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Abstract Accessing and utilizing enterprise or Web data that is scattered across multiple data sources is an important task for
both applications and users. Ontology-based data integration, where an ontology mediates between the raw data and its consumers,
is a promising approach to facilitate such scenarios. This approach crucially relies on useful mappings to relate the ontology
and the data, the latter being typically stored in relational databases. A number of systems to support the construction of such
mappings have recently been developed. A generic and effective benchmark for reliable and comparable evaluation of the practical
utility of such systems would make an important contribution to the development of ontology-based data integration systems
and their application in practice. We have proposed such a benchmark, called RODI. In this paper, we present a new version of
RODI, which significantly extends our previous benchmark, and we evaluate various systems with it. RODI includes test scenarios
from the domains of scientific conferences, geographical data, and oil and gas exploration. Scenarios are constituted of databases,
ontologies, and queries to test expected results. Systems that compute relational-to-ontology mappings can be evaluated using
RODI by checking how well they can handle various features of relational schemas and ontologies, and how well the computed
mappings work for query answering. Using RODI, we conducted a comprehensive evaluation of seven systems.

Keywords: Mappings, Relational databases, RDB2RDF, R2RML, Benchmarking, Bootstrapping

1. Introduction

1.1. Motivation

Accessing and utilizing enterprise or Web data that
is scattered across multiple databases is an important
task for both applications and users in many scenar-

*Corresponding author. E-mail: christoph.pinkel@fluidops.com.
**This paper is a significantly extended version of the conference

paper: “RODI: A Benchmark for Automatic Mapping Generation in
Relational-to-Ontology Data Integration” [37]

ios [30,8]. Ontology-based data integration is a promis-
ing approach to this task, and recently it has been suc-
cessfully applied in practice (e.g., [17]). The main idea
behind this approach is to employ an ontology to medi-
ate between data consumers and databases. Mappings
can then be used to either export data to consumers or
to translate (or rewrite) consumer queries into queries
over the underlying databases on the fly. The latter
approach is often referred to as ontology-based data
access (OBDA).

Ontology-based data integration crucially depends on
usable and useful ontologies and mappings. Ontology
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development has attracted a lot of attention in the last
decade, and ontologies have been developed for various
domains including life sciences (e.g., [19]), medicine
(e.g., [25]), the energy sector (e.g., [16]), and others.
Many of these ontologies are generic enough to be
useful as a target ontology in a significant number of
ontology-based integration scenarios.

The development of reusable mappings has, how-
ever, received much less attention. Moreover, mappings
are typically tailored to relate one specific pair of an
ontology and one specific database. As a result, map-
pings typically cannot be as easily reused as ontolo-
gies across integration scenarios. Thus, each new inte-
gration scenario essentially requires the development
of its own mappings. This is a complex and time con-
suming process. Hence, it calls for automatic or semi-
automatic support, i.e., for systems that (semi-) auto-
matically construct useful mappings. In order to ad-
dress this challenge, a number of systems that gener-
ate relational-to-ontology mappings have recently been
developed [10,38,14,53,6,45,3].

The quality of such generated relational-to-ontology
mappings is usually evaluated using self-designed and
therefore potentially biased benchmarks. This situation
makes it particularly difficult to compare results across
systems. Consequently, there is not enough evidence
to select an adequate mapping generation system in
ontology-based data integration projects. What matters
at the end of the day in practice is whether the generated
mappings are usable and useful for the task at hand. We
therefore consider mapping quality as mapping utility
w.r.t. a query workload posed against the mapped data.1

This is of particular importance in large-scale industrial
projects where support from (semi-)automatic systems
is vital (e.g., [17]), In order to help ontology-based
data integration finding its way into mainstream prac-
tice, there is a need for a generic and effective bench-
mark that can be used for the reliable evaluation of the
quality of computed mappings w.r.t. their utility under
actual query workloads. RODI, our mapping-quality
benchmark for Relational-to-Ontology Data Integration
scenarios, addresses this challenge.

1.2. RODI Benchmark Approach

The RODI benchmark is composed of (i) a soft-
ware framework to test systems that generate mappings
between relational schemata [26] and OWL 2 ontolo-
gies [2], (ii) a scoring function to measure the quality of

1Utility has also been referred to as fitness for use in similar con-
texts in parts of the literature, e.g., [55].
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Figure 1. RODI benchmark overview

system-generated mappings, (iii) different datasets and
queries for benchmarking, which we call benchmark
scenarios, and (iv) a mechanism to extend the bench-
mark with additional scenarios. Using RODI one can
evaluate the quality of relational-to-ontology mappings
produced by systems for ontology-based data integra-
tion from two perspectives: how good the mappings can
translate between various particularities of relational
schemata and ontologies, and how good they are from
the query answering perspective.

To make this possible, RODI is designed as an end-to-
end benchmark. That is, we consider systems that can
produce mappings directly between relational databases
and ontologies. Also, we evaluate mappings according
to their utility for an actual query workload.

Figure 1 schematically depicts the RODI architecture:
the benchmark comes with a number of benchmark
scenarios. Scenarios are initialized and set up for use
by the framework. Candidate systems then read their
input from the active scenario and produce mappings,
which are evaluated again by our framework.

1.3. Contributions

In this section we summarize the main contributions
of the RODI benchmark. We note that an earlier version
of RODI has been introduced in [37]. In this paper we
significantly extend our earlier results in several impor-
tant directions: we extended the systematic analyses of
challenges and related approaches; we now cover sev-
eral new benchmark scenarios as well as additional test
categories; we significantly extended the scope of the
experimental study and now we cover seven different
systems.

In the following we describe the main characteristics
of RODI and highlight the enhancements with respect
to its predecessor [37].
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– Systematic analyses of challenges and existing ap-
proaches in relational-to-ontology mapping gener-
ation: these support and explain the types of chal-
lenges systematically tested by RODI. This paper
contains an updated summary of previous work in
addition to a newly added discussion of mapping
approaches.

– Evaluation scenarios: RODI consists of data in-
tegration test scenarios from the domains of con-
ferencing, geographical data, and oil and gas ex-
ploration. Scenarios are constituted of databases,
ontologies, and queries to check expected results.
Components of the scenarios are developed in
such a way that they capture the key challenges
of relational-to-ontology mapping generation. The
version of RODI presented in this paper contains
18 scenarios in three different domains, as opposed
to only 9 scenarios from two domains in the pre-
vious version of the benchmark [37]. The newly
added scenarios focus on features that are impor-
tant to test mapping quality under real-world chal-
lenges, such as high semantic heterogeneity or
complex query workloads in different application
domains.

– The RODI framework: the RODI software pack-
age, including all scenarios, has been implemented
and made available for public download under an
open source license.2 In this paper we describe
the new version of the framework in greater detail
than before, so readers could thoroughly under-
stand and independently judge RODI’s evaluation
procedures. Readers should also be able to use the
paper as a starting point for applying the bench-
mark by themselves. To this end, we also added for
the first time a description of key implementation
details.

– System Evaluation: we have used RODI to evalu-
ate seven relational-to-ontology mapping systems:
BootOX [14], COMA++ [11], IncMap [38], MIR-
ROR [6], the -ontop- bootstrapper [12], D2RQ [3],
and Karma [10]. The systems are chosen in a way
that they cover the breadth of recent and tradi-
tional approaches in (semi-)automatic schema-to-
ontology mapping generation. The insights gained
from the evaluation allow us to point out specific
strengths and weaknesses of individual systems
and to propose how they can be improved. Com-
pared to our preliminary experiments from [37],

2Ready-to-use RODI distribution available at: http://www.
cs.ox.ac.uk/isg/tools/RODI/. Source code available on
GitHub: https://github.com/chrpin/rodi

the study presented in this paper extends not only
to twice as many benchmark scenarios as be-
fore and adds three additional systems, COMA++,
D2RQ and Karma, but it also gives much greater
detail on several result aspects, such as a discus-
sion of support for 1:n and n:1 mappings, and for
the first time it also includes semi-automatic ex-
periments. In total, we present numbers for seven
different reporting categories and drill-downs, as
compared to only two in our preliminary study.
Also, the accompanying discussion adds signifi-
cant detailed insights over the earlier paper.

In the new version of RODI, we have also modified
all benchmark scenarios to produce more specific indi-
vidual scores rather than aggregated values for relevant
categories of tests. In addition, we have extended the
benchmark framework to allow detailed debugging of
the results for each individual test. On that basis we
now could point to individual issues and bugs in several
systems, some of which have already been addressed
by the authors of the evaluated systems.

1.4. Outline

First, we present our analysis of the different types
of mapping challenges for relational-to-ontology map-
ping generation in Section 2. Then, in Section 3 we
discuss differences in mapping generation approaches
that impact mapping generation, and thus also need
to be considered for designing appropriate evaluation
approaches. Section 4 presents our benchmark suite
and the evaluation procedure. Afterwards, Section 5
discusses some implementation details that should help
researchers and practitioners to understand how their
systems could be evaluated in our benchmarking suite.
Section 6 then presents our evaluation, including a de-
tailed discussion of results. Finally, Section 7 summa-
rizes related work and Section 8 concludes the paper
and provides an outlook on future work.

2. Mapping Challenges

In the following we give a summary of our classi-
fication of different types of mapping challenges in
relational-to-ontology data integration scenarios. For a
more detailed discussion, please refer to [37]. As a high-
level classification, we use the standard classification
for data integration described by Batini et al. [1]: nam-
ing conflicts, structural heterogeneity, and semantic het-
erogeneity. For each of these classes, we list and briefly
describe the key challenges that we have identified.

http://www.cs.ox.ac.uk/isg/tools/RODI/
http://www.cs.ox.ac.uk/isg/tools/RODI/
https://github.com/chrpin/rodi
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2.1. Naming Conflicts

Typically, relational database schemata and ontolo-
gies use different conventions to name their artifacts
even when they model the same domain based on the
same specification and thus should use a similar termi-
nology. The main challenge here is to be able to find
similar names despite the different naming patterns. We
are particularly interested in differences that are specific
to inter-model matching and come on top of other nam-
ing differences, which commonly exist in other schema
matching cases as well.

2.2. Structural Heterogeneity

The most important differences in relational-to-
ontology integration scenarios, compared to other in-
tegration scenarios, are structural heterogeneities. Ta-
ble 1 lists all specific testable relational-to-ontology
structural challenges that we have identified.

In brief, there are type conflicts resulting from nor-
malization, denormalization or different modeling of
class hierarchies, key conflicts, and dependency con-
flicts.

2.2.1. Type Conflicts
Most real-world relational schemata and correspond-

ing ontologies cannot be related by any simple canon-
ical mapping. This is because big differences exist in
the way how the same concepts are modeled (i.e., type
conflicts). One reason why these differences are so big
is that relational schemata often are optimized towards
a given workload (e.g., they are normalized for update-
intensive workloads or denormalized for read-intensive
workloads). Ontologies, on the other side, model a do-
main on the conceptual level, albeit with different de-
grees of expressiveness and thus conceptual richness.
Another reason is that some modeling elements have
no single canonical translation (e.g., class hierarchies
in ontologies can be mapped to relational schemata in
different ways). In the following, we list the different
type conflicts covered by RODI:

1. Normalization artifacts: Often properties that be-
long to a class in an ontology are spread over dif-
ferent tables in the relational schema as a conse-
quence of normalization.

2. Denormalization artifacts: For read-intensive
workloads, tables are often denormalized. Thus,
properties of different classes in the ontology
might map to attributes in the same table.

3. Class hierarchies: Ontologies typically make use
of explicit class hierarchies. Relational models

implement class hierarchies implicitly, typically
using one of three different common modeling
patterns (c.f., [26, Chap. 3]). (i) The relational
schema materializes several subclasses in the same
table and uses additional attributes to indicate the
subclass of each individual. With this variant, map-
ping systems have to resolve n:1 matches, i.e.,
they need to filter from one single table to extract
information about different classes. (ii) Use one
table per most specific class in the class hierarchy
and materialize the inherited attributes in each ta-
ble separately. Thus, the same property of the on-
tology must be mapped to several tables, leading
to 1:n matches. (iii) Use one table for each class
in the hierarchy, including the possibly abstract
superclasses. Tables then use primary key-foreign
key references to indicate the subclass relation-
ship.

2.2.2. Key Conflicts
In ontologies and relational schemata, keys and ref-

erences are represented differently.

1. Keys: Keys in databases are usually implemented
using primary keys and unique constraints, while
ontologies use IRIs for individuals. The challenge
is that integration tools must be able to compose
or skolemize appropriate IRIs.

2. References: While typically modeled as foreign
keys in relational schemata, ontologies use ob-
ject properties. Moreover, sometimes relational
databases do not model foreign key constraints at
all.

2.2.3. Dependency Conflicts
These conflicts arise when a group of concepts are

related among each other with different dependencies
(i.e., 1:1, 1:n, n:m) in the relational schema and the
ontology. Relational schemata also often model n:m
relationships using an additional connecting table.

2.3. Semantic Heterogeneity

Semantic heterogeneity plays a highly important role
for data integration in general. Therefore, we exten-
sively test scenarios that bring significant semantic het-
erogeneity.

Besides the usual semantic differences between any
two conceptual models of the same domain, three ad-
ditional factors apply in relational-to-ontology data in-
tegration: (i) the impedance mismatch caused by the
object-relational gap, i.e., ontologies group information
around entities (objects) while relational databases en-
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Table 1
Detailed list of specific structural mapping challenges. RDB patterns
may correspond to some of the “guiding” ontology axioms. Specific
difficulties explain particular hurdles in constructing mappings.

# Challenge type RDB pattern Examples of relevant guiding OWL axioms Specific difficulty

(1) Normalization Weak entity table (depends on other ta-
ble, e.g., in a part-of relationship) owl:Class JOIN to extract full IDs

(2) 1:n attribute owl:DatatypeProperty JOIN to relate attribute with entity ID
(3) 1:n relation owl:ObjectProperty, owl:InverseFunctionalProperty JOIN to relate entity IDs
(4) n:m relation owl:ObjectProperty 3-way JOIN to relate entity IDs

(5) Indirect n:m relation (using additional
intermediary tables) owl:ObjectProperty k-way JOIN to relate entity IDs

(6) Denormalization Correlated entities (in shared table) owl:Class Filter condition

(7) Multi-value
owl:DatatypeProperty, owl:minCardinality [>1],
owl:maxCardinality [>1], owl:cardinality [>1]

Handling of duplicate IDs

(8) Class hierarchies 1:n property match rdfs:subClassOf, owl:unionOf, owl:disjointWith UNION to assemble redundant properties
(9) n:1 class match with type column rdfs:subClassOf, owl:unionOf Filter condition

(10) n:1 class match without type column rdfs:subClassOf, owl:unionOf JOIN condition as implicit filter

(11)Key conflicts Plain composite key owl:Class, owl:hasKey Technical handling (e.g., Skolemnization)

(12) Composite key, n:1 class matching to
partial keys owl:Class, owl:hasKey, rdfs:subClassOf Choice of correct partial keys

(13) Missing key (e.g., no UNIQUE con-
straint on secondary key) owl:Class, owl:hasKey Choice of correct non-key attribute as ID

(14) Missing reference (no foreign key where
relevant relation exists) owl:ObjectProperty, owl:DatatypeProperty Unconstrained attributes as references

(15)Dependency
conflicts 1:n attribute

owl:FunctionalProperty, owl:minCardinality [>1],
owl:maxCardinality [>1], owl:cardinality [>1]

Misleading guiding axioms; possible re-
striction violations

(16) 1:n relation
owl:FunctionalProperty, owl:minCardinality [>1],
owl:maxCardinality [>1], owl:cardinality [>1]

Misleading guiding axioms; possible re-
striction violations

(17) n:m relation
owl:FunctionalProperty, owl:InverseFunctionalProperty,
owl:minCardinality [>1], owl:maxCardinality [>1],
owl:cardinality [>1]

Misleading guiding axioms; possible re-
striction violations

code them in a series of values that are structured in rela-
tions; (ii) the impedance mismatch between the closed-
world assumption (CWA) in databases and the open-
world assumption (OWA) in ontologies; and (iii) the
difference in semantic expressiveness, i.e., databases
may model some concepts or data explicitly where they
are derived logically in ontologies.3

All of them are inherent to all relational-to-ontology
mapping problems.

3. Analysis of Mapping Approaches

Different mapping generation systems make differ-
ent assumptions and implement different approaches.
Thus, a benchmark needs to consider each approach
appropriately.

3.1. Differences in Availability and Relevance of Input

Different input may be available to an automatic map-
ping generator. In relational-to-ontology data integra-
tion, the main difference on available input concerns

3Some databases may choose to implement calculations with an
equivalent effect to some forms of inference, e.g., by using stored
procedures for the purpose. We do not consider such programmatic
schema extensions.

the target ontology. The ontology could be specified
entirely and in detail, or it could still be incomplete
(or even missing) when mapping construction starts.
Other differences comprise the availability of data or of
a query workload.

The case where both the relational database schema
and the ontology are completely available could be
motivated by different situations. For example, a com-
pany may wish to integrate a relational data source into
an existing, mature, Semantic Web application. In this
case, the target ontology would already be well defined
and would also be populated with some A-Box data. In
addition, a SPARQL query workload could be known
and could be available as additional input to a mapping
generator.

On the other side, relational-to-ontology data inte-
gration might be motivated by a large-scale industry
data integration scenario (e.g., [15,18]). In this scenario,
the task at hand is to make complex and confusing
schemata easier to understand for experts who write
specialized queries. In this case, at the beginning no
real ontology is given. At best there might be an initial,
incomplete vocabulary.

Essentially, the different scenarios can all be distin-
guished by the following question: which information
is available as input, besides the relational database?
We always assume that the relational source database is
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completely accessible (both schema and data), as this
is a fundamental requirement without which relational-
to-ontology data integration applications cannot reason-
ably be motivated. Besides the availability of input for
mapping generation, there could be additional knowl-
edge about which parts of the input are even relevant.
For instance, it may be clear that only parts of the on-
tology that are being used by a certain query workload
need to be mapped. If so, this information could also
be leveraged by the mapping generation system (e.g.,
by analyzing the query workload).

It has to be noted that some other and different moti-
vations to work with relational-to-ontology mappings
exist as well: for instance, a database schema might be
developed or generated to serve as a storage engine for
an existing ontology (e.g., [27]). We do not consider
these cases but rather think of them as the inverse of
what happens for relational-to-ontology mapping gen-
eration. Similarly, we consider questions of mapping
evolution as a related but separate problem.

For the RODI benchmark design we consider dif-
ferent forms of input by means of RODI’s composi-
tion, offering database, ontology, data and queries, parts
of which can be used as additional input to mapping
generators.

3.2. Differences in the Mapping Process

Other differences can arise from the process in which
mapping generation is approached. These can be ei-
ther fully-automatic approaches or semi-automatic ap-
proaches. Truly semi-automatic approaches are usually
iterative [24], as they consist of a sequence of map-
ping generation steps that get interrupted to allow hu-
man feedback, corrections, or other input. Their pro-
cess is driven by the human perspective rather than by
an automatic component. Since we want to better ad-
just our benchmark to the semi-automatic approaches,
we first discuss different ways that are known for the
semi-automatic case.

Heyvaert et al. [21] have recently identified four dif-
ferent ways for manual relational-to-ontology mapping
creation. Each of those directions inflicts a different
interaction paradigm between the system and the user
and thus solicits different forms of human input: users
can edit mappings based on either the source or target
definitions, they can drive the process by providing re-
sult examples or could theoretically even edit mappings
irrespective of either the source or target in an abstract
fashion. Some of us have also earlier identified two
fundamentally different user perspectives on mapping
generation [9] that drive the process in a different or-

der depending on whether the user feels more at home
with the source database or with the target ontology.
Moreover, while some approaches consider manual cor-
rections only at the end of the mapping process, more
thoroughly semi-automatic approaches allow or even
require such input during the process.

In terms of their potential evaluation, iterative ap-
proaches of this kind must be considered according to
two additional characteristics: First, whether iterative
human input is mandatory or generally optional. Sec-
ond, whether input is only used to improve the mapping
as such, or if the systems also exploit it as feedback
for their next automated iteration. Systems that solicit
input only optionally and do not use it as feedback can
be evaluated like non-iterative systems on a fully auto-
matic baseline without limitations. Systems with only
optional input that do learn from the feedback (if pro-
vided), can still be evaluated on the same baseline but
may not demonstrate their full potential. Where input
is mandatory, systems need to be either steered by an
actual human user or at least require simulated human
input produced by an oracle.

Next, the kind of human input that a system can pro-
cess makes a difference for evaluation settings. Most
semi-automatic systems either provide suggestions that
users can confirm or delete, or they allow users to manu-
ally adjust the mapping. An alternative approach is map-
ping by example, where users provide expected results.
In addition, however, some systems may require com-
plex or indirect interactions, or simply resort to more
unusual forms of input that cannot easily be foreseen.

Each mapping generation system is usually tied to
one specific approach and does not allow for much
freedom.

We therefore decided that an end-to-end evaluation
that allows the use of different types of input is best.
Since semi-automatic approaches are becoming more
and more relevant, we decided to support them using
an automated oracle that simulates user input where
possible.

4. RODI Benchmark Suite

In the following, we present the details of our RODI
benchmark: we first give an overview, then we discuss
the data sets (relational schemata and ontologies) that
can be used, as well as the queries. Finally, we present
our scoring function to evaluate the benchmark results.
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Figure 2. Overview of RODI benchmark scenarios

4.1. Overview

Figure 2 gives an overview of the scenarios used in
our benchmark. The benchmark ships with data sets
from three different application domains: conferences,
geodata, and the oil & gas exploration domain. In its
basic mode of operation, the benchmark provides one
or more target ontologies for each of those domains
(T-Box only) together with relational source databases
for each ontology (schema and data). For some of the
ontologies there are different variants of accompanying
relational schemata that systematically vary the types
of the targeted mapping challenges.

The benchmark asks the systems to create mapping
rules from the different source databases to their corre-
sponding target ontologies. We call each such combi-
nation of a database and an ontology a benchmark sce-
nario. For evaluation, we provide for each scenario a se-
ries of query pairs to test a range of mapping challenges
as illustrated in Figure 3. Every query pair consists of
a SPARQL query (“test query”) against the ontology,
and a semantically equivalent SQL query (“reference
query”) against the provided SQL database. The test
query runs against RDF data that results from applying
the mapping rules of the matching system under con-
sideration. The reference query is directly evaluated by
RODI against the SQL database. The results are com-
pared for each query pair and are aggregated in the light
of different mapping challenges using our scoring func-
tion. For this, all query pairs are tagged with categories,
relating them to different mapping challenges.

While challenges that result from different naming or
semantic heterogeneity are mostly covered by complete
scenarios, we target structural challenges on a more fine-
granular level of individual query tests with a dedicated
score. To this end, we add a corresponding category tag
to query tests that address certain challenges. We target
all structural challenges as previously listed in Table 1
in one or more scenarios.

Scenario ontology 
+ mapped data

Database

SPARQL
(test)

SQL
(reference)

Query Pair

Score

evaluate

evaluate

reference result

test 
result

Figure 3. Query pair evaluation

Multi-source integration can be tested as a sequence
of different scenarios that share the same target ontol-
ogy. Although it has to be noted that some specific chal-
lenges in multi-source integration, especially conflicts
introduced by different sources, may not become vis-
ible in sequential tests, this setup covers a wide range
of multi-source mapping challenges. We include spe-
cialized scenarios for such testing with the conference
domain.

In order to be open for other data sets and differ-
ent domains, our benchmark can be easily extended
to include scenarios with real-world ontologies and
databases.

While all of our included default scenarios focus on
schema-level matching, some cases in the real-world
additionally demand data transformations to work fully
as expected. These comprise translations between dif-
ferent representations of date and time (e.g., a dedicated
date type versus Epoch time stamps), simple numeric
unit transformations (e.g., MB vs. GB), unit transfor-
mations requiring more complex formulae (e.g., de-
grees Celsius vs. Fahrenheit), string-based data cleans-
ing (e.g., removing trailing whitespace), string com-
positions (e.g., concatenating a first and last name),
more complex string modifications (e.g., breaking up
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a string based on a learned regular expression), table-
based name translations (e.g., replacing names using
a thesaurus), noise removal (e.g., ignoring erroneous
tuples), etc. Our extension mechanism (see Section 4.5)
is suited to add dedicated scenarios for testing such con-
versions, however, we excluded them from our default
benchmark for a merely practical reason: To the best of
our knowledge no current relational-to-ontology map-
ping generation system implements any such transfor-
mation functionality to date, so there is little practical
use for benchmarking it.

In the following we present the data sources (i.e., on-
tologies and relational schemata) as well as the combi-
nations used as integration scenarios for the benchmark
in more details. RODI ships with scenarios based on
data sources from three different application domains.

4.2. Conference Scenarios

We chose the conference domain as our primary test-
ing domain since (i) it is well understood and compre-
hensible even for non-domain experts, (ii) it is complex
enough for realistic testing, and (iii) it has been success-
fully used as the domain of choice in other benchmarks
before (e.g., [52,23,4]). While we ship several different
variants of scenarios for this domain, which vary in
size and complexity, they are all built around a core
fragment comprising 23 classes and 77 properties.

4.2.1. Ontologies
The conference ontologies in this benchmark are pro-

vided by the Ontology Alignment Evaluation Initiative
(OAEI) [52,23,4] and were originally developed by the
OntoFarm project [20]. We selected three particular on-
tologies (CMT, SIGKDD, CONFERENCE) based on a
number of criteria: variation in size, the presence of car-
dinalities (especially, functionality of relationships), the
coverage of the domain, variations in modeling style,
and the expressive power of the ontology language used.
Different modeling styles result from the fact that each
ontology was modeled by different people based on
various views on the domain, e.g., they modeled it ac-
cording to an existing conference management tool, ex-
pert insider knowledge, or according to a conference
website. To cover our mapping challenges (Section 2),
we selectively modified the ontologies (e.g., we added
labels to add interesting lexical matching challenges)
as follows: (i) we selectively added annotations like
labels and comments, as these can help to identify cor-
respondences lexically; (ii) we added a few additional
datatype properties where they were scarce, as they test
other mapping challenges than just classes and object
properties; and (iii) we fixed a total of seven inconsis-

tencies that we discovered in SIGKDD when adding A-
Box facts (e.g., each place with a zip code automatically
became a sponsor, which was modeled as a subclass of
person).

4.2.2. Relational Schemata
We synthetically derived different relational schemata

for each of the ontologies, focusing on different map-
ping challenges. We provide benchmark scenarios as
combinations of those derived schemata with either
their ontologies of origin, or, for more advanced test-
ing, paired with any of the other ontologies. First, for
each ontology we derived a relational schema using a
canonical mapping as described in [27]: The algorithm
works by deriving an entity-relationship (ER) model
from an OWL ontology. It then translates this ER model
into a relational schema according to textbook rules
(e.g., [26]). For this paper, we extended this algorithm
to cover the full range of expected relational design
patterns. Additionally, we extended this algorithm to
consider ontology instance data to derive more proper
functionalities (rather than just looking at the T-Box as
the previous algorithms do). Otherwise, the generated
canonical relational schemata would have contained an
unrealistically high number of n:m-relationship tables.
The canonical schemata are guaranteed to be in fourth
normal form (4NF), fulfilling normalization require-
ments of standard design practices. Thus, they already
include various normalization artifacts as mapping chal-
lenges.

From the canonical schema corresponding to each
of the ontologies, we systematically created different
variants by introducing different aspects on how a real-
world schema may differ from the canonical one and
thus to test different mapping challenges:

1. Adjusted Naming: As described in Section 2.1,
ontology designers typically consider other nam-
ing schemes than database architects do, even
when implementing the same (verbal) specifica-
tion. Those differences include longer vs. shorter
names, “speaking” prefixes, human-readable prop-
erty IRIs vs. technical abbreviations (e.g., “has-
Role” vs. "RID"), camel case vs. underscore tok-
enization, preferred use of singular vs. plural, and
others. For each canonical schema, we automat-
ically generated a variant with identifier names
changed in this way.

2. Restructured Hierarchies: The most critical struc-
tural challenge in terms of difficulty comes with
different relational design patterns to model class
hierarchies more or less implicitly. As we have dis-
cussed in Section 2.2, these changes introduce sig-
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nificant structural dissimilarities between source
and target. We automatically derive variants of all
canonical schemata where different hierarchy de-
sign patterns are used. The choice of design pat-
tern in each case is algorithmically determined on
a “best fit” approach considering the number of
specific and shared (inherited) attributes for each
of the classes. For instance, a small number of
sibling classes would be split over several tables
if they mostly used different properties but they
would be rather joined together in a single table
if they would mostly make use of the same set of
properties.

3. Combined Case: In the real world, both of the pre-
vious cases (i.e., adjusted naming and hierarchies)
would usually apply at the same time. To find out
how tools cope with such a situation, we also built
scenarios where both are combined.

4. Removing Foreign Keys: Although it is considered
as bad style, databases without foreign keys are
not uncommon in real-world applications. This
can be a result of lazy design, or due to legacy
applications (e.g., one popular open source DBMS
introduced plugin-free support for foreign keys
less than five years ago). The mapping challenge
is that mapping tools must find the join paths to
connect tables of different entities. Additionally,
they sometimes even need to guess a join path for
reading attributes of the same entity if its data is
split over several tables as a consequence of nor-
malization. Therefore, we have created one dedi-
cated scenario to test this challenge with the CON-
FERENCE ontology and based it on the schema
variant with restructured hierarchies.

5. Partial Denormalization: In many cases, schemata
are partially denormalized to optimize for a cer-
tain read-mostly workload. Denormalization es-
sentially means that correlated (yet separated) in-
formation is jointly stored in the same table and
partially redundant. We provide one such scenario
for the CMT ontology. As denormalization re-
quires conscious design choices, this schema is
the only one that we had to hand-craft. It is based
on the variant with restructured hierarchies.

4.2.3. Integration Scenarios
For each of our three main ontologies, CMT, CON-

FERENCE, and SIGKDD, the benchmark includes five
scenarios (including basic and cross-matching scenar-
ios), each with a different variant of the database
schema (discussed before). Table 2 lists the different
(basic) scenario variants.

Table 2
Basic scenario variants (non-default scenarios are put in parentheses)

CMTCONFERENCESIGKDD

Canonical (X) (X) (X)
Adjusted Naming X X X

Restructured Hierarchies X X X

Combined Case (X) (X) X

Missing FKs - X -
Denormalized X - -

As discussed before, Canonical closely mimics the
structure of the original ontology, but the schemata are
normalized and thus the scenario contains the challenge
of normalization artifacts. Adjusted Naming adds the
naming conflicts as discussed before. Restructured hi-
erarchies tests the critical structural challenge of dif-
ferent relational patterns to model class hierarchies,
which, among others, subsumes the challenge to cor-
rectly build n:1 mappings between classes and tables.
In the Combined Case, naming conflicts and restruc-
tured hierarchies are employed and their effects are
tested in combination. This is a more advanced test case.
A special challenge arises from databases with no (or
few) foreign key constraints (Missing FKs). In such a
scenario, mapping tools must guess the join paths to
connect tables that correspond to different entity types.
The technical mapping challenge arising from Denor-
malized schemata consists in identifying the correct
partial key for each of those correlated entities, and to
identify which attributes and relations belong to which
of the types.

To keep the number of scenarios small for the de-
fault setup, we differentiate between default scenarios
and non-default scenarios. We excluded scenarios with
the most trivial schema versions. In addition, we did
limit the number of combinations for the most complex
schema versions by including only one of each type as a
default scenario. While the default scenarios are manda-
tory to cover all mapping challenges, the non-default
scenarios are optional (i.e., users could decide to run
them in order to gain additional insights). Non-default
scenarios are put in parentheses in Table 2. However,
they are not supposed to be executed in a default run of
the benchmark.

We also include cross-matching scenarios that re-
quire mappings of schemata to one of the other ontolo-
gies (e.g., mapping a CMT database schema variant to
the SIGKDD ontology). They represent more advanced
data integration scenarios and belong to the default
scenarios.
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4.2.4. Data
We provide data to fill both the databases and ontolo-

gies. The conference ontologies are originally provided
as T-Boxes only, i.e., no A-Box. We first generate data
as A-Box facts for the different ontologies, and then
transform them into the corresponding relational data
using the same process as for translating the T-Box. For
the technical process of evaluating generated mappings
data is only needed in the relational databases. Hence,
generating ontology A-Boxes would not even be nec-
essary for this purpose alone. However, this procedure
simplifies data generation since all databases can be
automatically derived from the given ontologies as de-
scribed before. Our conference data generator determin-
istically produces a scalable amount of synthetic facts
around key concepts in the ontologies, such as confer-
ences, papers, authors, reviewers, and others. In total,
we generate data for 23 classes, 66 object properties
(including inverse properties) and 11 datatype proper-
ties (some of which apply to several classes). However,
not all of those concepts and properties are supported
by every ontology. For each ontology, we only generate
facts for the subset of classes and properties that have
an equivalent in the relational schema in question.

4.2.5. Queries
For the conference scenarios, all scenarios draw on

the same pool of 56 query pairs, accordingly translated
for each ontology and schema. The benchmark queries
on the conference scenarios are rather simple, using
either only one concept and a property of it, or one
relationship and two concepts with one property each.
So each query tests, and in case of its failure indicates
a certain mapping challenge. However, the same query
may face different challenges in different scenarios,
e.g., a simple 1:1 mapping between a class and table
in a canonical scenario can turn into a complicated
n:1 mapping problem in a scenario with restructured
hierarchies. Also, not all query pairs are applicable on
all conference ontologies (and thus, on their derived
schemata).

Query pairs are grouped into three basic categories
to test the correct mapping of class instances, instan-
tiations of datatype properties and object properties,
respectively. Additional categories relate queries to n:1
and n:m mapping problems or prolonged property join
paths resulting from normalization artifacts. A specific
category exists for the de-normalization challenge.

4.3. Geodata Domain – Mondial Scenarios

As a second application domain, RODI ships scenar-
ios in the domain of geographical data.

The Mondial database [33] is a manually curated
database containing information about countries, cities,
organizations, and geographic features such as waters
(with subclasses lakes, rivers, and seas), mountains, and
islands. It has been designed as a medium-sized case
study (6,000 real-world objects; 16,000 RDF IRIs, 50
properties, 90,000 RDF triples) for several scientific
aspects and data models.4

Based on Mondial, we have developed a number
of benchmark scenarios, which combine the Mondial
OWL ontology with a series of different relational
schemata. The OWL ontology is quite sophisticated,
using many OWL constructs, and providing many po-
tential challenges, e.g.:

– properties whose domain is neither a single class,
nor some kind of top class (like usually for the
name property) but a union of several classes (e.g.,
area, which is a property of countries, provinces,
lakes, islands etc.).

– multiple properties between the same domain and
range, distinguishable by the cardinality: Coun-
try.capital is functional with cities as range, while
Country.hasCity is 1:n.

– properties that are functional on some subdomain,
and n:m on another subdomain (e.g., locatedOnIs-
land which is functional for mountains and n:m
for cities).

– properties that have a named union class as range:
the range of City.locatedAt is waters, with rivers,
lakes and seas as subclasses.

For the Mondial scenarios, we use a query work-
load that mainly approximates real-world explorative
queries on the data, although limited to queries of low
or medium complexity. The queries typically combine
more than one concept, or several attributes, or several
relationships with a common class. The degree of dif-
ficulty in the Mondial scenarios is therefore generally
higher than in the conference domain scenarios.

There is only a single default scenario, which is based
on the original relational Mondial database (42 tables,
160 columns, 60 foreign keys, and 43,000 tuples). It fea-
tures a wide range of relational modeling patterns and
it also differs from the canonical relational schema in
some well-chosen aspects. With these changed aspects
it mimicks a “real-life” (legacy) relational database
schema:

– classical relational keys/foreign keys built upon
literal-valued attributes. Most of them are unary

4http://www.dbis.informatik.uni-goettingen.
de/Mondial/

http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://www.dbis.informatik.uni-goettingen.de/Mondial/
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(usually, the name attribute), but e.g. City(name,
country, province) is a weak entity type whose key
consists of multiple components.

– E.g., the above-mentioned City.locatedAt n:m
property cannot be stored in a single n:m table
since the foreign keys of the range would have to
reference several tables for the different subclasses
of waters. So another, even slightly denormal-
ized modeling locatedAt(city,province,country,river,
lake,sea) has been chosen (where a city located
at two rivers and one sea requires two tuples, and
the relation has no key since each of the watertype
references may be null in some tuples).

In addition, we have designed a systematical series
of further scenarios with synthetically modified vari-
ants of the canonical relational schema. To keep the
number of tested scenarios at bay, we do not consider
those additional synthetic variants as part of the default
benchmark. Instead, we recommend these as optional
tests to dig deeper into specific patterns. These scenar-
ios are similar to the different variants produced in the
conference domain, with the additional feature that the
database schema and the queries are explicitly designed
to test the following crucial elements:

– for all scenarios based on the canonical relational
schema, all keys/foreign keys are the IRIs.

– different modeling variants of the class hierarchy
wrt. Water/River/Lake/Sea and Mountain/Volcano;

– a variant where all classes mentioned in the ontol-
ogy, including typically abstract ones like Political-
Body, have an own table, each functional property
is stored with the most abstract class, and foreign
keys also reference the most abstract class;

– different modeling variants of functional proper-
ties whose domain is a union of classes like area,
population and capital (ranging over cities);

– different modeling variants of City.locatedOnIsland
(1:n) and Mountain.locatedOnIsland (n:m);

– case-sensitive vs. case-insensitive;
– a variant where all properties are n:m.

The challenges for the matching systems are not only
to produce the appropriate mapping, but also to gener-
ate appropriate rules incorporating join paths, which is
checked by the design of the benchmark queries. With
these scenarios, the behavior of a system can be checked
systematically, and even further database variants can
easily be designed.

A typical (but already high-end) query is e.g.
SELECT ?CN ?MN ?IN
WHERE { ?C a :City; :name ?CN; :locatedOnIsland ?I .

?M a :Mountain; :name ?MN; :locatedOnIsland ?I .
?I :name ?IN . }

where information from the City table (functional:
name) must be combined with the n:m property
City.locatedOnIsland; for Mountain, both properties are
functional and might be found in the Mountain table,
and a lookup for the Island’s name must be made.

4.4. Oil & Gas Domain – NPD FactPages Scenarios

Finally, we include an example of an actual real-
world database and ontology, in the oil and gas do-
main: The Norwegian Petroleum Directorate (NPD)
FactPages [47]. Our test set contains a small relational
database with a relatively complex structure (70 tables,
≈1,000 columns and ≈100 foreign keys), and an ontol-
ogy covering the domain of the database. The database
is constructed from a publicly available dataset con-
taining reference data about past and ongoing activi-
ties in the Norwegian petroleum industry, such as oil
and gas production and exploration. The corresponding
ontology contains ≈300 classes and ≈350 properties.

With this pair of a database and ontology, we have
constructed two scenarios that feature a different se-
ries of tests on the data: first, there are queries that are
built from information needs collected from real users
of the FactPages and cover large parts of the dataset.
Those queries are highly complex compared to the ones
in other scenarios and require a significant number of
schema elements to be correctly mapped at the same
time to bear any results. The principled benefit of such
queries is that they represent actual real-world informa-
tion needs much more accurately than any simplified
query workloads do. A realistic workload can thus be
seen as a measure of real-world utility as opposed to
simplified queries, which artifically set the bar far too
low and thus may convey a false impression of actual
utility. Even if today’s mapping generation systems may
perform poorly on such queries, they will be the most
relevant test to pass eventually. We have collected 17
such queries in scenario npd_user_tests. In addition, we
have generated a large number of small, atomic query
tests for baseline testing. These are similar to the ones
used with the conference domain, i.e., they test for in-
dividual classes or properties to be correctly mapped.
A total of 439 such queries have been compiled in the
scenario npd_atomic_tests to cover all of the non-empty
fields in our sample database.

A specific feature resulting from the structure of the
FactPages database and ontology are a high number of
1:n matches, i.e., concepts or properties in the ontology
that require a UNION over several relations to return
complete results. 1:n matches as a structural feature
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can therefore best be tested in the npd_atomic_tests
scenario.

4.5. Extension Scenarios

Our benchmark suite is designed to be extensible, i.e.,
additional scenarios can be easily added. The primary
aim of supporting such extensions is to allow domain-
specific, real-world mapping challenges to be tested
alongside our more default scenarios. Extension scenar-
ios can be added by users of our benchmark without
any programming efforts. The creation and addition of
scenarios is described in the user documentation of the
RODI benchmark suite [40].

4.6. Challenge Coverage and Query Category Tags

The scenarios included in RODI add up to jointly
cover all mapping challenges identified and discussed
in the previous sections.

On a per-scenario level, they represent examples
from three different application domains. They also
have different degrees of complexity. This affects
schema size where NPD is the largest, Mondial is in-
between and Conference scenarios have different sizes
from small to medium. Also, different degrees of query
workload complexity are included. Query workloads
are modestly complex in conference scenarios and NPD
atomic tests, more demanding in Mondial, and most
complex with NPD user tests. Moreover, scenarios ex-
hibit different degrees of semantic heterogeneity. There
is rather little semantic heterogeneity between confer-
ence cases of any ontology and their directly corre-
sponding database schema. Heterogeneity is higher for
Mondial and NPD. The highest degree of semantic het-
erogeneity is however reached for conference scenar-
ios, where we match an ontology to a database schema
corresponding to a different ontology from the same
domain (cross-matching).

On a more fine-grained level, several challenges are
tested through a subset of queries. We tag query tests by
categories and report separate scores not only for each
scenario, but also for each category in each scenario.

Table 3 shows a list of all tags that we use in our
default scenarios, a brief description of their purpose,
and scenarios that include them. Not all of the category
tags correspond to a particular challenge. Some of them
also serve to allow drill-downs into basic aspects of
the schema, e.g., to separately report on class matches
and property matches. However, using tags we can also
report on challenges that correspond to some of the
category tags in the query tests.

4.7. Evaluation Criteria – Scoring Function

It is our aim to measure the practical usefulness of
mappings. We are therefore interested in the utility of
query results, rather than comparing mappings directly
to a reference mapping set or than measuring precision
and recall on all elements of the schemata. This is im-
portant because a number of different mappings might
effectively produce the same data w.r.t. a specific input
database. Also, the mere number of facts is no indica-
tor of their semantic importance for answering queries
(e.g., the total number of conference venues is much
smaller than the number of all paper submission dates,
yet the venues are just as important in a query retrieving
information about any of these papers). In addition, in
many cases only a subset of the information is relevant
in practice and we define our queries on a meaningful
subset of information needs.

We therefore observe a score that reflects the utility
of the mappings with relation to our query tests as
our main measure. Intuitively, this score reports the
percentage of successful queries for each scenario.

However, in a number of cases, queries may return
correct but incomplete results, or could return a mix of
correct and incorrect results. In these cases, we consider
per-query accuracy by means of a local per-query F-
measure. Technically, our reported overall score for
each scenario is the average of F-measures for each
query test, rather than a simple percentile of successful
queries. To calculate these per-query F-measures, we
also need to consider query results that contain IRIs.

Different mapping generators will typically generate
different IRIs for the same entities represented in the re-
lational database, e.g., by choosing different prefixes. F-
measures for query results containing IRIs are therefore
calculated w.r.t. the degree to which they satisfy struc-
tural equivalence with a reference result. For practical
reasons, we use query results on the original, underly-
ing SQL databases as technical reference during evalu-
ation. Structural equivalence effectively means that if
same-as links were established appropriately, then both
results would be semantically identical.

Formally, structural equivalence and fitting measures
for precision and recall are defined as follows:

Definition 1 (Structural Tuple Set Equivalence) Let
V = IRI ∪ Lit ∪ Blank be the set of all IRIs, lit-
erals and blank nodes, T = V × ... × V the set of
all n-tuples of V . Then two tuple sets t1, t2 ∈ P(T )
are structurally equivalent if there is an isomorphism
φ : (IRI ∩ t1)→ (IRI ∩ t2).

For instance,
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Table 3
Category tags used in different default scenarios, with brief descrip-
tion. Relevant challenges where applicable. Note, that some chal-
lenges require a check on a combination of tags or will be checked at
a scenario-level, not on a query-level.

Tag ID Meaning Default Scenarios Relevant Challenges

class Matching class All -
attrib Matching datatype property All -
link Matching object property All -
1-1 1:1 match All conference -
n-1 n:1 match All restructured conference 6, 9, 10, 12
1-n 1:n match NPD, some conference 8, 15, 16

union-n Requires n UNIONs to build match (form of 1:n match with
explicit n) NPD 8, 15, 16

superclass Test on entities that should comprise sub class entities (form
of 1:n) All conference adjusted naming 8

in-table Datatype match that finds the data value in the same table that
also defines the related entity All conference 7

other-table Datatype match that finds the data value in a table other than
the one that defines the related entity (requires joins) All conference 2, 15

path-0 Object property match that finds both related entities in the
same table (1:1 or denormalized) Some conference 7

path-1, path-2

Object property match that finds related entities in two tables
that can be directly joined (single JOIN) or joined through
one intermediate table (two JOINs). Note: NPD uses join-1,
join-2 to denote the same aspect

All conference, NPD 3, 4, 16

path-n
Object property match that requires n JOINs (n > 2) to con-
nect the tables that define entities on both sides. Note: NPD
uses join-n to denote the same aspect

Some conference, NPD 5

path-X Additional tag for all queries that are tagged path-n, with any
n > 1 (denotes multi-hop JOIN of any length) All conference 4, 5, 17

denorm Type filtering required due to denormalization CMT denormalized 6, 7, 12
no-fk JOINs without leading foreign keys Conference missing FKs 14

{(urn:p-1, ’John Doe’)}

and

{(http://my#john, ’John Doe’)}

are structurally equivalent. On this basis, we can easily
define the equivalence of query results w.r.t. a mapping
target ontology:

Definition 2 (Tuple Set Equivalence w.r.t. Ontology)
Let O be a target ontology of a mapping, I ⊂ IRI the
set of IRIs used in O and t1, t2 ∈ P(T ) result sets of
queries q1 and q2 evaluated on a superset of O (i.e.,
over O plus A-Box facts added by a mapping).

Then, t1 ∼O t2 (are structurally equivalent w.r.t. O)
iff t1 and t2 are structurally equivalent and ∀i ∈ I :
φ(i) = i.

With the same example as just before, the two tuples
are structurally equivalent, iff http://my#john is not
already defined in the target ontology. Finally, we can
define precision and recall:

Definition 3 (Precision and Recall) Let tr ∈ P(T )
be a reference tuple set, tt ∈ P(T ) a test tuple set and
trsub, ttsub ∈ P(T ) be maximal subsets of tr and tt,
s.t., trsub ∼O ttsub.

Then the precision of the test set tt is P = |ttsub|
|tt|

and recall is R = |trsub|
|tr| .

Table 4 shows an example with a query test that asks
for the names of all authors. Result set A is structurally
equivalent to the reference result set, i.e., it has found
all authors and did not return anything else, so both
precision and recall are 1.0. Result set B is equivalent
with only a subset of the reference result (e.g., it did
not include those authors who are also reviewers). Here,
precision is still 1.0, but recall is only 0.5. In case of
result set C, all expected authors are included, but also
another person, James. Here, precision is 0.66 but recall
is 1.0.

Table 4
Example results from a query pair asking for author names, e.g.,
SQL: SELECT name FROM persons WHERE person_type=2
SPARQL:
SELECT ?name WHERE {?p a :Author; foaf:name ?name}

Reference Result Result A Result B Result C

Jane
John

Jane
John

John Jane
John

James

To aggregate results of individual query pairs, a scor-
ing function calculates the averages of per query num-
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bers for each scenario and for each challenge category.
For instance, we calculate averages of all queries testing
1:n mappings. Thus, for each scenario there is a num-
ber of scores that rate performance on different techni-
cal challenges. Also, the benchmark can log detailed
per-query output for debugging purposes.

4.8. Mapping System Requirements

With RODI, we can test mapping generators that
work in either one or two stages: that is, they either
directly map data from the relational source database
to the target ontology in one stage (e.g., [38,11]). Or,
they bootstrap their own ontology, which they use as
an intermediate mapping target. In this case, to get to
the full end-to-end mappings that we can test, the inter-
mediate ontology and the actual target ontology should
be integrated via ontology alignment in a second stage.
Two-stage systems may either include a dedicated on-
tology alignment stage (e.g., [14]) or they deliver the
first (intermediary) stage only ([12,6,3]). In the latter
case, RODI can step in to fill the missing second stage
with a standard ontology alignment setup [46].

Our tests check the accuracy of SPARQL query re-
sults. Queries ask for individuals of a certain type (or
their aggregates), properties correlating them, associ-
ated values and combinations thereof, sometimes also
using additional SPARQL language features such as
filters to narrow down the result set. This means that
mapped data will be deemed correct if it contains cor-
rect RDF triples for all tested cases. For entities, this
means that systems need to construct one correctly
typed IRI for each entity of a certain type. For object
properties, they need to construct triples to correctly
relate those typed IRIs, and for datatype properties, they
need to assign the correct literal values to each of the
entity IRIs using the appropriate predicates. Systems do
therefore not strictly need to understand or to produce
any OWL axioms in the target ontology. However, our
target ontologies are in OWL 2, using different degrees
of expressiveness. Axioms in the target ontology can
be important as guidance to identify suitable correspon-
dences for one-stage systems. Similarly, if two-stage
systems construct expressive axioms in their interme-
diate ontology, this may guide the second stage of on-
tology alignment. For instance, if a predicate is known
to be an object property in the target ontology, results
will suffer if a mapping generation tool assigns literal
values using this property. Also, if a property is known
to be functional it might be a better match for an n:1
relation than a non-functional property would be.

5. Framework Implementation

In this section, we discuss some implementation de-
tails in order to guide researchers and practitioners to
include their system in our benchmarking suite.

5.1. Architecture of the Benchmarking Suite

Figure 4 depicts the overall architecture of our bench-
marking suite. The framework requires upfront initial-
ization per scenario. Artifacts generated or provided
during initialization are depicted blue in the figure. Af-
ter initialization, a mapping tool can access the database
(directly or via the framework’s API) and the target
ontology (via the Sesame API5 or using SPARQL, or
serialized as an RDF file). Finally, it submits generated
R2RML6 mappings in a special folder on the file sys-
tem, so evaluation can be triggered. As an alternative,
mapping tools could also execute mappings themselves
and submit final mapped data instead of R2RML. This
would be the preferred procedure for tools that do not
support R2RML but other mapping languages. More
generally, mapping tools that cannot comply with the
assisted benchmark workflow can always trigger indi-
vidual aspects of initialization of evaluation separately.
For instance, they could use the framework to setup
a test environment, then perform mapping generation,
reasoning and mapping execution in their own work-
flow and finally trigger evaluation.

5.2. Details on the Evaluation Phase

Unless a mapping system under evaluation decides
to skip individual steps, i.e., to implement them inde-
pendently, in the evaluation phase, the benchmark suite
will: (i) read submitted R2RML mappings and exe-
cute them on the database, (ii) materialize the resulting
A-Box facts in a Sesame repository together with the
target ontology (T-Box), (iii) optionally apply reason-
ing through an external OWL API [28] compatible rea-
soner to infer additional facts that may be requested for
evaluation, (iv) evaluate all query pairs of the scenario
on the repository and on the relational database, and
(v) produce a detailed evaluation report. Additionally,
as mentioned in Section 4.8, RODI also provides sup-
port to (two-stage) systems that require assistance to
align their generated ontology with the target ontology.
Information about how individual steps are invoked can
be found in RODI’s user documentation [40].

5http://rdf4j.org
6http://www.w3.org/TR/r2rml/

http://rdf4j.org
http://www.w3.org/TR/r2rml/
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Figure 4. RODI framework architecture

We evaluate query results as described in Section 4.7
by attempting to construct an isomorphism φ between
the query result set and the reference results. Techni-
cally, we use the results of the SQL queries from query
pairs to calculate the reference result set. For each SQL
query in a query pair, we flag attributes that together
serve as keys, so keys can be matched with IRIs rather
than with literal values. Obviously, literal values need
to be exact matches. IRIs always need to match the
same unique value from the database in each matching
tuple, but this unique value can be different from the
IRI as a string.

For constructing φ, we first index all individual IRIs
(i.e., IRIs that identify instances of some class) in the
query result. Next, we build a corresponding index for
keys in the reference set. For both sets we determine
binding dependencies across tuples (i.e., re-occurrences
of the same IRI or key in different tuples). As a next
step, we narrow down match candidates to tuples where
all corresponding literal values are exact matches. After
this step, we have a set of tuple pairs from the two result
set that are candidates for being structurally equivalent,
because all their literals are identical. Finally, we check
for these candidates to be actually structurally equiv-
alent, i.e., we also check for viable correspondences
between keys (in the reference tuples) and IRIs (in the
matching result tuples). As discussed, the criterion for
a viable match between a key and an IRI is that for each
occurence of this particular key and of this particular
IRI in any of the tuples, both need to be matched with
the same partner. In principle, the same IRIs (and keys)
can appear in any number of tuples and in different

positions of each tuple. A simple example for such a
query with repeated occurences of the same IRI in sev-
eral positions of the result tuple could be a request for
papers with their authors and reviewers (where each au-
thor and reviewer may appear in many different tuples
and the same person’s IRI may appear as an author in
one tuple and as a reviewer in another). All occurences
of all IRIs in any tuple need to match the same keys
in all cases for a structurally equivalent overall match.
Hence, we can have transitive n-hop dependencies be-
tween n tuples or even cyclic dependencies. The step of
finding viable matches accross all tuples therefore cor-
responds to identifying a maximal common subgraph
(MCS) between the dependency graphs of tuples on
both sides, i.e., it corresponds to the MCS-isomorphism
problem.7 For efficiency reasons, we approximate the
MCS if dependency graphs contain transitive dependen-
cies, breaking them down to fully connected subgraphs.
However, it is usually possible to formulate query re-
sults to not contain any such transitive dependencies
by avoiding inter-dependent IRIs in SPARQL SELECT
results in favor of a set of significant literals describ-
ing them. All queries shipped with this benchmark are
free of transitive dependencies, hence the algorithm is
accurate for all delivered scenarios.

Finally, we count tuples that could not be matched
in the result and reference set, respectively. Precision
is then calculated as |res|−|unmatched(res)|

|res| and recall

7The MCS isomorphism problem is a well-studied optimization
problem and is known to be NP-hard.
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as |ref |−|unmatched(ref)|
|ref | in accordance with our pre-

cision and recall measures for structural equivalence
(Def. 3). Aggregated numbers are calculated per query
pair category as the averages of precision and recall of
all queries in each category.

6. Benchmark Results

6.1. Evaluated Systems

We have performed an in-depth analysis using RODI
on a wide range of systems. Those include current con-
tenders in the automatic segment (BootOX [14,18,17]
and IncMap [38,39]), more general-purpose mapping
generators (-ontop- [12], MIRROR [6] and D2RQ [3]),
as well as a much earlier, yet state-of-the-art system
in inter-model matching (COMA++ [11]). In a special-
ized semi-automatic series of experiments, we have
also evaluated Karma [10,50], which does not support
a fully automatic mapping generation mode and works
with a sophisticated model of human intervention. As a
consequence, it requires a specific experimental setup.
Note that BootOX, -ontop-, MIRROR and D2RQ are
two-stage systems (see Section 4.8), that is, they do
not generate mappings targetting the ontology provided
in each RODI scenario and they generate their own
(putative or bootstrapped) ontology instead. BootOX
includes a built-in ontology alignment system which
allows to integrate the bootstrapped ontology with the
target (scenario) ontology. In order to be able to evalu-
ate -ontop-, MIRROR and D2RQ with RODI, we also
aligned their generated ontologies with the target ontol-
ogy in a similar setup to the one used in BootOX.

1. BootOX (B.OX) is based on the approach called
direct mapping by the W3C:8 every table in the
database (except for those representing n:m rela-
tionships) is mapped to one class in the ontology;
every data attribute is mapped to one data prop-
erty; and every foreign key to one object property.
Explicit and implicit database constraints from the
schema are also used to enrich the bootstrapped
ontology with axioms about the classes and prop-
erties from these direct mappings. Afterwards,
BootOX performs an alignment with the target
ontology using the LogMap system [31,13,48].

2. IncMap (IncM.) maps an available ontology di-
rectly to the relational schema. IncMap represents
both the ontology and schema uniformly, using a

8http://www.w3.org/TR/rdb-direct-mapping/

structure-preserving meta-graph for both. It runs
in two phases, using lexical and structural match-
ing. We evaluate a current (and yet unpublished)
work-in-progress version of IncMap, as opposed
to the initial version previously evaluated in [37].
The main difference between the two versions of
IncMap are improvements in lexical matching and
mapping selection, as well as engineering improve-
ments that increase the mapping quality.

3. MIRROR (MIRR.) is a tool for generating an on-
tology and R2RML direct mappings automatically
from an RDB schema. MIRROR has been im-
plemented as a module of the RDB2RDF engine
morph-RDB [42]. Their output is oblivious of the
required target ontology, though, so we perform
post-processing with ontology alignment.

4. The -ontop- Protege Plugin (ontop) is a mapping
generator developed for -ontop- [12]. -ontop- is a
full-fledged query rewriting system [43] with lim-
ited ontology and mapping bootstrapping capabili-
ties. As mentioned above, we need to post-process
results with ontology alignment.

5. COMA++ (COMA) has been a contender in the
field of schema matching for several years already;
it is still widely considered state of the art. In con-
trast to other systems from the same era, COMA++
is built explicitly also for inter-model matching.
To evaluate the system, we had to perform a trans-
lation of its output into modern R2RML.

6. D2RQ platform (D2RQ) is a fully-fledged sys-
tem to access relational databases as virtual RDF
graphs. Since D2RQ relies on its own native lan-
guage to define mappings and RODI only sup-
ports standard R2RML mappings, we executed the
mappings using D2RQ and provided RODI with
the materialized data. Just as with MIRROR and
-ontop-, a post-process with ontology alignment is
required.

7. Karma is one of the most prominent modern
relational-to-ontology mapping generation sys-
tems. It is strictly semi-automatic, i.e., there is
no fully automatic baseline that we could use for
non-interactive evaluation. In addition, Karma’s
mode of iterations is designed to take advantage
mostly from integrating a series of data sources
to the same target ontology. Karma is therefore
not well suited for single-scenario evaluations. We
therefore only evaluate Karma in a dedicated line
of experiments that suit its specifications.

http://www.w3.org/TR/rdb-direct-mapping/
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6.2. Experimental Setup

We conduct benchmark default experiments as de-
scribed in Section 4 for all systems except Karma. This
includes a selection of nine prototypical scenarios from
the conference domain, one from the geodata domain
and two from the oil & gas domain, as well as six dif-
ferent cross-matching (conference) scenarios. For all
of these main experiments, we observe and report over-
all RODI scores as well as specific selected scores in
individual categories.

In addition, we perform two different semi-automatic
experiments on selected scenarios for Karma and
IncMap, respectively. For Karma, we had to conduct ex-
periments with an actual human in the loop to perform
steps that Karma could not automate. With IncMap,
we could simulate human feedback by responding to
suggestions by taking a response from the benchmark
that indicates changes in mapping quality. In both semi-
automatic cases, we chiefly observe the number of in-
teractions.

6.3. Default Scenarios: Overall Results

Table 5 shows scores for all systems on all basic
default scenarios. At first impression we can observe
that all tested systems manage to solve some parts of
the scenarios, but with declining success as scenario
complexity increases.

For instance, relational schemata in the conference
“adjusted naming” scenarios follow modeling patterns
from their corresponding ontologies most closely, and
all systems without exception perform best in this part
of the experiments. Quality drops for all other types
of scenarios, i.e., whenever we introduce additional
challenges that are specific to the relational-to-ontology
modeling gap. The drop in accuracy between Adjusted
Names and Restructured hierarchies settings is mostly
due to the n:1 mapping challenge introduced by one
of the relational patterns to represent class hierarchies
which groups data for several subclasses in a single
table. In the most advanced conference cases, systems
lose further due to the additional challenges, although
to different degrees. Good news is that some of the ac-
tively developed current systems could improve their
scores compared to previous numbers recorded in Jan-
uary 2015 [37]. A somewhat disappointing general ob-
servation, however, is that measured quality is overall
still modest compared to results that are known from
ontology alignment tasks involving some of the same
ontologies (c.f. [52,23,4]). This is disappointing, espe-
cially while state-of-the-art ontology alignment soft-
ware is employed in some of the systems. It could

Table 5
Overall scores in default scenarios (scores based on average of per-
test F-measure). Best numbers per scenario in bold print.

Scenario B.OX IncM. ontop MIRR. COMA D2RQ

Conference domain, adjusted naming
CMT 0.76 0.45 0.28 0.28 0.48 0.31

Conference 0.51 0.53 0.26 0.27 0.36 0.26
SIGKDD 0.86 0.76 0.38 0.30 0.66 0.38

Conference domain, restructured
CMT 0.41 0.44 0.14 0.17 0.38 0.14

Conference 0.41 0.41 0.13 0.23 0.31 0.21
SIGKDD 0.52 0.38 0.21 0.11 0.41 0.28

Conference domain, combined case
SIGKDD 0.48 0.38 0.21 0.11 0.28 0.21

Conference domain, missing FKs
Conference 0.33 0.41 - 0.17 0.21 0.18

Conference domain, denormalized
CMT 0.44 0.40 0.20 0.22 - 0.20

Geodata
Classic Rel. 0.13 0.08 - - - 0.06

Oil & gas domain
User Queries 0.00 0.00 0.00 0.00 - 0.00

Atomic 0.14 0.12 0.10 0.00 0.02 0.08

indicate that the specific challenges in relational-to-
ontology mapping generation can not convincingly be
solved with the same technology that is successful in
ontology alignment, but may call for more specialized
approaches.

While all of the conference scenarios test a wide
range of specific relational-to-ontology mapping chal-
lenges, they do so in a highly controlled fashion, on
schemata with at best medium size and complexity, and
using a largely simplified query workload. For instance,
queries in the conference domain scenarios would sep-
arately check for mappings of authors, person names,
and papers. They would not, however, pose any queries
like asking for the names of authors who did participate
in at least five different papers. The huge difference
here is that, if two out of three of these elements were
mapped correctly, the simple, atomic queries would re-
port an average score of 0.66, while the single, more
application-like query that correlates the same elements
would not retrieve anything, thus resulting in a score
of 0.00. None of the systems managed to solve even a
single test on this challenge. This kind of real-world
queries that mimick an actual application query work-
load, are precisely what we focus on the remaining
default scenarios, which are set in the geodata and oil
& gas exploration domains. Consequently, scores are
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Table 6
Overall scores in cross-matching scenarios (scores based on average
of per-test F-measure). Best numbers per scenario in bold print.

Source B.OX IncM. ontop MIRR. COMA D2RQ

Target ontology: CMT
Conference 0.20 0.35 0.10 0.00 0.00 0.10
SIGKDD 0.33 0.33 0.19 0.00 0.14 0.19

Target ontology: Conference
CMT 0.20 0.34 0.05 0.00 0.05 0.05

SIGKDD 0.13 0.30 0.09 0.00 0.04 0.09

Target ontology: SIGKDD
CMT 0.51 0.57 0.19 0.00 0.24 0.26

Conference 0.24 0.44 0.13 0.00 0.09 0.14

lower again in those scenarios. In the geodata scenario,
only a minority of query tests could be solved. Detailed
debugging showed that the reason for this lies in the
more complex nature of queries, most of which go be-
yond returning simple results of just a single mapped
element. In the oil & gas case, the situation becomes
even more problematic. Here, the schema and ontol-
ogy are again a bit more complex than in the geo-
data scenario, and so is the explorative query workload
(“user queries”). None of the systems was able to an-
swer any of these queries correctly after a round of
automatic mapping. To retrieve meaningful results, we
added a second scenario on the same data, but with a
synthetic query workload of atomic queries (“atomic”).
On this scenario, results could be computed but overall
scores remain low due to the size and complexity of the
schema and ontology with a large search space as well
as many 1:n matches.

Table 6 showcases results from the most advanced
scenarios in the conference domain. All of them are
built on the “combined case” scenarios, i.e., they con-
tain a mix of all of the standard relational-to-ontology
mapping challenges except for denormalization and
lazy modeling of constraints. In addition, they increase
the level of semantic heterogeneity by asking for map-
pings between a schema derived from one ontology to
a rather different, independent ontology in the same
domain. Scores are generally lower than in the basic
conference cases discussed above. Reasonable scores
can still be achieved by some systems. Also, the over-
all trend of performance between the systems mostly
remains the same as in the basic scenarios, with a few
exceptions. Somewhat surprisingly, COMA loses out
more than other contenders. Even more surprising, the
performance of BootOX is noticeably low compared
to the baseline results from basic scenarios in Table 5.
This is unexpected as BootOX essentially applies ontol-

ogy alignment technology that has proven itself in tasks
with high semantic heterogeneity [31]. It could, again,
be an indicator that out-of-the-box ontology alignment
techniques could not take the same leverage that they
do when aligning original ontologies.

The big picture shows that the two most specialized
and actively developed systems, BootOX and IncMap,
are leading the field. Among those two, BootOX is at
a clear advantage in scenarios where the inter-model
gap between relational schema and ontology is small
(e.g., “adjusted naming”). IncMap is gaining ground
when more specific inter-model mapping challenges are
added. MIRROR, -ontop- and D2RQ generally show
weaker results. It has to be noted, though, that these
systems have been originally designed and optimized
for a somewhat different task than the full end-to-end
mapping generation setup tested with RODI. MIRROR
and -ontop- also fail to execute some of the scenarios
due to technical difficulties. For MIRROR in particular,
we have encountered a number of so far unresolved
difficulties that may also have a detrimental effect on
MIRROR scores. COMA keeps up well, given that it is
no longer actively developed and improved. Also, while
COMA has been constructed to support inter-model
matching in general, it has not been explicitly optimized
for the specific case of relational-to-ontology matching.

As part of our detailed analysis of the results we
could also identify, and partially even fix, a number
of technical shortcomings in tested systems. For in-
stance, we encountered issues with MIRROR in cer-
tain multi-schema matching cases on PostgreSQL and
implemented a solution in exchange with the authors
of the system. In another example, IncMap’s poor per-
formance in the geodata scenario could in part be ex-
plained by its failure to understand the specification
of property domains and ranges as a union of several
concrete classes. This pattern lead IncMap to skipping
such properties altogether. While not yet fixed, the ob-
servation points to concrete technical improvements
in IncMap. In BootOX, incomplete and unfavorable
reasoning settings were detected and fixed.

6.4. Default Scenarios: Drill-down

All systems struggle with correctly identifying prop-
erties as Table 7 shows. A further drill-down shows
that this is in part due to the challenge of normalization
artifacts, with systems struggling to detect any proper-
ties that map to multi-hop join paths in the tables. Map-
ping data to class types appears to be generally easier
for all contenders. BootOX is performing best in most
cases with all kinds of properties, with IncMap coming
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Table 7
Score break-down for queries on different match types with adjusted
naming conference scenarios. ’C’ stands for queries on classes, ’D’
for data properties, ’O’ for object properties.

Scenario
B.OX IncM. ontop MIRR. COMA D2RQ

C D O C D O C D O C D O C D O C D O

CMT 0.92 0.73 0.50 0.58 0.46 0.17 0.67 0.00 0.00 0.56 0.00 0.00 0.75 0.46 0.00 0.67 0.00 0.17
Conference 0.81 0.27 0.38 0.81 0.53 0.13 0.63 0.00 0.00 0.53 0.00 0.00 0.50 0.40 0.00 0.63 0.00 0.00
SIGKDD 1.00 0.90 0.25 0.80 0.70 0.25 0.73 0.00 0.00 0.46 0.00 0.00 0.80 0.70 0.00 0.73 0.00 0.00

in second. This represents a change over the previous
versions of both systems benchmarked earlier, where
IncMap was clearly leading on properties [37].

Tables 8 and 9 show the behavior of systems for find-
ing n:1 and 1:n matches between ontology classes and
table content, respectively. We highlight the n:1 case
in restructured conference scenarios and 1:n matches
in the oil & gas scenario as they include the highest
number of tests in their respective categories. In both
cases results are staggering with all systems failing the
large majority of tests. For 1:n matches the situation is
slightly better than it is with n:1 matches. This is not
particularly surprising in general, as 1:n matches can
be composed in mapping rules by adding up several
correct 1:1 matches. A correct mapping of n:1 matches
between classes and tables, on the other side, usually
requires the much more challenging task of filtering
from the table that holds entities of different types.

6.5. Semi-Automatic, Iterative Scenarios

We have also conducted semi-automatic, iterative
experiments on RODI scenarios with two different sys-
tems, Karma and IncMap. While IncMap was also eval-
uated in the main line of experiments before on its fully
automatic mode, Karma does not support such a base-
line mode and always requires human intervention in
different forms. This is mainly due to Karma’s need
for so called Python transformations, essentially tiny
Python scripts, to skolemize entity IRIs. In contrast to
class and property matches, Karma does not learn those
transformations. Also, both systems work according to
completely different semi-automatic processes. Karma
is designed for multi-source integration and learns from
human interactions in one scenario to provide sugges-
tions in the next ones. IncMap, on the other side, adjusts
its suggestions after simple yes/no feedback during one
single scenario but has no memory between any two
scenarios.

For these reasons, a direct experimental comparison
between the two systems is not feasible. Instead, we
run a separate dedicated experiment for each of them

and identify similarities and differences in performance
in the following discussion.

With Karma, we ran three experiments, each of
which consists of a series of three related scenarios on
the same target ontology. This translates to three differ-
ent source schemata that Karma needs to integrate in a
row. As Karma cannot produce any results completely
automatically, we conducted this experiment interac-
tively and recorded the number of human interactions
needed to complete the mapping for each of the data
sources. Figure 5 shows that in all cases the total num-
ber of required interactions drops for later data sources
over previous ones. The drop in manual class matches
and property matches is made possible by type learning.
Python transformations remain approximately constant
across subsequent data sources as no learning support
and suggestions are available for these transformations.

Due to the manual input, mappings resulting from
Karma’s semi-automatic process are generally of high
quality and did mostly reach scores close to 1.0 (cf.
Table 10).

For IncMap, we ran a series of regular single-
scenario tests, but in an incremental, semi-automatic
setup [36]. That is, for each of the scenarios, we simu-
lated human feedback in the form of choosing a sugges-
tion from shortlists of three suggestions, each. To sim-
ulate this kind of feedback we simply used the bench-
mark as an oracle to identify the best pick. We observed
how the score achieved by IncMap’s mappings changes
after a number of iterations, i.e., we report a score at k
human interactions [35].

Table 11 shows those the scores for three conference
domain scenarios, before feedback (@0), and after 6,
12, or 24 interactions, respectively. It is clearly visible
that scores increase with ongoing feedback. From the
first few rounds of feedback, the system profits most.
After that, gains are moderate.

Note that these changes in score are based on feed-
back during several iterations on the same scenarios.
It would be most interesting to see an evaluation of
a system that combines the approaches of Karma and
IncMap. From the results available from these two sys-
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Table 8
Score break-down for queries that test n:1 matches in restructured conference domain scenarios. 1:1 and n:1 stands for queries involving 1:1 or n:1
mappings among classes and tables, respectively.

Scenario
B.OX IncM. ontop MIRR. COMA D2RQ

1:1 n:1 1:1 n:1 1:1 n:1 1:1 n:1 1:1 n:1 1:1 n:1

CMT 0.86 0.00 0.79 0.00 0.57 0.00 0.00 0.00 0.58 0.00 0.57 0.00
Conference 0.78 0.00 0.89 0.00 0.56 0.00 0.00 0.00 0.56 0.00 0.67 0.00
SIGKDD 1.00 0.00 0.86 0.00 0.86 0.00 0.00 0.00 0.86 0.00 0.86 0.00

Table 9
Score break-down for queries that require 1:n class matches on the Oil & Gas atomic tests scenario.

Scenario
B.OX IncM. ontop MIRR. COMA D2RQ

1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3

Oil & Gas Atomic 0.17 0.11 0.07 0.20 0.01 0.03 0.10 0.09 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.11 0.00 0.07

(a) Target Ontology CMT (b) Target Ontology Conference (c) Target Ontology SIGKDD

Figure 5. Karma multi-source integration counting human interactions

Table 10
Semi-automatic Karma mappings: generally very high scores thanks
to human input.

Series 1st 2nd 3rd

To CMT 0.97 0.85 0.99
To Conference 0.90 1.00 1.00
To SIGKDD 1.00 0.99 1.00

Table 11
Impact of incremental mapping: scores for IncMap after k interactions
in adjusted naming scenarios.

Scenario @0 @6 @12 @24

CMT 0.45 0.73 0.92 0.96
Conference 0.53 0.61 0.68 0.77
SIGKDD 0.76 0.85 1.00 1.00

tems so far, it becomes clear that either approach has
its own benefits. A direct comparison is not possible,
though, as both follow a fairly different kind of process
(multi-source vs. single-source) and also request differ-

ent forms of human input (e.g., Python transformations
in Karma).

7. Related Work

Mappings between ontologies are usually evaluated
only on the basis of their underlying correspondences
(usually referred to as ontology alignments). The Ontol-
ogy Alignment Evaluation Initiative (OAEI) [52,23,4]
provides tests and benchmarks of those alignments that
can be considered a de-facto standard. Mappings be-
tween relational databases are typically not evaluated
by a common benchmark. Instead, authors typically
compare their tools to one or more of the industry stan-
dard systems (e.g., [22,11]) in a scenario of their own
choice. A novel TPC benchmark [41] was recently cre-
ated to close this gap. However, no results are reported
so far on the TPC-DI website. To the best of our knowl-
edge, no benchmark to measure specifically the qual-
ity of inter-model relational-to-ontology mappings was
available before the original release of RODI [37].
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Similarly, evaluations of relational-to-ontology map-
ping generating systems were based on one or several
data sets deemed appropriate by the authors and are
therefore not comparable. In one of the most compre-
hensive evaluations so far, QODI [53] was evaluated
on several real-world data sets, though some of the
reference mappings were rather simple. IncMap [38]
was first evaluated on a choice of real-world mapping
problems based on data from two different domains.
Such domain-specific mapping problems could be eas-
ily integrated in our benchmark through our extension
mechanism.

A number of papers discuss different quality aspects
of relational-to-ontology mapping generation in a more
general way. Console and Lenzerini have devised a se-
ries of theoretical OBDA data quality checks w.r.t. con-
sistency [5]. As such, these could also be used to judge
mapping quality to a certain degree. However, the focus
of this work is clearly different. Also, the approach is ag-
nostic of actual requirements and expectations and only
considers consistency of data in itself. A more multi-
dimensional approach has been proposed by Westphal
et al. [54]. Their proposals do not include a single, glob-
ally comparable scoring measure, but rather a collection
of different measures, which could be sampled and com-
bined as suitable or applicable in different scenarios.
Tarasowa et al. propose a similarly generic approach
to quality measurement on relational-to-ontology map-
pings [51]. Dimou et al. [7] have proposed unit test-
ing as a generic and domain-independent quality mea-
sure for relational-to-ontology mappings. Impraliou et
al. [29] present a benchmark composed by a series of
synthetic queries to measure the correctness and com-
pleteness of relational-to-ontology query rewriting. The
presence of complete and correct mappings is a pre-
requisite to their approach. Mora and Corcho discuss
issues and possible solutions to benchmark the query
rewriting step in OBDA systems [34]. Mappings are
supposed to be given as immutable input. The NPD
benchmark [32] measures performance of OBDA query
evaluation. Neither of these papers, however, address
the issue of systematically measuring mapping quality.

A comprehensive overview of relational-to-ontology
efforts, including related approaches of automatic map-
ping generation, can be found in the two surveys
[44,49].

8. Conclusion

We have presented a novel benchmark suite RODI
that allows to test the quality of system-generated

relational-to-ontology mappings. The prime application
area of RODI is ontology-based data integration. RODI
tests a wide range of data mapping challenges that are
specific to relational-to-ontology mappings, and which
we identified in this paper.

Using RODI we have conducted a thorough evalua-
tion of seven prominent relational-to-ontology mapping
generation systems from different research groups. We
have identified strengths and weaknesses for each of the
systems and in some cases could even point to specific
erroneous behavior. We have communicated our obser-
vations to the authors of BootOX, IncMap, MIRROR,
D2RQ and -ontop- and most of them already used our
feedback to improve their systems and the quality of the
computed mappings. Overall, the systems demonstrate
that they can cope well with relatively simple mapping
challenges. However, all tested tools perform poorly on
most of the more advanced challenges that come close
to actual real-world problems. Thus, further research is
needed to address these challenges.

Future work includes repeated evaluations of a grow-
ing number of relational-to-ontology mapping gener-
ation systems. It would be particularly interesting to
evaluate semi-automatic tools in a more comprehen-
sive way, and to directly compare different tools un-
der identical settings. Additionally, we expect several
of the tested systems to address issues pointed by our
evaluation with RODI. Another avenue of future work
includes the extension of the benchmark suite, e.g., by
adding scenarios from other application domains rele-
vant for ontology-based data integration.
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