
DataGraft: One-Stop-Shop for Open Data
Management1
Editor(s): Rinke Hoekstra, Vrije Universiteit Amsterdam, The Netherlands
Solicited review(s): Christophe Guéret, BBC, UK; Wouter Beek, Vrije Universiteit Amsterdam, The Netherlands; One anonymous reviewer

Dumitru Romana,*, Nikolay Nikolova, Antoine Putliera, Dina Sukhoboka, Brian Elvesætera, Arne Berrea,
Xianglin Yea, Marin Dimitrovb, Alex Simovb, Momchill Zarevc, Rick Moynihand, Bill Robertsd, Ivan
Berlochere, Seonho Kime, Tony Leee, Amanda Smithf, and Tom Heathf

aSINTEF, Forskningsveien 1a, 0373 Oslo, Norway
bOntotext AD, Tsarigradsko Shosse, 1784 Sofia, Bulgaria
cSirma Mobile, Bulgaria
dSwirrl IT LTD, Springbank Road, Macfarlane Gray House, Stirling, FK7 7WT, Stirlingshire, United Kingdom
eSaltlux Inc., 6F Deok-il Building,967 Daechi-Dong, Guaugnam-Gu, 135-848 Seoul, Republic of Korea
fOpen Data Institute, St. James Square, St. James House, GL50 3PR Cheltenham, United Kingdom

Abstract. This paper introduces DataGraft (https://datagraft.net/) – a cloud-based platform for data transformation and pub-
lishing. DataGraft was developed to provide better and easier to use tools for data workers and developers (e.g., open data pub-
lishers, linked data developers, data scientists) who consider existing approaches to data transformation, hosting, and access
too costly and technically complex. DataGraft offers an integrated, flexible, and reliable cloud-based solution for hosted open
data management. Key features include flexible management of data transformations (e.g., interactive creation, execution,
sharing, and reuse) and reliable data hosting services. This paper provides an overview of DataGraft focusing on the rationale,
key features and components, and evaluation.

Keywords: data transformation, data publication, data hosting, data-as-a-service, open data, linked data

1 DataGraft is accessible at https://datagraft.net/. This paper presents the capabilities of DataGraft as of January

2016.
*Corresponding author. E-mail: dumitru.roman@sintef.no.

1. Introduction and Motivation

For the past five years, government and non-
government institutions in the EU and around the
globe have increasingly made data accessible under
open licenses and often in reusable formats [1]. Re-
cent statistics clearly display the achievements of
these efforts. According to the EU-funded project
OpenDataMonitor, 28 European countries have pub-
lished more than 237,500 datasets through more than
160 catalogues [2]. Compared to the Zettabytes of
data that the Internet is estimated to host, 1.25 Tera-

byte of open data spread across Europe may still ap-
pear like a modest result. But given the limitations
and difficulties which data publishers and consumers
face so far, it is not. A large portion of the data open-
ly available online consists of unstructured or semi-
structured information [3], which often makes data
consumption difficult and expensive [4]. Furthermore,
removing barriers from open data publication and
consumption processes remains a primary concern.

DataGraft started with the mission to alleviate
some of these obstacles through new tools and ap-

proaches that support a faster and lower-cost publica-
tion and reuse of open data.

Open data is increasingly showing effects in solv-
ing problems for the public and private sectors, as
well as addressing issues related to the environment
and society. Figure 1 displays a typical process for
the creation and provisioning of linked open data.
Raw data, most often tabular data [5], need to be
cleaned, prepared, and transformed to RDF. The
data cleaning phase of the process consists of steps
related to removing data anomalies. Steps during the
cleaning phase may relate to normalising the data
(e.g., splitting data values, transposing the dataset,
extracting information from the headers, etc.), cor-
recting the data (e.g., filling missing fields, correcting
word spelling, replacing special characters, etc.), re-
moving duplicate values, or any other dataset-specific
cleaning operations. The preparation phase consists
of any additional operations that are specifically
needed for the process of RDF transformation (e.g.,
annotation of data with URIs). Once data are pre-
pared, they are transformed through a mapping, into
an RDF graph conforming to the user's chosen ontol-
ogy and data model. The resulting RDF is then stored
in a semantic graph database, or triple store, where
data users can easily access and query the data. Con-
ceptually, this process is rather straightforward, how-
ever, to date, such an integrated workflow is not
commonly implemented. Instead, publishing and
consuming (linked) open data remains an intricate,
tedious task due to a combination of the following
three reasons:

1. The technical complexity of cleaning and pre-

paring open data for publication is high. The
technical complexity typically includes a steep
learning curve, the need for a lot of configura-
tion and customisation, the lack of scalability
with increasing volumes of data, and poor
support for developers or end users. Further-
more, toolkits are typically poorly integrated
and require expert knowledge. Such expertise
includes knowledge of linked data technolo-
gies and tools, database and system admin-
istration (for maintaining the necessary infra-

structure for the proprietary tooling). This is
especially true when it comes to more ad-
vanced publications of linked data that require
consistent, manually curated metadata.

2. Even when the data cleaning and preparation
process is supported, organisations still face
considerable costs to expose their data and
provide reliable and scalable access to them.
Especially in the absence of direct monetisa-
tion or other cost recovery incentives, the rela-
tive investment costs can easily become ex-
cessively high for many organisations. This
might result in open data publishing initiatives
being postponed, or executed in a way that
makes data access and reuse difficult.

3. A poorly maintained and fragmented supply
of open data also causes problems for those
who want to reuse this resource. Firstly, in
many cases, datasets are provided through a
number of disconnected outlets. Additionally,
even sequential releases of the same dataset
are often formatted and structured in different
ways. For example, column orders might have
changed from one release to the next. Such
basic errors make even very simple projects
hard to sustain, e.g., running a web application,
which relies on a single, continuously updated
dataset.

Furthermore, there are a number of interesting

problems that require smart solutions in order to as-
sist data publishers and developers in the process
depicted in Figure 1:

• Interactive design of data transformations:

Designing transformations that provide instant
feedback to users on how data changes can
speed-up the process and provide users with
mechanisms to ensure that the individual
clean-up and preparation steps result in the de-
sired outcome.

• Repeatable data transformations: Very often a
data transformation/publication process needs
to be repeated as new data arrives (e.g.,
monthly budget reports are published through

Figure 1. Typical data transformation/publication and access process: from tabular data to a queriable semantic graph.

Clean	and		
prepare

Transform		
to	RDF

 Ontology X

Ontology	
mapping

RDF	
Graph Raw	Data Prepared	

Data
Map

Map

RDF	Triple	
Store

Query	
RDF

the exact same process each month). Executa-
ble and repeatable transformations are a key
requirement for a scalable and lower-cost data
publication process.

• Reusable and shareable data transformations:
Capabilities to reuse and extend existing data
transformations created and shared by other
developers further improve the speed and
lowers the cost of the data publication process.

• Distributed deployment of data transfor-
mations: Transforming data necessitates a
varying resource utilization due to the varied
load requirements with different inputs. Thus,
having mechanisms to dynamically deploy
and execute transformations in a distributed
environment results in a more reliable, scala-
ble and faster data publication process.

• Reliable data access: Once data are generated
following a data transformation process, pro-
visioning it reliably is another key aspect to
ensure access to the data from third party ap-
plications and services.

What is therefore needed is an integrated solution

that enables a self-serviced effective and efficient
data transformation/publication and access process.
At the very core, this means automating the open data
publication process to a significant extent – in order
to increase the speed and lower its cost. What this
will eventually lead to is that both data publishers and
data consumers can focus on their goals:

• Data consumers can focus on utilising open

data for data-driven decision making, or for
creating new applications and services (rather
than being data “hunters” and “gatherers”);

• Data publishers can focus on providing high
quality data in a timely manner, and finding
monetization channels for their data (rather
than spending time and resources on develop-
ing their own data publication & hosting plat-
forms).

DataGraft was developed as a cloud-based plat-

form for data workers to manage their data in a sim-
ple, effective, and efficient way, supporting the data
transformation/publication and access process dis-
cussed above, through powerful data transformation
and reliable data access capabilities.

The remainder of this paper provides an overview
of DataGraft’s key features and core components

(Section 2), evaluation (Section 3), discussion on
related systems (Section 4), ending with a summary
and outlook (Section 5).

2. DataGraft: Key Features and Components

DataGraft was designed and developed to support
two core capabilities: data transformations and relia-
ble data access.

For data transformations, DataGraft provides the
following features:

1. Interactively build data transformations;
2. Deploy executable transformations to repeat-

edly clean, prepare, and transform spreadsheet
data;

3. Share transformations publicly;
4. Fork, reuse and extend transformations built

by third parties from DataGraft’s transfor-
mations catalogue;

5. Programmatically access transformations and
the transformation catalogue.

Related to reliable data access, DataGraft provides

the following features:

1. Data hosting on DataGraft’s reliable, cloud-

based semantic graph database;
2. Query data through generated SPARQL end-

points or access data via linked data APIs;
3. Share data publically;
4. Programmatically access the data catalogue;
5. Operations and maintenance performed on be-

half of users.

DataGraft realizes these capabilities through four

core technical components, as shown in Figure 2.
Grafter is a software library for data cleaning,

preparation and transformation to RDF. This is sup-
plemented by Grafterizer, the front-end framework
and interface for the underlying Grafter library in
DataGraft. The Semantic Graph Database-as-a-
Service (DBaaS), establishes DataGraft’s data ware-
house for RDF data. Finally, the DataGraft portal
ties together these service offers through a user-
friendly, one-stop front-end. In the following we de-
scribe these components in further detail and end
with a summary of additional backend services and
APIs.

2.1. Grafter

Grafter2 is a library of reusable components de-
signed to support complex and reliable data transfor-
mations, which are exposed to DataGraft through the
Graftwerk service. At the heart of Grafter is a do-
main-specific language (DSL), which allows the
specification of pipelines that convert tabular data
(e.g., for the purpose of cleaning it up), or transform
it to produce linked data graphs.

It is implemented using Clojure, a functional pro-
gramming language that runs on the Java Virtual Ma-
chine (JVM). A functional approach is well suited to
the idea of a transformation pipeline and by using a
JVM-based implementation it becomes straightfor-
ward to exploit the large collection of useful libraries
already available for the ecosystem of JVM-based
programming languages.

Grafter benefits additionally include:

• Clean-up, preparations and transformations to

RDF are free from side effects and imple-
mented as pure functions on immutable data.
This is important in supporting transformation
previews as data is not changed in place, and
transformations can be run without causing
potentially destructive effects. Additionally
reasoning about pure functions is simpler than
reasoning in imperative model, as functions
only take values and return them, whereas

2 http://grafter.org/

procedures can do this and cause unrestrained
side effects.

• Grafter supports large data transformations ef-
ficiently. Unlike other tools it takes a stream-
ing approach to processing data, which means
the maximum size of the dataset that can be
processed is not limited by the available
memory. The streaming approach leverages
Clojure’s lazy sequences to represent the se-
quence of rows in the data. Clojure’s lazy se-
quence abstraction allows to treat unrealized
data as if they were realized, which is
achieved through in-memory sequences. As
values are required from the sequence, they
are realized and cached in memory within the
sequence abstraction.

• It supports an easy way to convert tabular data
into linked data, via graph templates, which
specify how a row of tabular data maps to a
set of RDF triples. In Grafter, graph templates
are defined as part of the functions, which can
be called when the tabular data needs to be
transformed to RDF.

• It has an efficient streaming implementation
of a normalising melt [6] operation (going
from a ‘wide’ table format to a ‘long’ table
format), that lets you easily change cross-
tabulations featuring arbitrary numbers of cat-
egories (frequently used to summarise data),
back into a normalised representation suited
for machine processing. A common use case
is in converting pivot tables [7].

Figure 2. Core components of DataGraft.

• It provides APIs for serialising linked data in
almost all of its standard serialisations.

• It provides integration with semantic graph
databases (triple stores) via standard interfaces.

• It has a highly modular and extensible design.

Grafter is composed of a number of modules to

cleanly demarcate functionality, as illustrated in Fig-
ure 3. These modules broadly fall into two categories
identified by the namespaces grafter.tabular and
grafter.rdf. These two primary divisions represent
the two sides of the Extract-Transform-Load (ETL)
problem Grafter is addressing:

• The cleaning and preparation of tabular data.
• The transformation and loading of that data in-

to linked data (RDF).

The grafter.tabular namespace contains a wide
variety of data processing functions for filtering data
(by row, column or cell contents) and applying user-
specified transformation functions to cells through
functions like derive-column, which adds a new
column to the dataset derived by applying a function
to every cell in one or more source columns. Addi-
tionally, it includes more complex and powerful func-
tions for normalising data into a more uniform form
such as fill-when, which can be used to copy omit-
ted values down a column, and melt, which is similar
to melt from the reshape2 package in R.

Functionality is also being added to help material-
ise errors and ensure they can be displayed in the
appropriate cell or context where they occur.

Tabular Grafter transformations are typically ex-
pressed as a sequence of step-wise operations on
whole tables of data. All tabular operations are simp-
ly pure functions that take a dataset (a table) as input,
and produce a dataset as output.

This can be seen in the example Grafter code in
Figure 4(a). This tabular dataset transformation pro-
cesses a spreadsheet where each line represents a
function call that receives a dataset (table) and re-
turns a new one that has been changed. Sequences of
tabular operations such as those, where a table is re-
ceived as input and returned as output, are called
pipes.

Pipes are simply a set of pure functions, composed
together with the restriction that they receive a da-
taset as their first argument, and must return a dataset
as their return value. The interesting property about
pipes is that they can be composed together arbitrari-
ly, and always result in a valid pipe. Additionally
because the inputs, outputs and intermediate steps to
pipes are always tables, they are very intuitive for
users to manipulate and use.

In order to publish linked data, a final step must
take place to transform the input data and produce the
graph structure used by RDF. This final step is re-
ferred to as a graft. A graft maps each row of the
source data into a graph. That graph is made up of a
sequence of ‘quads’ as used in the RDF approach,
each consisting of a subject, predicate, object and
context.

Figure 3. Grafter architecture stack.

Because a graft takes as input a table and returns a
lazy sequence of quads representing the linked data
graph as its output, it doesn’t have the composition
property that pipes do. However, additional filtering
steps can be added to the stream of quads if necessary.

Typically the bulk of clean-up and preparations are
best performed whilst the data is in the table, though
post processing can be performed by filters.

Grafter supports a simple graph template to ex-
press the conversion of each row of an input tabular
dataset into a graph. That template makes use of a
simple sub-DSL to specify commonly-used RDF
generation, combined with selections from the input
data and literal values.

The code in Figure 4(b) is used to express the
mapping of columns in a tabular dataset into its posi-
tion in a linked data graph.

Generating RDF from tabular data with the help of
Grafter is compliant with the W3C recommendation
defined in [8], although doesn’t follow it precisely.
The conversion procedure described in the W3C rec-
ommendation operates on an annotated tabular data
model and provides an exact algorithm for data con-
version. In contrast, Grafter provides more flexibility
by allowing users to add necessary annotations to the
table just before the conversion to RDF and to define
proprietary algorithms for generating it.

In DataGraft, Grafter comes together with Graft-
werk – a back-end service (accessed through a
RESTful API) for executing transformations. Graft-
werk provides a sandboxed Platform-as-a-Service
(PaaS) execution environment for Grafter transfor-
mations and supports two primary platform features:

1. The ability to execute a given Grafter transfor-

mation on the entirety of a supplied tabular da-
taset. The results of the whole transformation are
returned.

2. The ability to specify a page of data in the tabu-
lar data to apply the supplied Grafter transfor-
mation to, and to return a preview of the results
of the transformation on that subset.

The first of these features ensures that transfor-

mations hosted on DataGraft can be applied to arbi-
trary datasets, generating results for download or
hosting. The second feature for generating live pre-
views of the transformation is critical to providing a
high quality interactive user experience via the inter-
face. Graftwerk supports both of these features on
both kinds of transformations: pipes and grafts.

Further information about Grafter and Graftwerk
can be found in [9] and [10].

(a)

(b)

Figure 4. Grafter sample code of data transformation (a) and creation of RDF triples (b).

2.2. Grafterizer

Grafterizer [11] is the web-based framework for
data cleaning, preparation and transformation based
on Grafter. It provides an interactive user interface
with end-to-end support for data cleaning, prepara-
tion (Figure 5(a)) and RDF transformation (Figure
5(b)):

• Live preview – Grafterizer interactively dis-

plays the results of the tabular clean-up or

preparation steps in a side-panel. It also re-
tains a view of the original version of the up-
loaded tabular dataset. Additionally, in case
errors in the transformation or RDF mapping
are present, it is equipped with an integrated
error reporting capability.

• Forking of existing transformations – the user
interface allows users to create copies of trans-
formations by a single click of a button.

• Specifying and editing data cleaning (pipe-
line) steps – the clean-up and preparations per-
formed on tabular data can be added, edited,

(a)

(b)

Figure 5. Grafterizer transformation pipeline and preview (a) and RDF mapping (b).

reordered or deleted. All functions are pa-
rameterised and editing allows users to change
each of these parameters within the function
with immediate feedback.

• Data page generation – based on the specified
RDF mappings, users are able to directly pro-
duce and publish data pages where their data
will be available for access through an end-
point.

• Direct download of resulting data – the
cleaned-up/transformed data from Grafterizer
(both CSV and mapped RDF) can be directly
accessed and downloaded locally.

• Customisation – data clean-up and preparation,
are fully customisable through embedding
custom code, both as individual clean-
up/preparation steps, or part of certain steps.
In addition, developers can directly edit the
resulting Clojure code and see the result in in-
teractive mode.

Grafterizer implements a web-based wrapper over

the Grafter library and Graftwerk service. The inter-
face allows users to specify Grafter transformations
in a much easier and more intuitive manner, com-

pared to directly coding in Clojure. It also provides
instant feedback alongside the other features de-
scribed in the previous section.

The Grafterizer interface works by submitting the
transformation that is being specified to the Graft-
werk service along with the data that needs to be
cleaned, prepared and/or transformed. Depending on
the type of the request, Graftwerk will then either
generate a preview of the data that the UI can display,
or return the output data (linked or tabular).

In order to produce linked data, RDF mappings are
(typically) executed over well-formed CSV files,
whereby each row contains one entity and each col-
umn represents an attribute of the entity. Nevertheless,
Grafterizer is meant to operate with any form of CSV
input, whereby any malformed CSV can be normal-
ised into a well-formed one-record-per-row/one-field-
per-column structure using the data transformation
functions provided in the UI. The result of a trans-
formation can be either a set of RDF triples that can
be hosted on DataGraft in its semantic graph (RDF)
store (described in the next subsection), or a tabular
dataset that can be downloaded or accessed from the
platform’s file storage.

Further information about Grafterizer and its inte-
gration with DataGraft can be found in [12].

Figure 6. Architecture of the RDF DBaaS.

2.3. Semantic Graph Database-as-a-Service

DataGraft’s database-as-a-service is a fully man-
aged, cloud-based version of GraphDB™ semantic
graph database (triple store), which provides an en-
terprise-grade RDF database as-a-service. Users
therefore do not have to deal with typical administra-
tive tasks such as installation and upgrades, provi-
sioning and deployment of hardware, back-up and
restore procedures, etc. The utilization of cloud re-
sources by the DBaaS depends on the load of the sys-
tem itself, whereby they can be elastically provi-
sioned and released to match the current usage load.

From a user standpoint, the DBaaS supports an
API for linked data access, querying, and manage-
ment. These functionalities are based on a complex
architecture, which ensures components scalability,
extensibility and availability on large scale (see Fig-
ure 6).

 The DBaaS implementation follows the principles
of micro-service architectures, i.e., it is composed of
a number of relatively small and independent compo-
nents. The data management architecture is based on
the Amazon Web Services (AWS) cloud platform
and consists of the following components:

• Load balancer – the entry point to the data-

base services is the load balancer provided by
the AWS platform, which routes incoming da-
ta requests to one of the available routing
nodes. It can distribute requests even between
instances in different datacentres.

• Routing nodes host various micro-services
such as: user authentication, access control,
usage, metering, and quota enforcement for
the RDF database-as-service layer. The front-
end layer is automatically scaled up or down
(new instances added or removed) based on
the current system load.

• Data nodes – this layer contains nodes run-
ning multiple instances of the GraphDB™ da-
tabase (packaged as Docker3 containers). Each
data publisher has its own database instance
(container), which cannot interfere with the
database instance or with the data of other us-
ers of the platform. The data are hosted on
network-attached storage volumes (EBS)4 and
each user/database has its own private EBS
volume. Additional OS-level security ensures
appropriate data isolation and access control.

3 https://www.docker.com/
4 http://aws.amazon.com/de/ebs/

• Integration services (denoted by dashed ar-
rows in Figure 6) – a distributed queue and
push messaging service enable loose coupling
between the various front-end and database
nodes on the platform. All components use a
publish-subscribe communication model to be
aware of the current state of the system. This
allows the front-end and the backend layers to
be scaled up or down independently as they
are not aware of their size and topology.

• Distributed storage – all user data are stored
on the reliable and redundant network-
attached storage (EBS), whereas static back-
ups and exports remain on the S3 distributed
storage. Logging data, user data as well as
various configuration metadata are stored in a
distributed NoSQL database (DynamoDB).

• Monitoring services – the AWS cloud pro-
vides various metrics for monitoring the ser-
vice performance. The DBaaS utilises these
metrics in order to provide optimal perfor-
mance and scalability of the platform. The dif-
ferent layers of the platform can be automati-
cally scaled up (to increase system perfor-
mance) or down (to decrease operational
costs) in response to the current system load
and utilisation.

Further information about semantic graph database
used in DataGraft can be found in [13].

2.4. DataGraft Portal

The DataGraft portal integrates the previously dis-
cussed components together in a modern, user-
friendly web-based interface designed to ensure a
natural flow of the supported data processing and
publication workflow. Accordingly, four main as-
pects have been considered and addressed throughout
the development of DataGraft’s portal front-end:

1. Design and implement a highly intuitive UI,
which facilitates user interaction with large,
complex sets of linked open data.

2. Simplify the data publishing process by im-
plementing a fast-track for publishing data,
e.g., using simple drag and drop operations.

3. Create basic data exploration tools, which help
users with limited technical skills to explore
data hosted on the DataGraft platform.

4. Deploy data visualization components that can
be easily used by non-specialists to build data
driven portals.

Two complementary modules have been imple-

mented to create the DataGraft portal. Firstly, a drag-
and-drop interface, which allows users to easily pub-
lish and annotate data. The entire process of publish-
ing data is thus reduced to a simple wizard-like inter-
face, where publishers can simply drop their data and
enter some basic metadata. All data that are published
on the platform are accessible via data pages. Users
who publish on DataGraft can specify whether the
data is made publically available or not (i.e., if the

data page is public or private) and the license under
which the data is made available. Finally, the
DataGraft portal provides a module that helps visual-
ize data from the semantic graph database (triple
store). Publishing data on the web usually implies
specific programming skills in order to create web
pages or portals. Thereby, the programming process
has been all but eliminated through the deployment of
visualization widgets that can serve as reusable com-
ponents for data publishing. These widgets can access
and use data in the repository and expose it through a
data page. Currently, the platform provides a number
of visualization widgets, including tables, line charts,
bar charts, pie charts, scatter charts, bubble charts and

Figure 7. Configuring widgets (a) and visualizing data (b) in DataGraft.

(a)

(b)

maps (using the Google Maps widget). All widgets
are populated with data through the use of specific
SPARQL queries on RDF databases.

Figure 7(a) depicts the configuration of a line chart
widget using SPARQL for comparing statistical data
on employment in two municipalities in Norway, and
the result of the visualization on a data page is shown
in Figure 7(b).

Further information about the DataGraft portal can
be found in [14].

2.5. DataGraft Backend Services and APIs

In addition to the core components described
above, DataGraft comes with a set of services (that
can be accessed through RESTful APIs) for manag-
ing data and transformations, user management, secu-
rity and authentication.

DataGraft provides capabilities to search the data
pages and data transformation catalogues. Figure 8

depicts the data transformations and data pages cata-
logues as seen by a DataGraft user.

Examples of back-end services for data transfor-
mations include CRUD operations on transformations
catalogue (create, retrieve, update, or remove data
transformations), as well as distribution of transfor-
mations code and services supporting the interactive
preview of transformations.

Examples of back-end services for data include:
CRUD operations on data pages catalogue (create,
retrieve, update, or remove data pages); distribution
of data (DCAT5 compliant); services for managing
DBaaS instances; and services for querying of the
linked data graphs using the OpenRDF API.

Further information about the DataGraft backend
services can be found in [12] and [13].

5 http://www.w3.org/TR/vocab-dcat/

Figure 8. Data pages catalogue (left) and data transformations catalogue (right).

Table 1 summarizes the technical components of
DataGraft and Figure 9 provides an architectural
overview and how components are interdependent.

Table 1. Summary of DataGraft components and their capabilities

Grafter Clojure-based DSL for data cleaning,
preparation and transformation

Graftwerk Grafter/Clojure execution engine

Grafterizer Front-end framework for data clean-
ing, preparation and transformation

Portal UI
Dashboard, exploration, user data,
API keys, upload of files, data pages,
transformation pages

Back-end
services

User management, cataloguing, trans-
formation management, data publish-
ing

Semantic
graph
DBaaS

Cloud-based data-as-a-service com-
ponent

3. Evaluation

The DataGraft platform was launched in public be-
ta in September 2015. Early usage figures show that
the platform, by beginning of December 2015, has:

• 495 (91 public) registered data transfor-

mations
• 1520 uploaded files
• 181 registered users
• 183 public data pages

DataGraft has been used in various domains to

transform and publish data. In general, the following

positive aspects resulted from the use of DataGraft in
practice:

• Simplified data publishing process;
• Time-efficient data transformation and pub-

lishing process;
• Repeatable and sharable data transformation

process;
• Data hosting and querying support, with pos-

sibility to visualize data;
• Support for integration of transformed RDF

data with external data sources using estab-
lished web standards.

In the following we provide examples of how

DataGraft was used in practice, the positive aspects
and limitations identified in those examples.

3.1. PLUQI

Saltlux,6 a South Korean company operating in the
domain of knowledge management, developed a Web
application called the Personalised Localised Urban
Quality Index (PLUQI). PLUQI implements a cus-
tomizable index model that can be used to represent
and visualize the level of well-being and sustainabil-
ity for given cities based on individual preferences.

Aside from building an attractive and engaging
end-user interface, the main challenges associated
with PLUQI were to integrate and/or merge data from
various sources, e.g., open data portals, social sensor
systems, etc. This index model takes into account
data from various domains such as daily life satisfac-
tion (weather, transportation, community, etc.),
healthcare level (number of doctors, hospitals, suicide
statistics, etc.), safety and security (number of police
stations, fire stations, crimes per capita, etc.), finan-
cial satisfaction (prices, income, housing, savings,
debt, insurance, pension, etc.), level of opportunity
(jobs, unemployment, education, re-education, eco-
nomic dynamics, etc.), and environmental needs and
efficiency (green space, air quality, etc.).

PLUQI was implemented in two iterative versions.
The first implementation used Korean data, providing
a semantic integration of heterogeneous open data
from the Korean Statistical Information Service
(KOSIS). This included nine files processed in
DataGraft with the help of five reusable transfor-
mations. Four of them were created via the forking
(copying) capabilities of DataGraft. The transfor-

6 http://saltlux.com/

Figure 9. DataGraft high level components interactions.

Grafteriz er

S em antic 	g raph 	
DB aaS

Graftw erk B ack -end 	servic es

Porta l	UI

Grafter

mations for the Korean data processing included 15
special utility functions with custom code, 10 of
which were reused across different transformations.
The second implementation has been developed
based on similar data about Scotland (from the statis-
tics office of the Scottish Government, and other
open data), and it compares the PLUQI index be-
tween Edinburgh and other council areas.

A typical process for implementing an application
such as PLUQI requires four main steps: (1) data
gathering (identifying relevant data sources); (2) data
transformation (cleaning, preparation, harmonization,
integration); (3) data provisioning (making integrated
data reliably available); and finally (4) implementing
the application (e.g., web application, visualizing and
accessing the provisioned data). DataGraft was used
for steps (2) and (3) for transforming/integrating data,
and reliably provisioning the data. Saltlux reported
reduction of cost for implementing these steps of
approximately 23% compared to traditional ap-
proaches (i.e., use of spreadsheets for data transfor-
mation and data publication, proprietary tooling, or
technologies, such as relational databases and manual
coding/scripting) for integrating and provisioning
data. This enabled Saltlux to focus on steps (1) and
(4) while outsourcing the other two steps to
DataGraft.

DataGraft was perceived as a convenient platform
to integrate various datasets into one repository based
on the linked data approach. It supports transfor-
mation features for raw datasets, which are not writ-
ten in RDF format so that they can be retrieved using
SPARQL queries, linking them to other datasets. This
functionality was recognised as very powerful for
services such as PLUQI that need to use various da-
tasets. Data are also expected to be retrievable from
one repository, enabling a reasonable response time
against the user’s requests. PLUQI illustrates the ca-
pability of DataGraft to support a wide variety of data
integration and analysis applications.

The capability of DataGraft to allow users to share
data transformations was considered as a really useful
feature when transforming datasets with related struc-
ture. For example, when transforming air quality data
for different cities – one transformation pipeline for
one city was reused with small modifications to trans-
form air quality data from other cities. In addition,
most of the input files for PLUQI contained the same
quality issues (e.g., not normalized headers, mal-
formed column header labels, etc.) and required simi-
lar transformation operations for transposing data,
reformulating column header labels and bringing data
into a normalized form. However, these operations

were not exactly the same for every input file because
of their structure. DataGraft allowed formulating
complex transformation operations as parameterized
utility functions and forking the entire transformation
with all the utility functions within the transformation.
Creating the transformations via the forking capabil-
ity of DataGraft made it possible to avoid the tasks
related to creating normalization functions from
scratch. Instead, it allowed reusing them with differ-
ent parameters, which significantly reduced the time
and effort needed to transform the data.

When it comes to limitations, PLUQI revealed the
need for DataGraft to export or share visualization
widgets that can be used by third party services or
applications: currently, the data pages in DataGraft
provide capabilities to visualize datasets in various
widgets, but it was pointed out by PLUQI developers
that it would be useful to implement exporting and
sharing features for widgets, in order to raise the usa-
bility of the portal. In addition, DataGraft did not
provide capabilities for ontology editing, and there-
fore the PLUQI developers had to use third party
ontology editing tools such as Protégé to create the
ontologies against which that data was annotated in
the RDF publication process.

Further information about the PLUQI application
can be found in [15] and [16].

3.2. Transforming and Publishing Environmental
Data

As part of the SmartOpenData project7, DataGraft
was used to transform and publish data as open data
in the biodiversity and environment protection do-
main from two organizations: TRAGSA, a Spanish
company, and ARPA, the environmental protection in
Italy. In the case of TRAGSA, 42 transformations
were created, out of which 25 were created via the
reuse/forking capability of Grafterizer. For the pur-
poses of ARPA, five transformations were created,
out of which two were created via the reuse/forking
capability. The following aspects were noted during
the data transformation/publication process:

• The ability to ‘fork’ (copy, then adapt) exist-

ing transformations allowed users to easily re-
use existing transformations and thus save
time in the process of creating a new trans-
formation.

7 http://www.smartopendata.eu/

• The ability to edit the parameters of each
transformation step interactively, and to
change the order of steps, helped them to: cre-
ate transformations in general, detect and cor-
rect mistakes, experiment with different pa-
rameters for clean-up and preparation steps,
specify proprietary transformation designs
(through the ability to add utility functions
with custom code) and reuse proprietary func-
tions across different transformations.

The users identified some features not currently

available in Grafterizer that would have made the
tools more useful for them, notably the ability to join
more than one input dataset and the ability to sort
datasets. To overcome these limitations, it was neces-
sary to carry out some pre-processing of the input
files (e.g., for one transformation, 27 of the 43 files
tested required some pre-processing). It is possible to
perform joins and to sort inside a Grafter pipeline, but
at the time of the writing of this paper, the Graftwerk
back-end did not yet provide explicit support for the-
se operations.

3.3. Other Examples

Statsbygg8 – the Norwegian government’s key ad-
visor in construction and property affairs – has exper-
imented with DataGraft for the purpose of publishing
their data about public buildings in Norway and inte-
grating it with external information about accessibil-
ity in buildings (e.g., types of facilities for the disa-
bled). This was done in order to provide better infor-
mation about public buildings in Norway, and enable
a more efficient mechanism to share data about pub-
lic buildings. In this context, DataGraft was used for
a wide range of tasks, including cleaning and prepa-
ration of tabular data about buildings, data transfor-
mation, generation and hosting of RDF data, integra-
tion with external data sources, querying the integrat-
ed data (e.g., which public buildings are located in
Oslo and don’t have handicapped entrances), and
visualization of public buildings and associated data
on a map.

Noted benefits for use of DataGraft in this context
included the possibility to create a “live” services (vs.
storing and managing information about public build-
ings using spreadsheets) that can be easily updated as
new data becomes available, efficient sharing of data,
and simplified integration with external datasets. On

8 http://www.statsbygg.no/

the other hand, lack of selective data sharing in
DataGraft was pointed out – it is often the case that
some buildings such as prisons or King’s properties
are not to be shared in an open fashion. This is not
necessarily a technical deficiency of DataGraft but it
is rather expensive to enforce it in practice. Group- or
role-based access control of DataGraft assets (which
as of the writing of the paper is not supported in
DataGraft), could be a potential solution to share data
selectively.

Another example where DataGraft has been ap-
plied is in publishing statistical data as RDF, query-
ing and visualization. For instance, DataGraft was
applied for cleaning, preparation, and transformation
statistical data from StatBank Norway9. StatBank
contains detailed tables with various time series data.
Users can create custom selections and serialise them
in different file formats. An interesting observation
here was the ease of use of repeatable and reusable
transformations provided by DataGraft, which al-
lowed users to repeatedly apply and adjust transfor-
mations on the tables generated from StatBank Nor-
way. Figure 7 depicts an example of configuring a
widget and visualizing the RDF data transformed
from StatBank Norway. In this context, users pointed
out the limitation of DataGraft of currently allowing
only CSV files as input for data transformations. The
limitation is related to the capabilities of Graftwerk
(the transformation execution service), and not of
Grafter. As a matter of fact, Grafter, as a standalone
library, has been applied by Swirrl10, a UK SME
working in data publishing, to generate a large num-
ber of linked data datasets for local government or-
ganisations in the UK (including Glasgow, Hamp-
shire, Surrey and Manchester councils) whose source
data covered a range of file formats, including CSV,
Excel, PostGIS (relational database with GIS exten-
sions), and ESRI Shapefiles (a common GIS format).

DataGraft has been used in other contexts for
transforming and publishing data, such as air quality
sensor data from the CITI-SENSE project11, data
about transportation infrastructure (e.g., the road
network, bridges, etc.) and the impact of natural haz-
ards in transportation infrastructure as part of the In-
fraRisk project12, or investigating crime data in small
geographies13. Furthermore, DataGraft components
are being taken up in various other contexts. For ex-

9 https://www.ssb.no/en/statistikkbanken
10 http://www.swirrl.com/
11 http://www.citi-sense.eu/
12 http://www.infrarisk-fp7.eu/
13 http://benproctor.co.uk/investigating-crime-data-at-small-

geographies/

ample, typical open source project metrics show that
Grafter currently has 87 stars on Github, external
contributors, and receives typical email & bug reports
from external users. The semantic graph DBaaS
component is also deployed as part of Ontotext’s S414
product which has commercial customers.

Currently DataGraft is offered as a free service
with some imposed limitations per account as fol-
lows:

• Data upload: Users can upload CSV files of

up to 10MB each, and RDF files of up to
100MB each;

• Data pages: Users can have up to 10 RDF data
pages;

• Persistent storage: Users can host up to 2 GB
of CSV data, and 10 Million RDF triples for
RDF data.

The number of databases that are hosted on a sin-

gle virtual machine (data node) varies depending on
the amount of available hardware resources. The cur-
rently deployed (the default free offering) data nodes
on DataGraft host eight RDF databases per node with
up to 10 repos per database of up to 10 million triples.
Each RDF database has around 2GB of reserved
memory for performing queries. The amount of re-
served memory can be re-configured on request (or
based on the needs of the platform) – it can be set to
1, 2, 4, 8 or 16GB based on the size of the database
and performance requirements. As of now, the limita-
tions for data upload, number of data pages and per-
sistent storage are enforced in order to maintain
DataGraft as a free offering to its users. Nevertheless,
DataGraft does allow for the hosting and transfor-
mation of much larger quantities of data. The largest
deployed database in DataGraft (not supported as a
free offering) can host up to 1 billion triples in up to
50 repositories. Transforming large quantities of data
is implemented through taking advantage of the
Clojure (Grafter) compatibility with the JVM. This
means that all transformations specified in DataGraft
can be bundled into executable Java Archives (JAR
files). These JARs are available through a DataGraft
service and can be downloaded and executed locally
to process arbitrarily large inputs.

14 https://console.s4.ontotext.com/

4. Related Work

DataGraft offers an integrated, flexible, and relia-
ble cloud-based service, whereby maintenance of
resources and infrastructure are transparent to the
user. This frees data experts from having to deal with
systems engineering aspects and enables them to fo-
cus on their domains of expertise related to the actual
data tasks. Furthermore, its unique combination of
features provides out-of-the-box and integrated tools,
which reduces the effort to quickly implement a pro-
cess of data transformation and publication. The
combination includes features such as interactivity in
data transformations, the provided DSL to implement
them, reliability, seamless data provisioning, scalable
cloud-based triple store, and other user-oriented fea-
tures (e.g., the catalogues, data visualizations, and
programmatic APIs to its capabilities) – all provi-
sioned out-of-the-box for the user. This combination
of features and functionalities sets DataGraft apart
from other approaches, which, although in some cas-
es can be hosted on the cloud, typically lay the bur-
den of provisioning of resources and maintenance on
the users.

Related systems fall under the types of systems for
linked data and open data publication/hosting and
ETL tools. In the following we outline the most rele-
vant systems and discuss the differences.

The Linked Data Stack [17] is a software stack
consisting of a number of loosely coupled tools, each
capable of performing certain sets of operations on
linked data, such as data extraction, storage, querying,
linking, classification, search, etc. The various tools
are bundled in a Debian package and a web applica-
tion can be deployed to offer central access to all the
tools via a web interface15. The complexity of provi-
sioning resources and managing the resulting web
application rests on end users who must install the
tools and maintain the infrastructure. In contrast,
DataGraft is bundled as-a-service, whereby the actual
resources for transforming and hosting data are man-
aged on behalf of the user. There is indeed an overlap
in terms of operations on linked data (for example
data hosting and querying) supported by both
DataGraft and the Linked Data Stack, but there are
also significant differences in the chosen approach.
Whereas DataGraft focuses on higher level aspects
such as providing an integrated framework for data
cleaning, preparation, and transformation, such that
users can interactively design and share transfor-
mations, the Linked Data Stack addresses lower-level

15 http://demo.lod2.eu/lod2demo

aspects, such as classifications, that are not covered
in DataGraft.

The LinDA project [18]16 developed a set of tools
for linked data publishing, packaged into the LinDA
Workbench17. It consists of a lightweight transfor-
mation to linked data tool, a vocabulary repository, a
tool for converting RDF to conventional data struc-
tures, a visual query builder, and an analytics package.
Similar to the Linked Data Stack, the tasks of provi-
sioning resources and managing the LinDA tool eco-
system again rest on the end user. Furthermore,
DataGraft’s powerful data cleaning and transfor-
mation approach goes beyond the lightweight trans-
formation tool provided by LinDA (which focuses
primarily on the RDFisation). Nevertheless, LinDA
provides more sophisticated support for visual query-
ing through providing a query builder for SPARQL.

The COMSODE project [19]18 provided a set of
software tools and methodology for open data pro-
cessing and publishing. A relevant tool developed as
part of this project was UnifiedViews19 – an ETL tool
for RDF data. Its focus is on specifying, monitoring
and debugging workflows composed of data pro-
cessing units applied on data that is extracted from
SPARQL endpoints. These features are orthogonal to
DataGraft’s transformation approach that focuses on
lower level operations such as cleaning and transfor-
mation to RDF of the actual data (together with other
aspects like sharing and reuse of transformations).
Thus, UnifiedViews can be seen as a data workflow
processing tool using data published via DataGraft.
Similar to the aforementioned approaches, COS-
MODE is not available as an online service, but ra-
ther as a set of tools that need to be individually man-
aged, which implies additional burden on end users.

OpenRefine20, with its RDF Refine plugin [20]21,
implements an approach with similar capabilities to
DataGraft with regards to data cleaning and trans-
formation to RDF. The tool provides an interactive
user interface that uses well-known spreadsheet-style
interactions, which are convenient for manual data
clean-up and conversion. However, OpenRefine is
unsuitable for use in a service offering context, such
as the one DataGraft was built for. Although Open-
Refine was implemented as a web application, its
design is monolithic and bears resemblance to an
application meant for the desktop, rather than the web.

16 http://linda-project.eu/
17 http://linda-project.eu/tools/
18 http://www.comsode.eu/
19 http://unifiedviews.eu/
20 http://openrefine.org/
21 http://refine.deri.ie/

Firstly, the code base is not well componentised –
e.g., the transformation engine is tightly-coupled to
the OpenRefine core and does not expose an API.
Additionally, the processing engine itself is not suita-
ble for robust ETL processes, as it is inefficient with
larger data volumes – it implements a multi-pass ap-
proach to individual operations, and is thus memory-
intensive. Although there has been an attempt to pro-
vide support for batch processing in BatchRefine22, it
inherits the issues with the tight coupling of the core
components. OpenRefine also has security issues,
which prevent it from being applicable in a fully
hosted solution – OpenRefine was designed to be
used as a desktop application, not a SaaS application,
and it allows arbitrary code execution without apply-
ing a sandbox and policy. DataGraft was designed
from the outset to be a hosted platform and executes
transformation code inside a security sandbox. Nev-
ertheless, OpenRefine provides more powerful RDF
mapping features such as automatic reconciliation of
data, more freedom in mapping, etc.

Datalift [21] is a software framework for linked
data publishing. It consists of a set of modules such
as vocabulary management, data conversion, and
interlinking. Besides being a framework that needs to
be installed, configured, provisioned, and maintained
by the user, Datalift’s approach to conversion of
tabular data to linked data is rather lightweight in
comparison to DataGraft. Furthermore, Datalift is
considered as an "expert tool" [21]. For example, it
comes with no GUI to support data publishers in the
data publication process. A similar framework to
Datalift is the Linked Data Integration Framework
(LDIF) [22], focused on data integration using linked
data. ClioPatria [23] is a more recent system, extend-
ing the SWI-Prolog RDF store with capabilities such
as a SPARQL and LOD server, and mechanisms to
browse and query data. DataGraft’s triplestore goes
beyond the capabilities of the SWI-Prolog RDF store
in the sense that it’s designed for cloud-based sys-
tems. DataGraft is a more comprehensive framework
addressing wider aspects of data publishing such as
being a public infrastructure for data and data trans-
formations sharing and including capabilities for data
cleaning and transformation, which appear to be out-
side of the scope of ClioPatria

PublishMyData23 is a commercial Software-as-a-
Service linked data publishing platform. DataGraft
and PublishMyData share the data transformation
approaches through the Grafter library. However,

22 https://github.com/fusepoolP3/p3-batchrefine
23 http://www.swirrl.com/publishmydata

DataGraft has taken Grafter further in the Grafterizer
tool and the platform UI, by complementing it with
interactive design of transformations, mechanisms for
sharing transformations between users, and reliable
data hosting and access. PublishMyData, in contrast
to DataGraft, is not a public service for building and
sharing data transformations.

The Linked Data AppStore [24] is a Software-as-a-
Service platform prototype for data integration on the
web. It integrates a set of linked data related tools for
tasks such as data cleaning, transformation, entity
extraction, data visualization, crawling in a in a
loosely coupled service infrastructure and served as
inspiration for the development of DataGraft.

Related systems that are not focused on the linked
data paradigm include solutions for open data cata-
logues and more traditional ETL tools. Open data
catalogues typically list open datasets, together with
the metadata and references (e.g., URLs) to where the
data are made available. In some cases the actual da-
tasets are also hosted with the data catalogue. How-
ever, in most cases data catalogues provide only
download links without any sophisticated infrastruc-
ture for querying data to support other aspects of the
ETL process. Popular data catalogue solutions in-
clude CKAN24 and Socrata25. The core differences
between DataGraft and these data catalogue solutions
lay in the support for linked data and data transfor-
mations.

Commercial examples of relevant ETL tools in-
clude Pentaho Data Integration26 and Trifacta Wran-
gler27. Pentaho Data Integration is a powerful and
efficient tool designed specifically for ETL processes
with lots of plugins and components for many data
formats. It does not come with linked data support
and is rather hard to use for non-developers. Firstly, it
does not provide an interactive preview such as a
spreadsheet of the current state of the transformation
workflow. Furthermore, its diagrammatic approach to
transformations can be unclear and could potentially
explode in complexity including constructs for loops
and recursion. Finally, Pentaho Data Integration was
not built for public cloud hosting environments, but is
rather a desktop application. Trifacta Wrangler is yet
another tool for data cleaning. Its focus is on support-
ing predictive interactions which enables users to
clean data in a rather simple manner. Trifacta Wran-

24 http://ckan.org/
25 http://www.socrata.com/
26 http://community.pentaho.com/projects/data-integration/
27 https://www.trifacta.com/products/wrangler/

gler does not support linked data and capabilities or
data hosting.

To summarize, none of the existing solutions in
linked data tools, open data publishing platforms or
ETL tools meet the requirements addressed by
DataGraft. Firstly, all of the examined linked data
tools outsource the technical complexity of provision-
ing and managing the infrastructure to their users.
This means that they require expert knowledge to
operate, which makes them costly to use and difficult
to sustain. Furthermore, they are not well-suited for a
cloud service environment (they are not designed to
be scalable and reliable in a cloud-based environ-
ment) and most of them do not have an interactive
user interface. In some cases linked data tools do
have a user interface, but operate inefficiently and are
not suitable for robust linked data publication. On the
other hand, open data publication and hosting tools
provide a serviced solution to their users. However,
such tools lack support for data transformation and in
some case leave the data provisioning and manage-
ment tasks to their users. This causes data to be frag-
mented across many sources and thus difficult to use
and integrate. Finally, ETL tools provide powerful
capabilities for producing workflows diagrammatical-
ly. However, they are not well-suited for a cloud-
based environment/hosting of data, do not provide
support for linked data, and typically lack interactive
previews of the state of the data at each step of the
ETL process.

DataGraft addresses all these issues by providing a
reliable cloud service for transforming and hosting
data, whereby all upfront and operational costs for
acquiring and maintaining technical infrastructure for
provisioning the data are outsourced to the platform,
additionally reducing the technical complexity for
data publishers.

5. Summary and Outlook

DataGraft [25] is an emerging solution (as-a-
Service) for making linked open data more accessible.
It comes with a platform, portal, methodology, and
APIs – all packaged in an online service, functional
and documented28. DataGraft has been validated in a
number of use cases showing added-value based on
its key capabilities: support for sharable, repeatable,
and reusable data transformations, and reliable RDF
Database-as-a-Service.

28 https://datagraft.net/documentation/ (API documentation

available at https://datagraft.net/api/)

DataGraft’s features include: interactive cleaning,
preparation and transformation of data, repeatable
and reusable data transformations, flexible deploy-
ment of transformations, RDF data publication and
querying, support for integrating and visualising data
from different sources. Additionally, DataGraft can
be used with third party tools as it has been built with
easy integration in mind using standard web technol-
ogy. For example, users can browse data hosted on
DataGraft with tools such as GraphRover29 (through
the SPARQL endpoint), connect to the hosted data
store with a standard Sesame Client (using the
OpenRDF APIs), or browse, perform queries or other
actions using a REST client or command line tools
such as httpi 30 (to access the RESTful APIs of
DataGraft). This makes DataGraft attractive both for
data workers and data developers interested in simpli-
fied and cost-effective solutions for managing their
data. DataGraft was developed to provide better and
easier to use tools for open data publishers, linked
data developers, and data scientists who consider
existing approaches to data transformation, hosting,
and access too costly or technically complex.

Graftwerk and RDF DBaaS are closed source,
while Grafter31, Grafterizer32, and the DaPaaS portal33
are released under open-source (EPL v1.0).

DataGraft is currently under development and op-
erated by the proDataMarket project34. Changes and
improvements to DataGraft are expected in the near
future. Future releases of DataGraft will address
some of the limitations identified in the cases in
which DataGraft was used, and will contain new fea-
tures and improvements. Examples of new fea-
tures/improvements in future releases include: sup-
port for multiple files, joining of datasets and various
data formats as input for data transformations (e.g.,
JSON, GML, Shapefile), better error reporting in data
transformations, applying functions directly on the
preview spreadsheet (rather than in pipeline opera-
tions), fully supporting streams of data as input in
Grafterizer (rather than static files), better traceability
for files, data pages, transformations; ability to store
and share assets such as queries and visualization
widgets; versioning of assets, social aspects (e.g.,
users following activity of other users); quantitative
benchmarking; and better mechanisms to record the
user interactions with the platform. On a longer term,

29 http://www.metreeca.it/products/graph-rover/
30 http://httpirb.com/
31 https://github.com/Swirrl/grafter
32 https://github.com/dapaas/grafterizer
33 https://github.com/dapaas/datagraft
34 http://prodatamarket.eu/

there are plans to use DataGraft as an infrastructure
for implementing the concept of “Trusted Data Mar-
ketplaces” [26].

Acknowledgements. The development of DataGraft was
co-funded through grants from the European Commission
(EC). DataGraft was developed and operated by the
DaPaaS project (GA no. 610988) until November 2015.
Further development, maintenance, and operations continue
under the proDataMarket project (GA no. 644497). The
projects SmartOpenData (603824) and InfraRisk (603960)
also contributed to DataGraft.

References

[1] Tim Davies, Raed. M Sharif, and Jose M. Alonso. Open Data
Barometer. Global Report - Second Edition, 2015. Available
via http://bit.ly/1OedPRd (Last accessed December 2015).

[2] http://opendatamonitor.eu/frontend/web
[3] Gang-Hoon Kim, Silvana Trimi, and Ji-Hyong Chung. Big-

data applications in the government sector. Communications of
the ACM, 57(3):78-85, 2014. 10.1145/2500873.

[4] Octavian Rusu, Ionela Halcu, Oana Grigoriu, Giorgian Ne-
culoiu, Virginia Sandulescu, Mariana Marinescu, Viorel
Marinescu. Converting unstructured and semi-structured data
into knowledge. In Networking in Education and Research,
Roedunet International Conference (RoEduNet), 11th Edition,
Proceedings, Siania, January 17-19, 2013. IEEE, 2013.
10.1109/RoEduNet.2013.6511736.

[5] Jürgen Umbrich, Sebastian Neumaier, and Axel Polleres.
Quality Assessment and Evolution of Open Data Portals. In
Irfan Awan, Muhammad Younas, and Massimo Mecella, edi-
tors, 3rd International Conference on Future Internet of
Things and Cloud, FiCloud 2015, Rome, Italy, August 24-26,
2015, pages 404-411, IEEE Computer Society, 2015.
10.1109/FiCloud.2015.82.

[6] Hadley Wickham. (2007). Reshaping data with the reshape
package. Journal of Statistical Software, 21(12):1-20, 2007.
10.18637/jss.v021.i12.

[7] Hadley Wickham. Tidy Data. Journal of Statistical Software,
59(10):1-23, 2014. 10.18637/jss.v059.i10.

[8] Jeremy Tandy, Ivan Herman, I, and Gregg Kellogg: Generat-
ing RDF from Tabular Data on the Web, W3C Recommenda-
tion 17 December 2015. https://www.w3.org/TR/csv2rdf/.

[9] Bill Roberts and Rick Moynihan. Documented methodology
and guidelines. DaPaaS Deliverable D4.1, October 2014.
Available via http://bit.ly/1NMU8lJ (Last accessed December
2015).

[10] Bill Roberts. Software tools integrated into platform. DaPaaS
Deliverable D4.2, April 2015. Available via
http://bit.ly/1PcM8v7 (Last accessed December 2015).

[11] Dina Sukhobok, Nikolay Nikolov, Antoine Pultier, Xianglin
Ye, Arne J. Berre, Rick Moynihan, Bill Roberts, Brian
Elvesæter, Mahasivam Nivethika, and Dumitru Roman. Tabu-
lar Data Cleaning and Linked Data Generation with Grafteriz-
er. In Harald Sack, Giuseppe Rizzo, Nadine Steinmetz, Dunja
Mladenic, Sören Auer, and Christoph Lange, editors, The Se-
mantic Web - ESWC 2016 Satellite Events, Heraklion, Crete,
Greece, May 29 - June 2, 2016, Revised Selected Papers, vol-

ume 9989 of Lecture Notes in Computer Science, pages 134-
139, Springer, 2016. 10.1007/978-3-319-47602-5_27.

[12] Alex Simov, Marin Dimitrov, Nikolay Nikolov, Antoine
Pultier, Dina Suhobok, Xianglin Ye, and Dumitru Roman.
Open Data PaaS prototype, v.2. DaPaaS Deliverable D2.3, Ju-
ly 2015. Available via http://bit.ly/1Jj86s4 (Last accessed De-
cember 2015).

[13] Marin Dimitrov, Alex Simov, Nikolay Nikolov, and Dumitru
Roman. Open DaaS prototype, v.2. DaPaaS Deliverable D1.3,
July 2015. Available via http://bit.ly/1PgdhPU (Last accessed
December 2015).

[14] Momchill Zarev. Cross platform data delivery framework.
DaPaaS Deliverable D3.2, July 2014. Available via
http://bit.ly/1OeSNIk (Last accessed December 2015).

[15] Ivan Berlocher, Seonho Kim, and Tony Lee. Use case imple-
mentation, v1. DaPaaS Deliverable D5.2, October 2014.
Available via http://bit.ly/1Ib5uzJ (Last accessed December
2015).

[16] Seonho Kim, Ivan Berlocher, and Tony Lee. Use case final
implementation and validation. DaPaaS Deliverable D5.3. Oc-
tober 2015. Available via http://bit.ly/1Nv3y5O (Last accessed
December 2015).

[17] Sören Auer, Lorenz Bühmann, Christian Dirschl, Orri Erling ,
Michael Hausenblas, Robert Isele, Jens Lehmann, Michael
Martin, Pablo N. Mendes, Bert Van Nuffelen, Claus Stadler,
Sebastian Tramp, and Hugh Williams. Managing the Life-
Cycle of Linked Data with the LOD2 Stack. In Philippe
Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache,
Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira,
Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva
Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th In-
ternational Semantic Web Conference, Boston, MA, USA, No-
vember 11-15, 2012, Proceedings, Part II, volume 7650 of
Lecture Notes in Computer Science, pages 1-16, Springer,
2012. 10.1007/978-3-642-35173-0_1.

[18] Panagiotis Hasapis, Eleni Fotopoulou, Anastasios Zafeiropou-
los, Spiros Mouzakitis, Sotiris Koussouris, Michael Petychakis,
Barbara Kapourani, Norma Zanetti, Francesco Molinari, Sal-
vatore Virtuoso, and Cinzia Rubattino. Business value creation
from Linked Data analytics: The LinDA approach. In eChal-
ienges e-2014 Conference, 29-30 October 2014, Belfast, Ire-
land, IEEE, 2014. http://ieeexplore.ieee.org/abstract/
document/7058193/.

[19] Peter Hanečák, Svetozár Krchnavý, and Ivan Hanzlík. COM-
SODE publication platform – Open Data Node – final. COM-
SODE Deliverable 4.3, July 2015. Available via
http://bit.ly/1PcCGYS (Last accessed Dec 2015).

[20] Fadi Maali. Getting to the Five-Star: From Raw Data to
Linked Government Data. Master's thesis, National University
of Ireland, Galway, Ireland (2011). Available via
http://bit.ly/1TVLnaW (Last accessed Dec 2015).

[21] François Scharffe, Ghislain Atemezing, Raphaël Troncy,
Fabien Gandon, Serena Villata, Bénédicte Bucher, Fayçal
Hamdi, Laurent Bihanic, Gabriel Képéklian, Franck Cotton,
Jérôme Euzenat, Zhengjie Fan, Pierre-Yves Vandenbussche,
and Bernard Vatant. Enabling Linked-Data Publication with
the Datalift Platform. In Biplav Srivastava, editor, Proceed-
ings of Semantic Cities Workshop at the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, Ontario, Can-
ada, July 22, 2012 – July 23, 2012, pages 25-30, AAAI, 2012.
http://www.aaai.org/ocs/index.php/WS/AAAIW12/paper/view
File/5349/5678/.

[22] Andreas Schultz, Andrea Matteini, Robert Isele, Christian
Bizer, and Christian Becker. LDIF - Linked Data Integration
Framework. In Olaf Hartig, Andreas Harth, and Juan Sequeda,
editors, Proceedings of the Second International Conference

on Consuming Linked Data (COLD 2011), Bonn, Germany,
October 23, 2011, volume 782 of CEUR Workshop Proceed-
ings, pages 125-130, CEUR-WS.org, 2011. http://ceur-
ws.org/Vol-782/SchultzEtAl_COLD2011.pdf.

[23] Jan Wielemaker, Wouter Beek, Michiel Hildebrand, and Jacco
van Ossenbruggen. ClioPatria: A SWI-Prolog Infrastructure
for the Semantic Web. Semantic Web, 7(5):1-13, 2016.
10.3233/SW-150191.

[24] Dumitru Roman, Claudia Daniela Pop, Roxana I. Roman,
Bjørn Magnus Mathisen, Leendert Wienhofen, Brian
Elvesæter, and Arne J. Berre. The Linked Data AppStore. In
Rajendra Prasath, Philip O’Reilly, and T. Kathirvalavakumar,
editors, Mining Intelligence and Knowledge Exploration, Se-
cond International Conference, MIKE 2014, Cork, Ireland,
December 10-12, 2014. Proceedings, volume 8891 of Lecture
Notes in Computer Science, pages 382-396, Springer, 2014.
10.1007/978-3-319-13817-6_37.

[25] Dumitru Roman, Marin Dimitrov, Nikolay Nikolov, Antoine
Putlier, Dina Sukhobok, Brian Elvesæter, Arne J. Berre, Xian-
glin Ye, Alex Simov, and Yavor Petkov. DataGraft: Simplify-
ing Open Data Publishing. In Harald Sack, Giuseppe Rizzo,
Nadine Steinmetz, Dunja Mladenic, Sören Auer, and Chris-
toph Lange, editors, The Semantic Web - ESWC 2016 Satellite
Events, Heraklion, Crete, Greece, May 29 - June 2, 2016, Re-
vised Selected Papers, volume 9989 of Lecture Notes in Com-
puter Science, pages 101-106, Springer, 2016. 10.1007/978-3-
319-47602-5_21.

[26] Dumitru Roman and Stefano Gatti. Towards a Reference
Architecture for Trusted Data Marketplaces: Credit Scoring
Perspective. In Irfan Awan and Muhammad Younas, editors,
2nd International Conference on Open and Big Data, OBD
2016, Vienna, Austria, August 22-24, 2016, pages 95-101,
IEEE Computer Society, 2016. 10.1109/OBD.2016.21.

