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Abstract. This paper introduces DataGraft (https://datagraft.net/) – a cloud-based platform for data transformation and pub-
lishing. DataGraft was developed to provide better and easier to use tools for data workers and developers (e.g., open data pub-
lishers, linked data developers, data scientists) who consider existing approaches to data transformation, hosting, and access 
too costly and technically complex. DataGraft offers an integrated, flexible, and reliable cloud-based solution for hosted open 
data management. Key features include flexible management of data transformations (e.g., interactive creation, execution, 
sharing, and reuse) and reliable data hosting services. This paper provides an overview of DataGraft focusing on the rationale, 
key features and components, and evaluation. 
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1.  Introduction and Motivation 

For the past five years, government and non-
government institutions in the EU and around the 
globe have increasingly made data accessible under 
open licenses and often in reusable formats [1]. Re-
cent statistics clearly display the achievements of 
these efforts. According to the EU-funded project 
OpenDataMonitor, 28 European countries have pub-
lished more than 237,500 datasets through more than 
160 catalogues [2]. Compared to the Zettabytes of 
data that the Internet is estimated to host, 1.25 Tera-

byte of open data spread across Europe may still ap-
pear like a modest result. But given the limitations 
and difficulties which data publishers and consumers 
face so far, it is not. A large portion of the data open-
ly available online consists of unstructured or semi-
structured information [3], which often makes data 
consumption difficult and expensive [4]. Furthermore, 
removing barriers from open data publication and 
consumption processes remains a primary concern.  

DataGraft started with the mission to alleviate 
some of these obstacles through new tools and ap-



proaches that support a faster and lower-cost publica-
tion and reuse of open data. 

Open data is increasingly showing effects in solv-
ing problems for the public and private sectors, as 
well as addressing issues related to the environment 
and society. Figure 1 displays a typical process for 
the creation and provisioning of linked open data. 
Raw data, most often tabular data [5], need to be 
cleaned, prepared, and transformed to RDF. The 
data cleaning phase of the process consists of steps 
related to removing data anomalies. Steps during the 
cleaning phase may relate to normalising the data 
(e.g., splitting data values, transposing the dataset, 
extracting information from the headers, etc.), cor-
recting the data (e.g., filling missing fields, correcting 
word spelling, replacing special characters, etc.), re-
moving duplicate values, or any other dataset-specific 
cleaning operations. The preparation phase consists 
of any additional operations that are specifically 
needed for the process of RDF transformation (e.g., 
annotation of data with URIs). Once data are pre-
pared, they are transformed through a mapping, into 
an RDF graph conforming to the user's chosen ontol-
ogy and data model. The resulting RDF is then stored 
in a semantic graph database, or triple store, where 
data users can easily access and query the data. Con-
ceptually, this process is rather straightforward, how-
ever, to date, such an integrated workflow is not 
commonly implemented. Instead, publishing and 
consuming (linked) open data remains an intricate, 
tedious task due to a combination of the following 
three reasons: 

 
1. The technical complexity of cleaning and pre-

paring open data for publication is high. The 
technical complexity typically includes a steep 
learning curve, the need for a lot of configura-
tion and customisation, the lack of scalability 
with increasing volumes of data, and poor 
support for developers or end users. Further-
more, toolkits are typically poorly integrated 
and require expert knowledge. Such expertise 
includes knowledge of linked data technolo-
gies and tools, database and system admin-
istration (for maintaining the necessary infra-

structure for the proprietary tooling). This is 
especially true when it comes to more ad-
vanced publications of linked data that require 
consistent, manually curated metadata.  

2. Even when the data cleaning and preparation 
process is supported, organisations still face 
considerable costs to expose their data and 
provide reliable and scalable access to them. 
Especially in the absence of direct monetisa-
tion or other cost recovery incentives, the rela-
tive investment costs can easily become ex-
cessively high for many organisations. This 
might result in open data publishing initiatives 
being postponed, or executed in a way that 
makes data access and reuse difficult. 

3. A poorly maintained and fragmented supply 
of open data also causes problems for those 
who want to reuse this resource. Firstly, in 
many cases, datasets are provided through a 
number of disconnected outlets. Additionally, 
even sequential releases of the same dataset 
are often formatted and structured in different 
ways. For example, column orders might have 
changed from one release to the next. Such 
basic errors make even very simple projects 
hard to sustain, e.g., running a web application, 
which relies on a single, continuously updated 
dataset. 

 
Furthermore, there are a number of interesting 

problems that require smart solutions in order to as-
sist data publishers and developers in the process 
depicted in Figure 1: 

 
• Interactive design of data transformations: 

Designing transformations that provide instant 
feedback to users on how data changes can 
speed-up the process and provide users with 
mechanisms to ensure that the individual 
clean-up and preparation steps result in the de-
sired outcome. 

• Repeatable data transformations: Very often a 
data transformation/publication process needs 
to be repeated as new data arrives (e.g., 
monthly budget reports are published through 

Figure 1. Typical data transformation/publication and access process: from tabular data to a queriable semantic graph. 
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the exact same process each month). Executa-
ble and repeatable transformations are a key 
requirement for a scalable and lower-cost data 
publication process. 

• Reusable and shareable data transformations: 
Capabilities to reuse and extend existing data 
transformations created and shared by other 
developers further improve the speed and 
lowers the cost of the data publication process. 

• Distributed deployment of data transfor-
mations: Transforming data necessitates a 
varying resource utilization due to the varied 
load requirements with different inputs. Thus, 
having mechanisms to dynamically deploy 
and execute transformations in a distributed 
environment results in a more reliable, scala-
ble and faster data publication process.  

• Reliable data access: Once data are generated 
following a data transformation process, pro-
visioning it reliably is another key aspect to 
ensure access to the data from third party ap-
plications and services. 

 
What is therefore needed is an integrated solution 

that enables a self-serviced effective and efficient 
data transformation/publication and access process. 
At the very core, this means automating the open data 
publication process to a significant extent – in order 
to increase the speed and lower its cost. What this 
will eventually lead to is that both data publishers and 
data consumers can focus on their goals:  

 
• Data consumers can focus on utilising open 

data for data-driven decision making, or for 
creating new applications and services (rather 
than being data “hunters” and “gatherers”); 

• Data publishers can focus on providing high 
quality data in a timely manner, and finding 
monetization channels for their data (rather 
than spending time and resources on develop-
ing their own data publication & hosting plat-
forms). 

 
DataGraft was developed as a cloud-based plat-

form for data workers to manage their data in a sim-
ple, effective, and efficient way, supporting the data 
transformation/publication and access process dis-
cussed above, through powerful data transformation 
and reliable data access capabilities.  

The remainder of this paper provides an overview 
of DataGraft’s key features and core components 

(Section 2), evaluation (Section 3), discussion on 
related systems (Section 4), ending with a summary 
and outlook (Section 5). 

2.  DataGraft: Key Features and Components 

DataGraft was designed and developed to support 
two core capabilities: data transformations and relia-
ble data access. 

For data transformations, DataGraft provides the 
following features: 

 
1. Interactively build data transformations; 
2. Deploy executable transformations to repeat-

edly clean, prepare, and transform spreadsheet 
data; 

3. Share transformations publicly; 
4. Fork, reuse and extend transformations built 

by third parties from DataGraft’s transfor-
mations catalogue; 

5. Programmatically access transformations and 
the transformation catalogue. 

 
Related to reliable data access, DataGraft provides 

the following features: 
 
1. Data hosting on DataGraft’s reliable, cloud-

based semantic graph database; 
2. Query data through generated SPARQL end-

points or access data via linked data APIs; 
3. Share data publically;  
4. Programmatically access the data catalogue; 
5. Operations and maintenance performed on be-

half of users. 
 
DataGraft realizes these capabilities through four 

core technical components, as shown in Figure 2. 
Grafter is a software library for data cleaning, 

preparation and transformation to RDF. This is sup-
plemented by Grafterizer, the front-end framework 
and interface for the underlying Grafter library in 
DataGraft. The Semantic Graph Database-as-a-
Service (DBaaS), establishes DataGraft’s data ware-
house for RDF data. Finally, the DataGraft portal 
ties together these service offers through a user-
friendly, one-stop front-end. In the following we de-
scribe these components in further detail and end 
with a summary of additional backend services and 
APIs. 

 



2.1. Grafter 

Grafter2 is a library of reusable components de-
signed to support complex and reliable data transfor-
mations, which are exposed to DataGraft through the 
Graftwerk service. At the heart of Grafter is a do-
main-specific language (DSL), which allows the 
specification of pipelines that convert tabular data 
(e.g., for the purpose of cleaning it up), or transform 
it to produce linked data graphs. 

It is implemented using Clojure, a functional pro-
gramming language that runs on the Java Virtual Ma-
chine (JVM). A functional approach is well suited to 
the idea of a transformation pipeline and by using a 
JVM-based implementation it becomes straightfor-
ward to exploit the large collection of useful libraries 
already available for the ecosystem of JVM-based 
programming languages.  

Grafter benefits additionally include: 
 
• Clean-up, preparations and transformations to 

RDF are free from side effects and imple-
mented as pure functions on immutable data. 
This is important in supporting transformation 
previews as data is not changed in place, and 
transformations can be run without causing 
potentially destructive effects. Additionally 
reasoning about pure functions is simpler than 
reasoning in imperative model, as functions 
only take values and return them, whereas 
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procedures can do this and cause unrestrained 
side effects. 

• Grafter supports large data transformations ef-
ficiently. Unlike other tools it takes a stream-
ing approach to processing data, which means 
the maximum size of the dataset that can be 
processed is not limited by the available 
memory. The streaming approach leverages 
Clojure’s lazy sequences to represent the se-
quence of rows in the data.  Clojure’s lazy se-
quence abstraction allows to treat unrealized 
data as if they were realized, which is 
achieved through in-memory sequences.  As 
values are required from the sequence, they 
are realized and cached in memory within the 
sequence abstraction. 

• It supports an easy way to convert tabular data 
into linked data, via graph templates, which 
specify how a row of tabular data maps to a 
set of RDF triples. In Grafter, graph templates 
are defined as part of the functions, which can 
be called when the tabular data needs to be 
transformed to RDF. 

• It has an efficient streaming implementation 
of a normalising melt [6] operation (going 
from a ‘wide’ table format to a ‘long’ table 
format), that lets you easily change cross-
tabulations featuring arbitrary numbers of cat-
egories (frequently used to summarise data), 
back into a normalised representation suited 
for machine processing. A common use case 
is in converting pivot tables [7]. 

Figure 2. Core components of DataGraft. 



• It provides APIs for serialising linked data in 
almost all of its standard serialisations. 

• It provides integration with semantic graph 
databases (triple stores) via standard interfaces. 

• It has a highly modular and extensible design. 
 
Grafter is composed of a number of modules to 

cleanly demarcate functionality, as illustrated in Fig-
ure 3. These modules broadly fall into two categories 
identified by the namespaces grafter.tabular and 
grafter.rdf. These two primary divisions represent 
the two sides of the Extract-Transform-Load (ETL) 
problem Grafter is addressing: 

 
• The cleaning and preparation of tabular data. 
• The transformation and loading of that data in-

to linked data (RDF). 
 

The grafter.tabular namespace contains a wide 
variety of data processing functions for filtering data 
(by row, column or cell contents) and applying user-
specified transformation functions to cells through 
functions like derive-column, which adds a new 
column to the dataset derived by applying a function 
to every cell in one or more source columns. Addi-
tionally, it includes more complex and powerful func-
tions for normalising data into a more uniform form 
such as fill-when, which can be used to copy omit-
ted values down a column, and melt, which is similar 
to melt from the reshape2 package in R.  

Functionality is also being added to help material-
ise errors and ensure they can be displayed in the 
appropriate cell or context where they occur. 

Tabular Grafter transformations are typically ex-
pressed as a sequence of step-wise operations on 
whole tables of data. All tabular operations are simp-
ly pure functions that take a dataset (a table) as input, 
and produce a dataset as output. 

This can be seen in the example Grafter code in 
Figure 4(a). This tabular dataset transformation pro-
cesses a spreadsheet where each line represents a 
function call that receives a dataset (table) and re-
turns a new one that has been changed.  Sequences of 
tabular operations such as those, where a table is re-
ceived as input and returned as output, are called 
pipes.  

Pipes are simply a set of pure functions, composed 
together with the restriction that they receive a da-
taset as their first argument, and must return a dataset 
as their return value. The interesting property about 
pipes is that they can be composed together arbitrari-
ly, and always result in a valid pipe. Additionally 
because the inputs, outputs and intermediate steps to 
pipes are always tables, they are very intuitive for 
users to manipulate and use. 

In order to publish linked data, a final step must 
take place to transform the input data and produce the 
graph structure used by RDF. This final step is re-
ferred to as a graft. A graft maps each row of the 
source data into a graph. That graph is made up of a 
sequence of ‘quads’ as used in the RDF approach, 
each consisting of a subject, predicate, object and 
context. 

Figure 3. Grafter architecture stack. 



Because a graft takes as input a table and returns a 
lazy sequence of quads representing the linked data 
graph as its output, it doesn’t have the composition 
property that pipes do. However, additional filtering 
steps can be added to the stream of quads if necessary. 

Typically the bulk of clean-up and preparations are 
best performed whilst the data is in the table, though 
post processing can be performed by filters. 

Grafter supports a simple graph template to ex-
press the conversion of each row of an input tabular 
dataset into a graph. That template makes use of a 
simple sub-DSL to specify commonly-used RDF 
generation, combined with selections from the input 
data and literal values. 

The code in Figure 4(b) is used to express the 
mapping of columns in a tabular dataset into its posi-
tion in a linked data graph. 

Generating RDF from tabular data with the help of 
Grafter is compliant with the W3C recommendation 
defined in [8], although doesn’t follow it precisely. 
The conversion procedure described in the W3C rec-
ommendation operates on an annotated tabular data 
model and provides an exact algorithm for data con-
version. In contrast, Grafter provides more flexibility 
by allowing users to add necessary annotations to the 
table just before the conversion to RDF and to define 
proprietary algorithms for generating it. 

In DataGraft, Grafter comes together with Graft-
werk – a back-end service (accessed through a 
RESTful API) for executing transformations. Graft-
werk provides a sandboxed Platform-as-a-Service 
(PaaS) execution environment for Grafter transfor-
mations and supports two primary platform features: 

 
1. The ability to execute a given Grafter transfor-

mation on the entirety of a supplied tabular da-
taset. The results of the whole transformation are 
returned. 

2. The ability to specify a page of data in the tabu-
lar data to apply the supplied Grafter transfor-
mation to, and to return a preview of the results 
of the transformation on that subset. 

 
The first of these features ensures that transfor-

mations hosted on DataGraft can be applied to arbi-
trary datasets, generating results for download or 
hosting. The second feature for generating live pre-
views of the transformation is critical to providing a 
high quality interactive user experience via the inter-
face. Graftwerk supports both of these features on 
both kinds of transformations: pipes and grafts. 

Further information about Grafter and Graftwerk 
can be found in [9] and [10]. 

(a) 

(b) 

Figure 4. Grafter sample code of data transformation (a) and creation of RDF triples (b). 



2.2. Grafterizer 

Grafterizer [11] is the web-based framework for 
data cleaning, preparation and transformation based 
on Grafter. It provides an interactive user interface 
with end-to-end support for data cleaning, prepara-
tion (Figure 5(a)) and RDF transformation (Figure 
5(b)): 

 
• Live preview – Grafterizer interactively dis-

plays the results of the tabular clean-up or 

preparation steps in a side-panel. It also re-
tains a view of the original version of the up-
loaded tabular dataset. Additionally, in case 
errors in the transformation or RDF mapping 
are present, it is equipped with an integrated 
error reporting capability. 

• Forking of existing transformations – the user 
interface allows users to create copies of trans-
formations by a single click of a button. 

• Specifying and editing data cleaning (pipe-
line) steps – the clean-up and preparations per-
formed on tabular data can be added, edited, 

 

(a) 

(b) 

Figure 5. Grafterizer transformation pipeline and preview (a) and RDF mapping (b). 



reordered or deleted. All functions are pa-
rameterised and editing allows users to change 
each of these parameters within the function 
with immediate feedback. 

• Data page generation – based on the specified 
RDF mappings, users are able to directly pro-
duce and publish data pages where their data 
will be available for access through an end-
point. 

• Direct download of resulting data – the 
cleaned-up/transformed data from Grafterizer 
(both CSV and mapped RDF) can be directly 
accessed and downloaded locally. 

• Customisation – data clean-up and preparation, 
are fully customisable through embedding 
custom code, both as individual clean-
up/preparation steps, or part of certain steps. 
In addition, developers can directly edit the 
resulting Clojure code and see the result in in-
teractive mode.  

 
Grafterizer implements a web-based wrapper over 

the Grafter library and Graftwerk service. The inter-
face allows users to specify Grafter transformations 
in a much easier and more intuitive manner, com-

pared to directly coding in Clojure. It also provides 
instant feedback alongside the other features de-
scribed in the previous section. 

The Grafterizer interface works by submitting the 
transformation that is being specified to the Graft-
werk service along with the data that needs to be 
cleaned, prepared and/or transformed. Depending on 
the type of the request, Graftwerk will then either 
generate a preview of the data that the UI can display, 
or return the output data (linked or tabular).  

In order to produce linked data, RDF mappings are 
(typically) executed over well-formed CSV files, 
whereby each row contains one entity and each col-
umn represents an attribute of the entity. Nevertheless, 
Grafterizer is meant to operate with any form of CSV 
input, whereby any malformed CSV can be normal-
ised into a well-formed one-record-per-row/one-field-
per-column structure using the data transformation 
functions provided in the UI. The result of a trans-
formation can be either a set of RDF triples that can 
be hosted on DataGraft in its semantic graph (RDF) 
store (described in the next subsection), or a tabular 
dataset that can be downloaded or accessed from the 
platform’s file storage. 

Further information about Grafterizer and its inte-
gration with DataGraft can be found in [12]. 

Figure 6. Architecture of the RDF DBaaS. 



2.3. Semantic Graph Database-as-a-Service 

DataGraft’s database-as-a-service is a fully man-
aged, cloud-based version of GraphDB™ semantic 
graph database (triple store), which provides an en-
terprise-grade RDF database as-a-service. Users 
therefore do not have to deal with typical administra-
tive tasks such as installation and upgrades, provi-
sioning and deployment of hardware, back-up and 
restore procedures, etc. The utilization of cloud re-
sources by the DBaaS depends on the load of the sys-
tem itself, whereby they can be elastically provi-
sioned and released to match the current usage load. 

From a user standpoint, the DBaaS supports an 
API for linked data access, querying, and manage-
ment. These functionalities are based on a complex 
architecture, which ensures components scalability, 
extensibility and availability on large scale (see Fig-
ure 6). 

 The DBaaS implementation follows the principles 
of micro-service architectures, i.e., it is composed of 
a number of relatively small and independent compo-
nents. The data management architecture is based on 
the Amazon Web Services (AWS) cloud platform 
and consists of the following components: 

 
• Load balancer – the entry point to the data-

base services is the load balancer provided by 
the AWS platform, which routes incoming da-
ta requests to one of the available routing 
nodes. It can distribute requests even between 
instances in different datacentres. 

• Routing nodes host various micro-services 
such as: user authentication, access control, 
usage, metering, and quota enforcement for 
the RDF database-as-service layer. The front-
end layer is automatically scaled up or down 
(new instances added or removed) based on 
the current system load. 

• Data nodes – this layer contains nodes run-
ning multiple instances of the GraphDB™ da-
tabase (packaged as Docker3 containers). Each 
data publisher has its own database instance 
(container), which cannot interfere with the 
database instance or with the data of other us-
ers of the platform. The data are hosted on 
network-attached storage volumes (EBS)4 and 
each user/database has its own private EBS 
volume. Additional OS-level security ensures 
appropriate data isolation and access control. 

                                                             
3 https://www.docker.com/ 
4 http://aws.amazon.com/de/ebs/ 

• Integration services (denoted by dashed ar-
rows in Figure 6) – a distributed queue and 
push messaging service enable loose coupling 
between the various front-end and database 
nodes on the platform. All components use a 
publish-subscribe communication model to be 
aware of the current state of the system. This 
allows the front-end and the backend layers to 
be scaled up or down independently as they 
are not aware of their size and topology. 

• Distributed storage – all user data are stored 
on the reliable and redundant network-
attached storage (EBS), whereas static back-
ups and exports remain on the S3 distributed 
storage. Logging data, user data as well as 
various configuration metadata are stored in a 
distributed NoSQL database (DynamoDB). 

• Monitoring services – the AWS cloud pro-
vides various metrics for monitoring the ser-
vice performance. The DBaaS utilises these 
metrics in order to provide optimal perfor-
mance and scalability of the platform. The dif-
ferent layers of the platform can be automati-
cally scaled up (to increase system perfor-
mance) or down (to decrease operational 
costs) in response to the current system load 
and utilisation. 

 
Further information about semantic graph database 
used in DataGraft can be found in [13]. 

2.4. DataGraft Portal 

The DataGraft portal integrates the previously dis-
cussed components together in a modern, user-
friendly web-based interface designed to ensure a 
natural flow of the supported data processing and 
publication workflow. Accordingly, four main as-
pects have been considered and addressed throughout 
the development of DataGraft’s portal front-end: 
 

1. Design and implement a highly intuitive UI, 
which facilitates user interaction with large, 
complex sets of linked open data. 

2. Simplify the data publishing process by im-
plementing a fast-track for publishing data, 
e.g., using simple drag and drop operations. 

3. Create basic data exploration tools, which help 
users with limited technical skills to explore 
data hosted on the DataGraft platform. 



4. Deploy data visualization components that can 
be easily used by non-specialists to build data 
driven portals. 

 
Two complementary modules have been imple-

mented to create the DataGraft portal. Firstly, a drag-
and-drop interface, which allows users to easily pub-
lish and annotate data. The entire process of publish-
ing data is thus reduced to a simple wizard-like inter-
face, where publishers can simply drop their data and 
enter some basic metadata. All data that are published 
on the platform are accessible via data pages. Users 
who publish on DataGraft can specify whether the 
data is made publically available or not (i.e., if the 

data page is public or private) and the license under 
which the data is made available. Finally, the 
DataGraft portal provides a module that helps visual-
ize data from the semantic graph database (triple 
store). Publishing data on the web usually implies 
specific programming skills in order to create web 
pages or portals. Thereby, the programming process 
has been all but eliminated through the deployment of 
visualization widgets that can serve as reusable com-
ponents for data publishing. These widgets can access 
and use data in the repository and expose it through a 
data page. Currently, the platform provides a number 
of visualization widgets, including tables, line charts, 
bar charts, pie charts, scatter charts, bubble charts and 

Figure 7. Configuring widgets (a) and visualizing data (b) in DataGraft. 

(a) 

(b) 



maps (using the Google Maps widget). All widgets 
are populated with data through the use of specific 
SPARQL queries on RDF databases. 

Figure 7(a) depicts the configuration of a line chart 
widget using SPARQL for comparing statistical data 
on employment in two municipalities in Norway, and 
the result of the visualization on a data page is shown 
in Figure 7(b). 

Further information about the DataGraft portal can 
be found in [14]. 

2.5. DataGraft Backend Services and APIs 

In addition to the core components described 
above, DataGraft comes with a set of services (that 
can be accessed through RESTful APIs) for manag-
ing data and transformations, user management, secu-
rity and authentication.  

DataGraft provides capabilities to search the data 
pages and data transformation catalogues. Figure 8 

depicts the data transformations and data pages cata-
logues as seen by a DataGraft user. 

Examples of back-end services for data transfor-
mations include CRUD operations on transformations 
catalogue (create, retrieve, update, or remove data 
transformations), as well as distribution of transfor-
mations code and services supporting the interactive 
preview of transformations.  

Examples of back-end services for data include: 
CRUD operations on data pages catalogue (create, 
retrieve, update, or remove data pages); distribution 
of data (DCAT5 compliant); services for managing 
DBaaS instances; and services for querying of the 
linked data graphs using  the OpenRDF API. 

Further information about the DataGraft backend 
services can be found in [12] and [13]. 

                                                             
5 http://www.w3.org/TR/vocab-dcat/  

Figure 8. Data pages catalogue (left) and data transformations catalogue (right). 



Table 1 summarizes the technical components of 
DataGraft and Figure 9 provides an architectural 
overview and how components are interdependent. 

 
Table 1. Summary of DataGraft components and their capabilities 

Grafter Clojure-based DSL for data cleaning, 
preparation and transformation 

Graftwerk Grafter/Clojure execution engine 

Grafterizer Front-end framework for data clean-
ing, preparation and transformation 

Portal UI 
Dashboard, exploration, user data, 
API keys, upload of files, data pages, 
transformation pages 

Back-end 
services 

User management, cataloguing, trans-
formation management, data publish-
ing 

Semantic 
graph 
DBaaS 

Cloud-based data-as-a-service com-
ponent 

 
 

 

3. Evaluation 

The DataGraft platform was launched in public be-
ta in September 2015. Early usage figures show that 
the platform, by beginning of December 2015, has:  

 
• 495 (91 public) registered data transfor-

mations 
• 1520 uploaded files 
• 181 registered users 
• 183 public data pages 
 
DataGraft has been used in various domains to 

transform and publish data. In general, the following 

positive aspects resulted from the use of DataGraft in 
practice: 

 
• Simplified data publishing process; 
• Time-efficient data transformation and pub-

lishing process; 
• Repeatable and sharable data transformation 

process; 
• Data hosting and querying support, with pos-

sibility to visualize data; 
• Support for integration of transformed RDF 

data with external data sources using estab-
lished web standards. 

 
In the following we provide examples of how 

DataGraft was used in practice, the positive aspects 
and limitations identified in those examples. 

3.1. PLUQI 

Saltlux,6 a South Korean company operating in the 
domain of knowledge management, developed a Web 
application called the Personalised Localised Urban 
Quality Index (PLUQI). PLUQI implements a cus-
tomizable index model that can be used to represent 
and visualize the level of well-being and sustainabil-
ity for given cities based on individual preferences. 

Aside from building an attractive and engaging 
end-user interface, the main challenges associated 
with PLUQI were to integrate and/or merge data from 
various sources, e.g., open data portals, social sensor 
systems, etc. This index model takes into account 
data from various domains such as daily life satisfac-
tion (weather, transportation, community, etc.), 
healthcare level (number of doctors, hospitals, suicide 
statistics, etc.), safety and security (number of police 
stations, fire stations, crimes per capita, etc.), finan-
cial satisfaction (prices, income, housing, savings, 
debt, insurance, pension, etc.), level of opportunity 
(jobs, unemployment, education, re-education, eco-
nomic dynamics, etc.), and environmental needs and 
efficiency (green space, air quality, etc.). 

PLUQI was implemented in two iterative versions. 
The first implementation used Korean data, providing 
a semantic integration of heterogeneous open data 
from the Korean Statistical Information Service 
(KOSIS). This included nine files processed in 
DataGraft with the help of five reusable transfor-
mations. Four of them were created via the forking 
(copying) capabilities of DataGraft. The transfor-
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Figure 9. DataGraft high level components interactions. 
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mations for the Korean data processing included 15 
special utility functions with custom code, 10 of 
which were reused across different transformations. 
The second implementation has been developed 
based on similar data about Scotland (from the statis-
tics office of the Scottish Government, and other 
open data), and it compares the PLUQI index be-
tween Edinburgh and other council areas. 

A typical process for implementing an application 
such as PLUQI requires four main steps: (1) data 
gathering (identifying relevant data sources); (2) data 
transformation (cleaning, preparation, harmonization, 
integration); (3) data provisioning (making integrated 
data reliably available); and finally (4) implementing 
the application (e.g., web application, visualizing and 
accessing the provisioned data). DataGraft was used 
for steps (2) and (3) for transforming/integrating data, 
and reliably provisioning the data. Saltlux reported 
reduction of cost for implementing these steps of 
approximately 23% compared to traditional ap-
proaches (i.e., use of spreadsheets for data transfor-
mation and data publication, proprietary tooling, or 
technologies, such as relational databases and manual 
coding/scripting) for integrating and provisioning 
data. This enabled Saltlux to focus on steps (1) and 
(4) while outsourcing the other two steps to 
DataGraft. 

DataGraft was perceived as a convenient platform 
to integrate various datasets into one repository based 
on the linked data approach. It supports transfor-
mation features for raw datasets, which are not writ-
ten in RDF format so that they can be retrieved using 
SPARQL queries, linking them to other datasets. This 
functionality was recognised as very powerful for 
services such as PLUQI that need to use various da-
tasets. Data are also expected to be retrievable from 
one repository, enabling a reasonable response time 
against the user’s requests. PLUQI illustrates the ca-
pability of DataGraft to support a wide variety of data 
integration and analysis applications. 

The capability of DataGraft to allow users to share 
data transformations was considered as a really useful 
feature when transforming datasets with related struc-
ture. For example, when transforming air quality data 
for different cities – one transformation pipeline for 
one city was reused with small modifications to trans-
form air quality data from other cities. In addition, 
most of the input files for PLUQI contained the same 
quality issues (e.g., not normalized headers, mal-
formed column header labels, etc.) and required simi-
lar transformation operations for transposing data, 
reformulating column header labels and bringing data 
into a normalized form. However, these operations 

were not exactly the same for every input file because 
of their structure. DataGraft allowed formulating 
complex transformation operations as parameterized 
utility functions and forking the entire transformation 
with all the utility functions within the transformation.  
Creating the transformations via the forking capabil-
ity of DataGraft made it possible to avoid the tasks 
related to creating normalization functions from 
scratch. Instead, it allowed reusing them with differ-
ent parameters, which significantly reduced the time 
and effort needed to transform the data. 

When it comes to limitations, PLUQI revealed the 
need for DataGraft to export or share visualization 
widgets that can be used by third party services or 
applications: currently, the data pages in DataGraft 
provide capabilities to visualize datasets in various 
widgets, but it was pointed out by PLUQI developers 
that it would be useful to implement exporting and 
sharing features for widgets, in order to raise the usa-
bility of the portal. In addition, DataGraft did not 
provide capabilities for ontology editing, and there-
fore the PLUQI developers had to use third party 
ontology editing tools such as Protégé to create the 
ontologies against which that data was annotated in 
the RDF publication process. 

Further information about the PLUQI application 
can be found in [15] and [16]. 

3.2. Transforming and Publishing Environmental 
Data 

As part of the SmartOpenData project7, DataGraft 
was used to transform and publish data as open data 
in the biodiversity and environment protection do-
main from two organizations: TRAGSA, a Spanish 
company, and ARPA, the environmental protection in 
Italy. In the case of TRAGSA, 42 transformations 
were created, out of which 25 were created via the 
reuse/forking capability of Grafterizer. For the pur-
poses of ARPA, five transformations were created, 
out of which two were created via the reuse/forking 
capability. The following aspects were noted during 
the data transformation/publication process: 

 
• The ability to ‘fork’ (copy, then adapt) exist-

ing transformations allowed users to easily re-
use existing transformations and thus save 
time in the process of creating a new trans-
formation. 
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• The ability to edit the parameters of each 
transformation step interactively, and to 
change the order of steps, helped them to: cre-
ate transformations in general, detect and cor-
rect mistakes, experiment with different pa-
rameters for clean-up and preparation steps, 
specify proprietary transformation designs 
(through the ability to add utility functions 
with custom code) and reuse proprietary func-
tions across different transformations. 

 
The users identified some features not currently 

available in Grafterizer that would have made the 
tools more useful for them, notably the ability to join 
more than one input dataset and the ability to sort 
datasets. To overcome these limitations, it was neces-
sary to carry out some pre-processing of the input 
files (e.g., for one transformation, 27 of the 43 files 
tested required some pre-processing). It is possible to 
perform joins and to sort inside a Grafter pipeline, but 
at the time of the writing of this paper, the Graftwerk 
back-end did not yet provide explicit support for the-
se operations. 

3.3. Other Examples 

Statsbygg8 – the Norwegian government’s key ad-
visor in construction and property affairs – has exper-
imented with DataGraft for the purpose of publishing 
their data about public buildings in Norway and inte-
grating it with external information about accessibil-
ity in buildings (e.g., types of facilities for the disa-
bled). This was done in order to provide better infor-
mation about public buildings in Norway, and enable 
a more efficient mechanism to share data about pub-
lic buildings. In this context, DataGraft was used for 
a wide range of tasks, including cleaning and prepa-
ration of tabular data about buildings, data transfor-
mation, generation and hosting of RDF data, integra-
tion with external data sources, querying the integrat-
ed data (e.g., which public buildings are located in 
Oslo and don’t have handicapped entrances), and 
visualization of public buildings and associated data 
on a map.   

Noted benefits for use of DataGraft in this context 
included the possibility to create a “live” services (vs. 
storing and managing information about public build-
ings using spreadsheets) that can be easily updated as 
new data becomes available, efficient sharing of data, 
and simplified integration with external datasets. On 

                                                             
8 http://www.statsbygg.no/ 

the other hand, lack of selective data sharing in 
DataGraft was pointed out – it is often the case that 
some buildings such as prisons or King’s properties 
are not to be shared in an open fashion. This is not 
necessarily a technical deficiency of DataGraft but it 
is rather expensive to enforce it in practice. Group- or 
role-based access control of DataGraft assets (which 
as of the writing of the paper is not supported in 
DataGraft), could be a potential solution to share data 
selectively. 

Another example where DataGraft has been ap-
plied is in publishing statistical data as RDF, query-
ing and visualization. For instance, DataGraft was 
applied for cleaning, preparation, and transformation 
statistical data from StatBank Norway9. StatBank 
contains detailed tables with various time series data. 
Users can create custom selections and serialise them 
in different file formats. An interesting observation 
here was the ease of use of repeatable and reusable 
transformations provided by DataGraft, which al-
lowed users to repeatedly apply and adjust transfor-
mations on the tables generated from StatBank Nor-
way. Figure 7 depicts an example of configuring a 
widget and visualizing the RDF data transformed 
from StatBank Norway. In this context, users pointed 
out the limitation of DataGraft of currently allowing 
only CSV files as input for data transformations. The 
limitation is related to the capabilities of Graftwerk 
(the transformation execution service), and not of 
Grafter. As a matter of fact, Grafter, as a standalone 
library, has been applied by Swirrl10, a UK SME 
working in data publishing, to generate a large num-
ber of linked data datasets for local government or-
ganisations in the UK (including Glasgow, Hamp-
shire, Surrey and Manchester councils) whose source 
data covered a range of file formats, including CSV, 
Excel, PostGIS (relational database with GIS exten-
sions), and ESRI Shapefiles (a common GIS format). 

DataGraft has been used in other contexts for 
transforming and publishing data, such as air quality 
sensor data from the CITI-SENSE project11, data 
about transportation infrastructure (e.g., the road 
network, bridges, etc.) and the impact of natural haz-
ards in transportation infrastructure as part of the In-
fraRisk project12, or investigating crime data in small 
geographies13. Furthermore, DataGraft components 
are being taken up in various other contexts. For ex-
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ample, typical open source project metrics show that 
Grafter currently has 87 stars on Github, external 
contributors, and receives typical email & bug reports 
from external users. The semantic graph DBaaS 
component is also deployed as part of Ontotext’s S414 
product which has commercial customers. 

Currently DataGraft is offered as a free service 
with some imposed limitations per account as fol-
lows:  

 
• Data upload: Users can upload CSV files of 

up to 10MB each, and RDF files of up to 
100MB each; 

• Data pages: Users can have up to 10 RDF data 
pages; 

• Persistent storage: Users can host up to 2 GB 
of CSV data, and 10 Million RDF triples for 
RDF data. 

 
The number of databases that are hosted on a sin-

gle virtual machine (data node) varies depending on 
the amount of available hardware resources. The cur-
rently deployed (the default free offering) data nodes 
on DataGraft host eight RDF databases per node with 
up to 10 repos per database of up to 10 million triples. 
Each RDF database has around 2GB of reserved 
memory for performing queries. The amount of re-
served memory can be re-configured on request (or 
based on the needs of the platform) – it can be set to 
1, 2, 4, 8 or 16GB based on the size of the database 
and performance requirements. As of now, the limita-
tions for data upload, number of data pages and per-
sistent storage are enforced in order to maintain 
DataGraft as a free offering to its users. Nevertheless, 
DataGraft does allow for the hosting and transfor-
mation of much larger quantities of data. The largest 
deployed database in DataGraft (not supported as a 
free offering) can host up to 1 billion triples in up to 
50 repositories. Transforming large quantities of data 
is implemented through taking advantage of the 
Clojure (Grafter) compatibility with the JVM. This 
means that all transformations specified in DataGraft 
can be bundled into executable Java Archives (JAR 
files). These JARs are available through a DataGraft 
service and can be downloaded and executed locally 
to process arbitrarily large inputs. 
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4. Related Work 

DataGraft offers an integrated, flexible, and relia-
ble cloud-based service, whereby maintenance of 
resources and infrastructure are transparent to the 
user. This frees data experts from having to deal with 
systems engineering aspects and enables them to fo-
cus on their domains of expertise related to the actual 
data tasks. Furthermore, its unique combination of 
features provides out-of-the-box and integrated tools, 
which reduces the effort to quickly implement a pro-
cess of data transformation and publication. The 
combination includes features such as interactivity in 
data transformations, the provided DSL to implement 
them, reliability, seamless data provisioning, scalable 
cloud-based triple store, and other user-oriented fea-
tures (e.g., the catalogues, data visualizations, and 
programmatic APIs to its capabilities) – all provi-
sioned out-of-the-box for the user. This combination 
of features and functionalities sets DataGraft apart 
from other approaches, which, although in some cas-
es can be hosted on the cloud, typically lay the bur-
den of provisioning of resources and maintenance on 
the users. 

Related systems fall under the types of systems for 
linked data and open data publication/hosting and 
ETL tools. In the following we outline the most rele-
vant systems and discuss the differences. 

The Linked Data Stack [17] is a software stack 
consisting of a number of loosely coupled tools, each 
capable of performing certain sets of operations on 
linked data, such as data extraction, storage, querying, 
linking, classification, search, etc. The various tools 
are bundled in a Debian package and a web applica-
tion can be deployed to offer central access to all the 
tools via a web interface15. The complexity of provi-
sioning resources and managing the resulting web 
application rests on end users who must install the 
tools and maintain the infrastructure. In contrast, 
DataGraft is bundled as-a-service, whereby the actual 
resources for transforming and hosting data are man-
aged on behalf of the user. There is indeed an overlap 
in terms of operations on linked data (for example 
data hosting and querying) supported by both 
DataGraft and the Linked Data Stack, but there are 
also significant differences in the chosen approach. 
Whereas DataGraft focuses on higher level aspects 
such as providing an integrated framework for data 
cleaning, preparation, and transformation, such that 
users can interactively design and share transfor-
mations, the Linked Data Stack addresses lower-level 
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aspects, such as classifications, that are not covered 
in DataGraft. 

The LinDA project [18]16 developed a set of tools 
for linked data publishing, packaged into the LinDA 
Workbench17. It consists of a lightweight transfor-
mation to linked data tool, a vocabulary repository, a 
tool for converting RDF to conventional data struc-
tures, a visual query builder, and an analytics package. 
Similar to the Linked Data Stack, the tasks of provi-
sioning resources and managing the LinDA tool eco-
system again rest on the end user. Furthermore, 
DataGraft’s powerful data cleaning and transfor-
mation approach goes beyond the lightweight trans-
formation tool provided by LinDA (which focuses 
primarily on the RDFisation). Nevertheless, LinDA 
provides more sophisticated support for visual query-
ing through providing a query builder for SPARQL. 

The COMSODE project [19]18 provided a set of 
software tools and methodology for open data pro-
cessing and publishing. A relevant tool developed as 
part of this project was UnifiedViews19 – an ETL tool 
for RDF data. Its focus is on specifying, monitoring 
and debugging workflows composed of data pro-
cessing units applied on data that is extracted from 
SPARQL endpoints. These features are orthogonal to 
DataGraft’s transformation approach that focuses on 
lower level operations such as cleaning and transfor-
mation to RDF of the actual data (together with other 
aspects like sharing and reuse of transformations). 
Thus, UnifiedViews can be seen as a data workflow 
processing tool using data published via DataGraft. 
Similar to the aforementioned approaches, COS-
MODE is not available as an online service, but ra-
ther as a set of tools that need to be individually man-
aged, which implies additional burden on end users. 

OpenRefine20, with its RDF Refine plugin [20]21, 
implements an approach with similar capabilities to 
DataGraft with regards to data cleaning and trans-
formation to RDF. The tool provides an interactive 
user interface that uses well-known spreadsheet-style 
interactions, which are convenient for manual data 
clean-up and conversion. However, OpenRefine is 
unsuitable for use in a service offering context, such 
as the one DataGraft was built for. Although Open-
Refine was implemented as a web application, its 
design is monolithic and bears resemblance to an 
application meant for the desktop, rather than the web. 
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Firstly, the code base is not well componentised – 
e.g., the transformation engine is tightly-coupled to 
the OpenRefine core and does not expose an API. 
Additionally, the processing engine itself is not suita-
ble for robust ETL processes, as it is inefficient with 
larger data volumes – it implements a multi-pass ap-
proach to individual operations, and is thus memory-
intensive. Although there has been an attempt to pro-
vide support for batch processing in BatchRefine22, it 
inherits the issues with the tight coupling of the core 
components. OpenRefine also has security issues, 
which prevent it from being applicable in a fully 
hosted solution – OpenRefine was designed to be 
used as a desktop application, not a SaaS application, 
and it allows arbitrary code execution without apply-
ing a sandbox and policy. DataGraft was designed 
from the outset to be a hosted platform and executes 
transformation code inside a security sandbox. Nev-
ertheless, OpenRefine provides more powerful RDF 
mapping features such as automatic reconciliation of 
data, more freedom in mapping, etc. 

Datalift [21] is a software framework for linked 
data publishing. It consists of a set of modules such 
as vocabulary management, data conversion, and 
interlinking. Besides being a framework that needs to 
be installed, configured, provisioned, and maintained 
by the user, Datalift’s approach to conversion of 
tabular data to linked data is rather lightweight in 
comparison to DataGraft. Furthermore, Datalift is 
considered as an "expert tool" [21]. For example, it 
comes with no GUI to support data publishers in the 
data publication process. A similar framework to 
Datalift is the Linked Data Integration Framework 
(LDIF) [22], focused on data integration using linked 
data. ClioPatria [23] is a more recent system, extend-
ing the SWI-Prolog RDF store with capabilities such 
as a SPARQL and LOD server, and mechanisms to 
browse and query data. DataGraft’s triplestore goes 
beyond the capabilities of the SWI-Prolog RDF store 
in the sense that it’s designed for cloud-based sys-
tems. DataGraft is a more comprehensive framework 
addressing wider aspects of data publishing such as 
being a public infrastructure for data and data trans-
formations sharing and including capabilities for data 
cleaning and transformation, which appear to be out-
side of the scope of ClioPatria 

PublishMyData23 is a commercial Software-as-a-
Service linked data publishing platform. DataGraft 
and PublishMyData share the data transformation 
approaches through the Grafter library. However, 
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DataGraft has taken Grafter further in the Grafterizer 
tool and the platform UI, by complementing it with 
interactive design of transformations, mechanisms for 
sharing transformations between users, and reliable 
data hosting and access. PublishMyData, in contrast 
to DataGraft, is not a public service for building and 
sharing data transformations. 

The Linked Data AppStore [24] is a Software-as-a-
Service platform prototype for data integration on the 
web. It integrates a set of linked data related tools for 
tasks such as data cleaning, transformation, entity 
extraction, data visualization, crawling in a in a 
loosely coupled service infrastructure and served as 
inspiration for the development of DataGraft. 

Related systems that are not focused on the linked 
data paradigm include solutions for open data cata-
logues and more traditional ETL tools. Open data 
catalogues typically list open datasets, together with 
the metadata and references (e.g., URLs) to where the 
data are made available. In some cases the actual da-
tasets are also hosted with the data catalogue. How-
ever, in most cases data catalogues provide only 
download links without any sophisticated infrastruc-
ture for querying data to support other aspects of the 
ETL process. Popular data catalogue solutions in-
clude CKAN24 and Socrata25. The core differences 
between DataGraft and these data catalogue solutions 
lay in the support for linked data and data transfor-
mations.  

Commercial examples of relevant ETL tools in-
clude Pentaho Data Integration26 and Trifacta Wran-
gler27. Pentaho Data Integration is a powerful and 
efficient tool designed specifically for ETL processes 
with lots of plugins and components for many data 
formats. It does not come with linked data support 
and is rather hard to use for non-developers. Firstly, it 
does not provide an interactive preview such as a 
spreadsheet of the current state of the transformation 
workflow. Furthermore, its diagrammatic approach to 
transformations can be unclear and could potentially 
explode in complexity including constructs for loops 
and recursion. Finally, Pentaho Data Integration was 
not built for public cloud hosting environments, but is 
rather a desktop application. Trifacta Wrangler is yet 
another tool for data cleaning. Its focus is on support-
ing predictive interactions which enables users to 
clean data in a rather simple manner. Trifacta Wran-
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gler does not support linked data and capabilities or 
data hosting. 

To summarize, none of the existing solutions in 
linked data tools, open data publishing platforms or 
ETL tools meet the requirements addressed by 
DataGraft. Firstly, all of the examined linked data 
tools outsource the technical complexity of provision-
ing and managing the infrastructure to their users. 
This means that they require expert knowledge to 
operate, which makes them costly to use and difficult 
to sustain. Furthermore, they are not well-suited for a 
cloud service environment (they are not designed to 
be scalable and reliable in a cloud-based environ-
ment) and most of them do not have an interactive 
user interface. In some cases linked data tools do 
have a user interface, but operate inefficiently and are 
not suitable for robust linked data publication. On the 
other hand, open data publication and hosting tools 
provide a serviced solution to their users. However, 
such tools lack support for data transformation and in 
some case leave the data provisioning and manage-
ment tasks to their users. This causes data to be frag-
mented across many sources and thus difficult to use 
and integrate. Finally, ETL tools provide powerful 
capabilities for producing workflows diagrammatical-
ly. However, they are not well-suited for a cloud-
based environment/hosting of data, do not provide 
support for linked data, and typically lack interactive 
previews of the state of the data at each step of the 
ETL process.  

DataGraft addresses all these issues by providing a 
reliable cloud service for transforming and hosting 
data, whereby all upfront and operational costs for 
acquiring and maintaining technical infrastructure for 
provisioning the data are outsourced to the platform, 
additionally reducing the technical complexity for 
data publishers. 

5. Summary and Outlook 

DataGraft [25] is an emerging solution (as-a-
Service) for making linked open data more accessible. 
It comes with a platform, portal, methodology, and 
APIs – all packaged in an online service, functional 
and documented28. DataGraft has been validated in a 
number of use cases showing added-value based on 
its key capabilities: support for sharable, repeatable, 
and reusable data transformations, and reliable RDF 
Database-as-a-Service. 
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DataGraft’s features include: interactive cleaning, 
preparation and transformation of data, repeatable 
and reusable data transformations, flexible deploy-
ment of transformations, RDF data publication and 
querying, support for integrating and visualising data 
from different sources. Additionally, DataGraft can 
be used with third party tools as it has been built with 
easy integration in mind using standard web technol-
ogy. For example, users can browse data hosted on 
DataGraft with tools such as GraphRover29 (through 
the SPARQL endpoint), connect to the hosted data 
store with a standard Sesame Client (using the 
OpenRDF APIs), or browse, perform queries or other 
actions using a REST client or command line tools 
such as httpi 30  (to access the RESTful APIs of 
DataGraft). This makes DataGraft attractive both for 
data workers and data developers interested in simpli-
fied and cost-effective solutions for managing their 
data. DataGraft was developed to provide better and 
easier to use tools for open data publishers, linked 
data developers, and data scientists who consider 
existing approaches to data transformation, hosting, 
and access too costly or technically complex. 

Graftwerk and RDF DBaaS are closed source, 
while Grafter31, Grafterizer32, and the DaPaaS portal33 
are released under open-source (EPL v1.0). 

DataGraft is currently under development and op-
erated by the proDataMarket project34. Changes and 
improvements to DataGraft are expected in the near 
future. Future releases of DataGraft will address 
some of the limitations identified in the cases in 
which DataGraft was used, and will contain new fea-
tures and improvements. Examples of new fea-
tures/improvements in future releases include: sup-
port for multiple files, joining of datasets and various 
data formats as input for data transformations (e.g., 
JSON, GML, Shapefile), better error reporting in data 
transformations, applying functions directly on the 
preview spreadsheet (rather than in pipeline opera-
tions), fully supporting streams of data as input in 
Grafterizer (rather than static files), better traceability 
for files, data pages, transformations; ability to store 
and share assets such as queries and visualization 
widgets; versioning of assets, social aspects (e.g., 
users following activity of other users); quantitative 
benchmarking; and better mechanisms to record the 
user interactions with the platform. On a longer term, 
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there are plans to use DataGraft as an infrastructure 
for implementing the concept of “Trusted Data Mar-
ketplaces” [26].  
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