
Undefined 1 (2009) 1–5 1
IOS Press

FrameBase: Enabling Integration of
Heterogeneous Knowledge
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Jacobo Rouces a,∗, Gerard de Melo b and Katja Hose c

a Department of Electronic Systems, Aalborg University, Niels Bohr Vej 8, 6700 Esbjerg, Denmark
E-mail: jrg@es.aau.dk
b Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
E-mail: gdm@demelo.org
c Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark
E-mail: khose@cs.aau.dk

Abstract Large-scale knowledge graphs such as those in the Linked Data cloud are typically represented as subject-
predicate-object triples. However, many facts about the world involve more than two entities. While n-ary relations
can be converted to triples in a number of ways, unfortunately, the structurally different choices made in different
knowledge sources significantly impede our ability to connect them. They also increase semantic heterogeneity,
making it impossible to query the data concisely and without prior knowledge of each individual source. This article
presents FrameBase, a wide-coverage knowledge-base schema that uses linguistic frames to represent and query
n-ary relations from other knowledge bases, providing multiple levels of granularity connected via logical entailment.
Overall, this provides a means for semantic integration from heterogeneous sources under a single schema and opens
up possibilities to draw on natural language processing techniques for querying and data mining.

Keywords: knowledge representation, semantic web, n-ary relations, frames, reification, semantic integration

1. Introduction

Over the past few years, large-scale Knowledge
Bases (KBs) have grown to play an important role
on the Web. Increasing numbers of institutions pub-
lish their data using Semantic Web standards [4]
and Linked Open Data (LOD) principles, contribut-
ing to the global LOD cloud. These KBs are mostly
based on simple statements expressed as subject-
predicate-object (SPO) triples, as defined by the
RDF model [27]. Such triples are convenient to
process and can be visualized as entity networks
with labeled edges.

*Corresponding author. E-mail: jrg@es.aau.dk

This data can be used for a variety of pur-
poses. For instance, commercial search engines ex-
ploit these KBs to provide direct answers to user
queries, while IBM’s Watson question answering
system [20,31], which defeated human champions
of the Jeopardy! quiz show, used them to find or
to rule out answer candidates.

Whereas triple representations work straightfor-
wardly for relations involving two entities, many
interesting facts relate more than just two partic-
ipants – a problem that has gained renewed at-
tention in several recent papers [24, 39] as well
as in the current W3C proposal to add roles to
schema.org [1]. For a birth event, for instance, one
may wish to capture not just the time but also the
location and parents. For an actress starring in a

0000-0000/09/$00.00 c© 2009 – IOS Press and the authors. All rights reserved

2 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

movie, the name of the portrayed character may
be relevant. Such facts naturally correspond to n-
ary relations. In order to capture them as triples,
several different representation schemes have been
proposed.
Figure 1 shows some possibilities of expressing

that two entities John and Mary married in 1964.
These different modeling patterns are used across
different KBs in the LOD cloud, which will be
discussed in more detail later in Section 2.

– The basic-triple pattern in Figure 1a is very ba-
sic and just establishes pair-wise connections
between the arguments of the n-ary relation.
If one regards every triple as representing an
underlying n-ary relation with only two argu-
ments filled, it could be said that this pattern
occurs in every KB in the LOD. It lacks the
expressive power to connect more than two
arguments of the same n-ary relation.

– The triple-reification1 pattern in Figure 1b is
used in the YAGO ontology [28] and attempts
to solve the above problem by creating an
entity representing a triple, but it incurs a
significant overhead that is superlinear to the
number of elements in the relation, and its
semantics are also problematic.

– The singleton-property pattern in Figure 1c
improves the pattern above [39], but still car-
ries some of the same problems.

– The pattern in Figure 1d is an event-centric
pattern used frequently in specific parts of
many KBs (e.g. Freebase [6]), usually to rep-
resent public events by means of a reduced
ad-hoc vocabulary. It uses specific properties
connected to an event class, which may be
specific but sometimes may also be general (as
the specific class can explicitly or implicitly
be inferred from the specific roles).

– The pattern in Figure 1e is similar to the pre-
vious one but uses a reduced set of generic
roles, and it is found in some KBs and schemas
such as the Simple Event Model (SEM) On-

1This kind of reification is different from the other kind
of reification that is discussed in this paper, although both
kinds of reification have in common that they consist of
creating an entity for something that was not represented
explicitly by a single entity before. To avoid confusion, we
will refer to this kind of reification as triple-reification, while
the other kind – more related to the field of linguistics –
will be referred to as “reification” without any qualifier.

tology [63] and LODE (Linking Open Descrip-
tions of Events) [55].

– The pattern in Figure 1f uses a “role class”
that substitutes the object of a triple and to
which additional properties can be appended.

– Other ad-hoc solutions can be found2, for
instance encoding the value of the third,
fourth, etc. argument in the IRI of a prop-
erty connecting the first two, for instance John
marriesMaryAtDate 1964. This reduces the
overhead of the patterns from Figures 1b
and 1c but at the cost of breaking the RDF
standard by creating ad-hoc semantics en-
coded within the IRIs, which would require ex-
tra processing and in the long run produce in-
compatibilities and defeat the purpose of RDF
of serving as a simple, homogeneous standard.

As the examples show, this sort of semantic het-
erogeneity leads to significant data integration chal-
lenges. One KB might use a simple binary prop-
erty between two entities, whereas another may
instead choose a more complex representation that
accommodates additional arguments. The repre-
sentations can easily be so at odds with each other
that no particular mapping between entities could
bridge the differences. There are entities at each
side that have no counterpart at the other. This
leads to several challenging problems:

1. When linking data, there are currently no
mechanisms to connect KBs with different
modeling choices. Predicates exist to link
equivalent classes, instances, or properties, but
not for connecting the different patterns aris-
ing from the different modelling choices, as
the ones introduced above. For instance, the
entities of type rdf:Statement in Figure 1b
cannot be linked with owl:sameAs to the enti-
ties of type rdf:Property in Figure 1c or to
the entity of type :Marriage in Figure 1d. Ex-
isting work on ontology and KB alignment [5]
is limited to finding aliases.

2. When using structured queries, the query
must be built in a way that fits the particu-
lar modeling choices made for the respective
KB. Otherwise, the recall may be as low as
zero [46]. Even worse, for the case of a set of

2http://www.w3.org/wiki/TaskForces/
CommunityProjects/LinkingOpenData/DataSets/
CKANmetainformation

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 3

(a) Basic-triple pattern

(b) Triple-reification pattern

(c) Singleton-property pattern

(d) Specific-Role-Neo-Davidsonian pattern

(e) General-Role-NeoDavidsonian pattern

(f) Role-class pattern

Figure 1. The same information represented using different modelling patterns used in different KBs in the LOD.

4 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

different KBs instead of a single coherent KB,
there is no simple query (as could be formu-
lated on a single given schema) that can have
a high recall across all KBs.

3. Similarly to the previous point, when natural
language interfaces to KBs are queried, state-
of-the-art systems typically attempt to map
verbs and predicate phrases to RDF predi-
cates [64]. This approach, however, cannot be
applied when the KB fails to provide a com-
patible binary relation.

FrameBase. In this article, we describe how these
problems are addressed by FrameBase [47, 49], a
broad-coverage multi-layered schema that can rep-
resent a wide range of knowledge and therefore is
a suitable candidate to homogeneously integrate
other KBs. Figure 2 shows an example of how
FrameBase represents knowledge. It combines the
ability to express n-ary relations unambiguously
and efficiently from the “neo-Davidsonian with spe-
cific roles” pattern in Figure 1d with the abstrac-
tion of the “neo-Davidsonian with general roles”
pattern in Figure 1e, by connecting roles, together
with a wide-coverage vocabulary of events, in a
rich hierarchy, and it also provides the conciseness
from the “Basic-triple” pattern in Figure 1a.
The latter is achieved by offering a two-layered

structure with a mechanism to convert back and
forth between the neo-Davidsonian representation
and one based on direct binary predicates, using a
vocabulary of binary properties automatically gen-
erated exploiting the ties to resources in linguistics.
These are more concise and can be used when only
two arguments are relevant, either in the KB or in
a query.
This paper is structured as follows. Section 2

reviews related work and conducts a thorough anal-
ysis of existing approaches for modeling n-ary rela-
tions and their space efficiency. Then, an overview
of FrameBase is given in Section 3. Section 4 ex-
plains how the FrameBase schema is constructed,
including rules to convert between different levels
of granularity and expressiveness. Section 5 pro-
vides an evaluation of the quality of the FrameBase
schema. Section 6 presents examples and typology
of integration rules used to capture knowledge from
external KBs into the FrameBase schema, and ex-
isting methods to automatically create the simplest
kinds of rules. Section 7 discusses challenges re-
garding the creation of more complex integration

rules, and possible ways to address them. Section 8
provides a conclusion and outlines other potential
lines of future work.

2. State of the Art

In this section, we review prior work in this area.
In particular, Section 2.1 provides a deeper analysis
of the patterns introduced in Figure 1. Section 2.2
discusses previous work on integrating knowledge.
Section 2.3 introduces FrameNet, which serves as
the backbone of our schema, as well as other related
work based on it.

2.1. Modeling Patterns for N-ary Relations

Different approaches for modeling n-ary relations
exist, which are summarized in Figure 1. Table 1
provides a novel analysis of their general space ef-
ficiency, which has consequences with regards to
their applicability for large-scale KBs. Each row
represents a modeling approach, for representing
an event with n participants, where k ≤ n(n−1)

2 is
the number of pairs that are relevant to be linked
by direct binary relations (we do not count in-
verse properties because these can be accounted
for by using owl:inverseOf). Columns represent
complexity functions for the modeling approaches.

– “All triples” indicates the total number of
triples that can be materialized.

– “Core” excludes the k direct binary relations,
which can always be retrieved with some sort
of inference.

– “Linking event” indicates the number of triples
needed to connect entities that represent the
same event (aliases), which is something that
is not required with a Neo-Davidsonian repre-
sentation, because it can use a single one.

– “Reification Reasoning” indicates the inference
system required to obtain the representation
in “All triples” or “Core” from the k direct
binary relations.

– “Dereification Reasoning” indicates the infer-
ence system required to obtain the k direct
binary relations or the representation in “All
triples” from the representation in “Core”. Def-
inite clauses are a kind of rules that can be
expressed as a disjunction of logical atoms
with only one negated, which is the consequent

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 5

Figure 2. Knowledge represented the examples in Figure 1, represented under the FrameBase model, which combines
expressiveness with conciseness by combining different representation layers (reified in blue, dereified in green).

All triples Core Linking event Reif. Reasoning Dereif. Reasoning

Triple-Reification (n + 4)k (n + 3)k k(k − 1) 4k Def. clauses k Def. clauses
Singleton Property (n + 2)k (n + 1)k k(k − 1) 2k Def. clauses 1 Def. clause / RDFS
Schema.org Roles (n + 3)k (n + 2)k k(k − 1) 3k Def. clauses k Def. clauses
Neo-Davidsonian 1 + n + k 1 + n 0 3k Def. clauses k Def. clauses

Table 1
Complexity associated to different approaches for modeling
n-ary relations.

when it is written as an implication (rule).
In this context, the atoms are of the form
triple(subject,predicate,object). In Section 4.3,
we will describe in more detail these rules for
the case of FrameBase.

Figure 1 can be regarded as a specific case of Table 1
with n = k = 3. Each modeling approach will be
discussed in detail in the following subsections.

2.1.1. Basic-Triple Pattern
A common way to represent n-ary facts is to sim-

ply decompose them directly into binary relations
between two participants [14]. However, in doing so,
important information may be lost. For instance,
given a triple with property wasMarriedOnDate
and two triples with gotMarriedTo, we cannot be
sure to which marriage the given time span applies.
This is shown in the example in Figure 1a.

6 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

2.1.2. Triple-Reification Pattern
The RDF standard includes a method for per-

forming triple reification [27], which introduces
a new Internationalized Resource Identifier (IRI)
for a statement and then describes the original
RDF triple using three new triples with subject,
predicate, and object properties. Subsequently,
arbitrary properties of the statement can be cap-
tured by adding further triples about it.

Triple-reification is used in the different versions
of YAGO [28,58,59] to attach additional informa-
tion to the event represented by the original RDF
triple (evoked by its property). It has also been
proposed in the W3C WebSchema drafts [1]. This
modelling pattern is exemplified in Figure 1b (in
YAGO, marry is labelled as isMarriedTo, but this
does not change the semantics). Using the triple-
reification pattern in this manner has the advan-
tage that both the original triple as well as the
triple-reified triple can be present in the KB and
queries that do not require the additional infor-
mation can still use the original binary relation
directly. However, this also has several drawbacks:

– Formally, the event represented by a triple and
the triple as a statement are different entities
with different properties. For instance, an in-
stitution may endorse the triple as a statement
without endorsing the marriage. Using triple-
reification, both are represented by the same
RDF resource identifier, which conceptually is
meant to be unambiguous. This is a potential
source of confusion and inconsistency.

– The number of triples increases by a fac-
tor of 4. For each triple S P O, one has
to add T a rdf:Statement, T rdf:subject
S, T rdf:predicate P, and T rdf:object O.
These do not add any new information them-
selves but are merely a prerequisite for then
being able to extend the original binary re-
lation to an n-ary relation by subsequently
adding more triples with T as subject.

– The advantage of being able to include the
original non-triple-reified triple only applies
for the primary binary relation, and not for
the other n(n−1)

2 − 1 ones that can be formed
(not counting inverses). Some of these may
be rare or irrelevant, but others may be im-
portant and are indeed used in YAGO (e.g.
yago:bornAtPlace, yago:bornOnDate).

– The choice of the primary pair of entities and
their binary relation (John and Mary in Fig-
ure 1b) is arbitrary, and a third party willing
to query the KB cannot replicate the choice
independently. If their choice is different, they
will not obtain any results. A possible solution,
which is actually implemented in YAGO, is to
include the triples for the other pairs and reify
them, too, but this adds yet another factor of
overhead, besides data redundancy that would
complicate updates.

– When two or more different events share the
same values for the primary pair of arguments,
they also share the same triple, but require sep-
arate triple reifications, producing non-unique
triple identifiers. For example, if there are
two flight connections between Paris and Lon-
don with different airlines, the triple :Paris
yago:isConnectedTo :London will be triple-
reified twice in YAGO, with two different triple
identifiers. Or, related to the example in Fig-
ure 1b: John and Mary could have divorced
and married again, in which case the triple
:John yago:isMarriedTo :Mary would also
have to be triple-reified twice.

If the triplestore implementation makes use of
quads3, the 4-fold overhead can be avoided (though
the underlying storage needs a new column), but
the other disadvantages still remain. Quad-based
singleton named graphs [27] could be used instead
of triple-reification, the problems being the same.

2.1.3. Singleton-Property Pattern
The “singleton property” approach [39] aims to

solve some of the issues with triple-reification by in-
stead declaring a subproperty of the original prop-
erty in the primary pair, and using this subprop-
erty as the subject for the other arguments of the
n-ary relation. This is shown in Figure 1c.

While the approach enables us to use RDFS rea-
soning to obtain the triple with the parent prop-
erty that relates two of the participants, and also
reduces the overhead of triple-reification, it still
suffers from the problems mentioned above related
to the existence of a primary pair. For one, the
non-triple-reified binary relationships for the other
pairs cannot be inferred from that subproperty.

3http://www.w3.org/TR/n-quads/

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 7

2.1.4. Role-Class Pattern
Schema.org is an effort sponsored by Google,

Yahoo, and Microsoft to establish common stan-
dards for semantic markup in Web pages. It offers
a method to qualify additional information to a bi-
nary predicate [2], which in practice is equivalent to
representing the n-ary relation arising from adding
arguments to the binary relation underlying the
binary predicate. This works by substituting the
object of the binary predicate with a fresh instance
of a class Role (or a subclass thereof with its own
properties), and appending to this role instance
the original object by means of the same binary
predicate, alongside other properties such as time,
instrument, etc. In order to avoid confusion, it is
relevant to note that Schema.org’s use of the term
“role” differs from its standard use in linguistics,
which are qualifying properties such as agent and
patient [22]. This definition has also been adopted
in ontologies, for instance CaseRole in the SUMO
ontology [53]. An example of the role-class pat-
tern is shown in Figure 1f. Another example, orig-
inally used by Schema.prg contributors, uses the
triple :SanFrancisco49ers schemaorg:athlete
:JoeMontana, which would be converted to:

:SanFrancisco49ers schemaorg:athlete _:x
_:x a schemaorg:Role .
_:x schemaorg:athlete :JoeMontana .
_:x schemaorg:startDate "1979" .

This transformation offers a certain level of com-
patibility between the simple pattern with the di-
rect binary predicate and the complex pattern, be-
cause the binary predicate is preserved in the com-
plex pattern, with the same subject. However, the
object changes, and therefore the simple pattern
as such is not truly preserved after the transforma-
tion. Besides, the definition or original contract of
the direct binary predicate is broken in the com-
plex pattern. For example, schemaorg:athlete
has SportsTeam and Person as domain and range
respectively, and the semantics is that the object
is a person that plays in the team denoted by the
subject. However, none of the two usages in the
complex pattern follow this: one has SportsTeam
and Role as domain and range, and the other has
Role and Person. Using RDFS-like inference one
would infer the role instance is also a participant,
and other participants would be attached.

An example of how this conflation can lead
to problems can be fully appreciated with non-
transitive predicates. In case the predicate was
somekb:fatherOf, people’s children would become
their grandchildren after the transformation.
Furthermore, the complex pattern produced by

this method, given a direct binary predicate be-
tween two entities and a further qualifying value
(like time in the example), is not equivalent to the
one produced by another binary predicate between
one of these entities and the qualifying value. This
produces a similar effect of redundancy as in the
method using triple-reification.

2.1.5. Neo-Davidsonian Pattern
Another approach, and the one that FrameBase

adopts, is to make use of neo-Davidsonian repre-
sentations [30, p. 600f.]. This means that we first
define an entity that represents the event or situa-
tion (also referred to as a frame) underlying the n-
ary relation. Then, this entity is connected to each
of the entities filling the n arguments by means
of a property describing the semantic role [24, 40]
associated with each argument position.

The process of converting from the binary repre-
sentation to the neo-Davidsonian one is called reifi-
cation, but this is different from triple-reification
as discussed earlier. In triple-reification, an entity
is defined that stands for a whole triple so that ad-
ditional triples can be used to describe the reified
triple as a unit that represents a statement. How-
ever, in the context of event semantics, reification
is used to denote the process by which an entity is
defined that refers to the event, process, situation,
or more generally, frame, evoked by a property or
binary relation. Having done this, additional infor-
mation about it can then easily be added. Both
kinds have in common that a new entity is defined
to refer to something that before was not explicitly
represented by an entity in the KB, but in one case
it is an RDF statement, while in the other it is an
event.

Advantages. Table 1 compares the neo-
Davidsonian approach to the alternatives. These
require a lot more triples when several direct binary
relations need to be included. In the worst case,
k = n(n−1)

2 despite discounting reciprocal relations,
but even if not all of these relations are relevant,
connecting all agents and possibly patients to all
other elements would be relevant, which would
easily satisfy k > n.

8 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Semantic Heterogeneity. Even when using the
neo-Davisonian approach, there are different ways
to do so, corresponding to different levels of granu-
larity for the events and the semantic roles: from a
very small set of abstract generic ones [55] to more
specific ones [6].
The Simple Event Model (SEM) Ontology [63]

uses the general-role neo-Davidsonian pattern in
Figure 1e. It defines four very general entities,
Event, Actor, Place, and Time. It also establishes
a framework for creating more specific ones by ex-
tending these, but it does not provide these ex-
tensions, nor ways to integrate existing KBs in
a way that would solve the problem of semantic
heterogeneity. Similarly, LODE (Linking Open De-
scriptions of Events) [55] specifies only very general
concepts such as the four just mentioned.
Freebase [6] was built both by tapping on ex-

isting structured sources and via collaborative
editing. Although it uses its own formalisms,
there are official and third-party translations to
RDF. Freebase makes use of mediators (also
called compound value types, CVTs) as a way to
merge multiple values into a single value, simi-
lar to a struct datatype in C. An example of
a CVT is /people/marriage, which has outgo-
ing properties such as /people/marriage/spouse,
/people/marriage/from, /people/marriage/to,
and /people/marriage/type_of_union. There
are around 1,870 CVTs in Freebase (1,036 with
more than one instance) and around 14 million
composite value instances. These CVTs do not rep-
resent frames or events per se, but are regarded
as complex data types. Some CVTs, for instance,
connect a number and a unit. Still, in terms of
their structure, they correspond to the specific-role
neo-Davidsonian pattern in Figure 1d. However,
Freebase places a number of restrictions on CVTs.
For instance, CVTs cannot be nested, and thus, if
a CVT involves a monetary value, it cannot re-use
the existing Dated Money Value CVT, but needs
to include separate entries for the amount and cur-
rency. Also, there is no hierarchy or network-like
organization, and thus Freebase does not capture
any particular relationship between similar CVTs
such as the film performance and TV guest role
CVTs.

2.2. Knowledge Integration

Connecting and integrating different knowledge
sources is a long-standing problem. For KBs,
there has been substantial work on ontology align-
ment [16] to identify matching classes from differ-
ent sources, and in some cases also instances and
properties [35,38,57].
However, relatively little work has considered

scenarios in which the same type of ontological
knowledge is modeled in different ways, as in
the different modeling patterns illustrated in
Figure 1 and explained in Section 2.1. In these
cases, alignment by means of binary properties
such as equivalence or subsumption is no longer
sufficient, because an entity in a KB may not
have a direct counterpart in another KB. For
instance, neither any of the properties in Figure 1a,
nor the statement instance in Figure 1b, the
subproperty in Figure 1c, or the event instance
in Figure 1d can be connected by owl:sameAs,
owl:equivalentClass, rdfs:subClassOf,
rdfs:subPropertyOf, owl:equivalentProperty,
skos:exactMatch, skos:closeMatch, or any
other binary relation.
The EDOAL (Expressive and Declarative On-

tology Alignment Language) format [11] has been
proposed to express complex relationships between
properties. It defines a way to describe complex
correspondences but it does not address how to
create them. Similarly, complex correspondence
patterns between ontologies have been described
and classified in an ontology [54]. However, this
approach does not provide any method to cre-
ate the correspondence patterns, neither fully nor
semi-automatically. The iMAP tool [15] searches a
space of possible complex relationships between the
values of entries in two KBs, e.g., room-price =
room-rate * (1 + tax-rate), but these are lim-
ited to specific types of attribute combinations.
The S-Match tool [26] makes use of formal reason-
ing to prove possible matches between ontology
classes, involving union and intersection operators,
but it does not address complex matching of prop-
erties beyond this. The work from Ritze et al. [45]
uses a rule-based approach to detect specific kinds
of complex alignment patterns between entries in
small ontologies.

Unlike previous work, the approach presented in
this paper does not focus on matching pairs of en-
tities but provides techniques to match knowledge

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 9

that can also be expressed with complex patterns
involving multiple entities at one side. However,
these techniques can be combined with the existing
work on creating the one-to-one mappings.

2.3. FrameNet

FrameNet [21, 52] is a well-known resource in
natural language processing (NLP) that defines
over 1,000 frames, which represent abstract con-
cepts that encompass situations, events, or pro-
cesses. These are evoked by certain words, called
Lexical Units (LUs), which can be any part of
speech: nouns, verbs, adjectives, etc. For example,
the verb to buy and the noun acquisition can evoke
(depending on the intended sense) a “commercial
transaction” frame. Frames have associated partic-
ipants (called Frame Elements or FEs, for short),
For instance, the “commercial transaction” frame
has FEs for the seller, the buyer, the goods, and
so on.

FrameNet includes a corpus of text that has been
annotated with frames and FEs. Each annotation
consists of a frame and an LU that appears (pos-
sibly inflected) in a piece of text, and some FEs
whose values also appear in the text. This informa-
tion can be used for training semantic role labelling
(SRL) systems, also known as semantic parsers, to
extract semantics or meaning from arbitrary text.

There has been previous work on producing con-
versions of FrameNet to RDF as a resource [41]
instead of a schema. Also, previous work [23] has
proposed a framework, in the form of a meta-
schema, for using frames as units of meaning to
address the semantic heterogeneity problem. This
work proposes a model for generating schemas from
FrameNet, but does not produce a specific one.
FRED [43] builds semantic representations of

text, based on Discourse Representation Theory,
VerbNet, and its linking to FrameNet. Unlike
FrameBase, it does not integrate existing knowl-
edge bases.

3. System Overview

As seen in the previous section, there are a num-
ber of different patterns used to represent n-ary
relations in KBs.

This paper describes the construction of Frame-
Base, an extensible KB schema that allows for

representing a wide range of knowledge, aiming
at an optimal balance between the existing mod-
elling patterns. The paper also discusses methods
to integrate knowledge from external KBs.
FrameBase consists of two layers. The more ex-

pressive but also more verbose layer of the Frame-
Base schema is referred to as the reified layer. It
consists of classes, representing frames, which can
be events, situations, processes of a very general
kind. It also contains frame-element properties that
specify qualities about frame instances: agents par-
ticipating in different ways, time, place, cause, con-
sequence, instrument, etc. The frames are orga-
nized in a rich hierarchy of macroframes, cluster-
microframes, and synset- and LU-microframes, or-
dered here from more general to more specific
kinds of frames. Synsets and LUs (Lexical Units)
are concepts imported from WordNet [17] and
FrameNet [3], respectively, which are both re-
sources from computational linguistics. FrameNet
constitutes the backbone of FrameBase and is a
compilation of such frames and FEs to annotate
the semantics of natural language. WordNet is a
computational lexicon that includes word senses
grouped by synonymy and other semantic relations.
Both synsets and LUs are closely related to sense-
disambiguated words and therefore they are used to
produce the most specific frames, whereas cluster-
microframes and macroframes represent groups of
near-synonymous or related concepts.

The less verbose but also less expressive layer of
the FrameBase schema is the reified layer, which
consists of direct binary predicates (DBPs). These
are properties for simple binary relationships be-
tween elements of a given frame. Rather than hav-
ing to query such relationships via a common frame
instance, this layer enables direct querying of these
binary relationships.

Data from external KBs in the LOD cloud can be
imported using integration rules, which can create
FrameBase instance data from the instance data
of the external KBs. This work also describes the
creation of these rules in manual, semi-automatic
and automatic ways, exploiting the linguistic as-
pects of FrameBase inherited from FrameNet. The
results for automatic and semi-automatic meth-
ods are evaluated. Examples are also provided of
how the resulting FrameBase instance data can be
queried. Figure 3 provides a general overview of
the dataflow in the FrameBase system.

10 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Figure 3. Overview of the structure of the FrameBase system.

3.1. FrameNet-based Representation

The use of FrameNet as the backbone of Frame-
Base is motivated by the following considerations.

– FrameNet has long been used to describe the
semantics of general natural language. It thus
provides a relatively large and growing inven-
tory of frames and roles, with a coverage of
different domains. The average number of FEs
per frame is 9.45.

– FrameNet comes with a large collection of
English sentences annotated with frame and
frame element labels. This data led to the task
of automatic semantic role labeling (SRL) [25]
of text, now one of the standard tasks in NLP.
This strong connection to natural language fa-
cilitates question answering and related tasks.

– While FrameNet’s lexicon and annotations
cover the English language, its frame inventory
is abstract enough to be adopted for languages
as different as Spanish and Japanese [56].
This also makes it more suitable as a ba-
sis for language-independent knowledge repre-
sentation than more language-specific syntax-
oriented SRL resources such as PropBank [32],

although being more abstract can make the
SRL task more challenging.

– In terms of what is expressed as a frame and
what is expressed as a role or frame element,
FrameNet provides a reasonable level of granu-
larity for the phenomena that humans care to
describe. From a theoretical perspective, there
is no universally appropriate single level of
reification. Any frame element might itself be
reified, and any two elements of a frame could
be connected directly by a predicate. Using
FrameNet strikes a well-motivated balance, at
a point that is granular enough to constitute
a model for natural language semantics. How-
ever, as Section 4.3 will explain, a second level
of representation is provided in FrameBase,
which is based on the direct binary predicates
between frame elements, and therefore less
expressive but more concise.

4. FrameBase Schema Creation

The FrameBase schema consists of a reified layer
and a dereified layer, connected by inference rules.
The reified layer provides a rich hierarchy of frames

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 11

and FEs, with English lexical labels. Te dereified
layer provides direct binary predicates that can be
used between the values of the FEs. The creation
of the schema is carried out in the following steps.

a) FrameNet–WordNet Mapping. First, a high-
precision mapping is created between FrameNet
and another well-known lexical resource called
WordNet [17], which will be used to enrich the
lexical coverage and relations of the FrameBase
schema. This is described in Section 4.1.

b) Hierarchy Construction. FrameNet, WordNet,
and their mapping are used to create a rich
hierarchy of frames and FEs that has very wide
coverage and is also extensible. This involves
creating general macroframes, extracted from
FrameNet, as well as specific LU-microframes
and synset-microframes extracted from
FrameNet and WordNet, respectively. However,
these microframes are too fine-grained, with sep-
arate entries for synonyms and near-synonyms.
For instance, there are distinct LUs for get
vs. obtain. This is a problem for knowledge
representation because it increases the sparsity
of data. At the same time, some macroframes
are very coarse-grained, as mentioned above, so
direct inheritance from a common macroframe
cannot be used as a criterion for considering
LU-microframes semantically equivalent. For
instance, various kinship relationships such
as mother, sister-in-law, etc. are lumped
together under the same macroframe. This
wide range of LUs may stand in various
lexical-semantic relationships without these
being indicated, including synonymy, antonymy,
or nominalization. The only characteristic they
have in common is that, by definition, they
evoke a similar kind of situation. Therefore,
neither the fine-grained nor the coarse-grained
levels are ideal for knowledge representation
purposes. In FrameBase, this is addressed by
providing a novel intermediate level composed
of cluster-microframes that group together
LU-microframes and synset-microframes that
have equivalent or near-equivalent meanings,
solving the problem described above. The chil-
dren of each cluster-microframe are conntected
in a clique with the property :isSimilarTo.
The creation of the hierarchy is described
in Section 4.2. An example of two resulting
sibling cluster-microframes with all their

members can be appreciated in Figure 4.
Without the extended hierarchy, it would not
be possible to determine that two instances of
:frame-Quitting_a_place-withdraw.v and
:frame-Quitting_a_place-withdrawal.n
are equivalent (and optionally, they
can be converted to the same type
:frame-Quitting_a_place-cluster-retreat.v
if desired, with external logic or by adding
the triple :isSimilarTo rdfs:subPropertyOf
owl:sameClassAs in an OWL-enabled triple-
store).

c) Automatic Reification–Dereification Mecha-
nism. Reification–dereification (ReDer) rules are
created, in the form of definite clauses that allow
a KB to be stored or queried independently of
whether reified frames or dereified direct binary
predicates are used. This mechanism may also
be used to reduce overhead in the KB. The struc-
ture, implementation, and creation of ReDer
rules is described in Section 4.3.

4.1. FrameNet–WordNet Mapping

While FrameNet [21, 52] is the largest high-
quality inventory of semantic frame descriptions
and their participants, WordNet [17] is the most
well-known resource capturing meanings of words
in a lexical network, covering for example nouns
and named entities missing in FrameNet. WordNet,
for instance, serves as the backbone of YAGO’s
ontology. This section proposes a novel way of map-
ping the two resources, which later enables us to
integrate both of them into FrameBase’s schema.
WordNet contains synsets, which are sets of

sense-disambiguated synonymous words with a
given part of speech (POS), such as noun or verb.
FrameNet contains lexical units (LUs), which are
also POS-annotated words associated with frames.
Because of the semantics of the containing frame,
LUs are also disambiguated to a certain extent,
though not with the same granularity as in Word-
Net (for instance, WordNet has different senses for
the verb to assert corresponding to stating some-
thing categorically and to declaring or affirming
something solemnly as true; this is a nuanced dif-
ference that is conflated under a single LU in the
frame Statement). The objective at hand is to pro-
duce an alignment of synsets and LUs with the
same meaning, which can be later used to enrich

12 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

..defect.v ..defection.n ..desert.v ..desertion.n

..desertion_n_00055315 ..defect_v_02584097

..abandon_v_00614057

..deserter_n_10007109

..deserter_n_10006842

..retreat.v ..withdraw.v ..withdrawal.n

..receding_n_00057486

..pullback_n_00056688

..withdraw_v_01994442

..withdrawal_n_00053913

:frame-Quitting_a_place

deserter
turncoat
apostate

ratter
recreant

renegade

desertion
abandonment

defection

deserter
defector

defect
desert

abandon
desert

desolate
forsake

pullback
receding
recession

withdraw
retire

retreat
draw back
pull back

move back
recede

pull away

withdrawal

:frame-Quitting_a_place-cluster-defect.v

:frame-Quitting_a_place-cluster-retreat.v

rdfs:subClassOf

rdfs:labelrdfs:label

Clique of elements
connected with
framebase:similarTo

Macroframe

Cluster microframe

LU microframe

Synset microframe

labels

Figure 4. Example of some microframes and labels under the general frame class :frame-Quitting_a_place. The initial part
of the names of classes is common and has been ommitted.

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 13

:frame-Personal_relationship-marital.a
:frame-Personal_relationship-married.a
:frame-Personal_relationship-wn_marital_a_02852920
:frame-Personal_relationship-marriage.n
:frame-Personal_relationship-wn_marriage_n_13963970
:frame-Personal_relationship-wn_date_n_08385009
:frame-Personal_relationship-engagement.n
:frame-Personal_relationship-date.v
:frame-Personal_relationship-wn_go_steady_v_02486232
:frame-Personal_relationship-wn_widow_v_00360337
:frame-Personal_relationship-widow.v
:frame-Personal_relationship-wn_widow_n_10780284
:frame-Personal_relationship-widow.n

...-wn_cohabit_v_02651193

...-cohabitation.n

...-wn_cohabitation_n_01054876

...-cohabit.v

...-buddy.n

...-wn_buddy_n_09877951

...-chum.n

...-pal.n

...-wn_chummy_a_00452114

...-wn_pal_v_02588871

...-wn_chummy_a_01075524

...-wn_friend_n_10112591

...-wn_friendship_n_13931145

...-friend.n

...-friendship.n

Figure 5. Example of six clusters of LU- and synset-microframes under the macroframe :frame–Personal_relationship
(which is also how the IRI of the children microframes start, but this is omitted in the second column). The connection of
derivationally related words evoking nearly equivalent situations or relations (in general, frames) can be appreciated in all
of them. For instance, LU-microframes friend and friendship are connected to the homonymous synset-microframes by the
FrameNet-WordNet mapping, and the two synset-microframes are connected by the WordNet relation “derivationally related
from”.

FrameBase’s FrameNet-based schema with rela-
tions and annotations from WordNet.
More specifically, the objective is to map each

LU to exactly one synset. While there are some
LUs that could be mapped to more than one synset,
as a general rule the restriction to a single one
favors precision, which is desirable for the purpose
of obtaining a clean knowledge base. The only cases
where this model would be detrimental to precision
are those for which LUs do not have any associated
synset, but these are few and most can easily be
avoided by omitting LUs with parts of speech not
covered in WordNet, such as prepositions.
This choice allows for modeling the mapping

as a function S(l|a, b) from LUs to synsets as in
Eq. (1). In this definition, Sl stands for the set
of synsets with the same lexical label and part-of-
speech tag as the LU l, µL and µG are the lexical
and gloss (definition) overlap, respectively, f yields
the corpus frequency of the synset, and a and b
are parameters for a linear combination (the third
parameter can be omitted because of the argmax
function).

S(l|a, b) = argmax
s∈Sl

µL(l, s)+a·µG(l, s)+b·f(s) (1)

The lexical overlap µL of a LU l and a synset
s is the size of the intersection between the POS-
annotated words from the LUs in the same frame
as l and the POS-annotated words in s and its

neighborhood. The neighborhood is defined as the
synsets interconnected by a selection of lexical
and semantic relations (called “semantic point-
ers” in WordNet) such as “See also”, “Similar to”,
“Antonym”, “Attribute” and “Derivationally re-
lated”. This expansion is useful to reduce sparsity
and to better match the sets with those generated
for the LUs, which, due to the different semantics
of frames and synsets, may already include these
related words.

The gloss overlap µG is the size of the intersection
between the set of words in the definition of the LU
and the gloss of the synset. The Stanford CoreNLP
library [61] is used to clean XML tags, tokenize,
POS-label, and lemmatize the text, and all words
except nouns and verbs are filtered out.
Parameters a and b are trained with a greedy

search starting at several randomized seeds, obtain-
ing optimal values a = 5, b = 0.13.

4.2. Hierarchy Construction

In FrameBase, frames are modeled as classes
whose instances are specific events or situations.
The frame elements of each frame are properties
whose domain is that frame. The class hierarchy
of frames is created as follows.

1. General Frames: These frames are obtained
from the original FrameNet frames and are re-
ferred to in FrameBase as macroframes, be-
cause they correspond to broad general concepts.

14 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

They are connected to each other via the rela-
tions :inheritsFrom and :isPerspectiveOf4,
which are obtained from FrameNet’s frame in-
heritance and perspectivization relations be-
tween frames. Both relations are made subprop-
erties of rdfs:subClassOf, because every sub-
frame or perspectivized frame is also an in-
stance of the parent or general frame, and in-
heritance between frame element properties (be-
longing to frames connected by inheritance) is
modeled with rdfs:subPropertyOf. Perspec-
tivization is similar to but still somewhat dif-
ferent from inheritance. It is a sort of special-
ization relation that captures a particular per-
spective of a situation or event associated with a
frame: for instance, in the resulting FrameBase
schema, the frame :frame-Transfer is perspec-
tivized by :frame-Giving, which reflects a per-
spective centered around the frame element
Donor being the agent. This is further reflected
by the fact that :frame-Giving inherits from
:frame-Intentionally_act and the FE prop-
erty :fe-Transfer-Donor, belonging to the for-
mer frame, is a subproperty of the FE property
:fe-Intentionally_act-Agent, belonging to
the latter frame. On the contrary, the frame el-
ement property :fe-Transfer-Donor from the
frame :frame-Transfer does not inherit from
any agentive frame element property. Addition-
ally, a top frame is declared for the hierarchy. Se-
mantic types are sometimes provided as ranges
in FrameNet, but their current coverage is lim-
ited, and therefore have been left out of Frame-
Base.
Another example covering both inheri-
tance and perspectivization is the follow-
ing. Using RDFS inference, an instance
of :frame-Commerce_sell with a certain
property:fe-Commerce_sell-Buyer B, is
also an instance of :frame-Giving, and B
is its :fe-Giving-Recipient, because the
former frame inherits from the latter. Likewise,
it is also an instance of :frame-Transfer
and B is the :fe-Transfer-Recipient, be-
cause :frame-Giving is a perspective on
:frame-Transfer.

2. Leaf Nodes: Since FrameNet’s original frame
inventory is coarse-grained and different LUs

4We use http://framebase.org/ns as default prefix.

like construction and to glue evoke the same
frame, more specific frames associated with
particular LUs are employed. In other words,
every LU is treated as evoking its own separate
fine-grained frame, an LU-microframe, which
is made a subclass of the more coarse-grained
original FrameNet frame. In addition, an-
other type of microframes, denoted as synset-
microframes, are created from the synsets in
WordNet 3.0. The IRIs for the microframes
are coined by appending the more specific
identifier (LU or synset) to the IRI of the
parent macroframe. For instance, macroframe
class frame-Personal_relationship have,
among others, two subclass microframes:
frame-Personal_relationship-partner.n
and frame-Personal_relationship-wn_
spouse_n_10640620. The former is obtained
from an LU in FrameNet, and the “n” suffix
indicates that it is a noun concept. The latter is
obtained from a synset in WordNet, including
the number (synset ID).

3. Intermediate Nodes: As mentioned earlier in
this section, macroframes are sometimes too
general, while LU-microframes and synset-
microframes are too fine-grained, sometimes
leading to multiple aliases for near-identical
concepts. This is addressed by providing
a novel intermediate level composed of
cluster-microframes that group together LU-
microframes and synset-microframes that have
equivalent or near-equivalent meanings.
The clusters are generated in the following way.
First, for each LU-microframe l, the correspond-
ing set sl of synsets equivalent to l is retrieved
from the FrameNet–WordNet mapping. In the
case of the mapping in Section 4.1, |sl| = 1, but
in general it could have more than one element.
Then, sl is expanded by adding all other synsets
related by lexical relations reflecting cross-POS
morphological transformations: “Derivationally
related”, “Derived from Adjective”, “Participle”
and “Pertainym”. The lexical relation “Deriva-
tionally related” connects word senses that share
the root (normally from different POS, e.g., the
verb visualize and the noun visualizer, but can
also have the same POS like author and author-
ship). “Pertainym” and “Derived from Adjective”
are more specific and overlapping, connecting
nouns and adverbs (respectively) with adjectives,
but cover some cases not covered by “Derivation-

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 15

ally related” (e.g., textile as an adjective and as
a noun). “Participle” connect verbs with their
participle form (e.g., stack with stacked).
In general, these lexical relations do not neces-
sarily imply any close semantics (e.g., the verb
create and the noun creature), but when re-
stricted to synsets all tied to the same FrameNet
frame, such cases are normally factored out.
Therefore, as a further step, sl is restricted to
those synsets that also belong to another set sl′

produced from a sibling LU l′ from the same
macroframe. The goal of using the lexical rela-
tions is linking cross-POS LU-microframes that
evoke the same specific situation with a dif-
ferent syntactic form, such as nominalizations
(produce–production), non-finite verb forms (pro-
duce–produced), adjectivization, or adverbiza-
tion. Next, the LU-microframe is connected with
the synset-microframes from the set of synsets,
using the property framebase:isSimilarTo,
which is declared to be transitive and symmetric
in OWL (although the sets of triples produced
materialize the transitive and symmetric closure,
so in practice this is not needed).
Figure 5 presents examples of clusters under a
single macroframe.
After this process has concluded for all LU-
microframes and the transitive closure of
framebase:isSimilarTo has been materialized,
each cluster of near-synonym microframes is rep-
resented by a clique of framebase:isSimilarTo.
Finally, for each cluster, intermediate cluster-
microframes are reified5 and declared super-
frames of the members of the cluster, and at
the same time subframes of their previously im-
mediate superframe. The cluster-microframe is
also connected by framebase:isSimilarTo to
the subframes. An example of the result can be
appreciated in Figure 4.
The use of the property
framebase:isSimilarTo yields direct con-
nections between members of the cluster. It
may also be convenient in contexts when
users wish to reduce sparsity by completely

5This is yet another different but related use of the
term reification. In general, reification means the process
of making something real, and in the context of knowledge
bases, can be used whenever a new entity is created for some-
thing that was only implicitly represented before, generally
as a function of pre-existing entities.

merging all members of each cluster. In this
case, they can achieve this simply by declaring
framebase:isSimilarTo a subproperty of
rdfs:subClassOf and enabling RDFS inference.
By virtue of the already materialized inverses
of framebase:isSimilarTo, every instance
of a member of the cluster, including the
cluster-microframe, becomes an instance of the
others. Alternatively, owl:equivalentClass
can be used.

Names, definitions, and glosses in FrameNet
and WordNet are also used to create text annota-
tions for our schema. Lexical forms are attached
with rdfs:label and definitions and glosses
from FrameNet and WordNet are attached with
rdfs:comment. Additional linguistically rich anno-
tations are added using Lemon [37]. An example
annotation is provided in Figure 6.

@prefix lemon: <http://lemon-model.net/lemon#> .
@prefix lexinfo: \

<http://www.lexinfo.net/ontology/2.0/lexinfo#> .

:lexicon a lemon:Lexicon ;
lemon:entry :frame--Self_motion--fly.v-le .

:frame--Self_motion--fly.v-le a lemon:LexicaEntry;
lemon:canonicalForm [
lemon:writtenRep "fly"@en] ;

lemon:sense [
lemon:reference :frame-Self_motion-fly.v] ;

lemon:synBehavior [
a lemon:Frame ;
lexinfo:partOfSpeech lexinfo:verb] .

Figure 6. Example of Lemon annotation for LU-microframe.

Following the best practices in the Linked Open
Data community, we link synset-microframes to
URIs in the canonical RDF translation of Word-
Net [36]. We also provide links to word-sense URIs
in lexvo.org, a KB that connects information about
languages, words, characters, and other human
language-related entities [13]. This allows Frame-
Base to be transitively connected to other KBs
in the Linked Open Data web, as well as provide
multilingual support.
In general, the schema does depend

on OWL inference, albeit of a lighter
kind, consisting merely of RDFS inference
plus support for owl:TransitiveProperty,
owl:SymmetricProperty and
owl:equivalentClass. However, the use of

16 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

the transitive and symmetric closure (which is
manageable for the size of the schema) and the
inverted rdf:subClassOf properties makes it also
possible to rely only on RDFS inference, which
is more widely implemented and usually more
efficient than OWL inference.

4.3. Automatic Reification–Dereification
Mechanism

While frames are convenient for representational
purposes, users wishing to query the knowledge
base benefit from direct binary predicates between
pairs of frame elements. For example, for a birth
event, binary predicates like bornInPlace and
bornOnDate can facilitate querying by offering a
more compact and simple representation.

Thus, FrameBase presents a novel mechanism to
convert between frame representations and direct
binary predicates. This mechanism can also allow
us to avoid materializing frame instances when only
two frame elements are needed.

4.3.1. Structure of ReDer rules
The dereification rules have the form expressed

in Figure 7. Additionally, for each dereification rule
there is a converse reification rule so that one can
go back from binary predicates to the frame repre-
sentation. Each Direct Binary Predicate (DBP) has
only one set of possible frame and frame elements
associated, and therefore chaining reification and
dereification rules is an idempotent operation. We
call the pair of a reification rule and its converse
dereification rule a ReDer (reification-dereification)
rule. An example of a ReDer rule is provided in
Figure 8.

?s <DIRECT_BINARY_PREDICATE> ?o
l
<FRAME_INSTANCE> a <FRAME_CLASS> ,
<FRAME_INSTANCE> <FRAME_ELEMENT-S> ?s ,
<FRAME_INSTANCE> <FRAME_ELEMENT-O> ?o .

Figure 7. The general pattern of a ReDer rule. The conjunc-
tion of the three triples below is semantically equivalent to
the triple above.

The ReDer rules can be implemented in different
ways.

– As SPARQL CONSTRUCT queries, due to
SPARQL’s prominence as a standard query
language for KBs. These can be used to mate-
rialize the DBPs into the KB.

?s :dbp-Statement-writesAboutTopic ?o
l
?F a :frame-Statement-write.v ,
?F :FE-Statement-Speaker ?s ,
?F :FE-Statement-Topic ?o .

Figure 8. A particular example of a ReDer rule. The direct bi-
nary predicate :dbp-Statement-writesAboutTopic has the
lexical label “writes about topic”, and connects the val-
ues of :FE-Statement-Speaker and :FE-Statement-Topic
when they are connected to a common frame of type
:frame-Statement-write.v, which is associated with the
verb “to write” when it evokes a “Statement” frame.

– As clauses, with triples as atoms, to be fed
to general-purpose inference engines, with or
without materialization. For example, ReDer
rules have also been implemented as rules for
the Rubrik reasoner in Jena [7].

Given an instance set (ABox), the reified and
dereified layers can be stored using different strate-
gies.

1. Materializing both the reified and dereified lay-
ers. This is the simplest but less space-efficient
approach. Ensuring consistency between both
layers after updates to a single one requires
some bookkeeping.

2. Materializing the reified layer and virtualizing
the dereified layer. This offers moderate space
efficiency. Only dereification rules are used.
Ensuring consistency after updates is trivial
if only the materialized layer is updated.

3. Materializing frame instances with two FEs in
the dereified layer and the rest in the reified
layer. This offers the highest space efficiency.
Ensuring consistency after updates is the most
complex of the three cases, because knowledge
has to be moved between the reified and derei-
fied layers when triples with FE predicates are
added or deleted.

This choice of the storage strategy is in theory or-
thogonal to the implementation of the ReDer rules.
In practice, however, storage strategy 1 is relatively
trivial to implement using SPARQL CONSTRUCT
implementations of the ReDer rules, while storage
strategy 2 is trivial to implement using dereifica-
tion rules in Jena format. Storage strategy 3 would
require internal logic (which has not been imple-
mented so far), making the choice of the format a
design choice.

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 17

Besides the plain rdfs:label and
rdfs:comment annotations, we annotate the DBPs
using Lemon [37]. This provides syntactically rich
annotations that describe the internal structure
and external syntactic frame of their labels.
Instead of using the automatic generator, that
uses automatic tokenization, parsing, etc., we
use our knowledge of the synthetic structure of
the different possible labels for DBPs to create
annotations with human-level precision. Similarly,
we also use Lemon for annotating microframes.

4.3.2. Creation of ReDer rules
The ReDer rules are automatically built using

the annotations of English sentences given for dif-
ferent LUs in FrameNet, like the grammatical func-
tion (GFs) and phrase types (PTs) [52]. Each in-
stance of an example sentence annotated by a frame
is accompanied by the GF and PT associated with
each of the FEs of that frame filled in that sentence.

FrameNet provides three kinds of GF labels that
we shall use.

– External Argument (Ext). In the case of verb
LUs, it represents the subject of the LU (“[The
physician] performed the surgery” [52]), any
constituent that controls the subject of the
LU (“[The doctor] tried to cure me”), or a
dependent of a governing noun (“We are glad
for the [American] decision to provide relief”).
In the case of adjective LUs, it is the subject
of a copular verb (“[The chair] is red”), or
other semantically similar constructions (“We
consider [Pat] very intelligent”). In the case
of noun LUs, the external argument can be
interpreted as the subject of a semantically
related verb in a periphrasis (“[He] made a
statement to the press”).

– Object (Obj). The syntactic object of a verb
LU (“Voters approved [the stadium mea-
sure]”).

– Dependent (Dep). This is the general gram-
matical function assigned to adverbs, Preposi-
tional Phrases (PPs), and some other attached
constituents, but in our case only PPs are used.
In these cases, the PP annotation is attached
(between square brackets) to the preposition
forming the PP. It can be used for verb LUs
(“Give the gun [to the officer]”; PP[to]), ad-
jective LUs (“Lee is certain [of his innocence]”
PP[to]) or noun LUs (“The letter was [to the
President]” PP[to]).

Some of the PT labels that can be found are N
(noun), NP (noun phrase), Obj (object) and PPin-
terrog (PP interrogative).
ReDer rules and new DBPs are created using

ReDer rule constructors. Each constructor specifies
certain conditions on the annotations associated
with a pair of FEs in an example sentence. When
the conditions are met, a new DBP is generated
and a ReDer rule containing the pair of FEs is
created.
The constructors are shown in Figures ??. As

in the general reification-dereification rule pattern
in Figure 7, the postfixes “-S” and “-O” in the
constructors indicate the data associated with the
FEs that fill the first and second arguments of
the DBP, respectively, or equivalently, the respec-
tive subject and object of the resulting RDF triple.
The creation of the DBP implies the creation of
a dereification rule following the pattern in Fig-
ure 7, with <FRAME_CLASS> defined by the LU, and
<FRAME_CLASS> left as a free variable. The corre-
sponding reification rule is built similarly, but as-
signing an anonymous node or a skolem constant
to <FRAME_CLASS>.

The Agent-Verb-Patient constructor in Figure 9
creates DBPs whose lexical head are verbs, whose
subject in the KB is an agent, and whose object
is a patient, thus having a lexical representation
in the form of a linguistic predicate in active voice.
The constructor inverts example sentences that are
deemed to be in passive form.
There is no explicit syntactic annotation in

FrameNet to indicate if the verb LUs are
evoked in passive form. Therefore, two differ-
ent heuristics are used for detecting this. One
(IsPassivePosHeuristic(LU)) draws on the POS
annotations available in FrameNet, and decides
that the target (LU) verb is in passive if and only
if it appears as a past participle, and the verb
to be, in any form, is in a prior position, with-
out another verb in between. The other heuristic
(IsPassiveDepHeuristic(LU)) uses the Stanford
dependency parser [33], determining that the target
(LU) verb is in passive if and only if it is the source
of any of the dependencies nsubjpass, csubjpass
or auxpass. Both heuristics make type I and II
mistakes differently, so the cases where they dis-
agree were discarded, and in the ones where they
agree that they there is passive form, the rules are
created inverting the Ext and Obj GFs.

18 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Agent-Verb-Patient constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPersonSingular(LU)”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O in {N, NP, Obj, PPin-
terrog, Sinterrog, QUO, Sfin, Sub, VPing} and
(

(GF-S==Ext and GF-O==Obj
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU))
or
(GF-S==Obj and GF-O==Ext
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU))

)

Examples of created ReDer rules:

?S :dbp-Forming_relationships-divorces ?O
l

?R a :frame-Forming_relationships-\
divorce.v

,

?R :fe-Forming_relationships-Partner_1 ?S ,
?R :fe-Forming_relationships-Partner_2 ?O .

?S :dbp-Win_prize-wins ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Prize ?O .

Figure 9. Agent-Verb-Patient ReDer rule constructor and
some examples of ReDer rules created.

The Patient-Verb-Agent constructor in Figure 10
is the converse of the Agent-Verb-Patient construc-
tor: it also creates DBPs whose lexical head are
verbs, but whose subject in the KB is a patient,
and whose object is an agent, thus having a lexical
representation using the passive voice. Every time
the Agent-Verb-Patient constructor is invoked on
an example sentence and a pair of FEs, the Patient-
Verb-Agent constructor is invoked as well, creating
the converse DBP.

The Agent-Verb-Complement constructor in Fig-
ure 11 creates DBPs whose lexical heads are verbs,
whose subjects in the KB are agents, and whose
objects are complements that are contained in a
PP in the example sentence. In the DBP label, a
new PP is included using the name of the FE-O,
following the convention used to name predicates
in many LOD KBs (e.g., diedOnDate, isWritten-

Patient-Verb-Agent constructor
Create ReDer rule with DBP whose name is:
“is ConjugatePastParticiple(LU) by”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O in {N, NP, Obj, PPin-
terrog, Sinterrog, QUO, Sfin, Sub, VPing} and
(

(GF-S==Obj and GF-O==Ext
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU))
or
(GF-S==Ext and GF-O==Obj
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU))

)

Examples of created ReDer rules:

?S :dbp-Filling-isLoadedBy ?O
l
?R a :frame-Filling-load.v ,
?R :fe-Filling-Goal ?S ,
?R :fe-Filling-Agent ?O .

?S :dbp-Kidnapping-isKidnapedBy ?O
l
?R a :frame-Kidnapping-kidnap.v ,
?R :fe-Kidnapping-Victim ?S ,
?R :fe-Kidnapping-Perpetrator ?O .

Figure 10. Patient-Verb-Agent ReDer rule constructor and
some examples of ReDer rules created.

ByAuthor, etc.). However, the proposition in the
PP in the example sentence is not always the most
appropriate to insert in the DBP label. Therefore,
Algorithm 1 is used, where different options are
tried in order, with more precise but narrow-scoped
ones first.

The Patient-Verb-Complement constructor (Fig-
ure 12) changes agent with patient with respect to
the constructor Agent-Verb-Complement, in the
same way Patient-Verb-Agent does with respect
to the constructor Agent-Verb-Patient. It creates
verb-based DBPs whose subjects in the KB are pa-
tients instead of agents, and the DBP has a lexical
representation using passive voice.
Using only agent and patient as subject of the

triple prevents the constructors from forming DBPs
that would rarely be useful, like those connecting
the time and place, or the place and the cause.
The Agent-Verb-Noun constructor (Figure 13)

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 19

Agent-Verb-Complement constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPersonSingular(LU)
Prep FrameElement-O”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O==PP[Prep] and (
(GF-S==Ext and GF-O==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU))
or
(GF-S==Obj and GF-O==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU))

)

Examples of created ReDer rules:

?S :dbp-Creating-createsFromComponents ?O
l
?R a :frame-Creating-create.v ,
?R :fe-Creating-Creator ?S ,
?R :fe-Creating-Components ?O .

?S :dbp-Win_prize-winsAtVenue ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Venue ?O .

Figure 11. Agent-Verb-Complement ReDer rule constructor
and some examples of ReDer rules created.

and the Agent-Verb-Particle-Noun constructor
(Figure 14) create ReDer rules with DBPs whose
heads are nouns, based on noun LU-microframes.
In these cases, a verb is needed that takes the
noun as an argument, normally as a direct object.
Across RDF vocabularies and ontologies, this verb
is sometimes made implicit in human-readable IRIs.
For example skos:hasTopConcept includes “has”
explicitly, while skos:topConceptOf includes “is”
implicitly. In FrameBase, the modeling choice has
been to always make them explicit both in the IRI
and in the lexical annotations, in order to avoid
ambiguity and prevent incorrect use. The verbs
have been conjugated in third person singular form.
The difference between these two constructors

is that in the Agent-Verb-Noun constructor (Fig-
ure 13), the noun is part of the object of the verb,
while in the Agent-Verb-Particle-Noun construc-
tor (Figure 14) it is part of a PP with its own
proposition.

Patient-Verb-Complement constructor
Create ReDer rule with DBP whose name is:
“is ConjugatePastParticiple(LU)
Prep FrameElement-O”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O==PP[Prep] and (

(GF-S==Obj and GF-O==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU))
or
(GF-S==Ext and GF-O==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU))

)

Examples of created ReDer rules:

?S :dbp-Destroying-isDestroyedByMeans ?O
l
?R a :frame-Destroying-destroy.v ,
?R :fe-Destroying-Undergoer ?S ,
?R :fe-Destroying-Means ?O .

?S :dbp-Beat_opponent-isDefeatedByWinner ?O
l
?R a :frame-Beat_opponent-defeat.v ,
?R :fe-Beat_opponent-Loser ?S ,
?R :fe-Beat_opponent-Winner ?O .

Figure 12. Patient-Verb-Complement ReDer rule constructor
and some examples of ReDer rules created.

In both cases, the verb governing the noun is
obtained using the same method. For each noun
LU in an annotation, the head verb is extracted
by parsing the example annotated sentences with
the Stanford dependency parser and searching the
paths of dependencies indicated in the constructors
Agent-Verb-Noun and Agent-Verb-Particle-Noun6.
For brevity, the paths are annotated with the no-
tation of SPARQL property paths, but this is not
part of any query.

The Agent-Verb-Noun constructor contains sev-
eral possible dependency paths using dependen-
cies of type “dobj” (direct object), “cop” (copula),
“nsubj” (nominal subject), and “prep” (preposi-
tion).

– (LU ^dobj HeadVerb) matches Head-
Verb=“make” and LU=“comment” for the

6We use collapsed CC-processed dependencies, version
3.2.0.

20 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Algorithm 1 Algorithm used to select the preposi-
tion. c(e, p, s) is 1 if frame element e is annotating
a PP with preposition p in example sentence s,
and 0 otherwise. h(e) is an function that maps the
40 most common frame elements to a manually
selected preposition.
Input:
s0 . Annotated sentence
e0 . FE-O in annotated sentence

Output:
p . Proposition

p′ ← arg maxp

∑
s∈S c(e0, p, s)

if
∑

s∈S c(e0, p
′, s)/

∑
s∈S,p∈P c(e0, p, s) ≥ 0.5

then
return p′

end if
if p ∈ domain(h) then

return h(e0)
end if
if max({c(e0, p, s0)|p ∈ P}) = 1 then

return arg maxp c(e0, p, s0)
end if
if max({

∑
s∈S c(e0, p, s)|p ∈ P}) > 0 then

return p′
end if
return “with”

sentence “I have decided not to make any
further comment concerning the change of
ball during the lunch interval at Lord ’s on
Sunday”.

– (LU cop HeadVerb) matches HeadVerb=“is”
and LU=“maiden name” for the sentence “The
maiden name of one of his wives (probably the
second) was Watt”.

– (LU ^nsubj/cop HeadVerb) matches Head-
Verb=“is” and LU=“cause” for the sentence
“The short-term cause of overriding local sig-
nificance were the droughts and crop failures
in 1920 and 1921”.

– (LU ^prep_*/cop HeadVerb) matches Head-
Verb=“is” and LU=“cause” for the sentence
“’Well-meaning ignorance is one of the biggest
causes of animal suffering in this country (...)’.

– (LU ^prep_*/^dobj HeadVerb) matches
HeadVerb=“give” and LU=“thought” for the
sentence “I have given a great deal of thought

as to how much I should actually tell you about
this period and what just to leave to your imag-
ination”.

The Agent-Verb-Particle-Noun constructor fires in
cases of phrasal verbs, where the head verb must
be extracted with a particle.

– (LU ^prep_VerbParticle HeadVerb) matches
HeadVerb=“go”, VerbParticle=“on” and
LU=“tour” for the sentence “Something else
I shall miss by going on this dratted tour with
Gwen!”.

Agent-Verb-Noun constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPerson-
Singular(HeadVerb)
LU Prep Frame-Element-O”
when an annotated sentence satisfies:
IsNoun(LU) and PT-O==PP[Prep] and
GF-S==Ext and GF-O==Dep and (

LU ^dobj HeadVerb or
LU cop HeadVerb or
LU ^nsubj/cop HeadVerb or
LU ^prep_*/cop HeadVerb or
LU ^prep_*/^dobj HeadVerb

)

Examples of created ReDer rules:

?S :dbp-Coming_to_believe-\
makesInferenceFromEvidence ?O
l
?R a :frame-Coming_to_believe-inference.n ,
?R :fe-Coming_to_believe-Cognizer ?S ,
?R :fe-Coming_to_believe-Evidence ?O .

?S :dbp-Arriving-makesEntranceByMeans ?O
l
?R a :frame-Arriving-entrance.n ,
?R :fe-Arriving-Theme ?S ,
?R :fe-Arriving-Means ?O .

Figure 13. Agent-Verb-Noun ReDer rule constructor and
some examples of created ReDer rules.

The Copula-Adjective-Complement constructor
in Figure 15 creates adjective-based DBPs using
the copular verb “to be”.

With the rules obtained with the process above,
the same DBP can be associated with different
reified patterns (i.e., pairs of frame elements in a
given LU-microframe), owing to different senses or
syntactic frames for a given verb – for example the

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 21

Agent-Verb-Particle-Noun constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPerson-
Singular(HeadVerb) VerbParticle
LU Prep Frame-Element-O”
when an annotated sentence satisfies:
IsNoun(LU) and PT-O==PP[Prep]
and GF-S==Ext and GF-O==Dep and (
LU ^prep_VerbParticle HeadVerb

)

Examples of created ReDer rules:

:dbp-Awareness-\
worksTowardsUnderstandingAboutTopic ?O
l
?R a :frame-Awareness-understanding.n ,
?R :fe-Awareness-Cognizer ?S ,
?R :fe-Awareness-Topic ?O .

:dbp-Discussion-\
-goesIntoDiscussionWithInterlocutor2 ?O
l
?R a :frame-Discussion-discussion.n ,
?R :fe-Discussion-Interlocutor_1 ?S ,
?R :fe-Discussion-Interlocutor_2 ?O .

Figure 14. Agent-Verb-Particle-Noun ReDer rule constructor
and some examples of created ReDer rules.

transitive and intransitive frames for smuggle. This
would conflate different senses, and if the reification
and the dereification directions of the rules were
chained, it would logically entail different pairs of
frame elements, which would not be sound. Further-
more, a given reified pattern can also produce dif-
ferent DBPs, which would lead to redundancy. To
achieve the idempotency mentioned earlier, a DBP
should not be connected to more than one reified
pattern (i.e. not present in more than one ReDer
rule). To avoid redundancy, a reified pattern should
not be connected to more than one DBP (ditto).
Therefore, it is necessary to find an {0, 1}-to-{0, 1}
assignment between DBPs and reified patterns. To
obtain the most correct and intuitive of such pos-
sible assignments, we optimize the number of ex-
ample sentences on which the ReDer rules in the
one-to-one assignment are based. This can be seen
as an instance of the assignment problem. We build
a bipartite graph with the set of DBPs and the set
of reified patterns as the two sets of vertices, and
with pairs of DBPs and reified patterns connected
by edges weighted with the additive inverse of the

Copula-Adjective-Complement constructor
Create ReDer rule with DBP whose name is:
“is LU Prep FE-o”
when an annotated sentence satisfies:
IsAdjective(LU) and phrase-type-
o==PP[Prep]
and grammatical-function-s==Ext
and grammatical-function-o==Dep

Example of created ReDer rule:

?s dbp-Sound_level-isLoudToDegree ?o
l
f type frame-Sound_level-loud.a ,
f fe-Sound_level-Entity ?s ,
f fe-Sound_level-Degree ?o .

Figure 15. Copula-Adjective-Complement ReDer rule con-
structor and some examples of created ReDer rules.

number of annotated example sentences creating
a ReDer rule that connects that DBP with that
reified pattern (positive infinite is used as weight
for the pairs that do not have any associated ReDer
rule created from examples). The Kuhn-Munkres
algorithm [42] algorithm can be applied over this
graph to find a maximal subset of the ReDer rules
that satisfies the {0, 1}-to-{0, 1} condition between
DBPs and reification patterns and maximizes the
number of example sentences on which they are
based. The Kuhn-Munkres algorithm is chosen for
its polynomial (cubic) complexity. Although this
could still be a problem for the total number of
original ReDer rules, it is averted by creating an
independent instance of the problem for the rules
created from each frame. This does not change the
results because ReDer rules are not created con-
necting DBPs and reified patterns from different
frames.

5. Evaluation of the Schema

In this section, we evaluate the results of the
methods used to create the FrameBase schema (Sec-
tion 4) as well as some practical examples resulting
from the integration of knowledge (Section 6).
First, Section 5.1 presents the evaluation of

the FrameNet-WordNet mapping described in Sec-
tion 4.1, and we discuss why this is used in the
next steps.

22 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Then, Sections 5.2 and 5.3 present the results
for the methods described for the construction of
the schema hierarchy (Section 4.2) and the con-
struction of the ReDer rules (Section 4.3), respec-
tively. These two sets of results (summarized in Ta-
ble 2) cover all the parts of the schema that are cre-
ated automatically, and since the original resources
(FrameNet and WordNet) are created manually,
these results provide a complete evaluation of the
quality of the FrameBase schema with respect to
the standard of human-level annotations.

Correctness Nuanced correct.
Cluster pairs 87.55% ± 6.18% 31.15% ± 9.38%
V-ReDer rules 96.22% ± 3.22% 80.43% ± 7.61%
N-ReDer rules 87.50% ± 6.41% 91.91% ± 6.28%

Table 2
Quality measures for the FrameBase schema for
intra-cluster pairs of microframes, verb-based
ReDer rules and noun-based ReDer rules.
Nuanced correctness is a variable collected
over correct elements, that reflects how perfectly
accurate the element is (perfect synoynmy for
pairs of microframes, readability for rules).

5.1. FrameNet–WordNet Alignment

To evaluate the created schema, the created
FrameNet–WordNet mapping has been compared
to the MapNet gold standard [60]. MapNet uses
older versions of FrameNet and WordNet, so map-
pings from WordNet 1.6 to 3.0 [10] had to be ap-
plied, removing those with a confidence lower than
one, and the few LUs of FrameNet 1.3 that are
not contained in FrameNet 1.5 were discarded. Ta-
ble 3 compares the results against state-of-the-art
approaches and the scores that they report on the
MapNet gold standard. As stated as goal when
setting the cardinality restrictions in Section [?],
the approach described in section 4 achieves higher
precision (albeit for a very narrow margin), while
still maintaining good recall. For this reason, we
consider it more appropriate than the previously
existing ones to be used in the following steps,
because high precision is usually prioritized for
tasks related to knowledge representation. 5-fold
cross-validation was used for obtaining the results.

It may be relevant to note that there is in prac-
tice an upper bound to precision scores in tasks
like this, because of the subjective component of
any gold standard. The creators of the gold stan-

dard [60] report “0.90 as Cohen’s Kappa computed
over 192 LU-synset pairs for the same mapping
task” by [12]. More generally, [18] maintains that
“both people and automatic systems, when asked
to assign tokens in a text to the appropriate senses
in dictionaries, find the task difficult and do not
agree among themselves”.

5.2. Creation of the Hierarchy

The frame hierarchy in the FrameBase schema
is based on FrameNet and WordNet and the map-
ping created between the two resources. It provides
19,376 frames, including 11,939 LU-microframes
and 6,418 synset-microframes, all with lexical la-
bels. A total of 18,357 microframes are clustered
into 8,145 logical clusters, which are the sets of
microframes whose elements are linked by a logi-
cal equivalence relation. The size of the schema is
250,407 triples.

The quality of the microframe clusters has been
evaluated by asking two independent reviewers to
evaluate a random sample of 100 intra-cluster pairs
of LU-microframes. Each pair has been annotated
with two variables: correctness (1 if the pair is
correct, 0 otherwise) and similarity (only apply-
ing when the pair is correct; acquiring value 1 if
they they are totally equivalent, 0 if there is a
change of nuance). An resulting average correct-
ness is 87.55%± 6.18% with a 95% Wilson confi-
dence interval has been obtained. The evaluation
showed a small change of nuance (similarity=0) for
31.15%±9.38% of the correct pairs – most of these
are caused by the choice to use semantic pointers
such as “Similar to”, which could be removed if
very fine-grained distinctions of microframes were
desired. The linear weighted Cohen’s Kappa (inter-
annotator agreement) over the three-valued com-
bination of the two variables with which are anno-
tated for each cluster pair, was 0.23 (over a maxi-
mum of 0.87).

5.3. Reification–Dereification Rules

Additionally, reification-dereification rules are
provided, with the same number of direct binary
predicates, with both human-readable IRIs and lex-
ical labels. 83,790 are verb-based, 3,190 are noun-
based and 7,248 are adjective-based. For evaluat-
ing them, the same methodology was used, with
two independent human annotators. Two different

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 23

Prec Rec F1 Acc

SVM Polynomial kernel 1 [60] 0.761 0.613 0.679 —
SVM Polynomial kernel 2 [60] 0.794 0.569 0.663 —
SSI-Dijkstra [34] 0.78 0.63 0.69 —
SSI-Dijkstra+ [34] 0.76 0.74 0.75 —
Neighborhoods [19] — — — 0.772
FrameBase’s mapping 0.789 0.709 0.746 0.864

Table 3
Comparison of FrameBase’s FrameNet–WordNet mapping
to state-of-the-art approaches in terms of precision, recall,
F1, and accuracy.

variables were used for each rule: correctness and
readability. A rule is considered to be not easily
readable if the name of the direct binary predicate
contains a frame element whose meaning is not
obvious for a layman reader, or if it contains a
preposition that is appropriate for some but not
all possible objects, or it is not appropriate for the
frame element in the name. The obtained average
correctness for verb-based rules is 96.22%± 3.22%,
whereas 80.43%± 7.61% of the correct rules were
found easily readable. For noun-based rules, the
scores are 87.5%±6.41% and 91.91%±6.28%. The
Cohen’s kappa for the two annotations was 0.39
over a maximum of 0.54.

6. Integration

Knowledge from other KBs such as Freebase
can be integrated using integration rules. In prac-
tice, these result in a graph transformation from
the source KB to FrameBase. Formally, these are
rules whose antecedent and consequent are graph
patterns sharing some variables. Whenever there
is an instantiation of variables that, applied to
the antecedent, returns a subset of the source KB,
then the consequent, after being applied the same
so instantiation of variables, can be added to the
FrameBase instance data (the ABox in the jargon
of description logics).
When the sources are in RDF, the most obvi-

ous choice for implementing integration rules is
using SPARQL CONSTRUCT queries with the
WHERE clause containing the antecedent and the
CONSTRUCT clause containing the consequent.
Additionally, SPARQL CONSTRUCT queries sup-
port predicates and logical operators that allow

for imposing additional logical conditions on the
WHERE clause to match the original KB (i.e., for
the rule to be fired). For non-RDF sources, a sim-
ple choice would be applying an off-the-shelf RDF
converter7 to pre-process the source, after which
SPARQL CONSTRUCT queries can still be used.
The SPARQL examples in this and the next

sections use the following prefixes.

PREFIX : <http://framebase.org/ns/>
PREFIX freeb: <http://rdf.freebase.com/ns/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX sch: <http://schema.org/>

In Section 6.1, some examples of manually built
integration rules are presented for integrating
events from two different sources: DBpedia and
schema.org. Besides showing concrete examples of
rules, the section provides an assessment for the
expressiveness of the FrameBase schema in its cur-
rent state, by reviewing to which extent external
knowledge can be integrated when using manually
built rules. It also introduces a basic typology of
integration rules. These are important steps be-
fore reviewing the task of integrating knowledge
automatically.

Subsequently, Section 6.2 discusses the creation
of ReDer rules based on existing work.
Finally, in Section 6.3, we provide examples of

queries that make use of the schema.

6.1. Manually Built Integration Rules

We will first show two simple examples of inte-
gration rules integrating knowledge from Freebase.
They belong to two basic rule types that we label

7http://www.w3.org/wiki/ConverterToRdf

24 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

Class-Frame and Property-Frame, which will later
serve as the basis for constructing more complex
rules.
Class-Frame integration rules integrate a class

from the source KB into a frame in FrameBase, and
the outgoing properties from the external class into
FE properties. The following example integrates
a class organization.leadership into the frame
:frame-Leadership-leader.n.

CONSTRUCT {
_:f a :frame-Leadership-leader.n .
_:f :fe-Leadership-Leader ?o1 .
_:f :fe-Leadership-Governed ?o2 .
_:f :fe-Leadership-Role ?o3 .
_:f :fe-Leadership-Type ?o4 .
_:timePeriod a :frame-Timespan-period.n .
_:timePeriod :fe-Timespan-Start ?o5 .
_:timePeriod :fe-Timespan-End ?o6 .

} WHERE {
?cvti a freeb:organization.leadership .
OPTIONAL { ?cvti

freeb:organization.leadership.person ?o1 .}
OPTIONAL { ?cvti

...organization.leadership.organization ?o2 .}
OPTIONAL { ?cvti

freeb:organization.leadership.role ?o3 .}
OPTIONAL { ?cvti

freeb:organization.leadership.title ?o4 .}
OPTIONAL { ?cvti

freeb:organization.leadership.from ?o5 .}
OPTIONAL { ?cvti

freeb:organization.leadership.to ?o6 .}
}

Property-Frame integration rules translate
a property from the source KB into a frame
and two FEs in FrameBase. The structure is
similar to that of ReDer rules, but the property
in the antecedent is not a FrameBase DBP,
although the similarity of the structure will
be exploited later to automatically produce
integration rules of this type from existing ReDer
rules. The following example integrates a property
freeb:people.person.nationality into the
frame frame-People_by_jurisdiction-citizen.n.

CONSTRUCT {
_:f a :frame-People_by_jurisdiction-citizen.n .
_:f :fe-People_by_jurisdiction-Person ?person .
_:f :fe-People_by_jurisdiction-Jurisdiction ?country .

} WHERE {
?person freeb:people.person.nationality ?country .

}

The next example pertains to the Event class
in DBpedia. It is a Class-Frame rule with exten-
sions. From the nine properties of the Event class,
numberOfPeopleAttending was omitted because
the Event class is too general for it, as it has
subclasses such as PersonalEvent (Birth, etc.)
and SocietalEvent, that appear more appropri-
ate for this. The remaining eight properties were
integrated, but although the example shares the
same basic structure as the Class–Frame rule pro-
vided for Freebase, it includes additional complex
patterns in the consequent.

CONSTRUCT {
?f a :frame-Event-event.n .
#
?f :fe-Event-Time _:timePeriod .
_:timePeriod a :frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?o1 ;
fbe:fe-Timespan-End ?o2 .

#
_:af2 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o3 .

#
_:af3 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?o3 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af4 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o4 .

#
_:af5 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o4 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af6 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o5 .

#
_:af7 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o5 ;
:fe-Relative_time-Focal_occasion ?f .

#
?f :fe-Event-Reason ?o6 .
#
_:af8 a :frame-Dimension-length.n ;
:fe-Dimension-Object ?f ;
:fe-Dimension-Measurement ?o7 .

#
?f a :frame-Social_event-meeting.n ;
:fe-Social_event-Attendee ?o9 ;
:fe-Social_event-Duration ?o7 .

#
} WHERE {

?f a dbr:Event .
OPTIONAL{?f dbr:startDate ?o1}
OPTIONAL{?f dbr:endDate ?o2}

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 25

OPTIONAL{?f dbr:previousEvent ?o3}
OPTIONAL{?f dbr:followingEvent ?o4}
OPTIONAL{?f dbr:nextEvent ?o5}
OPTIONAL{?f dbr:causedBy ?o6}
OPTIONAL{?f dbr:duration ?o7}
OPTIONAL{ #Omitted

?f dbr:numberOfPeopleAttending ?o8}
OPTIONAL{?f dbr:participant ?o9}

}

The dbr:Event class has several subclasses that
can also be translated. However, the hierarchy in
the original ontology is not necessarily consistent
with the hierarchy in FrameBase. Only in certain
cases does a subsumption relationship between
two entities of the source also exist between the
two entities’ respective translations to FrameBase.
Therefore, for each translation of an element in the
source KB, the translations of more general ele-
ments can be added, and this provides additional
knowledge that would not always be inferred by
the FrameBase schema alone.
For example, using RDFS inference, the sub-

stitutions for ?f that fire the rule below (“?f
a dbr:SocietalEvent”), do also fire the one for
dbr:Event, because dbr:SocietalEvent is a sub-
class of dbr:Event. This rule is very short because
in DBpedia, all of the outgoing properties belong
to the parent Event class itself.

CONSTRUCT {
?f a :frame-Social_event-meeting.n .

} WHERE {
?f a dbr:SocietalEvent

}

Similarly, the substitutions for ?f that
fire the following five examples from DB-
pedia (dbr:SpaceMission, dbr:Convention,
dbr:Election, dbr:FilmFestival,
dbr:MilitaryConflict), do also fire the ones for
dbr:SocietalEvent and dbr:Event, because the
classes captured in the antecedent are subclasses
of dbr:SocietalEvent.

In the rule for dbr:SpaceMission, we minimize
the need for declaring new frames and frame ele-
ments for specialized domains by making use of
the compositionality of most specialized terms,
creating complex structures that combine the se-
mantics of simpler, basic elements. For instance,
the translation for the type dbr:SpaceMission de-
clares a frame of type Project-project.n, and

specifies that it is about space exploration by as-
signing dbrl:SpaceMission as the value for the
Project-Activity FE.

CONSTRUCT {
?f a :frame-Project-project.n .
?f :fe-Project-Activity dbr:Space_exploration .

} WHERE {
?f a dbr:SpaceMission

}

CONSTRUCT {
?f a fbe:frame-Social_event-convention.n .

} WHERE {
?f a dbr:Convention

}

CONSTRUCT {
?f a :frame-Change_of_leadership-election.n .

} WHERE {
?f a dbr:Election .

}

CONSTRUCT {
?f a :frame-Social_event-festival.n .
?f :fe-Social_event-Attendee ?o3 .
?f :fe-Social_event-Descriptor dbr:Film .
?f a :frame-Competition-competition.n .
?f :fe-Competition-Participant_1 ?o3 .
?f :fe-Competition-Competition dbr:Film .
_:af1 a :frame-Ordinal_numbers-first.a .
_:af1 :fe-Ordinal_numbers-Item ?o1 .
_:af1 :fe-Ordinal_numbers-Comparison_set ?f .
_:af1 :fe-Ordinal_numbers-Comparison_set dbr:Film .
_:af2 a :frame-Ordinal_numbers-last.a .
_:af2 :fe-Ordinal_numbers-Item ?o2 .
_:af2 :fe-Ordinal_numbers-Comparison_set ?f .
_:af2 :fe-Ordinal_numbers-Comparison_set dbr:Film .

} WHERE {
?f a dbr:FilmFestival .
OPTIONAL{?f dbr:closingFilm ?o1}
OPTIONAL{?f dbr:openingFilm ?o2}
OPTIONAL{?f dbr:film ?o3}

}

CONSTRUCT {
?f a :frame-Hostile_encounter-hostility.n .
_:af1 a :frame-Death-die.v .
_:af1 :fe-Death-Sub_event ?f .
_:af1 :fe-Death-Protagonist ?o1 .
?f :fe-Hostile_encounter-Side_1 ?o2 .
_:af3 a :frame-Part_whole-part.n .
_:af3 :fe-Part_whole-Part ?f .
_:af3 :fe-Part_whole-Whole ?o3 .
?f :fe-Hostile_encounter-Place ?o4 .
?f :fe-Hostile_encounter-Result ?o5 .
?f :fe-Hostile_encounter-Depictive ?o6 .

26 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

?f :fe-Hostile_encounter-Side_2 ?o7 .
} WHERE {

?f a dbr:MilitaryConflict .
OPTIONAL{?f dbr:casualties ?o1}
OPTIONAL{?f dbr:combatant ?o2}
OPTIONAL{?f dbr:isPartOfMilitaryConflict ?o3}
OPTIONAL{?f dbr:place ?o4}
OPTIONAL{?f dbr:result ?o5}
OPTIONAL{?f dbr:strength ?o6}
OPTIONAL{?f dbr:opponents ?o7}

}

Below, we also present the translation of the
class Event in schema.org.

Due to space restrictions, we omit the subclasses
here, but these have very few genuine properties,
and therefore the specialization is relatively sim-
ple. Besides, the taxonomy of schema.org events
has some inconsistency issues that makes its use
complex: the Event class is defined as capturing
events such as concerts, lectures, and festivals,
with properties such as “typical age range”, but
there are sub-events such as UserInteraction and
UserPlusOnes that actually represent a more gen-
eral kind of events.

CONSTRUCT {
?f a :frame-Social_event-meeting.n .
?f a :frame-Event-event.n .
#
?f :fe-Social_event-Time _:timePeriod .

_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?Osta ;
fbe:fe-Timespan-End ?Oend .

?f :fe-Event-Time _:timePeriod .
#
?f :fe-Social_event-Duration ?Odur .
?f :fe-Event-Duration ?Odur .
#
?f :fe-Social_event-Place ?Oloc .
?f :fe-Event-Place ?Oloc .
#
?f :fe-Social_event-Attendee ?Oatt .
?f :fe-Social_event-Host ?Oorg .
#
?f :fe-Social_event-Occasion ?Osup .
?Osub :fe-Social_event-Occasion ?f .
#
?Ooff a :frame-Offering-offer.v ;

:fe-Offering-Theme ?f .
#
?f a :frame-Performing_arts-performance.n ;

:fe-Performing_arts-Performer ?Oper ;
:fe-Performing_arts-Performance ?Owor .

#
_:af1 a :frame-Recording-record.v ;

:fe-Recording-Phenomenon ?f ;
:fe-Recording-Medium ?Orec .

#
?f :fe-Social_event-Descriptor ?Oeve .
#
_:af2 a Change_event_time-postpone.v ;
Change_event_time-Event ?f;
Change_event_time-Landmark_time ?Opre.

#
_:af a :frame-Typicality-normal.a .
_:af :fe-Typicality-Entity _:af2 .
_:af2 :frame-Age-age.n .
_:af2 :fe-Age-Age ?Otyp .

} WHERE {
?f a sch:Event .
OPTIONAL{?f sch:startDate ?Osta}
OPTIONAL{?f sch:endDate ?Oend}
OPTIONAL{?f sch:duration ?Odur}
OPTIONAL{?f sch:location ?Oloc}
OPTIONAL{?f sch:attendee ?Oatt}
OPTIONAL{?f sch:organizer ?Oorg}
OPTIONAL{?f sch:superEvent ?Osup}
OPTIONAL{?f sch:subEvent ?Osub}
OPTIONAL{?f sch:offers ?Ooff}
OPTIONAL{?f sch:performer ?Oper}
OPTIONAL{?f sch:workPerformed ?Owor}
OPTIONAL{?f sch:recordedIn ?Orec}
OPTIONAL{?f sch:eventStatus ?Oeve}
OPTIONAL{?f sch:previousStartDate ?Opre}
OPTIONAL{?f sch:typicalAgeRange ?Otyp}
No translation
OPTIONAL{?f sch:doorTime ?Odoo}

}

The only extension of the FrameBase
schema used for these examples was the frame
:frame-Timespan-period.n with the start and
end frame elements, used to denote periods of
time. This, however, is not an ad-hoc extension
motivated by a particular need of only one source,
but a very general one. Of the 16 properties
of the Event class, only one (sch:doorTime,
with an official gloss “The time admission will
commence”), was not integrated. The remaining
15 were integrated.

Property-Frame rules, as well as complex Class-
Frame rules that declare new frame instances that
do not correspond to entities existing in the source
KB (either by means of anonymous nodes, like in
the examples, or coining new, essentially skolem-
ized IRIs) do not merge frame instances that cor-
respond to the same n-ary relation but are cre-
ated by different rules or different instances of the
same rule. This is a later step for which an out-
of-the-box entity de-duplicator [35,38,57] can be
applied. What the integration rules allow is to pro-
vide entities of the same type and that actually

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 27

represent the same thing (event, situation, process,
i.e. frame), so that the entities can actually be
linked – and if the de-duplication process has high
enough precision, it is recommended that they are
merged, so the full efficiency indicated in Table 1
is achieved. This would not be possible with the
heterogeneous models in Figure 1.

6.2. Automatically Built Integration Rules

There has been recent work on automatically
creating basic Property-Frame and Class-Frame
integration rules using automatic methods guided
with KB specific heuristics, and these have been
tested for Freebase and Yago [48]. Table 4 shows
the number of triples and frame types integrated
in FrameBase under this method.

Table 4

Number of statements and distinct frame types in the
integrated data, from YAGO2s and from Freebase.
The numbers in parentheses include the equivalent
microframes that can be obtained with RDFS inference.

YAGO2s Freebase

Reified
Number of triples 32,927,963 7,483,430
Instantiated frame types 186 (1634) 29 (130)

Dereified
Number of triples 3,933,207 6,120,201

More specific work has been performed on the
creation of Property-Frames by matching canonical-
ized properties from external KBs with FrameBase
DBPs, and substituting the DBP in the ReDer
rule with the external property that creates a good
match [50]. This is similar to how Legalo [44] works
for extracting relations from hyperlinks surrounded
by text. In general, the ability to create Property-
Frame integration rules towards FrameBase exploit-
ing its linguistic nature and its corpus of annota-
tions is one of the main values of this work. First,
because traditional ontology alignment systems
cannot produce such complex mappings, as was
discussed in Section 2, and therefore their recall
will be effectively equal to zero in this task. Second,
because the same ontology alignment systems can
be re-used to create Class-Frame rules (mapping
classes with classes and properties with properties,
if the ontology alignment system allows declaring
constraints related to the properties’ domain). The

creation of complex Property-Frame rules, which
will be discussed in Section 7, is also explored in
this work.

Additionally, a demo system has been developed
that allows us to re-use these methods as search
and suggestion engines behind a intuitive GUI,
enabling human-level accuracy while minimizing
the effort for the user [51].

6.3. Querying

FrameBase facilitates novel forms of queries. The
query in Figure 16, for instance, uses reified pat-
terns to find the heads of the World Bank.
SELECT DISTINCT
?leader ?leaderLabel ?role ?roleLabel
WHERE {

?lumfi a :frame-Leadership-leader.n .
?lumfi :fe-Leadership-Governed ?worldBank.
?lumfi :fe-Leadership-Leader ?leader .
?leader rdfs:label ?leaderLabel .
VALUES ?worldBank {
yago:World_Bank freeb:m.02vk52z

}
OPTIONAL{
?lumfi :fe-Leadership-Role ?role .
?role rdfs:label roleLabel .

}
}

Figure 16. Example query using reified pattern.

The results in Table 5 show example instances
integrated into the FrameBase schema from both
Freebase (rows 1–3, extracted from the second ex-
ample integration rule above) and YAGO2s (rows
4–5, extracted with a similar integration rule made
for YAGO2s) [48].
Alternatively, if the triple :isSimilarTo

rdfs:subPropertyOf rdfs:subClassOf is added
with RDFS inference activated, then the mi-
croframe :frame-Leadership-leader.n in Fig-
ure 16 can be substituted with any of the mi-
croframes in the cluster, shown in Figure 17. This
effectively helps increasing recall.
A DBP from the dereification rules can also be

used to obtain the same non-optional results, as
illustrated in the query in Figure 18. Either of
the verb-based DBPs leads or heads can be used
because the LU-microframes for these verbs are in
the same cluster as the nouns leader and head, and
there is a dereification rule between the Leader and
Governed FEs for both.

28 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

?leader ?leaderLabel ?role ?roleLabel

freeb:m.0h_ds2s ‘Caroline Anstey’ freeb:m.04t64n ‘Managing Director’
freeb:m.0d_dq5 ‘Mahmoud Mohieldin’ freeb:m.04t64n ‘Managing Director’
freeb:m.047cdkk ‘Sri Mulyani Indrawati’ freeb:m.01yc02 ‘Chief Operating Officer’
yago:Jim_Yong_Kim ‘Ji, Yong Kim’ – –
yago:Robert_Zoellick ‘Rober Zoellick’ – –

Table 5
Results from the query

:frame-Leadership-wn_lead_n_01256743
:frame-Leadership-lead.v
:frame-Leadership-wn_head_v_02729023
:frame-Leadership-chief.n
:frame-Leadership-wn_head_n_10162991
:frame-Leadership-principal.n
:frame-Leadership-leadership.n
:frame-Leadership-wn_headship_n_00593108
:frame-Leadership-wn_leader_n_09623038
:frame-Leadership-wn_leadership_n_05617310
:frame-Leadership-head.v
:frame-Leadership-leader.n
:frame-Leadership-wn_head_v_02440244
:frame-Leadership-head.n

Figure 17. Microframes from the cluster where
:frame-Leadership-leader.n belongs.

SELECT DISTINCT ?leader WHERE {
?leader :dbp-Leadership-heads ?worldBank .
VALUES ?worldBank {

yago:World_Bank freeb:m.02vk52z
}

}

Figure 18. Example query using a dereified pattern.

7. Towards Complex Integration

The methods described in Section 6.2 create ba-
sic Class-Frame and Property-Frame integration
rules. However, as some examples in Section 6.1
illustrate, integration rules can become very com-
plex.

7.1. Complex Property-Frame Integration Rules

– FrameBase driven. This involves extending an
approach already explored in existing Frame-
Base integration work [50], creating very com-
plex ReDer rules whose DBPs could also be
matched with external properties. These DBPs
could have for instance a “(VP <VBZ> (NP
<NP1> (PP <IN> <NP2>)))” structure, as
e.g. “developsUnderstandingOfContent” (see

Figure 19) or “startsDemolitionOfBuilding”,
but other more complex structures would
be possible, too. This involves two frame in-
stances (one evoked by VBZ and the other by
NP1), and some challenges:
∗ Syntactically correct but semantically
nonsensical combinations should be fil-
tered out (e.g. “procrastinationDrunk-
ByQuadruplicity”). This could be done
based on example sentences in FrameNet.
∗ If the frames evoked by the VBZ and
NP1 are not annotated in the same sen-
tence, the correct pair of frames should
be chosen from the pair of lexical units
(VBZ,NP1), and the correct FE connect-
ing both should be chosen too.

An advantage of this approach is that it
provides richer ReDer rules in FrameBase,
but the disadvantage is that being driven by
FrameBase, it may have poor recall for real-
life datasets, both because of its reliance on
FrameNet example sentences and FrameNet’s
non-specialized vocabulary. The latter prob-
lem could be significantly reduced by also up-
dating the similarity function between DBPs
and source properties, to account for hyper-
nymy and synonymy relations that would al-
low capturing very specific concepts in source
KBs for which hypernyms can be found in
FrameBase (for instance: “increasesSpeedOf-
Process” and “catalyzesChemicalReaction”).

– Source-data driven. This would involve pars-
ing predicate names with a semantic role la-
belling system, similar to Legalo [44]. However,
such SRL systems are also constrained by their
reliance on annotated example sentences for
training. In any case, an advantage of this ap-
proach is that if FrameBase is extended with
PropBank, SRL systems for this could be used
as well.

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 29

?s dbp-Awareness-developsUnderstandingOfContent ?o
l
f type frame-Progress-develop.v
f fe-Progress-Entity ?s
f fe-Progress-Post_state f’
f’ type frame-Awareness-understanding.n
f’ fe-Awareness-Cognizer ?s
f’ fe-Awareness-Content ?o

Figure 19. Example of a very complex noun-based ReDer
rule

7.2. Complex Class-Frame Integration Rules

There are multiple ways in which Class-Frame
rules can differ from their basic pattern. We will
use the examples in Section 6.1 to illustrate this.

1. Sometimes, a class integration rule may need
to instantiate multiple frames rather than just
a single one. We distinguish two main types
of this phenomenon.

a) The instantiated frame instances
may be connected by FEs. Ex-
amples of this include the frame
:frame-Timespan-period.n, created
to represent time periods, and the
subframes of Relative_time to express
precedence between events (all in the
example for dbr:Event). The same
applies when a FE is used to specify a
frame beyond the lexical unit (see the
rule for dbr:Space_exploration).

b) Several frames can also be evoked
separately, without the instances being
directly connected by any FE. When
these frames describe different per-
spectives of the same event, there is
the possibility that FrameNet links
them by means of perspectivization,
and therefore FrameBase can infer one
from another. In this case, inference is
possible because RDFS subclass and
subproperty properties are used in
FrameBase to reflect the perspectiviza-
tion relation between frame classes and
FEs respectively. Another example are
:frame-Receive_visitor_scenario
and :frame-Visit_host, which are per-
spectives of :frame-Visitor_and_host.
However, in other cases one cannot
rely on existing inference. For in-

stance, on can observe that the rule
to translate Event from schema.org,
besides the frames Event-event.n and
Timespan-period.n, also instantiates
Performing_arts-performance.n,
Recording-record.v, and
Offering-offer.v, when certain
properties are present.

2. Another possible source of complexity is that
FEs can be inverted. In this case, the inte-
gration rules need to invert the order of the
arguments, as in the second occurrence of
:fe-Social_event-Occasion in the integra-
tion rule for the class Event in schema.org.

Arbitrary combinations of these phenomena are
possible (e.g., the rule integrating the Event class
from schema.org).

A possible way to address this problem may be
defining a reduced alphabet of transformations over
a basic Class-Frame rule, similar to our list above,
so that a complex Class-Frame rule can be repre-
sented as a basic initial one followed by a sequence
of transformations, and this representation can be
fed into a supervised learning algorithm.

However, the high number of variables involved
would mean that any attempt to train a system
would face extreme sparsity. Inter-annotator agree-
ment, which is already low for simple integration
rules [48], would probably be even lower. Investigat-
ing how to produce such genuinely complex rules
entirely automatically thus remains an important
research challenge.
In the short term, we believe that a combina-

tion of automated assistance and user feedback,
as provided by user interfaces such as Klint [51],
may be the best strategy whenever high-quality
integration is desired.

8. Conclusion

FrameBase is a novel approach for integrating
knowledge from different heterogeneous sources
and connecting it to decades of work from the NLP
community. It provides a flexible and homogeneous
model to describe n-ary relations, which combines
efficiency, expressiveness and is based on a linguis-
tically sound foundation. The ties with natural
language can be exploited to automatically inte-
grate knowledge from external sources. FrameBase

30 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

opens up several new research directions, which we
enumerate next.

Integrating additional sources. Either using a uni-
fied approach [48] or focusing on Property-Frame
rules and combining them with existing ontology
alignment systems [50], additional sources could be
integrated. Both generic KBs such as WikiData and
domain-specific ones such as from the biomedical
domain could be incorporated.

Interfacing from natural language. Due to its
use of linguistic resources for ontological purposes,
FrameBase has significant potential for text min-
ing and other natural language related tasks. Both
pure Semantic Role Labelling (SRL) systems for
FrameNet such as SEMAFOR [9] as well as text-to-
ontology systems such as FRED [43] and Pikes [8]
could be adapted to produce FrameBase data from
natural language text. Similar methods could also
enable question answering. For example, for the
example in Figure 16 in Section 6.3, given the ques-
tion “Who has been the head of the World_Bank?”,
the SRL tool SEMAFOR [9] successfully extracts
the frame Leadership with lexical unit head.noun
and frame elements Governed and Leader. Based
on this, and after a named entity disambiguator
such as AIDA [29] matches World_Bank to the
entities in the KBs, a structured query can easily
be built. Although accurate semantic role labeling
is still very challenging, semantics has become one
of the largest research areas in natural language
processing and thus FrameBase can easily benefit
from progress made in this area in the future.

Natural language generation. FrameBase also of-
fers opportunities for natural language genera-
tion from KBs. Dereification rules can be inter-
preted as syntactic templates [62] for simple En-
glish sentences without subordinate clauses. For in-
stance, :dbp-Statement-writesAboutTopic from
Figure 8 could be used to produce a natural lan-
guage representation “X writes about Y”. It would
be trivial to produce similar 3-ary syntactic tem-
plates for “X writes about Y in Z” (for Z being a
Time or a Date) and “X writes to Z about Y” (for
Z being the Addressee).

Implementing virtual querying. Currently, the in-
tegration rules for integrating source KBs into
FrameBase have been implemented as SPARQL
CONSTRUCT queries applied over the sources’
data, which can be used to materialize the in-

tegrated knowledge. An alternative implementa-
tion would involve virtual querying: using the in-
tegration rules to provide FrameBase-adapted vir-
tual views of the source KBs. This would allow
re-using existing SPARQL endpoints from the dif-
ferent sources and enable access to the most recent
version of the source data.

Further information. Details and more informa-
tion about FrameBase are available at http://
framebase.org. The FrameBase data is freely
available under a Creative Commons Attribution
4.0 International license (CC-BY 4.0).

Acknowledgments

This research was partially funded by the Eu-
ropean Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement No. FP7-
SEC-2012-312651 (ePOOLICE project). Additional
funding was provided by China 973 Program
Grants 2011CBA00300, 2011CBA00301, and NSFC
Grants 61033001, 61361136003, 20141330245.

References

[1] Roles in Schema.org. Technical report, W3C, 2014.
http://schema.org/Role.

[2] Roles in W3c WebSchemas. Technical report,
2014. http://blog.schema.org/2014/06/introducing-
role.html.

[3] C. F. Baker, C. J. Fillmore, and J. B. Lowe. The
Berkeley FrameNet Project. ICCL ’98, pages 86–90,
1998.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data–
the story so far. IJSWIS, 5(3):1–22, 2009.

[5] C. Böhm, G. de Melo, F. Naumann, and G. Weikum.
LINDA: Distributed Web-of-data-scale Entity Match-
ing. CIKM ’12, pages 2104–2108, 2012.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. SIGDATA,
pages 1247–1250, 2008.

[7] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing
the semantic web recommendations. WWW ’04, 2004.

[8] F. Corcoglioniti, M. Rospocher, and A. P. Aprosio. A
2-phase frame-based knowledge extraction framework.
In Proc. of ACM Symposium on Applied Computing
(SAC’16), pages 354–361, 2016.

[9] D. Das, D. Chen, A. F. T. Martins, N. Schneider, and
N. A. Smith. Frame-semantic parsing. Computational
Linguistics, 40(1):9–56, Mar. 2014.

[10] J. Daudé, L. Padró, and G. Rigau. Mapping wordnets
using structural information. ACL, 2000.

J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge 31

[11] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos
Santos. The Alignment API 4.0. Semantic Web Journal,
2(1):3–10, 2011.

[12] D. De Cao, D. Croce, and R. Basili. Extensive Evalua-
tion of a FrameNet-WordNet mapping resource. LREC,
2010.

[13] G. de Melo and G. Weikum. Language as a foundation
of the Semantic Web. In C. Bizer and A. Joshi, editors,
Proceedings of the Poster and Demonstration Session
at the 7th International Semantic Web Conference
(ISWC 2008), volume 401 of CEUR WS, Karlsruhe,
Germany, 2008. CEUR.

[14] L. Del Corro and R. Gemulla. Clausie: Clause-based
open information extraction. WWW ’13, 2013.

[15] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMAP: Discovering Complex Semantic
Matches Between Database Schemas. In SIGMOD
2004, pages 383–394, 2004.

[16] J. Euzenat and P. Shvaiko. Ontology Matching.
Springer, 2007.

[17] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. The MIT Press, 1998.

[18] C. Fellbaum and C. F. Baker. Can WordNet and
FrameNet be Made “Interoperable”? ICGL ’08, 2008.

[19] O. Ferrández, M. Ellsworth, R. Munoz, and C. F. Baker.
Aligning FrameNet and WordNet based on Semantic
Neighborhoods. LREC ’10, 2010.

[20] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. M. Prager, N. Schlaefer, and C. A. Welty.
Building Watson: An Overview of the DeepQA Project.
AI Magazine, 31(3), 2010.

[21] C. J. Fillmore, C. R. Johnson, and M. R. Petruck.
Background to Framenet. International journal of
lexicography, 16(3):235–250, 2003.

[22] W. Frawley. Linguistic semantics. Hillsdale, 1992.
[23] A. Gangemi and V. Presutti. Towards a pattern science

for the semantic web. Semantic Web, 1(1):61–68, 2010.
[24] A. Gangemi and V. Presutti. A Multi-dimensional

Comparison of Ontology Design Patterns for Represent-
ing n-ary Relations. In SOFSEM ’13, pages 86–105,
2013.

[25] D. Gildea and D. Jurafsky. Automatic labeling of
semantic roles. Computational linguistics, 28(3):245–
288, 2002.

[26] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-
Match: an Algorithm and an Implementation of Se-
mantic Matching. In The Semantic Web: Research and
Applications, pages 61–75. Springer, 2004.

[27] P. Hayes and P. Patel-Schneider. RDF 1.1
semantics. Technical report, W3C, 2014.
http://www.w3.org/TR/rdf11-mt/.

[28] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum. YAGO2: A spatially and temporally en-
hanced knowledge base from Wikipedia. Artificial In-
telligence , 194(0):28–61, 2013.

[29] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. Robust Disambiguation of Named Entities
in Text. EMNLP ’11, pages 782–792, 2011.

[30] D. Jurafsky and J. H. Martin. Speech and Language

Processing. Pearson Prentice Hall, 2nd edition, 2009.
[31] A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W.

Murdock, A. Lally, C. Welty, J. M. Prager, B. Coppola,
A. Fokoue-Nkoutche, L. Zhang, et al. Structured data
and inference in deepqa. IBM Journal of Research and
Development, 56(3.4):10–1, 2012.

[32] P. Kingsbury and M. Palmer. From TreeBank to Prop-
Bank. LREC ’02, 2002.

[33] D. Klein and C. D. Manning. Accurate unlexicalized
parsing. ACL ’03, pages 423–430, 2003.

[34] E. Laparra, G. Rigau, and M. Cuadros. Exploring the
integration of WordNet and FrameNet. GWC ’10, 2010.

[35] J. Li, J. Tang, Y. Li, and Q. Luo. RiMOM: A Dynamic
Multistrategy Ontology Alignment Framework. IEEE
TKDE, 21(8):1218–1232, 2009.

[36] J. McCrae, C. Fellbaum, and P. Cimiano. Publish-
ing and Linking WordNet using lemon and RDF. In
Proceedings of the 3rd Workshop on Linked Data in
Linguistics, 2014.

[37] J. McCrae, D. Spohr, and P. Cimiano. Linking lexical
resources and ontologies on the semantic web with
lemon. In The semantic web: research and applications,
pages 245–259. Springer Berlin Heidelberg, 2011.

[38] A.-C. N. Ngomo and S. Auer. Limes: A time-efficient
approach for large-scale link discovery on the web of
data. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence - Vol-
ume Volume Three, IJCAI’11, pages 2312–2317. AAAI
Press, 2011.

[39] V. Nguyen, O. Bodenreider, and A. Sheth. Don’t Like
RDF Reification?: Making Statements About State-
ments Using Singleton Property. WWW ’14, 2014.

[40] N. Noy and A. Rector. Defining N-ary Relations on
the Semantic Web. W3C Working Group Note, W3C
Consortium, April 2006. http://www.w3.org/TR/swbp-
n-aryRelations/.

[41] A. G. Nuzzolese, A. Gangemi, and V. Presutti. Gath-
ering lexical linked data and knowledge patterns from
FrameNet. K-CAP ’11, pages 41–48, 2011.

[42] D. T. Phillips and A. Garcia-Diaz. Fundamentals of
network analysis. Prentice Hall, 1981.

[43] V. Presutti, F. Draicchio, and A. Gangemi. Knowledge
Extraction Based on Discourse Representation Theory
and Linguistic Frames. In EKAW’12, pages 114–129.
2012.

[44] V. Presutti, A. G. Nuzzolese, S. Consoli, D. R. Re-
cupero, and A. Gangemi. From hyperlinks to seman-
tic web properties using open knowledge extraction.
Submitted to Semantic Web Journal, 2014.

[45] D. Ritze, C. Meilicke, O. SvÃąb-Zamazal, and H. Stuck-
enschmidt. A Pattern-based Ontology Matching Ap-
proach for Detecting Complex Correspondences. In
OM’10, 2008.

[46] J. Rouces. Enhancing Recall in Semantic Querying.
volume 257 of SCAI ’13, page 291, 2013.

[47] J. Rouces, G. De Melo, and K. Hose. FrameBase:
Representing N-ary Relations using Semantic Frames.
In Proceedings of the 12th Extended Semantic Web
Conference, ESWC, 2015.

[48] J. Rouces, G. de Melo, and K. Hose. Heuristics for
Connecting Heterogeneous Knowledge via FrameBase.

32 J. Rouces et al. / FrameBase: Enabling Integration of Heterogeneous Knowledge

In ESWC’16, 2015.
[49] J. Rouces, G. De Melo, and K. Hose. Representing

Specialized Events with FrameBase. In DeRiVE ’15,
2015.

[50] J. Rouces, G. de Melo, and K. Hose. Complex Schema
Mapping and Linking Data: Beyond Binary Predicates.
In LDOW’16, 2016.

[51] J. Rouces, G. de Melo, and K. Hose. Klint: Assisting
Integration of Heterogeneous Knowledge. IJCAI’16,
2016.

[52] J. Ruppenhofer, M. Ellsworth, M. R. Petruck, C. R.
Johnson, and J. Scheffczyk. FrameNet II: Extended
Theory and Practice. ICSI, 2006.

[53] A. C. Schalley and D. Zaefferer. Ontolinguistics: How
Ontological Status Shapes the Linguistic Coding of
Concepts, volume 176. Walter de Gruyter, 2007.

[54] F. Scharffe and D. Fensel. Correspondence patterns
for ontology alignment. In Proceedings of the 16th
International Conference on Knowledge Engineering:
Practice and Patterns, EKAW ’08, pages 83–92, Berlin,
Heidelberg, 2008. Springer-Verlag.

[55] R. Shaw, R. Troncy, and L. Hardman. LODE: Linking
Open Descriptions of Events. In ASWC ’09, Lecture
Notes in Computer Science, pages 153–167, 2009.

[56] C. Subirats. Spanish FrameNet: A frame-semantic anal-
ysis of the Spanish lexicon. In Multilingual FrameNets
in Computational Lexicography: Methods and Applica-
tions. Mouton de Gruyter, 2009.

[57] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS:

Probabilistic Alignment of Relations, Instances, and
Schema. Proc. VLDB Endow., 5(3):157–168, Nov. 2011.

[58] F. M. Suchanek, J. Hoffart, E. Kuzey, and E. Lewis-
Kelham. YAGO2s: Modular High-Quality Information
Extraction with an Application to Flight Planning. In
BTW, pages 515–518, 2013.

[59] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:
A Large Ontology from Wikipedia and WordNet. Web
Semantics: Science, Services and Agents on the World
Wide Web , 6(3):203 – 217, 2008. <ce:title>World Wide
Web Conference 2007Semantic Web Track</ce:title>.

[60] S. Tonelli and D. Pighin. New Features for FrameNet:
WordNet Mapping. CoNLL ’09, pages 219–227, 2009.

[61] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic depen-
dency network. HTL-NAACL ’03, 2003.

[62] K. Van Deemter, E. Krahmer, and M. Theune. Real
versus template-based natural language generation: A
false opposition? Comput. Linguist., 31(1):15–24, Mar.
2005.

[63] W. R. Van Hage, V. Malaisé, R. Segers, L. Hollink,
and G. Schreiber. Design and use of the Simple Event
Model (SEM). Web Semantics: Science, Services and
Agents on the World Wide Web, 9(2):128–136, 2011.

[64] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum. Natural language questions
for the web of data. EMNLP-CoNLL ’12, 2012.

