Semantic Web 0 (2016) 1–18 IOS Press # A RADAR for Information Reconciliation in Question Answering Systems over Linked Data ¹ Editor(s): Christina Unger, Universität Bielefeld, Germany; Axel-Cyrille Ngonga Ngomo, Universität Leipzig, Germany; Philipp Cimiano, Universität Bielefeld, Germany; Sören Auer, Universität Bonn & Fraunhofer IAIS, Germany; George Paliouras, NCSR Demokritos, Greece Solicited review(s): Mariano Rico, Universidad Politécnica de Madrid, Spain; Christina Unger, Universität Bielefeld, Germany; Two anonymous reviewers Elena Cabrio a,*, Serena Villata b and Alessio Palmero Aprosio c ^a University of Nice Sophia Antipolis, 2000 Route des Lucioles BP93 06902, Sophia Antipolis - France E-mail: elena.cabrio@unice.fr ^b CNRS - I3S laboratory, 2000 Route des Lucioles BP93 06902, Sophia Antipolis - France E-mail: villata@i3s.unice.fr ^c Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo (TN) - Italy E-mail: aprosio@fbk.eu **Abstract.** In the latest years, more and more structured data is published on the Web and the need to support typical Web users to access this body of information has become of crucial importance. Question Answering systems over Linked Data try to address this need by allowing users to query Linked Data using natural language. These systems may query at the same time different heterogenous interlinked datasets, that may provide different results for the same query. The obtained results can be related by a wide range of heterogenous relations, e.g., one can be the specification of the other, an acronym of the other, etc. In other cases, such results can contain an inconsistent set of information about the same topic. A well known example of such heterogenous interlinked datasets are language-specific DBpedia chapters, where the same information may be reported in different languages. Given the growing importance of multilingualism in the Semantic Web community, and in Question Answering over Linked Data in particular, we choose to apply information reconciliation to this scenario. In this paper, we address the issue of reconciling information obtained by querying the SPARQL endpoints of language-specific DBpedia chapters. Starting from a categorization of the possible relations among the resulting instances, we provide a framework to: (i) classify such relations, (ii) reconcile information using argumentation theory, (iii) rank the alternative results depending on the confidence of the source in case of inconsistencies, and (iv) explain the reasons underlying the proposed ranking. We release the resource obtained applying our framework to a set of language-specific DBpedia chapters, and we integrate such framework in the Question Answering system QAKiS, that exploits such chapters as RDF datasets to be queried using a natural language interface. Keywords: Question Answering over Linked Data, Information reconciliation, Language-specific DBpedia chapters, Answers justification, Argumentation theory ¹This paper is an extended version of the paper "Argumentation-based Inconsistencies Detection for Question-Answering over DB-pedia" published at the Workshop NL&DBpedia-2013 and of the extended abstracts titled "Reconciling Information in DBpedia through a Question Answering System" and "Hunting for Inconsistencies in Multilingual DBpedia with QAKiS" published at the Posters & Demonstrations Tracks of ISWC-2013 and of ISWC-2014, respectively. The improvements of the present paper with respect to the previous versions are detailed in the Related Work section. ^{*}Corresponding author. E-mail: elena.cabrio@unice.fr #### 1. Introduction In the Web of Data, it is possible to retrieve heterogeneous information items concerning a single realworld object coming from different data sources, e.g., the results of a single SPARQL query on different endpoints. It is not always the case that these results are identical, it may happen that they conflict with each other, or they may be linked by some other relation like a specification. The automated detection of the kind of relationship holding between different instances of a single object with the goal of reconciling them is an open problem for consuming information in the Web of Data. In particular, this problem arises while querying the language-specific chapters of DBpedia [24]. Such chapters, well connected through Wikipedia instance interlinking, can in fact contain different information with respect to the English version. Assuming we wish to query a set of language-specific DBpedia SPARQL endpoints with the same query, the answers we collect can be either identical, or in some kind of specification relation, or they can be contradictory. Consider for instance the following example: we query a set of language-specific DBpedia chapters about How tall is the soccer player Stefano Tacconi?, receiving the following information: 1.88 from the Italian chapter and the German one, 1.93 from the French chapter, and 1.90 from the English one. How can I know what is the "correct" (or better, the more reliable) information, knowing that the height of a person is unique? Addressing such kind of issues is the goal of the present paper. More precisely, in this paper, we answer the research question: - How to reconcile information provided by the language-specific chapters of DBpedia? This open issue is particularly relevant to Question Answering (QA) systems over DBpedia [23], where the user expects a unique (ideally correct) answer to her factual natural language question. A QA system querying different data sources needs to weight them in an appropriate way to evaluate the information items they provide accordingly. In this scenario, another open problem is how to explain and justify the answer the system provides to the user in such a way that the overall QA system appears transparent and, as a consequence, more reliable. Thus, our research question breaks down into the following subquestions: How to automatically detect the relationships holding between information items returned by different language-specific chapters of DBpedia? - 2. How to compute the reliability degree of such information items to provide a unique answer? - 3. How to justify and explain the answer the QA system returns to the user? First, we need to classify the relations connecting each piece of information to the others returned by the different data sources, i.e., the SPARQL endpoints of the language-specific DBpedia chapters. We adopt the categorization of the relations existing between different information items retrieved with a unique SPARQL query proposed by Cabrio et al. [13]. Up to our knowledge, this is the only available categorization that considers linguistic, fine-grained relations among the information items returned by language-specific DBpedia chapters, given a certain query. This categorization considers ten positive relations among heterogenous information items (referring to widely accepted linguistic categories in the literature), and three negative relations meaning inconsistency. Starting from this categorization, we propose the RADAR (ReconciliAtion of Dbpedia through ARgumentation) framework, that adopts a classification method to return the relation holding between two information items. This first step results in a graph-based representation of the result set where each information item is a node, and edges represent the identified relations. Second, we adopt *argumentation theory* [18], a suitable technique for reasoning about conflicting information, to assess the acceptability degree of the information items, depending on the relation holding between them and the trustworthiness of their information source [15]. Roughly, an abstract argumentation framework is a directed labeled graph whose nodes are the arguments and the edges represent a *conflict* relation. Since positive relations among the arguments may hold as well, we rely on bipolar argumentation [14] that considers also a *positive* support relation. Third, the graph of the result set obtained after the classification step, together with the acceptability degree of each information item obtained after the argumentation step, is used to justify and explain the resulting information ranking (i.e., the order in which the answers are returned to the user). We evaluate our approach as standalone (i.e., over a set of heterogeneous values extracted from a set of language-specific DBpedia chapters), and through its integration in the QA system QAKiS [8], that exploits language-specific DBpedia chapters as RDF datasets to be queried using a natural language interface. The reconciliation module is embedded to provide a (possi- bly unique) answer whose acceptability degree is over a given threshold, and the graph structure linking the different answers highlights the underlying justification. Moreover, RADAR is applied to over 300 DB-pedia properties in 15 languages, and the obtained resource of reconciled DB-pedia language-specific chapters is released. Even if information reconciliation is a way to enhance Linked Data quality, this paper does not address the issue of Linked Data quality assessment and fusion [25,7], nor ontology alignment. Finally, argumentation theory in this paper is not exploited to find agreements over ontology alignments [17]. Note that our approach is intended to reconcile and explain the answer of the system to the user. Ontology alignment cannot be exploited to generate such a kind of explanations. This is why we decided to rely on argumentation theory that is a way to exchange and explain viewpoints. In our paper, we have addressed the open problem of reconciling and explaining a result set from languagespecific DBpedia chapters using well known conflict detection and explanation techniques, i.e., argumentation theory. We are not aware of any other available QA system that queries several information sources (in our case language-specific chapters of DBpedia) and then it
is able to verify the coherence of the proposed result set, and show *why* a certain answer has been provided. The merit of the present paper is to describe the proposed framework (i.e., RADAR 2.0) with the addition of an extensive evaluation over standard QA datasets. In the remainder of the paper, Section 2 presents our reconciliation framework for language-specific DBpedia chapters, Section 3 reports on the experiments run over DBpedia to evaluate it, and Section 4 describes its integration in QAKiS. Section 5 reports on the related work. Finally, some conclusions are drawn. # 2. RADAR 2.0: a Framework for Information Reconciliation The RADAR 2.0 (ReconciliAtion of Dbpedia through ARgumentation) framework for information reconciliation is composed by three main modules (see Figure 1). It takes as input a collection of results from one SPARQL query raised against the SPARQL endpoints of the language-specific DBpedia chapters (Section 3 provides more details about the chapters considered in our experimental setting). Given such result set, RADAR retrieves two kinds of information: (i) the sources proposing each particular element of the result set, and (ii) the elements of the result set themselves. The first module of RADAR (module A, Figure 1) takes each information source, and following two different heuristics, assigns a confidence degree to the source. Such confidence degree will affect the reconciliation in particular with respect to the possible inconsistencies: information proposed by the more reliable source will obtain a higher acceptability degree. The second module of RADAR (module B, Figure 1) instead starts from the result set, and it matches every element with all the other returned elements, detecting the kind of relation holding between these two elements. The result of such module is a graph composed by the elements of the result set connected with each other by the relations of our categorization. Both the sources associated with a confidence score and the result set in the form of a graph are then provided to the third module of RADAR, the argumentation one (module C, Figure 1). The aim of such module is to reconcile the result set. The module considers all positive relations as a support relation and all negative relations as an attack relation, building a bipolar argumentation graph where each element of the result set is seen as an argument. Finally, adopting a bipolar fuzzy labeling algorithm relying on the confidence of the sources to decide the acceptability of the information, the module returns the acceptability degree of each argument, i.e., element of the result set. The output of the RADAR framework is twofold. First, it returns the acceptable elements (a threshold is adopted), and second the graph of the result set is provided, where each element is connected to the others by the identified relations (i.e., the explanation about the choice of the acceptable arguments returned). In the remainder of this section, we will describe how the confidence score of the sources is computed (Section 2.1), and we will summarize the adopted categorization detailing how such relations are automatically extracted (Section 2.2). Finally, the argumentation module is described in Section 2.3. # 2.1. Assigning a confidence score to the source Language-specific DBpedia chapters can contain different information on particular topics, e.g. providing more or more specific information. Moreover, the knowledge of certain instances and the conceptualization of certain relations can be culturally biased. For instance, we expect to have more precise (and possibly more reliable) information on the Italian actor Antonio Fig. 1. RADAR 2.0 framework architecture. Albanese on the Italian DBpedia, than on the English or on the French ones. To trust and reward the data sources, we need to calculate the reliability of the source with respect to the contained information items. In [10], an apriori confidence score is assigned to the endpoints according to their dimensions and solidity in terms of maintenance (the English chapter is assumed to be more reliable than the others on all values, but this is not always the case). RADAR 2.0 assigns, instead, a confidence score to the DBpedia language-specific chapter depending on the queried entity, according to the following two criteria: - Wikipedia page length. The chapter of the longest language-specific Wikipedia page describing the queried entity is considered as fully trustworthy (i.e., it is assigned with a score of 1) while the others are considered less trustworthy (i.e., they are associated with a score < 1). In choosing such heuristic, we followed [6] that demonstrates that the article length is a very good predictor of its precision. The length is calculated on the Wikipedia dump of the considered language (# of characters in the text, ignoring image tags and tables). Thus, the longest page is assigned a score equal to 1, and a proportional score is assigned to the other chapters.</p> - Entity geo-localization. The chapter of the language spoken in the places linked to the page of the entity is considered as fully trustworthy (i.e., it is assigned with a score of 1) while the others are considered less trustworthy (i.e., they are associated with a score < 1). We assume that if an entity belongs to a certain place or is frequently</p> referred to it, it is more likely that the DBpedia chapter of such country contains updated and reliable information. All Wikipedia page hyperlinks are considered, and their presence in GeoNames¹ is checked. If existing, the prevalent language in the place (following the GeoNames matching country-language²) is extracted, and to the corresponding chapter a score equal to 1 is assigned. As for page length, a proportional score is then assigned to the other chapters (i.e. if an entity has e.g. 10 links to places in Italy and 2 to places in Germany, the score assigned to the Italian DBpedia chapter is 1, while for the German chapter is 0.2). Such metrics (the appropriateness of which for our purposes has been tested on the development set, see Section 3.1) are then summed and normalized with a score ranging from 0 to 1, where 0 is the least reliable chapter for a certain entity and 1 is the most reliable one. The obtained scores are then considered by the argumentation module (Section 2.3) for information reconciliation. #### 2.2. Relations classification Cabrio et al. [13] propose a classification of the semantic relations holding among the different instances obtained by querying a set of language-specific DBpedia chapters with a certain query. More precisely, such ¹http://www.geonames.org/ $^{^2}Such table connecting a country with its language can be found here: <math display="block">\label{eq:language} \verb| http://download.geonames.org/export/dump/countryInfo.txt|.$ categories correspond to the lexical and discourse relations holding among heterogeneous instances obtained querying two DBpedia chapters at a time, given a subject and an ontological property. In the following, we list the positive relations between values resulting from the data-driven study in [13]. Then, in parallel, we describe how RADAR 2.0 addresses the automatic classification of such relations. **Identity** i.e., same value but in different languages (missing owl:sameAs link in DBpedia). E.g., Dairy product vs Produits laitiers Acronym i.e., initial components in a phrase or a word. E.g., PSDB vs Partito della Social Democrazia Brasiliana Disambiguated entity i.e., a value contains in the name the class of the entity. E.g., Michael Lewis (Author) VS Michael Lewis Coreference i.e., an expression referring to another expression describing the same thing (in particular, non normalized expressions). E.g., William Burroughs vs William S. Burroughs Given the high similarity among the relations belonging to these categories, we cluster them into a unique category called *surface variants* of the same entity. Given two entities, RADAR automatically detects the *surface variants* relation among them, if one of the following strategies is applicable: cross-lingual links³, text identity (i.e. string matching), Wiki redirection and disambiguation pages. **Geo-specification** i.e., ontological geographical knowledge. E.g., Queensland VS Australia **Renaming** i.e., reformulation of the same entity name in time. E.g., Edo, old name of Tokyo Given the way in which *renaming* has been defined in [13], it refers only to geographical renaming. For this reason, we merge it to the category *geospecification*. RADAR classifies a relation among two entities as falling inside this category when in the GeoNames one entity is contained in the other one *(geo-specification* is a directional relation between two entities). We also consider the alternative names gazette included in GeoNames, and geographical information extracted from a set of English Wikipedia infoboxes, such as Infobox former country⁴ or Infobox settlement. **Meronymy** i.e., a constituent part of, or a member of something. E.g., Justicialist Party is a part of Front for Victory **Hyponymy** i.e., relation between a specific and a general word when the latter is implied by the former. E.g., alluminio vs metal Metonymy i.e., a name of a thing/concept for that of the thing/concept meant. E.g., Joseph Hannavs Hanna-Barbera Identity:stage name i.e., pen/stage names pointing to the same entity. E.g., Lemony Snicket vs Daniel Handler We cluster such semantic relations into a category called *inclusion*.⁵ To detect this category of relations, RADAR exploits a set of features extracted from: **MusicBrainz**⁶ to detect when a musician plays in a band, and when a label is owned by a bigger label. BNCF (Biblioteca Nazionale Centrale di Firenze) Thesaurus⁷ for the broader term relation between common names. **DBpedia**, in particular the datasets connecting Wikipedia, GeoNames and MusicBrainz trough the owl:sameAs relation.
WikiData for the part of, subclass of and instance of relations. It contains links to GeoNames, BNCF and MusicBrainz, integrating DBpedia owl:sameAs. Wikipedia contains hierarchical information in: infoboxes (e.g. property parent for companies, product for goods, alter ego for biographies), categories (e.g., Gibson quitars), ³Based on WikiData, a free knowledge base that can be read and edited by humans and machines alike, http://www.wikidata.org/, where data entered in any language is immediately available in all other languages. In WikiData, each entity has the same ID in all languages for which a Wikipedia page exists, allowing us to overcome the problem of missing owl:sameAs links in DBpedia (that was an issue in DBpedia versions prior to 3.9). Moreover, WikiData is constantly updated (we use April 2014 release). ⁴For instance, we extract the property "today" connecting historical entity names with the current ones (reconcilable with GeoNames). We used Wikipedia dumps. ⁵Royo [26] defines both relations of *meronymy* and *hyponymy* as relations of *inclusion*, although they differ in the kind of inclusion defined (hyponymy is a relation of the kind "B is a type of A", while meronymy relates a whole with its different parts or members). Slightly extending Royo's definition, we joined to this category also the relation of *metonymy*, a figure of speech scarcely detectable by automatic systems due to its complexity (and *stage name*, that can be considered as a particular case of *metonymy*, i.e., the name of the character for the person herself). ⁶http://musicbrainz.org/ ⁷http://thes.bncf.firenze.sbn.it/ "see also" sections and links in the first sentence (e.g., Skype was acquired by [United States]-based [Microsoft Corporation]). *Inclusion* is a directional relation between two entities (the rules we apply to detect *meronymy*, *hyponymy* and *stage name* allow us to track the direction of the relation, i.e. if $a \rightarrow b$, or $b \rightarrow a$). Moreover, in the classification proposed in [13], the following negative relations (i.e., values mismatches) among possibly inconsistent data are identified: **Text mismatch** i.e. unrelated entity. E.g., Palermo vs Modene **Date mismatch** i.e. different date for the same event. E.g., 1215-04-25 vs 1214-04-25 **Numerical mismatch** i.e. different numerical values. E.g., 1.91 vs 1.8 RADAR labels a relation between instances (i.e., URIs) as negative, if every attempt to find one of the positive relations described above fails (i.e., negation as a failure). For numerical values, a *numerical mismatch* identifies different values.⁸ The reader may argue that a machine learning approach could have been applied to this task, but a supervised approach would have required an annotated dataset to learn the features. Unfortunately, at the moment there is no such training set available to the research community. Moreover, given the fact that our goal is to produce a resource as precise as possible for future reuse, the implementation of a rule-based approach allows us to tune RADAR to reward precision in our experiments, in order to accomplish our purpose. # 2.3. Argumentation-based information reconciliation This section begins with a brief overview of abstract argumentation theory, and then we detail the RADAR 2.0 argumentation module. An abstract argumentation framework (AF) [18] aims at representing conflicts among elements called *arguments*, whose role is determined only by their relation with other arguments. An AF encodes, through the conflict (i.e., *attack*) relation, the existing conflicts within a set of arguments. It is then interesting to iden- tify the conflict outcomes, which, roughly speaking, means determining which arguments should be accepted, and which arguments should be rejected, according to some reasonable criterion. The set of accepted arguments of an argumentation framework consists of a set of arguments that does not contain an argument conflicting with another argument in the set. Dung [18] presents several acceptability semantics that produce zero, one, or several consistent sets of accepted arguments. Roughly, an argument is accepted (i.e., labelled in) if all the arguments attacking it are rejected, and it is rejected (i.e., labelled out) if it has at least an argument attacking it which is accepted. Figure 2.a shows an example of an AF. The arguments are visualized as nodes of the argumentation graph, and the attack relation is visualized as edges. Gray arguments are the accepted ones. Using Dung's admissibility-based semantics [18], the set of accepted arguments is $\{b, c\}$. For more details about acceptability semantics, we refer the reader to Baroni at al. [2]. However, associating a crisp label, i.e., in or out, to the arguments is limiting in a number of real life situations where a numerical value expressing the acceptability degree of each argument is required [19,15,20]. In particular, da Costa Pereira et al. [15] have proposed a fuzzy labeling algorithm to account for the fact that arguments may originate from sources that are trusted only to a certain degree. They define a fuzzy labeling for argument A as $\alpha(A) = \min\{A(A), 1 - A(A)\}$ $\max_{B:B\to A} \alpha(B)$ where $\mathcal{A}(A)$ is given by the trust degree of the most reliable source that offers argument A, and argument B is an argument attacking A. We say that $\alpha(A)$ is the fuzzy label of argument A. Consider the example in Figure 2.a, if we have A(a) = A(b) =A(c) = 0.8, then the algorithm returns the following labeling: $\alpha(a) = 0.2$ and $\alpha(c) = \alpha(b) = 0.8$. Since we want to take into account the confidence associated with the information sources to compute the acceptability degree of arguments, we rely on the computation of fuzzy confidence-based degrees of acceptability. As the fuzzy labeling algorithm [15] exploits a scenario where the arguments are connected by an attack relation only, in Cabrio et al. [10] we have proposed a bipolar version of this algorithm, to consider also a positive, i.e., support, relation among the arguments (bipolar AFs) for the computation of the fuzzy labels of the arguments. Let \mathcal{A} be a fuzzy set of trustful arguments, and $\mathcal{A}(A)$ be the membership degree of argument A in \mathcal{A} , we have that $\mathcal{A}(A)$ is given by the trust degree of the most ⁸At the moment no tolerance is admitted, if e.g. the height of a person differs of few millimeters in two DBpedia chapters, the relation is labeled as *numerical mismatch*. We plan to add such tolerance for information reconciliation as future work. Fig. 2. Example of (a) an AF, (b) a bipolar AF, and (c) example provided in the introduction modeled as a bipolar AF, where single lines represent attacks and double lines represent support. reliable (i.e., trusted) source that offers argument A^9 , and it is defined as follows: $\mathcal{A}(A) = \max_{s \in \operatorname{src}(A)} \tau_s$ where τ_s is the degree to which source $s \in \operatorname{src}(A)$ is evaluated as reliable. The starting confidence degree associated with the sources is provided by RADAR's first module. The bipolar fuzzy labeling algorithm [10] assumes that the following two constraints hold: (i) an argument cannot attack and support another argument at the same time, and (ii) an argument cannot support an argument attacking it, and vice versa. These constraints underlie the construction of the bipolar AF itself. In the following, the attack relation is represented with \rightarrow , and the support relation with \Rightarrow . **Definition 1.** Let $\langle \mathcal{A}, \rightarrow, \Rightarrow \rangle$ be an abstract bipolar argumentation framework where \mathcal{A} is a fuzzy set of (trustful) arguments, $\rightarrow \subseteq \mathcal{A} \times \mathcal{A}$ and $\Rightarrow \subseteq \mathcal{A} \times \mathcal{A}$ are two binary relations called attack and support, respectively. A bipolar fuzzy labeling is a total function $\alpha: \mathcal{A} \rightarrow [0,1]$. Such an α may also be regarded as (the membership function of) the fuzzy set of acceptable arguments where the label $\alpha(A)=0$ means that the argument is outright unacceptable, and $\alpha(A)=1$ means the argument is fully acceptable. All cases inbetween provide the degree of the acceptability of the arguments which may be considered accepted in the end, if they exceed a certain threshold. A bipolar fuzzy labeling is defined as follows¹⁰, where argument B is an argument attacking A and C is an argument supporting A: **Definition 2.** (Bipolar Fuzzy Labeling) A total function $\alpha: \mathcal{A} \to [0,1]$ is a bipolar fuzzy labeling iff, for all arguments A, $\alpha(A) = avg\{\min\{\mathcal{A}(A), 1 - \max_{B:B\to A}\alpha(B)\}; \max_{C:C\Rightarrow A}\alpha(C)\}.$ $\begin{array}{c} \text{Table 1} \\ BAF\colon a\to b, b\to c, c\to a, d\Rightarrow c \end{array}$ | t | $\alpha_t(a)$ | $\alpha_t(b)$ | $\alpha_t(c)$ | $\alpha_t(d)$ | |---|---------------|---------------|---------------|---------------| | 0 | 1 | 0.4 | 0.2 | 1 | | 1 | 0.9 | 0.2 | 0.6 | \downarrow | | 2 | 0.65 | 0.15 | ↓ | | | 3 | 0.52 | 0.25 | | | | 4 | 0.46 | 0.36 | | | | 5 | 0.43 | 0.4 | | | | 6 | 0.41 | \downarrow | | | | 7 | 0.4 | | | | | 8 | ↓ | | | | When the argumentation module receives the elements of the result set linked by the appropriate relation and the confidence degree associated to each source, the bipolar fuzzy labeling algorithm is applied to the argumentation framework to obtain the acceptability degree of each argument. In case of cyclic graphs, the algorithm starts with the assignment of the trustworthiness degree of the source to the node, and then the value converges in a finite number of steps to the final label. Note that when the argumentation framework is composed by a cycle only, then all labels become equal to 0.5. Consider the example in Figure 2.b, if we have $\mathcal{A}(a) =
\mathcal{A}(d) = 1$, $\mathcal{A}(b) = 0.4$ and $\mathcal{A}(c) = 0.2$, then the fuzzy labeling algorithm returns the following labels: $\alpha(a) = \alpha(b) = 0.4$, $\alpha(c) = 0.6$, and $\alpha(d) = 1$. The step by step computation of the labels is shown in Table 1. Figure 2.c shows how the example provided in the introduction is modeled as a bipolar argumentation framework, where we expect the Italian DBpedia chapter to be the most reliable one, given that Stefano Tacconi is an Italian soccer player. The result returned by the bipolar argumentation framework is that the trusted answer is 1.88. A more precise instantiation of this example in the QA system is shown in the next section. The fact that an argumentation framework can be used to provide an explanation and justify positions is witnessed by a number of applications in different ⁹We follow da Costa Pereira et al. [15] choosing the max operator ("optimistic" assignment of the labels), but the min operator may be preferred for a pessimistic assignment. ¹⁰For more details about the bipolar fuzzy labeling algorithm, see Cabrio et al. [10]. contexts [4], like for instance practical reasoning [27], legal reasoning [3,5], medical diagnosis [21]. This is the reason why we choose this formalism to reconcile information, compute the set of reliable information items, and finally justify this result. Other possible solutions would be (weighted) voting mechanisms, where the preferences of some voters, i.e., the most reliable information sources, carry more weight than the preferences of other voters. However, voting mechanisms do not consider the presence of (positive and negative) relations among the items within the list, and no justification beyond the basic trustworthiness of the sources is provided to motivate the ranking of the information items. Notice that argumentation is needed in our use case because we have to take into account the trustworthiness of the information sources, and it provides an explanation of the ranking, which is not possible with simple majority voting. Argumentation theory, used as a conflict detection technique, allows us to detect inconsistencies and consider the trustworthiness evaluation of the information sources, as well as proposing a single answer to the users. As far as we know, RADAR integrated in QAKiS is the first example of QA over Linked Data system coping with this problem and providing a solution. Simpler methods would not allow to cover both aspects mentioned above. We use bipolar argumentation instead of non-bipolar argumentation because we have not only the negative conflict relation but also the positive support relation among the elements of the result set. # 3. RADAR experimental setting and evaluation In this section, we describe the dataset on which we evaluate the RADAR framework (Section 3.1), and we discuss the obtained results (Section 3.2). Moreover, in Section 3.3 we describe the resource of reconciled DBpedia information we create and release. # 3.1. Dataset To evaluate the RADAR framework, we rely on the dataset presented in Cabrio et al. [13], the only available annotated dataset of possibly inconsistent information in DBpedia language-specific chapters to our knowledge. It is composed of 400 annotated pairs of values (extracted from English, French and Italian DBpedia chapters), a sample that is assumed to be representative of the linguistic relations holding be- tween values in DBpedia chapters. Note that the size of the DBpedia chapter does not bias the type of relations identified among the values, nor their distribution, meaning that given a specific property, each DBpedia chapter deals with that property in the same way. We randomly divided such dataset into a development (to tune RADAR) and a test set, keeping the proportion among the distribution of categories. Table 2 reports on the dataset statistics, and shows how many annotated relations belong to each of the categories (described in Section 2.2). #### 3.2. Results and discussion Table 3 shows the results obtained by RADAR on the relation classification task on the test set. As baseline, we apply an algorithm exploiting only crosslingual links (using WikiData), and exact string matching. Since we want to produce a resource as precise as possible for future reuse, RADAR has been tuned to reward precision (i.e., so that it does not generate false positives for a category), at the expense of recall (errors follow from the generation of false negatives for positive classes). As expected, the highest recall is obtained on the surface form category (our baseline performs even better than RADAR on such category). The geo-specification category has the lowest recall, either due to missing alignments between DBpedia and GeoNames (e.g. Ixelles and Bruxelles are not connected in GeoNames), or to the values complexity in the renaming subcategory (e.g., Paris vs First French Empire, or Harburg (quarter) vs Hambourg). In general, the results obtained are quite satisfying, fostering future work in this direction. Since we consider *text mismatch* as a negative class (Section 2.2), it includes the cases in which RADAR fails to correctly classify a pair of values into one of the positive classes. For date and numerical mismatches, $F_1 = 1$ (detecting them is actually a trivial task, and therefore they are not included in Table 3. See footnote 8). *Overall positive* means that RADAR correctly understands the fact that the different answers to a certain query are all correct and not conflicting. RADAR precision in this case is 1, and it is important to underline this aspect in the evaluation, since this confirms the re- ¹¹The dataset is available at http://www.airpedia.org/radar-1.0.nt.bz2. The original work is based on DBpedia 3.9, but we updated it to DBpedia 2014. Thus, we deleted one pair, since the DBpedia page of one of the annotated entities does not exist anymore. | Dataset | # triples | # annotated positive relations | | # | # annotated negative relations | | | |----------|-----------|--------------------------------|---------------|-----------|--------------------------------|---------------|--------------------| | | | Surface-form | Geo-specific. | Inclusion | Text mismatch | Date mismatch | Numerical mismatch | | Dev set | 104 | 28 | 18 | 20 | 13 | 13 | 12 | | Test set | 295 | 84 | 48 | 55 | 36 | 37 | 35 | | Total | 399 | 112 | 66 | 75 | 49 | 50 | 47 | Table 2 Statistics on the dataset used for RADAR 2.0 evaluation Table 3 Results of the system on relation classification | System | Relation category | Precision | Recall | F_1 | |-----------|-------------------|-----------|--------|-------| | | surface form | 0.91 | 0.83 | 0.87 | | RADAR 2.0 | geo-specification | 0.94 | 0.60 | 0.73 | | | inclusion | 0.86 | 0.69 | 0.77 | | | overall positive | 1.00 | 0.74 | 0.85 | | | text mismatch | 0.45 | 1 | 0.62 | | baseline | surface form | 1.00 | 0.44 | 0.61 | | | geo-specification | 0.00 | 0.00 | 0.00 | | baseiine | inclusion | 0.00 | 0.00 | 0.00 | | | overall positive | 1.00 | 0.21 | 0.35 | | | text mismatch | 0.21 | 1 | 0.35 | liability of the released reconciled DBpedia in this respect. The overall positive result is higher than the partial results because in the precision of partial values we include the fact that if e.g., a *surface form* relation is wrongly labeled as *geo-specification*, we consider this mistake both as a false negative for *surface form*, and as a false positive for *geo-specification*. This means that RADAR is very precise in assigning positive relations, but it could provide a less precise classification into finer-grained categories. # 3.3. Reconciled DBpedia resource We applied RADAR 2.0 on 300 DBpedia properties - the most frequent in terms of chapters mapping such properties, corresponding to 47.8% of all properties in DBpedia. We considered ~5M Wikipedia entities. The outcoming resource, a sort of *universal DBpedia*, counts ~50M of reconciled triples from 15 DBpedia chapters: Bulgarian, Catalan, Czech, German, English, Spanish, French, Hungarian, Indonesian, Italian, Dutch, Polish, Portuguese, Slovenian, Turkish. Notice that we did not consider the endpoint availability as a requirement to choose the DBpedia chapters: data are directly extracted from the resource. For functional properties, the RADAR framework is applied as described in Section 2. In contrast, the strat- egy to reconcile the values of non-functional properties is slightly different: when a list of values is admitted (e.g. for properties child or instruments), RADAR merges the list of the elements provided by the DBpedia chapters, and ranks them with respect to the confidence assigned to their source, after reconciling positive relations only (there is no way for lists to understand if an element is incorrect or just missing, e.g. in the list of the instruments played by John Lennon). But since the distinction between functional/non-functional properties is not precise in DBpedia, we manually annotated the 300 properties with respect to this classification, to allow RADAR to apply the correct reconciliation strategy, and to produce a reliable resource. In total, we reconciled 3.2 million functional property values, with an average accuracy computed from the precision and recall reported in Table 3. This resource is available here: http://qakis.org/resources.htm. Moreover, we carried out a merge and a light-weight reconciliation of DBpedia classes applying the strategy called "DBpedia CL" in [1] where "CL" stands for cross-language (e.g., *Michael Jackson* is classified as a Person in the Italian and German DBpedia chapters, an Artist in the English DBpedia and a MusicalArtist in the Spanish DBpedia. As Person, Artist and MusicalArtist lie on the same path from the root of the DBpedia ontology, all of them are kept and used to classify *Michael Jackson*. # 4. Integrating RADAR in a QA system We integrate RADAR into a QA system over
language-specific DBpedia chapters, given the importance that information reconciliation has in this context. Indeed, a user expects a unique (and possibly correct) answer to her factual natural language question, and would not trust a system providing her with different and possibly inconsistent answers coming out of a black box. A QA system querying different data sources needs therefore to weight in an appropriate way such sources in order to evaluate the information items they provide accordingly. As OA system we selected OAKiS (Question Answering wiKiFramework-based System) [8], because it allows i) to query a set of language-specific DBpedia chapters using a natural language interface, and ii) its modular architecture can be flexibly modified to account for the proposed extension. QAKiS addresses the task of QA over structured knowledge-bases (e.g., DBpedia) [12], but taking into account also unstructured relevant information, e.g., Wikipedia pages. It implements a relation-based match for question interpretation, to convert the user question into a query expressed in a query language (e.g., SPARQL), making use of relational patterns (automatically extracted from Wikipedia), that capture different ways to express a certain relation in a language. The actual version of QAKiS targets questions containing a Named Entity (NE) related to the answer through one property of the ontology, as Which river does the Brooklyn Bridge cross?. Such questions match a single pattern. In QAKiS, the SPARQL query created after the question interpretation phase is sent to the SPARQL endpoints of the language-specific DBpedia chapters (i.e., English, French, German and Italian) for answer retrieval. The set of retrieved answers from each endpoint is then sent to RADAR 2.0 for answer reconciliation. To test RADAR integration into QAKiS¹², the user can select the DBpedia chapter she wants to query besides English (that must be selected as it is needed for NE recognition), i.e., French, German or Italian DBpedia. Then the user can either write a question or select among a list of examples. Clicking on the tab *Reconciliation*, a graph with the answers provided by the different endpoints and the relations among them is shown to the user (as shown in Figures 3 and 4 for the questions *How tall is Stefano Tacconi?*, and *List the children of Margaret Thatcher*, respectively). Each node has an associated confidence score, resulting from the fuzzy labeling algorithm (described in Section 2.3). Moreover, each node is related to the others by a relation of support or attack, and a further specification of such relations according to the categories described in Section 2.2 is provided to the user as answer justification of why the information items have been reconciled and ranked in this way. Looking at these examples, the reader may argue that the former question can be answered by a simple majority voting (Figure 3), and the latter can be answered by a grouping based on surface forms (Figure 4), without the need to introduce the complexity of the argumentation machinery. However, if we consider the following example from our dataset, the advantage of using argumentation theory becomes clear. Let us consider the question Who developed Skype?: in this case, we retrieve three different answers, namely Microsoft (from FR DBpedia), Microsoft Skype Division (from FR DBpedia), and Skype Limited (EN DBpedia). The relations assigned by RADAR are visualized in Figure 5. The answer, with the associated weights, returns first Microsoft (FR) with a confidence score of 0.74, and second, Skype Limited (EN, FR) with a confidence score of 0.61. Note that this result cannot be achieved with simple majority voting nor with grouping based on surface forms. # 4.1. QA experimental setting To provide a quantitative evaluation of RADAR integration into QAKiS on a standard dataset of natural language questions, we consider the questions provided by the organizers of the QALD challenge (Question Answering over Linked Data challenge), now at its fifth edition, for the DBpedia track. ¹³ More specifically, we collect the questions sets of QALD-2 (i.e. 100 questions of the training and 100 questions of the test sets), the test set of QALD-4 (i.e. 50 questions), and the questions sets of QALD-5 (50 additional training questions with respect to the previous years training set, and 59 questions in the test sets). These 359 questions in the set of the previous years training set, and 59 questions in the test sets). ¹² Demo at http://gakis.org ¹³http://www.sc.cit-ec.uni-bielefeld.de/ gald/ Fig. 3. QAKiS + RADAR demo (functional properties) Fig. 4. QAKiS + RADAR demo (non-functional properties) Fig. 5. Example about the question Who developed Skype? tions correspond to all the questions released in the five years of the QALD challenge (given the fact that the questions of QALD-1 are included into the question set of QALD-2, and the question set of QALD-3 is the same as QALD-2, but translated into 6 languages, and the training sets of QALD-4 and 5 include all the questions of QALD-2). QALD-3 also provides natural language questions for Spanish DBpedia, but given that the current version of QAKiS cannot query the Spanish DBpedia, we could not use this question set. We extract from this reference dataset of 359 questions, the questions that the current version of QAKiS is built to address (i.e. questions containing a NE related to the answer through one property of the ontology), corresponding to 26 questions in QALD-2 training set, 32 questions in QALD-2 test sets, 12 in QALD-4 test set, 18 in QALD-5 training set, and 11 in QALD-5 test set. The discarded questions require either some form of aggregation (e.g., counting or ordering), information from datasets different than DBpedia, involve n-ary relations, or are boolean questions. We consider these 99 questions as the QALD reference dataset for our experiments. # 4.2. Results on QALD answers reconciliation We run the questions contained into our QALD reference dataset on the English, German, French and Italian chapters of DBpedia. Since the questions of QALD were created to query the English chapter of DBpedia only, it turned out that only in 43/99 cases at least two endpoints provide an answer (in all the other cases the answer is provided by the English chapter only, not useful for our purposes). For instance, given the question Who developed Skype? the English DBpedia provides Skype Limited as the answer, while the French one outputs Microsoft and Microsoft Skype Division. Or given the question How many employees does IBM have?, the English and the German DBpedia chapters provide 426751 as answer, while the French DBpedia 433362. Table 5 lists these 43 QALD questions, specifying which DBpedia chapters (among the English, German, French and Italian ones) contain at least one value for the queried relation. This list of question is the reference question set for our evaluation. We evaluated the ability of RADAR 2.0 to correctly classify the relations among the information items provided by the different language-specific SPARQL endpoints as answer to the same query, w.r.t. a manually annotated goldstandard, built following the methodology in Cabrio et al. [13]. More specifically, we evaluate RADAR with two sets of experiments: in the first case, we start from the answers provided by the different DBpedia endpoints to the 43 QALD questions, and we run RADAR on it. In the second case, we add QAKiS in the loop, meaning that the data we use as input for the argumentation module are directly produced by the system. In this second case, the input are the 43 natural language questions. Table 4 reports on the results we obtained for the two experiments. As already noticed before, the QALD dataset was created to query the English chapter of DBpedia only, and therefore this small dataset does not capture the variability of possibly inconsistent answers that can be found among DBpedia languagespecific chapters. Only three categories of relations are present in this data – surface forms, geo-specification, and inclusion - and for this reason RADAR has outstanding performances on it when applied on the correct mapping between NL questions and the SPARQL queries. When QAKiS is added into the loop, its mistakes in interpreting the NL question and translating it into the correct SPARQL query are propagated in RADAR (that receives in those cases a wrong input), decreasing the total performances. Notice that in some cases the question interpretation can be tricky, and can somehow bias the evaluation of the answers provided by the system. For instance, for the question *Which pope succeeded John Paul II?*, the English DBpedia provides *Benedict XVI* as the answer, while the Italian DBpedia provides also other names of people that were successors of John Paul II in other roles, as for instance in being the Archbishop of Krakow. But since in the goldstandard this question is interpreted as being the successor of John Paul II in the role of Pope, only the entity *Benedict XVI* is accepted as correct answer. When integrated into QAKiS, RADAR 2.0 outperforms the results obtained by a preliminary version of the argumentation module, i.e. RADAR 1.0 [10], for the positive relation classification (the results of the argumentation module only cannot be strictly compared with the results obtained by RADAR 2.0, since *i*) in its previous version the relation categories are different and less fine-grained, and *ii*) in [10] only questions from QALD-2 were used in the evaluation), showing an increased precision and robustness of our framework. Note that this evaluation is not meant to show that QAKiS performance is improved by RADAR. Actually, RADAR does not affect the capacity of QAKiS to answer questions: RADAR is used to disambiguate among multiple answers retrieved by QAKiS in order to provide to the user the most reliable (and hopefully correct)
one. One of the reasons why RADAR is implemented as a framework that can be integrated on top of an existing QA system architecture (and is therefore system-independent), is because we would like it to be tested and exploited by potentially all QA systems querying more than one DBpedia chapter (up to our knowledge QAKiS is the only one at the moment, but given the potential increase in the coverage of a QA system querying multiple DBpedia language-specific chapters [12], we expect other systems to take advantage of these interconnected resources soon). #### 5. Related work The present paper is an extended version of our previous work [9,10,11] introducing RADAR 1.0. The following common points are present: the idea of using argumentation theory to detect inconsistencies over the result set of a question answering system exploiting DBpedia, and the bipolar extension of the original fuzzy labeling algorithm [15] to judge an argument's acceptability in presence of both support and attack relations. However, the present paper presents a substantial extension with respect to this preliminary work. More specifically, the main enhancements are reported in the following: Relation categorization. RADAR 2.0 exploits the categorization we introduced in [13], as mentioned in Section 2.2. However, the work presented in [13] is purely theoretic and the contribution here is to study how to make RADAR 2.0 match these linguistic relations with respect to the DBpedia use case. Moreover, the categorization of the possible relations holding between the information items we adopt here is different (more linguistically-motivated) and more fine-grained than the one we used in [10]. This fine-grained categorization allows for a more insightful justification graph. Relation extraction. The relations holding between the elements of the result set are here automatically extracted with the application of more robust techniques than in [10]. More precisely, the way RADAR 2.0 extracts these relations in an automated way is different from the way RADAR | System | Relation category | Precision | Recall | F_1 | |----------------------------|-------------------|-----------|--------|-------| | | surface form | 1.00 | 0.98 | 0.99 | | RADAR 2.0 (only) | geo-specification | 0.88 | 0.80 | 0.84 | | KADAK 2.0 (only) | inclusion | 0.80 | 1.00 | 0.88 | | | overall positive | 1.00 | 0.98 | 0.99 | | | surface form | 1.00 | 0.97 | 0.98 | | baseline | geo-specification | 0.00 | 0.00 | 0.00 | | | inclusion | 0.00 | 0.00 | 0.00 | | | overall positive | 1.00 | 0.86 | 0.92 | | | surface form | 1.00 | 0.59 | 0.74 | | OAKiS + RADAR 2.0 | geo-specification | 0.88 | 0.80 | 0.84 | | QAKIS + KADAK 2.0 | inclusion | 0.80 | 1.00 | 0.88 | | | overall positive | 1.00 | 0.63 | 0.77 | | | surface form | 1.00 | 0.58 | 0.74 | | OAK'O . 1 1' | geo-specification | 0.00 | 0.00 | 0.00 | | QAKiS + baseline | inclusion | 0.00 | 0.00 | 0.00 | | | overall positive | 1.00 | 0.52 | 0.68 | | QAKiS + RADAR 1.0 [10] | overall positive | 0.54 | 0.56 | 0.55 | | (on QALD-2 questions only) | over an positive | 0.54 | 0.50 | 0.55 | Table 4 Results on QALD relation classification 1.0 extracts them: RADAR 2.0 adopts external resources to improve the extraction of the correct relation, such as MusicBrainz, the BNCF (Biblioteca Nazionale Centrale di Firenze), DBpedia and Wikipedia, GeoNames, and WikiData. **Evaluation.** While in [11] only data from QALD-2 has been used, here we use all data available from the QALD challenges (all editions), and the Italian chapter of DBpedia is added as RDF dataset to be queried with QAKiS (not present in our previous works on the topic). Moreover, the results presented in this paper show a higher precision with respect to the results obtained with RADAR 1.0 and reported in [10] (F_1 increments from 0.55 to 0.77 for the positive relation classification if we consider QALD-2 data only). In addition, the new evaluation considers 15 DBpedia chapters instead of the 3 chapters used in [11], i.e., English, German and French. **Resource.** Differently from [10] where no resource resulted from the inconsistencies detection process, here we generate a resource applying the proposed framework to 15 reconciled language-specific DBpedia chapters, and we release it. State-of-the-art QA systems over Linked Data generally address the issue of question interpretation mapping a natural language question to a triple-based rep- resentation (see [23] for an overview). Moreover, they examine the potential of open user friendly interfaces for the Semantic Web to support end users in reusing and querying the Semantic Web content. None of these systems considers language-specific DBpedia chapters, and they do not provide a mechanism to reconcile the different answers returned by heterogenous endpoints. Finally, none of them provides explanations about the answer returned to the user. Several works address alignment agreement based on argumentation theory. More precisely, Laera et al. [22] address alignment agreement relying on argumentation to deal with the arguments which attack or support the candidate correspondences among ontologies. Doran et al. [16] propose a methodology to identify subparts of ontologies which are evaluated as sufficient for reaching an agreement, before the argumentation step takes place, and dos Santos and Euzenat [17] present a model for detecting inconsistencies in the selected sets of correspondences relating ontologies. In particular, the model detects logical and argumentation inconsistency to avoid inconsistencies in the agreed alignment. We share with these approaches the use of argumentation to detect inconsistencies, but RADAR goes beyond them: we identify in an automated way relations among information items that are more complex than owl:sameAs links (as in ontology alignment). Moreover, these approaches do not consider trust-based acceptance degrees of the arguments, lacking to take into account a fundamental component in the arguments' evaluation, namely their sources. We mentioned these works applying argumentation theory to address ontology alignment agreements as examples of applications of this theory to open problems in the Semantic Web domain. Actually, the two performances cannot be compared to show the superiority of one of the two approaches, as the task is different. #### 6. Conclusions In this paper, we have introduced and evaluated the RADAR 2.0 framework for information reconciliation over language-specific DBpedia chapters. The framework is composed of three main modules: a module computing the confidence score of the sources depending either on the length of the related Wikipedia page or on the geographical characterization of the queried entity, a module retrieving the relations holding among the elements of the result set, and finally a module computing the reliability degree of such elements depending on the confidence assigned to the sources and the relations among them. This third module is based on bipolar argumentation theory, and a bipolar fuzzy labeling algorithm [10] is exploited to return the acceptability degrees. The resulting graph of the result set, together with the acceptability degrees assigned to each information item, justifies to the user the returned answer and it is the result of the reconciliation process. The evaluation of the framework shows the feasibility of the proposed approach. Moreover, the framework has been integrated in the question answering system over Linked Data called QAKiS, allowing to reconcile and justify the answers obtained from four languagespecific DBpedia chapters (i.e. English, French, German and Italian). Finally, the resource generated applying RADAR to 300 properties in 15 DBpedia chapters to reconcile their values is released. There are several points to be addressed as future work. First, the user evaluation should not be underestimated: we will soon perform an evaluation to verify whether our answer justification in QAKiS appropriately suits the needs of the data consumers, and to receive feedback on how to improve such visualization. Second, at the present stage we assign a confidence score to each source following two criteria, however another possibility is to let the data consumer itself assign such confidence degree to the sources de- pending on the kind of information she is looking for. Finally, the proposed framework is not limited to the case of multilingual chapters of DBpedia. The general approach RADAR is based on allows to extend it to various cases like inconsistent information from multiple English data endpoints. The general framework would be the same, the only part to be defined are the rules to extract the relations among the retrieved results. Investigating how a module of this type can be adopted as a fact checking module is part of our future research plan. Table 5 QALD questions used in the evaluation (in bold the ones correctly answered by QAKiS; x means that the corresponding language specific DBpedia chapter (EN, FR, DE, IT) contains at least one value for the queried relation; dbo means DBpedia ontology) | ID amostion and | Outside | DDm adia malatian | EM | ED | DE | IT | |-------------------|--|-------------------|----|----|----|----| | ID, question set | Question | DBpedia relation | EN | FR | DE | IT | | 84, QALD-2 train | Give me all movies with Tom Cruise. | starring | X | X | X | | | 10, QALD-2 train | In which country does the Nile start? | sourceCountry | X | X | | | | 63, QALD-2 train | Give me all actors starring in Batman Begins. | starring | X | X | X | X | | 43, QALD-2 train | Who is the mayor of New York City? | leaderName | X | | X | X | | 54, QALD-2 train | Who was the wife of U.S. president Lincoln? | spouse | X | X | | | | 6, QALD-2 train | Where did Abraham Lincoln die? | deathPlace | X | X | X | | | 31, QALD-2 train | What is the currency of the Czech Republic? | currency
 X | X | X | X | | 73, QALD-2 train | Who owns Aldi? | keyPerson | X | X | | X | | 20, QALD-2 train | How many employees does IBM have? | numberOfEmployees | X | X | Х | X | | 33, QALD-2 train | What is the area code of Berlin? | areaCode | X | | | | | 2, QALD-2 test | Who was the successor of John F. Kennedy? | successor | X | X | | | | 4, QALD-2 test | How many students does the Free University | numberOfStudents | X | X | X | | | | in Amsterdam have? | | | | | | | 14, QALD-2 test | Give me all members of Prodigy. | bandMember | X | Х | | | | 20, QALD-2 test | How tall is Michael Jordan? | height | X | | Х | X | | 21, QALD-2 test | What is the capital of Canada? | capital | X | х | х | X | | 35, QALD-2 test | Who developed Skype? | product | X | х | | | | 38, QALD-2 test | How many inhabitants does Maribor have? | populationTotal | X | | | X | | 41, QALD-2 test | Who founded Intel? | foundedBy | X | х | | X | | 65, QALD-2 test | Which instruments did John Lennon play? | instrument | X | X | | | | 68, QALD-2 test | How many employees does Google have? | numberOfEmployees | X | x | | X | | 74, QALD-2 test | When did Michael Jackson die? | deathDate | X | x | x | | | 76, QALD-2 test | List the children of Margaret Thatcher. | child | X | x | | | | 83, QALD-2 test | How high is the Mount Everest? | elevation | X | x | | X | | 86, QALD-2 test | What is the largest city in Australia? | largestCity | X | x | | | | 87, QALD-2 test | Who composed the music for Harold and Maude? | musicComposer | X | | x | X | | 34, QALD-4 test | Who was the first to climb Mount Everest? | firstAscentPerson | X | | x | | | 21, QALD-4 test | Where was Bach born? | birthPlace | X | x | х | X | | 32, QALD-4 test | In which countries can you pay using the West | currency | X | | х | | | | African CFA franc? | | | | | | | 12, QALD-4 test | How many pages does War and Peace have? | numberOfPages | х | х | | | | 36, QALD-4 test | Which pope succeeded John Paul II? | successor | х | | | X | | 30, QALD-4 test | When is Halloween? | date | Х | х | | | | 259, QALD-5 train | Who wrote The Hunger Games? | author | х | х | | | | 280, QALD-5 train | What is the total population of Melbourne, Florida? | populationTotal | х | х | | х | | 282, QALD-5 train | In which year was Rachel Stevens born? | birthYear | х | х | х | х | | 283, QALD-5 train | Where was JFK assassinated? | deathPlace | х | х | х | х | | 291, QALD-5 train | Who was influenced by Socrates? | influencedBy | х | х | | | | 295, QALD-5 train | Who was married to president Chirac? | spouse | х | х | | | | 298, QALD-5 train | Where did Hillel Slovak die? | deathPlace | Х | х | х | х | | 7, QALD-5 test | Which programming languages were influenced by Perl? | influencedBy | х | х | х | х | | 18, QALD-5 test | Who is the manager of Real Madrid? | manager | х | х | | | | 19, QALD-5 test | Give me the currency of China. | country | х | | х | | | 32, QALD-5 test | What does the abbreviation FIFA stand for? | name | х | | х | х | | 47, QALD-5 test | Who were the parents of Queen Victoria? | parent | Х | | х | х | | | | <u> </u> | L | | | | # References - [1] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. Automatic expansion of dbpedia exploiting wikipedia cross-language information. In Philipp Cimiano, Óscar Corcho, Valentina Presutti, Laura Hollink, and Sebastian Rudolph, editors, *The Semantic Web: Semantics and Big Data, 10th International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings*, volume 7882 of *Lecture Notes in Computer Science*, pages 397–411. Springer, 2013. 10.1007/978-3-642-38288-8_27. - [2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation semantics. The Knowledge Engineering Review, 26(4):365–410, 2011. 10.1017/S0269888911000166. - [3] Trevor J. M. Bench-Capon and Giovanni Sartor. Theory based explanation of case law domains. In Ronald Prescott Loui, editor, Proceedings of the Eighs International Conference on Artificial Intelligence and Law, ICAIL 2001, St. Louis, Missouri, USA, May 21-25, 2001, pages 12–21. ACM, 2001. 10.1145/383535.383537. - [4] Trevor J. M. Bench-Capon, D. Lowes, and A. M. McEnery. Argument-based explanation of logic programs. *Knowledge-Based Systems*, 4(3):177–183, 1991. 10.1016/0950-7051(91)90007-O. - [5] Floris Bex and Douglas Walton. Burdens and standards of proof for inference to the best explanation. In Radboud Winkels, editor, Legal Knowledge and Information Systems - JURIX 2010: The Twenty-Third Annual Conference on Legal Knowledge and Information Systems, Liverpool, UK, 16-17 December 2010, volume 223 of Frontiers in Artificial Intelligence and Applications, pages 37–46. IOS Press, 2010. 10.3233/978-1-60750-682-9-37. - [6] Joshua Evan Blumenstock. Size matters: Word count as a measure of quality on Wikipedia. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 1095–1096. ACM, 2008. 10.1145/1367497.1367673. - [7] Volha Bryl and Christian Bizer. Learning conflict resolution strategies for cross-language Wikipedia data fusion. In Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World Wide Web Conference, WWW '14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume, pages 1129–1134. ACM, 2014. 10.1145/2567948.2578999. - [8] Elena Cabrio, Julien Cojan, Alessio Palmero Aprosio, Bernardo Magnini, Alberto Lavelli, and Fabien Gandon. QAKiS: an open domain QA system based on relational patterns. In Birte Glimm and David Huynh, editors, Proceedings of the ISWC 2012 Posters & Demonstrations Track, Boston, USA, November 11-15, 2012, volume 914 of CEUR Workshop Proceedings. CEUR-WS.org, 2012. URL http:// ceur-ws.org/Vol-914/paper_24.pdf. - [9] Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gandon. Hunting for inconsistencies in multilingual DBpedia with QAKiS. In Eva Blomqvist and Tudor Groza, editors, Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, Australia, October 23, 2013, volume 1035 of CEUR Workshop Proceedings, pages 69–72. CEUR-WS.org, 2013. - URL http://ceur-ws.org/Vol-1035/iswc2013_ demo_18.pdf. - [10] Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gandon. Argumentation-based inconsistencies detection for question-answering over DBpedia. In Sebastian Hellmann, Agata Filipowska, Caroline Barrière, Pablo N. Mendes, and Dimitris Kontokostas, editors, Proceedings of the NLP & DBpedia workshop co-located with the 12th International Semantic Web Conference (ISWC 2013), Sydney, Australia, October 22, 2013, volume 1064 of CEUR Workshop Proceedings. CEUR-WS.org, 2013. URL http://ceur-ws.org/Vol-1064/Cabrio_Argumentation.pdf. - [11] Elena Cabrio, Alessio Palmero Aprosio, and Serena Villata. Reconciling information in DBpedia through a question answering system. In Matthew Horridge, Marco Rospocher, and Jacco van Ossenbruggen, editors, *Proceedings of the ISWC 2014 Posters & Demonstrations Track a track within the 13th International Semantic Web Conference, ISWC 2014, Riva del Garda, Italy, October 21, 2014*, volume 1272 of CEUR Workshop Proceedings, pages 49–52. CEUR-WS.org, 2014. URL http://ceur-ws.org/Vol-1272/paper_44.pdf. - [12] Elena Cabrio, Julien Cojan, and Fabien Gandon. Mind the cultural gap: Bridging language-specific DBpedia chapters for question answering. In Paul Buitelaar and Philipp Cimiano, editors, Towards the Multilingual Semantic Web, Principles, Methods and Applications, pages 137–154. Springer, 2014. 10.1007/978-3-662-43585-4_9. - [13] Elena Cabrio, Serena Villata, and Fabien Gandon. Classifying inconsistencies in dbpedia language specific chapters. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asunción Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, May 26-31, 2014., pages 1443–1450. European Language Resources Association (ELRA), 2014. URL http://www.lrec-conf.org/proceedings/lrec2014/summaries/750.html. - [14] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumentation graphs: Towards a better understanding. In Salem Benferhat and John Grant, editors, Scalable Uncertainty Management - 5th International Conference, SUM 2011, Dayton, OH, USA, October 10-13, 2011. Proceedings, volume 6929 of Lecture Notes in Computer Science, pages 137–148. Springer, 2011. 10.1007/978-3-642-23963-2_12. - [15] Célia da Costa Pereira, Andrea Tettamanzi, and Serena Villata. Changing one's mind: Erase or rewind? In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 164–171. IJCAI/AAAI, 2011. 10.5591/978-1-57735-516-8/IJCAI11-039. - [16] Paul Doran, Valentina A. M. Tamma, Ignazio Palmisano, and Terry R. Payne. Efficient argumentation over ontology correspondences. In Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman, editors, 8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2, pages 1241–1242. IFAAMAS, 2009. 10.1145/1558109.1558232. - [17] Cássia Trojahn dos Santos and Jérôme Euzenat. Consistencydriven argumentation for alignment agreement. In Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuck- - enschmidt, Ming Mao, and Isabel F. Cruz, editors, *Proceedings of the 5th International Workshop on Ontology Matching (OM-2010), Shanghai, China, November 7, 2010*, volume 689 of *CEUR Workshop Proceedings*. CEUR-WS.org, 2010. URL http://ceur-ws.org/Vol-689/om2010_Tpaper4.pdf. - [18] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. *Artificial Intelligence*, 77(2):321– 358, 1995. 10.1016/0004-3702(94)00041-X. - [19] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge. Weighted argument systems: Basic definitions, algorithms, and complexity results. *Artificial Intelligence*, 175(2):457–486, 2011. 10.1016/j.artint.2010.09.005. - [20] Anthony Hunter. A probabilistic approach to modelling uncertain logical arguments. *International Journal of Approximate Reasoning*, 54(1):47–81, 2013. 10.1016/j.ijar.2012.08.003. - [21] Anthony Hunter and Matthew Williams. Aggregating evidence about the positive and negative effects of treatments. Artificial Intelligence in Medicine, 56(3):173–190, 2012. 10.1016/j.artmed.2012.09.004. - [22] Loredana Laera, Ian Blacoe, Valentina A. M. Tamma, Terry R. Payne, Jérôme Euzenat, and Trevor J. M. Bench-Capon. Argumentation over ontology correspondences in MAS. In Edmund H. Durfee, Makoto Yokoo, Michael N. Huhns, and Onn Shehory, editors, 6th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, 2007, pages 1293–1300. - IFAAMAS, 2007. 10.1145/1329125.1329400. - [23] Vanessa López, Victoria S. Uren, Marta Sabou, and Enrico Motta. Is question answering fit for the Semantic Web?: A survey. Semantic Web, 2(2):125–155, 2011. 10.3233/SW-2011-0041. - [24] Pablo N. Mendes, Max Jakob, and Christian Bizer. DBpedia: A multilingual cross-domain knowledge base. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012, pages 1813–1817. European Language Resources Association (ELRA), 2012. URL http://www.lrec-conf.org/proceedings/lrec2012/summaries/570.html. - [25] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. Sieve: Linked data quality assessment and fusion. In Divesh Srivastava and Ismail Ari, editors, Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany, March 30, 2012, pages 116–123. ACM, 2012. 10.1145/2320765.2320803. - [26] Ana Rojo. Step by Step: A Course in Contrastive Linguistics and Translation. Peter Lang, 2009. - [27] Douglas Walton. Explanations and arguments based on practical reasoning. In Thomas Roth-Berghofer, Nava Tintarev, and David B. Leake, editors, Explanation-aware Computing, Papers from the 2009 IJCAI Workshop, Pasadena, California, USA, July 11-12, 2009, pages 72–83, 2009.