while this activity would reduce the
size of the input of the reasoner, it requires to com-
pute more inferences. Therefore, we study the impact
of rule base compression on the performance of a PPR
reasoner.

The article is structured as follows. Section 2 tra-
verses the relevant literature. Section 3 presents an
exemplary use case, and introduces the ingredients
for reasoning on policies propagation, going through
the description of the data flow, the representation
of policies, and the notion of Policy Propagation
Rule (PPR) [8]. Section 4 provides a comprehensive
overview of the (A)AAAA methodology, integrated
with a novel Analysis phase that includes a coherency
check algorithm that allows effective reasoning with a
compressed rule base. We also evaluate the impact of
this evolved methodology on the compression factor of
the rule base. In Section 5 we report on experimental
results on the performance of reasoning on PPRs with
a compressed rule base, before closing the article with
conclusions and persectives on future work.

2. Related Work

In the Web of (open) data, developers can access a
large variety of information, and often publish the re-
sults of their processing. In this scenario, application
developers need to know what are the usage constraints
attached to a data source. Policies are therefore nec-
essary in order to enable a correct exploitation of the
resources.

Data repositories and registries are growing, span-
ning from data cataloguing services (Datahub1), data
collections (Wikidata2, Europeana3), to platforms that

1Datahub. https://datahub.io/
2Wikidata. https://www.wikidata.org
3Europeana. http://labs.europeana.eu/

manage the collection and redistribution of data
(Socrata4). Providers of Smart City Data Hubs need
to support the developers on the assessment of the
policies associated with data resulting from complex
pipelines [9,2]. Emerging enterprises focus their busi-
ness model on providing value from data collection,
integration, processing and redistribution (Treasure
Data5).

It is important to develop technologies that allow
policies to be negotiated [3], and research is ongoing
on how the association between data and policies can
be shared and enforced on the web [21]. In this paper
we concentrate on the problem of reasoning with prop-
agating policies.

Policies can be represented on the Web. The W3C
ODRL Community Group work on the development
of a set of specifications to enable interoperability and
transparent communication of policies associated with
software, services and data. The Open Digital Rights
Language (ODRL)6 is an emerging information model
to support the exchange of formal descriptions of poli-
cies [15].

The RDF Licenses Database [22] is an attempt to
establish a database of licence descriptions based on
RDF and the ontology provided by ODRL (among oth-
ers).

Process executions can be described in the Semantic
Web using the Provenance Ontology (PROV-O) [19].
PROV-O describes workflow executions in terms of
agents, actions and assets involved. The Datanode on-
tology has been designed to describe Semantic Web
applications by means of the relations between the data
involved in their processes [7]. The ontology is a tax-
onomy of possible relations that may occur between
data objects, which might be part of a process execu-
tion, such as one described with PROV-O. It can there-
fore be used to further qualify the implications of the
actions performed in such a process. Datanode can de-
scribe process implications in a data-oriented way: as
network of data objects. While policies and process ex-
ecutions can be represented, what we aim to do here is
to study the reasoning on the propagation of policies
across a data flow.

Rule based representation and reasoning on policies
is required in order to enable secure data access and
usage in distributed environments, particularly the Se-
mantic Web [10,18,4]. Defeasable logic is necessary to

4Socrata. https://www.socrata.com/
5Treasure Data. https://www.treasuredata.com/
6https://www.w3.org/community/odrl/

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 3

reason with deontic statements, for example to check
compatibility of licenses or to validate constraints at-
tached to compontents on multi-agent systems [23].
This problem has been extensively studied in the lit-
erature [12,13] and tools that can perform such as-
sessment do exist [17]. Our previous work introduces
a form of policy reasoning, namely policy propaga-
tion [8]. A Policies Propagation Rule (PPR) is a Horn
clause defined by associating a Datanode relation with
a ODRL policy. Reasoning on Horn rules is one way of
dealing with policies, particularly because they allow
a tractable defeasable reasoning [1].

Formal Concept Analysis (FCA) [26] has the capa-
bility of classifying collections of objects depending
on their features. We apply FCA to detect a common
behavior of relations in terms of policy propagation in
order to compress the rule base, in conjunction with
the Datanode ontology. We refer the reader to [6] for a
description of the Contento tool, that implements FCA
as well as other functionalities for evolving concept
lattices in Semantic Web ontologies, also part of the
approach we present here.

The approach described in this paper clearly re-
lates to principles and methods of knowledge engineer-
ing [25]. In [20], knowledge acquisition is considered
as an iterative process of model refinement, and this
is exactly how we decided to tackle our problem here.
More recently, problem solving methods have been
studied in relation to the task of understanding process
executions [11].

The problem of compression of propositional knowl-
edge bases has been deeply studied, and focused on
the optimization of a Horn minimization process to
boost rule execution [14,5]. In this work, we deal with
compression as a mean to reduce the number of min-
imal rules to be managed (each PPR being already an
atomic rule), by the means of an additional knowledge
base (the Dataode ontology).

It is worth noting that our problem is not one of pol-
icy enforcement but one of providing the right infor-
mation about policies that might affect the terms of use
of a given asset resulting from a complex computation
in an application. Moreover, in this article we do not
focus on the quality of the descriptions, and assume a
machine readable description of the policies of the in-
put asset as well as the existence of an accurate data
flow.

3. Reasoning on policies propagation

In this Section we describe the approach for reason-
ing on policy propagation, and we present a sample use
case.

We define the problem of policies propagation as the
one of identifying the set of policies associated with
the output of a process, implied by the policies asso-
ciated with the input data source. In order to perform
reasoning on policy propagation, we need:

a) description of policies attached to data sources;
b) knowledge about the actions performed on the

data, and
c) knowledge about what actions do propagate a

given policy.

Description of policies. We assume the policies of
data sources are described as licenses or "terms and
conditions" documents, and they have an RDF rep-
resentation by the means of the ODRL ontology. A
policy expressed with the ODRL model includes a
deontic aspect - odrl:duty, odrl:permission
or odrl:prohibition, associated to a set of
odrl:Actions. Set of policies can be associated
with assets. For example, the RDF Licenses Database
[22] is a source of such descriptions. In our work, we
also developed ad-hoc RDF documents to satisfy this
requirement, when necessary.

Description of the data flow. Data flows are repre-
sented with the Datanode ontology [7]. The ontology
defines a unique type - Datanode - and 114 relations,
starting from a single top property: relatedWith, hav-
ing Datanode as rdfs:domain and rdfs:range.

A datanode is any data object that can be the
input or output of a process. The class groups
datasets, individuals, schema elements such as classes
and properties, as well as identifiers under the
same umbrella. Datanode relations can express
meta-level aspects (describes/describedBy, hasAn-
notation/isAnnotationOf and hasStatistic/isStatisti-
cOf), containmnet (hasPart/isPartOf ; hasSection/is-
SectionOf) as well as a properties like derivation
(hasExtraction/isExtractionOf ; hasInference/isInfer-
enceOf ; cleanedFrom/cleanedInto; optmizedFrom/op-
timizedInto), among others.

In this work we use the representatons of data flows
extracted from the descriptions of several Semantic
Web applications prepared in [7].

4 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

Policy Propagation Rules (definition). A Policy Prop-
agation Rule (PPR) establishes a binding between a
Datanode relation and a policy: when a policy holds
for a data object, and this is linked to another with that
relation, then the policy will also hold for the second
one. A PPR is a Horn Clause of the following form:

has(X,P) ∧ propagates(P,R) ∧ relation(R,X, Y)
→ has(Y, P)

Where X and Y are data objects, P is a policy and R
a Datanode relation between the two. For example a
PPR could be used to represent the fact that download-
ing a file F distributed with an attribution requirement
will result in a local copy D, which also needs to be
used according to the attribution requirement. There-
fore, the above abstract rule could be instantiated as
follows:

has(F, attribution)∧
propagates(attribution, isCopyOf)∧

relation(isCopyOf, F,D) → has(D, attribution)

In fact, we can reduce a PPR to a more compact
form, i.e. a binary association between a policy and a
relation:

propagates(policy, relation)

as the other parts can be generated automatically from
the above representation.

EventMedia [16] is a a web-based system that ex-
ploits real-time connections to enrich content describ-
ing events and associate it with media objects7. The
application reuses web data exposed by third parties in
order to collect event data and multimedia objects. The
information is then presented using the LODE ontol-
ogy [24]. Figure 1 displays how data in EventMedia is
processed from event directories and is enriched with
data from sources like the BBC or Foursquare [16] ac-
cording to the Datanode description elaborated in [7].

Table 1 lists the licenses or terms of use documents
associated with the data sources. In the present case we
were able to collect information from five out of six
sources, being the Upcoming service not available at
the time of writing12. Listing 1 lists the set of policies
extracted from the Flickr APIs Terms of Use.

7See http://eventmedia.eurecom.fr/.
12The Technical Report has been produced in 2014, when the

EventMedia dataset description article was firstly submitted to the
Semantic Web Journal. The description produced refers to the sub-
mitted version, and could be partly changed in the published version.

Table 1
Sources of Terms and conditions associated with the data sources
exploited by EventMedia.

Source T&C
Flickr Flickr APIs Terms of Use8

Dbpedia Creative Commons CC-BY-SA 3.0
Eventful Eventful API Terms of Use9

LastFM LastFM Terms of Service10

Upcoming ?
Musicbrain Creative Commons CC0
Foursquare Foursqaure Developers Policies11

Listing 1: Sample of policies representation extracted
from the Flickr APIs Terms of Use.

: F l i c k r T C a o d r l : P o l i c y ;
o d r l : a s s e t : F l i c k r ;
a o d r l : Agreement ;
r d f s : l a b e l " F l i c k r APIs Terms of Use " ;
r d f s : s e e A l s o
< h t t p s : / / www. f l i c k r . com / s e r v i c e s / a p i / t o s / > ;

o d r l : p r o h i b i t i o n o d r l : s e l l ;
o d r l : p r o h i b i t i o n o d r l : s u b l i c e n s e ;
o d r l : p r o h i b i t i o n cc : CommercialUse ;
o d r l : du ty o d r l : a t t r i b u t e

.

A PPR reasoner receives as input the dataflow and the
policies as RDF representations compliant with Datan-
ode and ODRL, and produces as output an ODRL set
like the one in Listing 2.

Listing 2: Example of policies associated with the out-
put of EventMedia.

: o u t p u t P s e t a o d r l : S e t ;
o d r l : a s s e t : o u t p u t ;
o d r l : p r o h i b i t i o n o d r l : modify ;
o d r l : p r o h i b i t i o n cc : ommercia lUse ;
o d r l : du ty o d r l : a t t r i b u t e ;
o d r l : p r o h i b i t i o n o d r l : s e l l
.

Having a description of policies and data flow steps
implies a huge number of propagation rules to be man-
aged and computed (number of policies times number
of actions). In this article we want to study to what ex-
tent it is possible to reduce the number of rules without
loss of information. Our hypothesis is that compress-
ing the size of the rule base by enabling some sort of
inference mechanism would not negatively impact the
efficiency of the computation.

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 5

Fig. 1. Description of the reuse of sources in the EventMedia mash-up [16] (Figure from [7]). The input sources are the top nodes. The node at
the bottom depicts the output data, which is a remodelling of the data collected from various sources according to a specific schema.

4. (A)AAAA Methodology

The approach for compressing a knowledge base of
policy propagation rules relies on the Datanode on-
tology, that organizes the possible dataflow steps in
a hierarchy. Firstly introduced in [8], the (A)AAAA
methodology covers all the phases necessary to set up
a compact knowledge base of PPRs.The (A)AAAA
methodology is based on two assumptions: 1) Policy
Propagation Rules are associations between policies
and data flow steps, and 2) an ontology is available to
organise data flow steps in a semantic hierarchy - the
Datanode ontology. For example, this ontology would
tell us that the relation isCopyOf is a kind of isDeriva-
tionOf. We provide here a journey through the method-
ology, alongside concrete examples on how it has been
applied. The resulting compressed rule base will be
the basis for our experiments in the remaining part of
the article. With respect to the methodology presented
in [8], the novel contribution of this article is the in-
troduction of a coherency check method in the Assess-
ment phase.

The methodology is composed of the following
phases:

A1 Acquisition. The initial task is to set up a knowl-
edge base of PPRs.

A2 Analysis. The FCA algorithm is performed on the
knowledge base of PPRs. The output of the pro-
cess is an ordered lattice of concepts: policies that
propagate with the same set of relations.

A3 Abstraction. In this phase we search for matches
between the ontology and the FCA lattice. When
a match occurs, we subtract the rules that can be
abstracted through the ontology’s taxonomy.

A4 Assessment. We check to what extent a hierarchi-
cal organization of the relations matches the clus-
ters produced by FCA (developing measures).
This step

a) performs a coherency check between the lat-
tice and the ontology (i.e. number of mis-
matches);

b) identifies what are the partial matches be-
tween the clusters and the ontology, and

c) evaluates how much the ontology com-
presses the knowledge base (i.e. the com-
pression factor)

A5 Adjustment. Observing the measures produced
in the previous phase, particularly about mis-
matches and partial matches, in this phase we per-
form operations changing the rule base or the on-
tology in order to repair mismatches, correct in-
accuracies, evolve the ontology, and improve the
compression factor as a consequence.

The (A)AAAA methodology constitutes an iterative
process, as shown in Figure 2.

In the remaining part of this Section, we illustrate
each phase of the methodology, by first describing the
general approach and then explaining how it has been
applied in practice.

6 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

Fig. 2. (A)AAAA Methodology.

4.1. Acquisition

The initial task is to set up a knowledge base of Pol-
icy Propagation Rules (PPRs). As presented in Section
3, a PPR can be conceived as an association between
a policy and a possible relation between two data ob-
jects. The rule base can be represented as a binary ma-
trix, where each row is a possible relation between two
data objects, and each column a policy. The cells in the
matrix can be 1 or 0, depending on whether the policy
propagates or not with the given relation. From each
positive cell in the matrix, we can generate a PPR, and
populate the set of rules R.

This approach has been applied as follows. In or-
der to setup the knowledge base of Policy Propagation
Rules we relied on the RDF Licenses Database [22],
and extracted 113 possible policies. Each policy is an
association of one deontic element (permission, prohi-
bition or duty) and one action.13. We used the Datan-
ode Ontology [7] to extract a list of 115 possible rela-
tions between data objects.

This phase required a manual supervision of all as-
sociations between policies and relations in order to
establish the initial set of propagation rules14. Listing
3 displays a sample of binary relations that can be true
or false in the matrix.

Listing 3: Example of cells of the binary matrix asso-
ciating relations with policies

dn : h a s P o r t i o n , p e r m i s s i o n o d r l : copy , 1
dn : i d e n t i f i e r s O f ,

p r o h i b i t i o n cc : De r iva t i veWorks , 1
dn : isDependencyOf , p e r m i s s i o n o d r l : d e r i v e , 0
dn : usesSchema , p e r m i s s i o n cc : Re p r od uc t i o n , 1
dn : p r o c e s s e d I n t o , du ty o d r l : s h a r e A l i k e , 1

13We could have generated the policies by combining any ODRL
action with any deontic component. However, this would have led
to a large number of meaningless policies (eg: duty odrl:use).
The adoption of the RDF License Database permitted to obtain a list
of meaningful policies only.

14Thanks to the Contento tool, it was possible to edit manually
the matrix with a reasonable effort [6,8].

dn : i s V oc a b u l a r y O f , p r o h i b i t i o n o d r l : use , 1
dn : me tada ta , p r o h i b i t i o n o d r l : t r a n s f o r m , 0

At the end of this process, the matrix had 3363 cells
marked as true. The initial knowledge base was then
composed of 3363 Policy Propagation Rules (Listing
4)15.

Listing 4: Example of Policy Propagation Rules.

prop (dn : h a s P o r t i o n , p e r m i s s i o n o d r l : copy)
prop (dn : i d e n t i f i e r s O f , p r o h i b i t i o n

cc : D e r i v a t i v e W o r k s)
prop (dn : usesSchema , p e r m i s s i o n cc : R e p r o d u c t i o n)
prop (dn : p r o c e s s e d I n t o , du ty o d r l : s h a r e A l i k e)
prop (dn : i s V o c ab u l a ry O f , p r o h i b i t i o n o d r l : use)
prop (dn : me tada ta , p r o h i b i t i o n o d r l : t r a n s f o r m)

4.2. Analysis

The objective of the second phase is to detect com-
mon behaviors of relations with respect to policies
propagation. We achieve this by applying FCA, pro-
viding as input the binary matrix representation of the
rule base R. The output of the FCA algorithm is an or-
dered set of concepts C. In FCA terms, each concept
groups a set of objects (the concept’s extent) and maps
it to a set of attributes (the concept’s intent). An FCA
Concept groups a set of objects all having a given set
of attributes (and vice-versa). In our case, each con-
cept maps a group of relations propagating a group of
policies. These concepts are organized hierarchically
in a lattice, ordered from the top concept T , that in-
cludes all the objects and potentially no attributes, to
the bottom concept B, including all the attributes with
potentially an empty extent (set of objects). All other
concepts are ordered from the top to the bottom. For
example, usually a first layer of concepts right below
T would include large groups of objects all having
few attributes in common. Layers below would have
more attributes and less objects, until the bottom B is
reached. In our case, the top concept T would include
all relations and no policies, while the bottom concept
B all the policies but no relations. The concepts iden-
tified by FCA collect relations that have a common be-

15The reader can deduce that a large part of Datan-
ode included relations that do not propagate any policy,
for example the top relation dn:relatedWith, but also
dn:overlappingCapabilityWith, dn:about, among oth-
ers.

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 7

havior in our rule base R, as they propagate the same
policies.

Following this approach, we applied the FCA algo-
rithm and obtained 80 concepts (in the first iteration of
the methodology). Listing 5 shows one example. All
the relations in the extent of this concept propagate the
policies in the intent.

Listing 5: Example of a Concept.

Concept 71
A n c e s t o r s : 75
D e s c e n d a n t s : 17 ,52 ,68 ,69
E x t e n t [4 2] I n t e n t [9]
dn : c l e a n e d I n t o du ty cc : A t t r i b u t i o n
dn : combinedIn du ty cc : C o p y l e f t
dn : d u p l i c a t e du ty cc : N o t i c e
dn : h a s A d d i t i o n du ty cc : S h a r e A l i k e
dn : hasAnonymized du ty cc : SourceCode
dn : h a s A t t r i b u t e s du ty o d r l : a t t a c h P o l i c y
dn : hasCache du ty o d r l : a t t a c h S o u r c e
dn : hasChange du ty o d r l : a t t r i b u t e
dn : hasCompu ta t i on du ty o d r l : s h a r e A l i k e
dn : hasCopy
dn : h a s D e l e t i o n
dn : h a s D e r i v a t i o n
dn : hasExample
dn : h a s E x t r a c t i o n
dn : h a s I d e n t i f i e r s
dn : h a s I n f e r e n c e
dn : h a s I n t e r p r e t a t i o n
dn : h a s P a r t
dn : h a s P o r t i o n
dn : h a s R e i f i c a t i o n
dn : hasSample
dn : h a s S e c t i o n
dn : h a s S e l e c t i o n
dn : h a s S n a p s h o t
dn : h a s S t a n d I n
dn : h a s S t a t i s t i c
dn : h a s S u m m a r i z a t i o n
dn : hasTypes
dn : h a s V o c a b u l a r y
dn : i d e n t i f i e r s O f
dn : i sChangeOf
dn : i sExampleOf
dn : i s P a r t O f
dn : i s P o r t i o n O f
dn : i sSampleOf
dn : i s S e c t i o n O f
dn : i s S e l e c t i o n O f
dn : i s V o c a b u l a r y O f
dn : o p t i m i z e d I n t o
dn : p r o c e s s e d I n t o
dn : r e f a c t o r e d I n t o
dn : r emode l l edTo

4.3. Abstraction

In this phase we apply a method for subtracting
rules in order to reduce the size of the rule base.
The abstraction process is based on applying an on-
tology that organizes the relations in a hierarchy.
For instance, the relation hasCopy is a sub-relation
of hasDerivation. Intuitively, a number of policies
propagated by hasDerivation should be also propa-
gated by hasCopy and all the others sub-relations in
that branch of the hierarchy. By grouping all the re-
lations below hasDerivation in a transitive closure,
we obtain a group of relations similar to the ones in
the FCA concepts that we call the hasDerivation
branch, for example. We expect the branches of the
ontology to be reflected in the clusters of relations ob-
tained by FCA, thus we search for matches between
the ontology and the FCA lattice. When a match oc-
curs, we subtract the rules that can be abstracted.

Listing 6: Abstraction algorithm.

R = Rules()
C = FCAConcepts()
H = ComputeBranches()
ForEach (c,h) in (C,H)

(pre,rec) = Match(c,h)
when pre == 1.0

Subtract(R, Policies(c), Branch(h))

The process is summarized in Listing 6, and de-
scribed as follows:

1. Concepts. From the result of the FCA algorithm
we obtain a set of concepts C including relations
r (extent of the concept) all propagating a set of
common policies p (intent of the concept):

C = ([r1, p1], [r2, p2], . . . , [rn, pn])

2. Branches. For each relation in the ontology, we
compute the transitive closure of its sub-relations,
obtaining a set of mappings H:

H = ([t1, b1], [t2, b2], . . . , [tn, bn])

where t is a relation in the ontology and b the re-
lated branch, i.e. all the sub-relations of t.

3. Matching. We search for (partial) overlaps be-
tween branch h in H and relations in the extent
of c (for simplicity, in c). The function Match re-
turns a measure of the matching between a branch
and a concept, evaluated as precision and recall.
In the case a branch is fully in the concept, we say

8 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

the match has full precision (1.0). Inversely, recall
indicates how much a branch covers the concept.
A concept including only relations in the branch
would result in a match with recall 1.0.

4. Compression. When a match has precision 1.0,
we can use the relation h as abstraction for all the
policies in the concept c. In other words, we can
remove the rules referring to a subsumed relation,
as they are implied by a more abstract one.

A general estimation of the effectiveness of the ap-
proach is given by the compression factor (CF). We
calculate the CF as the number of abstracted rules di-
vided by the total number of rules:

CF =
|A|
|R|

with R the set of rules, and A the set of rules that can
be subtracted.

This approach has been applied as follows. Listing 7
shows the output of the abstraction algorithm, return-
ing the branches that are (partially) matched by a given
concept.

For example, the extent of Concept 74 is a cluster of
43 relations, matching several branches in Datanode in
different ways. At the beginning there is the Top Prop-
erty of Datanode: dn:relatedWith. Its branch size
(bs) is 115 relations, constituting the whole hierarchy
in the ontology. Clearly, the size of the intersection is
the same as the size of the extent (es), as all the 43 re-
lations of the concept are in the branch. However, the
precision (pre) of the matching is pretty low: 0.37. This
branch obviously matches the whole extent of Concept
74 with full recall (rec) 1.0 - like with any other con-
cept.

A more interesting case is the branch associated
with dn:hasPart, whose intersection with the con-
cept is made of all 7 sub-relations. In fact, looking at
the intent of Concept 74 in Listing 5, it sounds reason-
able that all the parts of a given data object inherit all
the cited duties16. The full precision enables the rules
reduction process. A similar case is with the relation
dn:isVocabularyOf.

Listing 7: Example of the matches between a concept
and the branches in the Datanode hierarchy.

c es i s bs p r e r e c f1 b r a nc h

16They inherit many other policies as well, and those are consid-
ered by other concepts in a lower layer of the FCA lattice.

74 43 43 115 0 . 3 7 1 0 . 5 4 dn : r e l a t e d W i t h
[. . .]
74 43 7 8 0 . 8 7 0 . 1 6 0 . 2 7 dn : s a m e C a p a b i l i t y A s
74 43 7 7 1 0 . 1 6 0 . 2 8 dn : h a s P a r t
74 43 6 7 0 . 8 6 0 . 1 4 0 . 2 4 dn : i s P a r t O f
74 43 3 6 0 . 5 0 . 0 7 0 . 1 2 dn : h a s V o c a b u l a r y
74 43 6 6 1 0 . 1 4 0 . 2 5 dn : i s V o c a b u l a r y O f
[. . .]

By only considering the branches matched with full
precision by each concept, we can substract 1925 rules,
for a compression factor CF of 0.572, in the first iter-
ation of our methodology.

It is worth to note that this process only aims to iden-
tify matches between the rule base and the subsump-
tion hierarchy of the ontology, and does not account
for mismatches. In principle, it is possible that some
policies propagated by a relation are not propagated by
one of its subrelations. In this situation, a reasoner that
want to benefit from a compressed rule base will return
also wrong results. We deal with this problem in the
Assessment phase.

4.4. Assessment

Objective of this phase is to assess to what extent
the ontology and the FCA lattice are coherent. In par-
ticular, we want:

1. to detect mismatches (coherency check) to be re-
solved before using the compressed rule base with
a reasoner, and

2. to identify quasi matches that could be boosted to
become a full match performing changes in the
rule base or the ontology

Coherency check. The abstraction process is based
on the assumption that it is possible to replace asserted
rules with inferences implied by subsumed relations in
the ontology. This implies that all policies propagated
by a given relation must be propagated by all subrela-
tions in the original (uncompressed) rule base. A co-
herency check process is necessary to identify whether
this assumption does hold for all the relations. In case
it does not, we want to collect and report all these mis-
matches in order to be able to fix them at a later stage in
the methodology. Listing 8 shows the algorithm used
to detect such problems on a given concept in the lat-
tice.

Listing 8: Coherency check algorithm.

c = // a concept
M = []
S=SuperConcepts(c)
ForEach s in S

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 9

E=Extent(c)
E1=Extent(s)
ForEach(e1 in E1)

if not(Contains(E,e1))
ForEach e in E

if Contains(Branch(e),e1)
M = [e,e1]|P // Mismatch detected

return M

We know from the definition of a FCA lattice that
superconcepts will include a larger set of relations
propagating a smaller number of policies. Given a con-
cept c, the algorithm extracts the relations (extent) of
each of any superconcept (S). In case these relations
are not also present in (the extent of) c, it is mandatory
that they are not subrelations of any relation in the ex-
tent of c. In case they are, this means that a subrela-
tion is not inheriting all the policies of the parent one,
thus invalidating our assumption. Mismatches M are
identified and reported. Listing 9 shows the result of
the algorithm for a concept. In this example, a num-
ber of subrelations of dn:isVocabularyOf do not
propagate some of the policies of Concept 71.

Listing 9: Coherency check result for concept 71: mis-
matches.

Concept Branch R e l a t i o n
71 dn : i s V o c a b u l a r y O f dn : a t t r i b u t e s O f
71 dn : i s V o c a b u l a r y O f dn : d a t a t y p e s O f
71 dn : i s V o c a b u l a r y O f dn : d e s c r i p t o r s O f
71 dn : h a s V o c a b u l a r y dn : h a s D a t a t y p e s
71 dn : h a s V o c a b u l a r y dn : h a s D e s c r i p t o r s
71 dn : h a s V o c a b u l a r y dn : h a s R e l a t i o n s
71 dn : i sChangeOf dn : i s A d d i t i o n O f
71 dn : i sChangeOf dn : i s D e l e t i o n O f
71 dn : i s V o c a b u l a r y O f dn : r e l a t i o n s O f
71 dn : i s V o c a b u l a r y O f dn : t y p e s O f

Quasi matches. The result of the Abstraction phase
can be represented as a set of measures between con-
cepts and portions of the ontology. The measures we
are interested in are:

– Extent size (ES). Number of relations in a con-
cept.

– Intersection size (IS). Number of relations of the
branch that are also present in the concept.

– Branch size (BS). Number of relations in the
branch.

– Precision (Pre). It is calculated as Pre = IS/BS,
meaning the degree of matching of a branch with
the extent of the concept.

– Recall (Rec). Recall, calculated as Rec = IS/ES,
i.e. how much the extent of the concept is covered
by the branch.

– F-Measure (F1). F-Measure, the well-known fit-
ness score, calculated from precision and recall as
F1 = 2 ∗ ((Pre ∗Rec)/(Pre+Rec)).

These measures are now considered to quantify and
qualify the way the ontology aligns with the propaga-
tion rules: precision and recall indicate how much a re-
lation is close to being a suitable abstraction for policy
propagation.

Table 2 shows an example of a concept obtained ap-
plying the approach in the context of the Datanode on-
tology. Here it is worth mentioning some general con-
siderations that can be made by inspecting these mea-
sures.

Table 2
Excerpt from the table of measures computed by the abstraction al-
gorithm in Listing 6.
c=Concept ID, ES=Extent Size, IS=Intersection Size, BS=Branch size, Pre=Precision,

Rec=Recall, F1=F-Measure.

c ES IS BS Pre Rec F1 Branch
79 52 52 115 0.45 1 0.62 relatedWith
77 46 19 21 0.9 0.41 0.56 hasDerivation
75 44 8 11 0.73 0.18 0.29 samePopulationAs
67 35 7 7 1 0.2 0.33 hasPart
67 35 6 7 0.86 0.17 0.28 isPartOf
36 16 3 3 1 0.19 0.32 hasCopy
36 16 3 3 1 0.19 0.32 isCopyOf
24 12 6 6 1 0.5 0.67 hasVocabulary
9 8 1 1 1 0.12 0.21 hasReification
0 4 4 115 0.03 1 0.06 relatedWith

When Rec = 1, the whole extent of the concept
is in the branch. The branch might also include other
relations, that do not propagate the policies included
in the concept. When Pre = 1, we can perform the
subtraction of rules, as in Listing 6. A low recall in-
dicates that a high number of exceptions still need
to be kept in the rule set. It also reflects a high ES,
from which we can deduce a low number of poli-
cies in the concept. As a consequence of that, inspect-
ing a partial match with high precision and low recall
highlights a problem that might be easy to fix, as the
number of relations and policies to compare will be
low. For example, row 2 of Table 2 relates to a rela-
tion with BS − IS = 2, so we need only to check
whether 2 relations in the hasDerivation branch
might also propagate the policies in concept 77. The
perfect match between a concept and a branch of the
ontology would be F1 = 1. However, when this does
not happen we can try to improve the approximation.

At this stage we can make the following considera-
tions:

10 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

– The presence of mismatches between the lattice
and the ontology will make the reasoner return
wrong results, thus they must be eliminated.

– The size of the matrix that was prepared in the
Acquisition phase is pretty large, and it is possi-
ble that errors have been made at that stage of the
process.

– The Datanode ontology has not been designed for
the purpose of representing a common behavior
of relations in terms of propagation of policies.
It is probably possible to refine the ontology in
order to make it cover this use case better (and
reduce the number of rules even more).

4.5. Adjustment

In this phase, we try to make adjustments in or-
der to (a) repair mismatches identified in the assess-
ment phase and (b) evolve the rule base R or the on-
tology hierarchy H to improve the compression fac-
tor CF . Six operations can be performed: Fill, Wedge,
Merge, Group, Remove, Add. Here we briefly illustrate
the property of each operation, referring to [8] for the
details of it, and provide three examples.

Fill. The Fill operation makes a branch b be fully
in concept c, attempting to push Pre up to 1. This is
achieved by adding to R all the rules generated from
the association between the policies in concept c and
the relations in branch b. This change affects the PPR
knowledge base R, increasing the number of rules.

Wedge A new relation is wedged between a top re-
lation and all its direct subproperties. The new branch
will allow to perform a Fill operation, in the next iter-
ation.

Merge Two top relations are abstracted by a new
common relation. The new branch will allow to per-
form a Fill operation, in the next iteration.

Group A set of relations are all together in the extent
of a concept, but belong to different branches. We want
to create a common parent relation for them. Again,
the new branch enables a Fill operation, to be executed
in the next iteration.

Remove and Add We can Remove a relation as a sub-
property of another (and possibly cut a sub-branch).
This operation removes a single subsumption relation
in the ontology. After that, we might relocate it else-
where with a Add operation.

After a change to the ontology, normally the Fill op-
eration is performed on the newly created branch, in
order to populate the rule base accordingly. Except for
the Fill operation, all the operations are performed on
the ontology. As shown in Figure 2, after the Adjust-
ment phase we restart a new iteration.

In what follows we illustrate three examples of
changes performed during our application of the
methodology.

Example 1. The Assessment phase of the methodol-
ogy reported possible mismatches between the FCA
output and the ontology hierarchy. These errors must
be repaired if we want the compressed rule base to
be used by a reasoner. For example, Listing 9 shows
the set of mismatches detected for concept (71). In
this list, the dn:isVocabularyOf branch contains
a number of relations that do not propagate the related
policies, breaking the assumption that all the policies
of dn:isVocabularyOf are also propagated by all
the other relations in his branch. With a Fill operation,
we can add all the necessary rules to remove this mis-
match.

Example 2. In Section 4.4 we described a method
to catch possible errors in the rule base, based on the
identification of partial matches with high precision
and low recall. Such cases highlight a branch that is
close to be fully included in a concept. As example,
we can pick branch dn:isPartOf from Listing 7.
Listing 10 shows the details about how the concept
matches this branch. It happens that all relations ex-
cept dn:isSelectionOf are part of this concept.
In other words, they propagate the policies listed in
the intent of Concept 74 (Listing 5). However, this is
a mistake that happened during the Acquisition phase,
as dn:isSelectionOf should behave in a similar
way to dn:isExampleOf.

Listing 10: Example of the matches between a concept
and the branches in the Datanode hierarchy.

c es i s bs p r e r e c f1 b r a nc h
74 43 6 7 0 . 8 6 0 . 1 4 0 . 2 4 dn : i s P a r t O f

+ dn : i s P a r t O f
! dn : i s S e l e c t i o n O f
+ dn : i sExampleOf
+ dn : i s S e c t i o n O f
+ dn : i d e n t i f i e r s O f
+ dn : i s P o r t i o n O f
+ dn : i sSampleOf

We decide then to perform a Fill operation, adding all
the necessary rules to make the branch dn:isPartOf
fully covering the intent of Concept 74.

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 11

Example 3. A branch with similar scores is
dn:sameCapabilityAs. Listing 11 shows that
the only missing relation is the top one. In Datan-
ode, dn:sameCapabilityAs is defined as the re-
lation between two objects having the same vocabu-
lary and the same population (containing actually the
same data). However, it is possible that two objects
have the same “data” without having the same poli-
cies. For example, datasets like lists of cities or post-
codes might be imported from different sources, and
having different policies while containing the same
data! In this case we opted for adding a new relation
to Datanode that can abstract all the branches with
a more focused semantic: dn:sameIdentityAs.
dn:sameIdentityAs tries to capture exactly the
fact that two data objects share the same ori-
gin, the same population and the same vocabu-
lary. The operation performed to add this rela-
tion is Wedge, as the new property is injected be-
tween dn:sameCapabilityAs and its direct sub-
relations.

Listing 11: Example of the matches between a concept
and a branch in the Datanode hierarchy.

c es i s bs p r e r e c f1 b r a nc h
74 43 7 8 0 . 8 7 0 . 1 6 0 . 2 7 dn : s a m e C a p a b i l i t y A s

! dn : s a m e C a p a b i l i t y A s
+ dn : hasCopy
+ dn : h a s S n a p s h o t
+ dn : hasCache
+ dn : isCopyOf
+ dn : i s S n a p s h o t O f
+ dn : i sCacheOf
+ dn : d u p l i c a t e

After each operation we run our process again from
the Analysis phase to the Assessment, in order to eval-
uate whether the change fixed the mismatch and/or
how much the change affected the compression fac-
tor. The process is repeated until all mismatches have
been fixed, and a reasonably good compression factor
is reached, or no more meaningful changes are possi-
ble.

4.6. Evaluation of the CF

In the previous sections we described the phases of
the (A)AAAA methodology, and how we applied it to
the task at hand. Figure 3 shows how the compression
factor CF increases with the number of adjustments
performed, while Figure 4 illustrates the progressive
reduction of mismatches. Details about the changes
performed are provided in Table 3 (+). This includes
statistics about number of mismatches (6=), the impact

on number of rules (R), number of concepts generated
by FCA (C), number of rules abstracted (A), remain-
ing rules (R+), and compression factor (CF). More-
over, Table 3 highlights the improvements obtained be-
fore (published in [8]) and after the introduction of the
coherency check method in the Assessment phase (af-
ter change 15).

Table 3
List of changes performed.

+ C 6= R A R+ CF

0 80 15 3363 1925 1438 0.572
1 80 16 3370 1953 1417 0.58
2 80 16 3370 1953 1417 0.58
3 80 16 3480 2283 1197 0.656
4 80 18 3482 2299 1183 0.66
5 78 12 3500 2376 1124 0.679
6 78 14 3608 2484 1124 0.688
7 78 16 3716 2592 1124 0.698
8 96 16 3822 2698 1124 0.706
9 93 15 3824 2706 1118 0.708
10 93 15 3824 2706 1118 0.708
11 93 15 3824 2706 1118 0.708
12 93 15 3824 2706 1118 0.708
13 76 15 3837 2765 1072 0.721
14 76 15 3844 2778 1066 0.723
15 78 15 3865 2817 1048 0.729

16 78 13 3866 2818 1048 0.729
17 78 13 3874 2826 1048 0.729
18 63 11 3878 2830 1048 0.73
19 63 11 3882 2834 1048 0.73
20 63 9 3892 2844 1048 0.731
21 55 9 3897 2849 1048 0.731
22 60 8 3898 2850 1048 0.731
23 60 3 3908 2860 1048 0.732
24 54 0 3914 2870 1044 0.733
26 34 0 4225 3451 774 0.817

Table 3
The first column identifies the change performed (starting from the initial state).
C=Number of concepts in the FCA lattice
6==Number of mismatches between the FCA lattice and the ontology
R=Number of rules before the process
A=Number of rules abstracted (subtracted)
R+=Size of the compressed rule base (without the abstracted rules)
CF=Compression Factor

Apart from being mandatory to be able to use the
compressed knowledge base with a reasoner, the appli-
cation of this approach allowed us to reduce the size
even more. As final result we obtained: 4225 rules in
total, 34 concepts, 3451 rules abstracted and 774 rules
remaining, boosting the CF up to 0.817.

Thanks to this methodology we have been able to
fix many errors in the initial data, to refine Datanode
by clarifying the semantics of many properties and
adding new useful ones. The version of the ontology
at the beginning of this work can be found at http:
//purl.org/datanode/0.3/ns/. The current

12 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

0 10 20

0.5

0.6

0.7

0.8

Adjustments

C
om

pr
es

si
on

Fa
ct

or

Fig. 3. Progresss of the CF .

0 10 20
0

5

10

15

20

Adjustments

C
on

fli
ct

s

Fig. 4. Progresss in the number of conflicts.

version of the ontology is at http://purl.org/
datanode/0.5/ns/.

5. Experiments

The methodology described in the previous Section
allows to reduce the number of rules to be stored and
managed. We will now report on the results of a set
of experiments we performed on reasoning about poli-
cies propagation. In particular, we want to evaluate
the impact of compression on reasoning performance.
We took 15 data flows descriptions from a previous
work [7], referring to 5 applications that rely on data
obtained from the Web. Each data flow represents a
data manipulation process, from an input data source
(sometimes multiple sources), resulting in one princi-
pal output node. The task of the reasoner is to find all
the policies associated with the output of the data flow,
according with the ones associated with the input. This
task is performed two times: the first providing the full
set of propagation rules, the second providing the com-
pressed rule base in conjunction with the hierarchy of
relations.

The experiments have the objective to compare
performance of the reasoner when using an Uncom-
pressed or a Compressed rule base. To make the ob-
servations visible and not dependent on a given imple-
mentation, we run the experiments with two different
reasoners: a Naive implementation and an Optimized
implementation. Both reasoners have the capability of
executing PPRs and expand the results according to
the ontology hierarchy.

The Naive implementation is a Prolog program rely-
ing on JLog, a prolog interpreter written in Java17. The
program incorporates a meta rule that traverses the set
of PPRs, encoded as facts. At the same time, it supports
the subsumption between relations. Listing 12 shows
an excerpt of the program.

Listing 12: Excerpt of the Prolog Naive reasoner pro-
gram.

i _ r d f s _ s u b _ p r o p e r t y _ o f (X,X) .
i _ r d f s _ s u b _ p r o p e r t y _ o f (X,Y) :−

r d f s _ s u b _ p r o p e r t y _ o f (X, Z) , i _ r d f s _ s u b _ p r o p e r t y _ o f (Z ,Y) .
i _ p r o p a g a t e s (X,Y) :− p r o p a g a t e s (X,Y) .
i _ p r o p a g a t e s (X,Y) :− i _ r d f s _ s u b _ p r o p e r t y _ o f (X, Z) ,

p r o p a g a t e s (Z ,Y) .
i _ h a s _ p o l i c y (T , P , _) :− h a s _ p o l i c y (T , P) .
i _ h a s _ p o l i c y (T , P , L) :−

i _ h a s _ r e l a t i o n (S , T , R) ,
n o t (v i s i t e d (S , L)) ,

i _ p r o p a g a t e s (R , P) ,
i _ h a s _ p o l i c y (S , P , [S | L]) .

i _ h a s _ p o l i c y (T , P) :− i _ h a s _ p o l i c y (T , P , []) .

The Optimized reasoner is built on top of the
RDFS reasoner of Apache Jena18 in combination with
SPIN19, a rule engine that allows to define rules using
the SPARQL language. The core part of the reasoner
executes PPRs as a SPARQL meta query (Listing 13).

Listing 13: Construct meta-query of the Optimied
SPIN based reasoner.

CONSTRUCT {
? t h i s ppr : p o l i c y ? p o l i c y

} WHERE {
? i n t ? r e l a t e d W i t h ? t h i s .
? i n t ppr : p o l i c y ? p o l i c y .
? r e l a t e d W i t h ppr : p r o p a g a t e s ? p o l i c y

}

We performed the experiments with the data flows
listed in Table 4. These use cases were formalized be-
fore the present work (in [7]). The related data flow de-
scriptions were not altered for the task at hand, except
that the part about the policies of the input was added.

17http://jlogic.sourceforge.net/
18http://jena.apache.org/
19http://spinrdf.org/

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 13

Table 4
Data flows used in the experiments. The has policy and has relation
columns report the number of statements about policies and rela-
tions between data objects in the dataflow. relations reports the num-
ber of distinct relations, the same applying to data objects, policies,
sources and output policies. Highlighted are the maximum and min-
imum values for each of the data flow inputs. In one case (DISCOU-
11), none of the policies attached to the source are propagated to the
output.

Use case has policy has relation relations data objects policies sources output policies

AEMOO-1 6 18 13 10 6 1 6

DBREC-1 6 2 2 2 6 1 3

DBREC-2 6 8 7 5 6 1 6

DBREC-3 6 12 7 8 6 1 6

DBREC-4 6 14 8 9 6 1 3

DBREC-5 6 14 10 10 6 1 6

DBREC-6 6 10 10 6 6 1 3

DBREC-7 6 9 6 10 6 1 6

DBREC-8 6 5 4 5 6 1 6

DISCOU-1 7 22 10 14 7 1 5

DISCOU-11 5 13 9 12 5 1 0

EventMedia-1 37 25 8 24 25 6 4

REXPLORE-1 16 14 8 14 8 3 3

REXPLORE-2 32 23 4 18 14 6 6

Fig. 5. Input size for the Naive (5a) and Optimized (5b) reasoners.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

1k

2k

3k

4k

(a) Naive reasoner: input size (number of Prolog facts) with and without compression for each use case. It is visible that the size of the data flow
has a small impact on the general size of the input.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

1.5k
2k

3k

4k

5k

(b) Optimized reasoner: input size (number of RDF triples) with and without compression for each use case. It is visible that the size of the data
flow has a small impact on the general size of the input.

14 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

Each data flow describes a process executed within one
of five applications. The table lists the basic proper-
ties of these use cases. The size of the data flow is re-
ported in the has relation column of the table, indicat-
ing the number of Datanode relations asserted in the
input. The has relation column reports the number of
statements about policies. relations reports the number
of distinct relations, the same applying to data objects,
policies, sources and output policies. Highlighted are
the maximum and minimum values for each of the data
flow inputs. In one case (DISCOU-11), none of the
policies attached to the source are propagated to the
output.

Each experiment takes the following arguments:

– Input: a data flow description
– Compression: True/False
– Output: the output resource to be queried for poli-

cies

In case compression is False, we feed the reasoner
with the complete set of PPRs and no information
on subsumption between the relations described in
the dataflow. Conversely, when compression is set to
True, the compressed set of PPRs is used in conjunc-
tion with the Datanode ontology. It is worth noting
that the (A)AAAA Methodology is also an evolution
method, and we are considering here the evolved rule
base (and ontology), that has been harmonized by fix-
ing mismatches between the rule set and the ontology.

The experiments was executed on a MacBook Pro
with processor Intel Core i7/3 GHz Dual Core and 16
GB of RAM. In case a process was not completed
in five minutes, it was forcely interrupted. Each pro-
cess was monitored and information about CPU us-
age and RAM (RSS memory) registered at intervals
of half a second. We compared the results of the ex-
periments with and without compression, and we al-
ways obtained the same result set. When terminating,
the experiment output would include: total execution
time (t), resources load time (l), setup time (s), and
query execution time (q). The size of the input for each
experiment is reported in the diagrams in Figure 5.

We consider performance on two principal dimen-
sions: time and space.

Time performance is measured under the following
dimensions:

L Resources load time.
S Setup time. Includes L, in addition to any other

operation performed before being ready to re-
ceive queries (eg, materialization)

Q Query time.
T Total duration: T = S +Q

Space is measured as follows:

Pa Average CPU usage.
M Maximum memory required by the process

Each experiment was executed 20 times. What we are
showing here is the average of the measures obtained
in the different executions. In order to evaluate the
accuracy of the average measure computed from the
twenty executions of the same experiment, we calcu-
lated the related Coefficient of Variation (CV)20. In al-
most all the cases the CV for the Naive reasoner was
below 0.1, with the exception of memory (RSS) usage,
that in many cases showed a fluctuation between 0.2
and 0.4. With the Optimized reasoner the experiments
reported a much more stable behaviour in terms of con-
sumed resources, the CV being assessed below 0.1 in
almost all the cases, except the Query time of some
experiments. However, these were fluctuating around
an average of 10ms. Finally, we consider the results of
these experiments to be very accurate.

Before discussing the results, it is worth reminding
the reader that this evaluation is not targeted to com-
pare the two implementations of a PPR reasoner, but to
observe the impact of our compression methodology
on a Naive and an Optimized implementations, assum-
ing that a hypothetical implementation would perform
between these two extremes.

Figures 6 and 7 illustrate the results of the exper-
iments performed with the Naive and the Optimized
reasoner respectively. Figure 6a displays a compari-
son of the execution time between an Uncompressed
and Compressed input with the Naive reasoner. For
each use case, the bar on the left displays the time
with an Uncompressed input, the one on the right the
time with a Compressed input. We will follow this con-
vention in all the other diagrams as well. In all cases
there has been a significant increase in performance.
In three cases (DBREC-5, DISCOU-1, REXPLORE-
4) the Uncompressed version of the experiment could
not complete in five minutes, while the Compressed
version returned results in less then a minute. The ex-
ecution time of the experiments with the Optimized
reasoner (Figure 7a) is much smaller (fractions of a
second), having the maximum execution time of ap-
proximately 2 seconds (EventMedia-1). However, also

20Coefficient of Variation. https://en.wikipedia.org/
wiki/Coefficient_of_variation

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 15

Fig. 6. Naive reasoner: performance measures.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

3s

20s

1m

5m

(a) Naive reasoner: total execution time (T). The bar on the left of each experiment shows the average duration of the experiment with the
uncompressed input. The bar on the right the one with a compressed input.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

200ms
500ms

1s
3s

10s

1m

5m

(b) Naive reasoner: Setup/Query execution time (S/Q).

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

100ms

200ms

(c) Naive reasoner: resources load time (L).

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4
105%

100%

110%

(d) Naive reasoner: average CPU (Pa).

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4
100M

500M

·105

(e) Naive reasoner: max memory consumption (M).

16 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

Fig. 7. Optimized reasoner: performance measures.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

1.4s

2s

(a) Optimized reasoner: Total execution time (T).

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

10ms

50ms

500ms
1s
2s

(b) Optimized reasoner: Setup/Query execution time.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

50ms

100ms

(c) Optimized reasoner: resources load time.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

170%

180%

190%

200%

(d) Optimized reasoner: average CPU usage.

AEM
OO-1

DBREC-1

DBREC-2

DBREC-3

DBREC-4

DBREC-5

DBREC-6

DBREC-7

DBREC-8

DIS
COU-1

DIS
COU-11

Eve
ntM

ed
ia-

1

REXPLORE-1

REXPLORE-2

REXPLORE-4

160M

180M

170M

200M
·105

(e) Optimized reasoner: max memory consumption (RSS).

E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules 17

in this case we report a costant increase in perfor-
mance for all the use cases, in some cases significant
(DBREC-3, DBREC-4). We can divide the Total time
(T) of the experiment and observing setup time S and
query time Q. Setup time includes resources load time.
This observation is depicted in Figures 6c and 7c, and
in both cases the impact of the rules reduction pro-
cess is evident. An interesting difference between the
two implementations can be seen by comparing Fig-
ures 6b and 7b. The cost of the query time in the Naive
reasoner is very large compared to the related setup
time (S). The Optimized reasoner, conversely, showed
a larger setup time (S) with a very low query execution
(Q) cost. The reason is that the second materializes all
the inferences at setup time, before query execution.
This accounts for the lack of difference in query time
between the Uncompressed and Compressed version
of the experiments.

We did not observed changes in CPU usage (Pa) in
the Naive implementation (Figure 6d), while changes
in memory consumption (M) looks significant (Fig-
ure 6e). The boost in space consumption has been
also observed in the Optimized reasoner (Figures 6d
and 6e), even if smaller, and negative in only 2 cases
with regard to memory consumption (DBREC-1 and
DBREC-6).

A summary of the impact of the compression on the
different measures is depicted in Figures 8 and 9. A se-
rious improvement has been achieved in the case of the
Naive implementation of a PPR reasoner. Such a rea-
soner could be implemented in several different ways,
this is why we bring the experiments with the Opti-
mized implementation as a counter proof of the validity
of the hypothesis that the compression of the knowl-
edge base do actually have a positive impact on the rea-
soning process, even if in different ways depending on
the efficiency of the algorithms and implementations.

Inp
ut

Loa
d

Setu
p

Que
ry

Tota
l

CPU
RAM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 8. Naive reasoner: boost analysis.

Inp
ut

Loa
d

Setu
p

Que
ry

Tota
l

CPU
RAM

0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 9. Optimized reasoner: boost analysis.

6. Conclusions

In this article we presented an approach for reason-
ing on the propagation of policies in a data flow. This
method is grounded on a rule base of Policy Propaga-
tion Rules (PPRs). Rules can easily grow in number,
depending on the size of the possible policies and the
one of the possible operations performed in a data flow.
The (A)AAAA methodology can be used to reduce
this size significantly, as demonstrated in [8], by rely-
ing on the inference properties of the Datanode ontol-
ogy, applied to describe the possible relations between
data objects. We presented an evolved version of the
methodology, that was required to be sure the inferred
policies were correct when using the compressed rule
base. However, while this activity reduces the size of
the input of the reasoner, it requires to compute more
inferences. Therefore, we performed experiments to
assess the impact of the compression on reasoning per-
formance. The contributions of this article are two:

– the (A)AAAA methodology has been extended
by including a coherency check algorithm, and

– experimental results demonstrating that a com-
pressed knowledge base makes the reasoning on
policies propagation more efficient.

This is a preliminary step on studying compression
in knowledge management and its impact on reason-
ing in a more general point of view. Future work in-
cludes methods to support or automate the generation
of data flow descriptions and to study the validation of
data flows with respect to policies, particularly when
multiple sources are used. Finally, we are setting up
an experimental evaluation in the environment of the
MK:Smart Data Hub [9].

18 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

References

[1] G. Antoniou and G. Wagner. Rules and defeasible reason-
ing on the semantic web. In Schröder, Michael and Wagner,
Gerd, editor, Rules and Rule Markup Languages for the Se-
mantic Web, volume 2876 of Lecture Notes in Computer Sci-
ence, pages 111–120. Springer Berlin Heidelberg, 2003.

[2] J.-M. Bohli, A. Skarmeta, M. Victoria Moreno, D. Garcia, and
P. Langendorfer. Smartie project: Secure iot data management
for smart cities. In Recent Advances in Internet of Things
(RIoT), 2015 International Conference on, pages 1–6. IEEE,
2015.

[3] O. Boissier, M. Colombetti, M. Luck, J.-J. Meyer, and
A. Polleres. Norms, organizations, and semantics. The Knowl-
edge Engineering Review, 28(01):107–116, 2013.

[4] P. A. Bonatti and D. Olmedilla. Rule-based policy represen-
tation and reasoning for the semantic web. In Proceedings of
the Third International Summer School Conference on Rea-
soning Web, RW’07, pages 240–268, Berlin, Heidelberg, 2007.
Springer-Verlag.

[5] E. Boros, O. Čepek, and P. Kučera. A decomposition method
for cnf minimality proofs. Theoretical Computer Science,
510:111–126, 2013.

[6] E. Daga, M. d’Aquin, A. Gangemi, and E. Motta. A bottom-
up approach for licences classification and selection. In S. Vil-
lata and S. Peroni, editors, Proc. of the International Work-
shop on Legal Domain And Semantic Web Applications (LeDA-
SWAn) held during the 12th Extended Semantic Web Confer-
ence (ESWC 2015), pages 33–40. ACM, 2012.

[7] E. Daga, M. d’Aquin, A. Gangemi, and E. Motta. Describ-
ing semantic web applications through relations between data
nodes. Technical Report kmi-14-05, Knowledge Media Insti-
tute, The Open University, Walton Hall, Milton Keynes, 2014.

[8] E. Daga, M. d’Aquin, A. Gangemi, and E. Motta. Propagation
of policies in rich data flows. In Proceedings of the 8th In-
ternational Conference on Knowledge Capture, K-CAP 2015,
pages 5:1–5:8, New York, NY, USA, 2015. ACM.

[9] M. d’Aquin, A. Adamou, E. Daga, S. Liu, K. Thomas, and
E. Motta. Dealing with diversity in a smart-city datahub.
In T. Omitola, J. Breslin, and P. Barnaghi, editors, Proceed-
ings of the Fifth Workshop on Semantics for Smarter Cities, a
Workshop at the 13th International Semantic Web Conference
(ISWC 2014), Riva del Garda, Italy, 19 October 2014. CEUR-
WS.org.

[10] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and
M. Winslett. No registration needed: How to use declarative
policies and negotiation to access sensitive resources on the se-
mantic web. In The Semantic Web: Research and Applications,
pages 342–356. Springer, 2004.

[11] J. M. Gómez-Pérez and O. Corcho. Problem-solving methods
for understanding process executions. Computing in Science &

Engineering, 10(3):47–52, 2008.
[12] G. Governatori, H.-P. Lam, A. Rotolo, S. Villata, G. Atemez-

ing, and F. Gandon. Checking licenses compatibility between
vocabularies and data. In Proceedings of the Fifth International
Workshop on Consuming Linked Data (COLD2014), 2014.

[13] G. Governatori, A. Rotolo, S. Villata, and F. Gandon. One
license to compose them all. In The Semantic Web–ISWC 2013,
pages 151–166. Springer, 2013.

[14] P. L. Hammer and A. Kogan. Optimal compression of propo-
sitional horn knowledge bases: complexity and approximation.
Artificial Intelligence, 64(1):131–145, 1993.

[15] R. Iannella, S. Guth, D. PÃd’hler, and A. Kasten. ODRL: Open
Digital Rights Language 2.1. Technical report, W3C Commu-
nity Group, 2015.

[16] H. Khrouf and R. Troncy. Eventmedia: A lod dataset of events
illustrated with media. Semantic Web journal, Special Issue on
Linked Dataset descriptions, 7(2):193–199, 2016.

[17] H.-P. Lam and G. Governatori. The making of spindle. In Rule
Interchange and Applications, pages 315–322. Springer, 2009.

[18] H. Li, X. Zhang, H. Wu, and Y. Qu. Design and application of
rule based access control policies. In Proc of the Semantic Web
and Policy Workshop, pages 34–41, 2005.

[19] D. McGuinness, T. Lebo, and S. Sahoo. PROV-o: The
PROV ontology. W3C recommendation, W3C, Apr. 2013.
http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[20] E. Motta, T. Rajan, and M. Eisenstadt. Knowledge acquisi-
tion as a process of model refinement. Knowledge acquisition,
2(1):21–49, 1990.

[21] J. Padget and W. W. Vasconcelos. Policy-carrying data: A step
towards transparent data sharing. Procedia Computer Science,
52:59 – 66, 2015. The 6th International Conference on Ambi-
ent Systems, Networks and Technologies (ANT-2015), the 5th
International Conference on Sustainable Energy Information
Technology (SEIT-2015).

[22] V. Rodríguez-Doncel, S. Villata, and A. Gómez-Pérez. A
dataset of RDF licenses. In R. Hoekstra, editor, Legal Knowl-
edge and Information Systems. JURIX 2014: The Twenty-
Seventh Annual Conference. IOS Press, 2014.

[23] M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara.
Owl-polar: A framework for semantic policy representation
and reasoning. Web Semantics: Science, Services and Agents
on the World Wide Web, 12:148–160, 2012.

[24] R. Shaw, R. Troncy, and L. Hardman. Lode: Linking open
descriptions of events. In The Semantic Web, pages 153–167.
Springer, 2009.

[25] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engi-
neering: principles and methods. Data & knowledge engineer-
ing, 25(1):161–197, 1998.

[26] R. Wille. Formal concept analysis as mathematical theory of
concepts and concept hierarchies. In Formal Concept Analysis,
pages 1–33. Springer, 2005.

