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Abstract. This paper describes our tools and method for an evaluation of the practical and logical implications of combining 
common linked data vocabularies into a single local logical model for the purpose of reasoning or performing quality evalua-
tions. These vocabularies need to be unified to form a combined model because they reference or reuse terms from other 
linked data vocabularies and thus the definitions of those terms must be imported. We found that strong interdependencies 
between vocabularies are common and that a significant number of logical and practical problems make this model unification 
inconsistent. In addition to identifying problems, this paper suggests a set of recommendations for linked data ontology design 
best practice. Finally we make some suggestions for improving OWL’s support for distributed authoring and ontology reuse. 
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1. Introduction 

One of the central tenets of the linked data move-
ment is the reuse of terms from existing well-known 
vocabularies [1] when developing new schemata or 
datasets. The Semantic Web infrastructure and the 
RDF, RDFS and OWL languages support this with 
their inherently distributed and modular nature. 
Linked data schemata which reuse vocabularies con-
stitute a knowledge model based on multiple, inde-
pendently devised ontologies that often exhibit vary-
ing definitional semantics [2]. In order to reason 
about linked data datasets – for example to validate 
that a dataset correctly uses a term from another vo-
cabulary, a basic requirement is the ability to create a 
unified knowledge model which combines the refer-
enced ontologies and vocabularies. For example, the 
Asset Description Metadata Schema (adms) ontology 
contains the triple: 

	adms:Asset			rdfs:subClassOf		dcat:Dataset	

In order to validate any dataset which uses the 
adms:Asset term we must combine the adms ontolo-
gy and the dcat ontology in order to ensure that 
dcat:Dataset is a valid class.  

There are, however, significant theoretical and 
practical problems in creating a sound and consistent 
logical model from the vocabularies typically used in 
linked data. For example, linked data often freely 
mixes references to ontologies defined in OWL and 
vocabularies defined in RDFS. As OWL is a syntac-
tic but not semantic extension of RDF, there are well-
known problems in creating any unification between 
RDF models and OWL models [3]. Beyond the theo-
retical problems, there are significant practical prob-
lems in any system where components are developed 
independently from one another and later combined 
[4]. For example the well-known ontology hijacking 
problem (defined by Hogan et al as the redefinition 
of external classes/properties in a local ontology) is 
often caused by misuse of OWL’s equivalence state-
ments [5].  



 

 

Although such problems are well known in theory, 
there has been little work in systematically assessing 
their practical manifestations in published linked data. 
This is largely a consequence of the lack of tools 
which can help to identify the problems, especially 
given the permissiveness of the OWL open world 
semantics applied in standard reasoners.  

In this paper we investigate the following research 
questions: (1) to what extent can current heterogene-
ous linked data vocabularies be unified into con-
sistent logical models that can detect logical or syn-
tactic errors in the resultant schemata? (2) What is 
the distribution of logical or syntactical schemata 
errors present in the current Web of Data?  

To address such questions we have constructed a 
reasoner as part of the Dacura Quality Service1,  
which is designed to consume OWL and RDF linked 
data schemata and identify potential problems in their 
specifications. This reasoner uses a much less per-
missive interpretation than that of standard OWL to 
find issues which are likely to stem from specifica-
tion errors, even in cases where they produce valid 
OWL models. This tool is integrated into a general 
purpose ontology analysis framework in the Dacura 
platform [6] which identifies structural dependencies 
between ontologies and highlights instances of ontol-
ogy hijacking.  

The contribution of this paper is an identification 
of the challenges present when combining the models 
of linked data schemata observed in the current Web 
of Data for validation, a description of the Dacura 
Quality Service approach to model combination, an 
extensive quality evaluation of linked data vocabular-
ies in use for logical and syntactical errors and finally 
a set of recommendations on best practice for con-
structing linked data vocabularies that will produce 
unified logical models without errors in the distribut-
ed authoring environment of the web. 

The structure of the rest of this paper is as follows: 
in Section 2 we discuss the challenges for linked data 
schema validation, in Section 3 we discuss related 
work, in Section 4 there is a description of the ap-
proach and validation capabilities of the Dacura 
Quality Service, Section 5 describes the methodology 
used for a wide-scale validation of linked data vo-
cabularies conducted with the Dacura Quality Ser-
vice, then the results of this evaluation are presented 
in Section 6. In Section 7 we present a set of recom-
mendations for best practice in linked data vocabu-

                                                             
1	Source	code	available	at	
https://github.com/GavinMendelGleason/dacura	
2	Stardog,	http://stardog.com/	

lary design and specification, and finally Section 8 
describes our conclusions and discusses future work. 

2. Challenges for Linked Data Schemata 
Validation 

We define a linked data schema as the formal de-
scription of the structure of a linked data dataset, 
expressed in RDF, RDFS and/or OWL vocabularies 
or ontologies, which is sufficiently complete that all 
individuals in the dataset are described in terms of a 
consistent logical model of their classes, properties or 
datatypes. Thus, there are no unspecified terms used 
in the schema and it is possible to combine all the 
definitions into a single logical model that respects 
the specification semantics of the component vocabu-
laries without resorting to an empty schema as a valid 
model. The schema must be coherent (i.e., have no 
necessarily unsatisfiable classes), consistent when 
combined with the data at hand, and mention each of 
the classes, properties and datatypes present in the 
data.  

According to ISO 9001, validation is the confirma-
tion, through objective evidence, that requirements 
for a specific intended use or application have been 
fulfilled [7]. This highlights the central role of evi-
dence, assessment and intended use. The Dictionary 
of Computing [8] defines data validation as “the pro-
cess of checking that data conforms to specification”. 
A linked data schema thus enables validation: all 
terms used must be defined, the definitions must not 
lead to inconsistency and for some use cases the def-
initions form the basis for integrity constraints on 
data described by the schema.  In the Dacura ap-
proach, validation is the act of rejecting schemata 
that have no possible models along with the provi-
sion of evidence in the form of witness statements 
that identify the terms that prevent model formation 
(see Section 4 for details). The purpose of validation 
is to identify syntactic or logical errors that are often 
unintended consequences of the ontology engineering 
process. 

2.1. Challenge 1: Heterogeneous Use of RDF, RDFS, 
OWL and others 

OWL DL ontologies describe a formal domain 
model based on description logic. It is a difficult task 
to produce a logical model which accurately and cor-
rectly encapsulates any non-trivial domain [9]. This 
has probably influenced the relative popularity of 



 

 

RDFS terms in linked data [10]. In the wild, RDF 
and OWL are mixed very freely [2], [10]. Polleres et 
al. phrase this as their challenge 2 for reasoning over 
linked data i.e. linked data is not pure “OWL”. In fact 
some common linked data vocabularies make refer-
ence to other ontologies which are not compatible 
with OWL at all, but specified in raw RDF collection 
types, or worse DAML or even other esoteric lan-
guages (see Section 6 for the evidence we have col-
lected). Since these ontologies reference each other’s 
terms, full validation cannot proceed without deter-
mining whether the referenced ontologies are them-
selves consistent and complete.  

If linked data was limited to the use of RDFS or 
OWL DL, or perhaps even some extension of OWL 
DL which could encompass elements of OWL Full 
(such as predication over classes and properties) then 
consistent model checking would be possible.  How-
ever the problematic historical unification of RDF 
and OWL as OWL Full has led to an interpretative 
fissure between it and OWL DL [3]. OWL DL pro-
vides a clear model theoretic semantics which allows 
one to decidably determine whether a given OWL 
ontology, potentially coupled with instance data, is 
consistent. By contrast, OWL Full attempts to mix in 
the very loose syntactic rules of RDF to arrive at a 
compromise between OWL and RDF and is not de-
cidable due to mixing logical and metalogical sym-
bols. In fact the full unification of RDF and OWL 
was dropped as a requirement for OWL Full in 
OWL2 [11].  

Two very problematic deficiencies that are en-
countered when interpreting RDF/RDFS ontologies 
as OWL for the purpose of model unification are the 
use of primitive RDF collection types and predication. 
The primitive RDF properties rdf:first, and rdf:next 
are seen in the wild but these are used as internal 
syntactic symbols of OWL. This means that they 
cannot be used by properties and classes without 
leading to inconsistency.  

The second problem which arises in the wild is the 
question of predication. In OWL DL, one may not 
refer to classes of classes, or properties whose do-
mains are themselves classes or properties. This was 
done in order both to ensure decidability and to avoid 
well known “Russell-type” paradoxes such as this 
one derived from [12]. 

ex:noResources	a	owl:Restriction	.	
ex:noResources	owl:onProperty	rdf:type	;	
ex:noResources	owl:onClass		
					ex:hasAResource	;	
					ex:noResources		
										owl:maxQualifiedCardinality	

												"0"^^xsd:nonNegativeInteger	;	
ex:hasAResource	owl:oneOf		
					(	ex:noResources	)	.	

This particular OWL description is satisfied only 
when it is not, and vice versa. The difficulty arises 
from the ability to quantify naively over the rdf:type 
property itself. This is very similar to Russell's use of 
the set of all sets. There are methods, well known to 
logicians [13], of allowing predication over classes 
and predicates by introducing some sort of stratifica-
tion to the quantification, but no syntax to do so is 
present in OWL. 

In summary the heterogeneity of linked data 
schemata means that OWL Full is insufficient for 
validation and the incompatibilities between RDF 
and OWL DL mean that even if a single model could 
be constructed, OWL Full would be undecidable 
and/or incomplete. 

2.2. Challenge 2: Linked Data Import and 
Referencing Semantics 

In linked data schemata there are two ways that 
other ontologies/vocabularies are referenced, either 
by explicitly including them using owl:imports, or 
implicitly by making reference to URIs of properties 
and classes in an external namespace. The meaning 
of the first is given a precise semantics under OWL 
DL (which is not unproblematic in its own right as 
we will see later) and the entire imported ontology is 
unioned with the current one during reasoning. The 
second is a widely used convention that URIs are 
referred to without importation, for example see [14]. 
This leads to the question of how to validate over 
such opaque references. This is a serious problem as 
one could potentially be referring to an instance as a 
class, or a class as an instance, one could have refer-
ences to a class which refers to a third ontology 
which is shared and does not allow sound subsump-
tion, or any number of other such problematic mixing 
of meanings without any way of checking for cor-
rectness.  

2.3. Challenge 3: The Impact of Distributed 
Authoring and Publication 

Developing ontologies that can be easily reused in 
contexts that were not anticipated by the ontology 
developer is analogous to the software engineering 
challenge of developing libraries for reuse in situa-
tions where they must coexist with a wide variety of 
other libraries – many of the same principles apply.  



 

 

For example, a basic principle of software engineer-
ing is that libraries which use other libraries should 
not change their behavior for other libraries.  Similar-
ly, ontologies which alter other ontologies are dan-
gerous. Gruber expressed one aspect of this as being 
“able to define new terms for special uses based on 
the existing vocabulary, in a way that does not re-
quire the revision of the existing definitions” [15]. 
This sensitivity to ontological hijacking is particular-
ly relevant as OWL’s support for modularity is ex-
tremely primitive – the import statement unifies 
models into a common model that has a global scope.  

To understand why ontology hijacking is a prob-
lem, consider the following example. Vocabulary A 
imports vocabulary B and changes the definition of 
class X within it with the owl:equivalentClass predi-
cate. Vocabulary C also imports ontology B and uses 
class X, then imports vocabulary A to use an unrelat-
ed term within it. Unless the author of C carefully 
checks the definition of A, they will find themselves 
unknowingly using a modified version of class X 
which may render vocabulary C as invalid. This is 
closely analogous to the situation where a software 
library modifies the behavior of other libraries – a 
situation which has been widely recognized as break-
ing good software engineering practices since the 
1970s: software libraries should not have external 
side effects.  

 Of course if A, B and C are subsequently unified 
into a single model, then logical inconsistencies can 
become apparent. Due to the complexity of OWL, 
these inconsistencies may only be detectable by rea-
soner and despite the prevalence of OWL terms in 
linked data vocabularies it is evident from our find-
ings that many creators of these vocabularies do not 
perform reasoner-based checks.    

Linked data’s focus on the reuse of independently 
developed and maintained ontologies introduces oth-
er significant practical problems. Ontologies that 
reuse other ontologies are vulnerable to these refer-
enced ontologies becoming unavailable over time, or 
changing in ways that render them incompatible [10]. 
This highlights the weaknesses in OWL and especial-
ly RDFS’s ontology or vocabulary lifecycle support 
and the variety of practices observed makes automat-
ed approaches untenable for the open Web of Data 
where many core vocabularies predate even OWL2’s 
limited versioning metadata. Given the wide diversity 
of contexts in which they have been developed – and 
the cost and difficulty in maintaining them – there is 
a significant risk of ontologies degenerating over 
time due to changes in the availability or structure of 
their dependent ontologies.  

The OWL API [16] is one approach to addressing 
this problem – it supports locality of information al-
lowing one to only treat assertions made in a speci-
fied or local context. However, this depends upon all 
concerned ontologies using this mechanism correctly 
and ontologies being well structured.  

2.4. Challenge 4: Permissivity of OWL and RDFS 

OWL and RDFS are an extremely permissive lan-
guages –  reasoners will create a valid model wher-
ever possible, inferring many elements automatically 
[17]. Thus a number of OWL and RDFS descriptions 
which are formally correct contain human errors not 
intended by the ontology designer, and yet will pro-
duce valid models. For example, the following asser-
tions:  

ex:name	rdfs:domain	ex:Bear,	ex:Pig;	
ex:peter	a	ex:Man;		
ex:peter	ex:name	“Peter”.		

These will create Peter as an instance of a “Man-
BearPig” due to OWL and RDFS allowing inference 
of class axioms that would produce a valid model. 
This is counter-intuitive to software engineers who 
assume a class structure that must be declared in ad-
vance. Thus, such specification errors are common in 
practice yet they are not detected by standard reason-
ers. 

3. Related work and how it differs from our work 

There is a wide variety of existing research that is 
relevant to our work but we categorize it here under 
three main headings: (1) frameworks and approaches 
for assessing linked data quality, (2) theoretical stud-
ies on the unification of RDF and OWL and (3) rea-
soning and consuming linked data. Each of these is 
discussed in turn in the subsections below. 

3.1. Frameworks and approaches for assessing 
linked data quality 

The underlying framework for current linked data 
quality assessment has been defined by Zalveri et al. 
[22]. In terms of their quality framework our current 
work addresses mainly intrinsic dimensions of the 
schema – syntactic validity, semantic accuracy (in 
terms of misuse of properties) and consistency. How-
ever we also address the contextual dimension of 



 

 

understandability by checking for human-readable 
labelling of properties and classes. 

Our current work builds upon the previous version 
of our Dacura data curation platform [6] by extend-
ing the simple rule-based data validation implement-
ed in Apache Jena/Java described in our Workshop 
on Linked Data Quality 2014 publication [18] with a 
custom reasoner and ACID (Atomic, Consistent, Iso-
lated, Durable) triple-store for validation and data 
integrity enforcement. This new component, the 
Dacura Quality Service, is built in SWI-Prolog on 
ClioPatria [19] and is described in the next section. 
An earlier version of the Dacura Quality Service 
which covered a much smaller set of OWL features 
was described in a paper at the 2nd Workshop on 
Linked Data Quality [18]. That paper has been ex-
tended here to also include a discussion of the new 
Dacura Schema Management service, our experi-
mental validation of linked data schemata in the wild 
and new recommendations for best practice when 
constructing new linked data vocabularies. 

The RDFUnit methodology for test-driven quality 
assessment by Kontokostas et al. [20] is a SPARQL-
based approach to validating linked data schemata 
and datasets. RDFUnit is very close to being a union 
of SPIN and the Stardog2 ICV approach to validation, 
which is itself the successor to Pellet ICV [21]. 
RDFUnit is described by Zaveri et al. [22] as being 
able to detect intrinsic data quality dimensions for 
syntactic and semantic accuracy but in common with 
all SPARQL-based approaches the lack of reasoning 
ability means that it is difficult to detect consistency 
problems that may be present. For a specific dataset 
it is possible to manually generate specific SPARQL-
based tests that could detect these errors but the effort 
required is probably prohibitive and is brittle in the 
presence of schemata change over time. Similar ap-
proaches have been taken with SPARQL and SPIN 
(SPARQL Inferencing Notation) [23] and the Pellet 
Integrity Constraint Validator (ICV) [21]. 

Since 2014, the W3C’s Data Shapes Working 
Group has been working on SHACL (Shapes Con-
straint Language) to describe structural constraints 
and validate RDF instance data against those. In-
stance data validation, (except where the data is part 
of the schema for example when using owl:oneOf to 
define a class), is outside the scope of this paper. 
However it is possible that suitable SHACL con-
straints could be used to validate RDF graphs de-
scribing schemata. As with the basic SHACL-based 
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approach to data validation it is unclear why re-
stating a specification in another formalism 
(SHACL) is a good approach to validation – see also 
[24] for further remarks on the applicability of de-
scription logics to constraints. 

Luzzu [25] is a stream-oriented linked data quality 
assessment framework that focuses on data instance 
centric measurement of user-defined baskets of quali-
ty metrics. Although the metrics are expressed in a 
domain specific language that is described as exten-
sible it would be necessary for the user to write java 
code to implement the necessary checks. This is not 
feasible for most users, even knowledge engineers:  
the user would have to write an OWL reasoner to 
detect the logical errors in the unified dependency 
tree of a linked data schema which Dacura identifies. 
The framework is potentially of great practical use to 
users of linked data datasets that wish to assess their 
quality based on a custom basket of measures, but 
provides very little assistance when assessing the 
logical soundness of the schema. One innovation of 
Luzzu is the specification of a Quality Report Ontol-
ogy to provide machine-readable quality assessment 
results. Dacura has a similar ontology defined for 
reporting reasoning errors, the Reasoning Violations 
Ontology3. 

Much closer to our Dacura schema validation ser-
vice is Suárez-Figueroa et al.’s OntOlogy Pitfall 
Scanner, OOPS! [26]. This is a web-based tool for 
ontology evaluation. It is aimed at detecting ontology 
anomalies or “worst practices” as a form of automat-
ed ontology evaluation.  It is based on evaluation of 
an input ontology against a catalogue of common 
errors or pitfalls seen in ontologies. There is very 
little overlap between the 41 pitfalls currently detect-
ed by OOPS! and the set of errors detected by Dacura 
due to the lack of OWL reasoning or model combina-
tion in OOPS. There are some easy to detect “best 
practice” pitfalls such as “P08 Missing annotations” 
which Dacura does not currently detect but which are 
simple extensions of our current best practice rules 
and will be added in future work. It is interesting to 
note that in their extensive analysis of current ontol-
ogies and the ontology engineering community, 
OOPS decided, like us, to define class cycles as a 
potential source of errors in linked data schemata, 
despite being legal in many cases in OWL 2. The 
implementation of OOPS! as a restful web service is 
very attractive and useful for integration into both a 

                                                             
3	http://www.essepuntato.it/lode/owlapi/https://w3id.org/rvo	



 

 

basic public webpage for checking and as a service 
called by other ontology engineering tools. 

3.2. Theoretical studies on the unification of RDF 
and OWL 

The challenges for reasoning caused by the unifi-
cation of RDF and OWL has been extensively dis-
cussed in the literature, for example see Patel-
Schneider and Fensel [12] where, even before OWL 
was standardized, these incompatibilities were sum-
marized as “defining the model theory of OWL as an 
extension of the model theory of RDF and represent-
ing OWL constructs syntactically in RDF leads to 
paradoxical situations, i.e., ill-defined model theories 
for OWL”. The authors’ five approaches to layering 
OWL over RDF, including identifying the presence 
of Russell-type paradox if OWL is directly layered 
over RDFS as a same-syntax solution. Nonetheless 
this was the approach adopted in OWL-Full. The 
ramifications of these decisions live on today in our 
challenge 1 for validating linked data schemata. 

Later, when the OWL standard was agreed, the 
principal authors of the OWL Semantics documented 
the “difficult trade-offs” that they made during the 
design of OWL version 1 [3]. Horrocks et al. identify 
four broad classes of problems: syntactic, semantic, 
expressive power and computational problems. 
While the latter two categories seem less relevant for 
our current work it was in fact the computational 
overheads introduced by allowing the use of classes 
as instances that led to the exclusion of this feature 
from OWL-DL and as will be seen in our experi-
mental work, under the title of impredicativity, this 
causes many observed issues in linked data. In Sec-
tion 6.2 of that paper the solution proposed for deal-
ing with malformed OWL syntax expressed in RDF 
leads to the creation of additional anonymous classes 
despite them being “almost certainly not what was 
intended by the user”. This is an example of our chal-
lenge 4 (permissivity of OWL) that leads to standard 
reasoners being unable to detect these issues in 
linked data schemata without human inspection of 
the resultant reasoned ontology. In contrast our ap-
proach highlights these potential errors and presents 
them to the user or validator for verification. Finally 
in the discussion on future extensions despite the 
admission that the import of ontologies by other is 
likely to be the norm in the Semantic Web (as we 
now see in linked data) the OWL import facility is 
described as “very trivial” and this underpins our 
challenges 2 and 3 for linked data schemata valida-

tion. Both the closed world and unique name assump-
tions are identified as being desirable in some situa-
tions despite being outside the scope of the general 
OWL model. Our approach to schemata validation 
and the experimental evidence we have collected 
demonstrate the practical applicability of these as-
sumptions for validation, even on the open web. 

When the OWL standard was revised as OWL2 in 
2008, the process was again documented by some of 
the principal authors [11]. Grau et al. identified addi-
tional issues with OWL1 ontology specifications, 
including an additional complication in the import 
semantics whereby two (or more) ontologies written 
in the same OWL species can interact in unpredicta-
ble and unintuitive ways when one ontology imports 
the other, leading to a new ontology that is contained 
in a different species. OWL 2 introduces the idea of 
declaration consistency which means all types must 
be declared, although not syntactically necessary, this 
forms the basis for additional validation checks to 
catch mistyping of entity terms. However this ap-
proach is not applicable to linked data that is not 
written in OWL 2. The validation checks performed 
by our approach can detect such trivial typing errors 
in general linked data schemata e.g. misspelt names 
of classes. OWL 2 also improves support for imports 
by tightening the specification of ontology name 
URIs as both name and published location of the on-
tology on the web. However, as our experimental 
results show (section 6) not all commonly imported 
ontologies in the current Web of Data are at their 
stated locations. Ontology versioning management 
support is also added, but this is still primitive and 
the species or profile impacts of imports is still unin-
tuitive and unpredictable (challenge 2). 

Most recently, as the success of the open linked 
data movement has become apparent, with billions of 
triples published, the question of data quality and 
hence validation has come to the fore [27], [28]. Pa-
tel-Schneider [24] discusses the issues and approach-
es to applying description logic to validation, attack-
ing the claim that closed world or unique name inter-
pretations have no place in the description logic 
world (and hence within OWL/RDFS) and can be 
applied to linked data for validation. Although Patel-
Schneider focuses on RDFS and a SPARQL-based 
approach to validation of linked data, our approach 
adopts some of the same assumptions about closed 
worlds and unique names in our custom reasoner. 



 

 

3.3. Reasoning and consuming linked data  

The original Semantic Web vision included the 
goal of applying reasoning at a web scale [29]. 
Linked data provides the basis of the current Web of 
Data and so reasoning over it has naturally been tack-
led by several researchers, see for example [30], [31] 
and [10]. Given the divergence of linked data from 
the Semantic Web ideal, a wide variety of non-
standard reasoning approaches have been applied 
from probabilistic techniques [31] to rule-based ap-
proaches [30]. Given our interest in RDFS and OWL-
based schemata validation we focus here on ap-
proaches that support the RDFS and OWL standards. 
The challenges for applying reasoning to linked data 
as laid out by Polleres et al. may be summarized as 
data scale, data heterogeneity (mixing of OWL DL, 
OWL Full and RDFS), data inconsistency, data dy-
namics and extending inference beyond RDFS and 
OWL. Data scale is less of an issue for our work 
since we focus on schemata and thus primarily TBox 
assertions, although some linked data schemata (e.g 
OpenCyc – see section 6) include instance data 
which render them very large. Nonetheless the focus 
of open web reasoning work on operating on billions 
of triples largely addresses challenges which are out 
of scope for our validator. Tackling heterogeneity is 
also a focus of our work (challenge 1) but whereas 
we aim to identify inconsistent or incomplete sche-
mata in order to fix them and improve their quality, 

the approach of the reasoning over linked data com-
munity is to try and do the best possible with the tri-
ples available. While appropriate for their use case, it 
often leads to strategies that weaken consistency or 
soundness constraints to make the problem tractable, 
silently discard problematic triples or conservatively 
reduce the materialisation of inferred triples com-
pared to completely applying the OWL Direct Se-
mantics [10]. Although there are points of similarity, 
in general these approaches would produce weaker 
validation results than our approach since they are 
not sound and less complete. 

4. Linked Data Schemata Validation in the 
Dacura Quality Service 

To meet the challenges of linked data schemata 
validation, we have developed the Dacura Quality 
Service (DQS) and the Dacura Schema Manager. 
Both are integrated into our Dacura platform for data 
curation described elsewhere [6]. The Dacura Sche-
ma Manager (fig. 1) acts as the user interface for 
loading new linked data schemata into the system. It 
recursively loads all the implicitly or explicitly im-
ported vocabularies or ontologies from web, creates 
the master schema based on the union of all refer-
enced terms, gathers statistics and performs some 
basic quality checks. The validation view of the 
Dacura Schema Manager allows a user to select spe-
cific reasoner-based validation checks, call the DQS 

Figure 1: Screenshot of the Dacura Schema Manager 



 

 

through its API to perform the checks and renders the 
results in human-readable form. 

The DQS as an ACID  triplestore for the storage of 
OWL ontologies and instance data. We treat con-
sistency as internal consistency of the OWL ontology 
as well as consistency of instance data with respect to 
this ontology. In this way we have produced a triple-
store in which stored information always respects the 
ontology as it is impossible to perform updates which 
are not consistent. If the schema changes, the in-
stance data must also change in a fashion conformant 
to the new schema. The DQS is built in SWI Prolog 
in the ClioPatria Semantic Web infrastructure [19]. 
The source code is available online under a GPL2 
license. 

To do this, we have built a custom reasoner as part 
of the DQS which treats all ontologies which are 
used as a relatively large but custom fragment of 
OWL DL (see table 1 for the OWL 2 features im-
plemented so far) subject to additional constraints 
that increase the ability of the reasoner to deal with 
the unification of OWL and RDF/RDFS in linked 
data schemata (challenge 1, challenge 2), detect like-
ly validation errors (challenge 3, challenge 4) and 
improve efficiency. This fragment of OWL DL has 
also been shaped by the modelling requirements of 
ontology development for the Seshat:Global History 
Databank [32] which is our initial use case, as well as 
the OWL 2 vocabularies we found most often used in 
linked data schemata on the Web of Data. The range 
of support for OWL 2 constructs is substantially in-
creased from our earlier paper [18] which focused on 
RDFS. It is anticipated that we will continue to ex-
tend the support for further OWL 2 features in future 
work. 

The overall strategy of the DQS reasoner is not to 
prove that there is a possible model for any given 
ontology but instead to reject ontologies that cannot 
have a possible model or which are incompletely 
specified without inferring new classes (as these are 
often caused by user errors) under a closed world 
assumption. Due to the ontology import actions of 
the Dacura Schema Manager, the closed world in this 
case corresponds to the whole of the Web of Data, at 
the level of schema specification. We do not claim 
that the reasoner is sound or complete under OWL 
DL, just that it is capable of detecting many errors in 
linked data schemata, including errors undetectable 
by standard reasoning. Our approach is supported by 
building a subsumption prover in SWI Prolog. Due to 
the complexity of performing subsumption computa-
tions with equivalences, we have opted in DQS to 
ignore non definitional equivalence, hence we do 

support owl:equivalentClass in one direction but not 
as a symmetric property. This is because OWL does 
not distinguish between the definitional and judg-
mental use of this assertion. In practice this allows 
users to define a class as a formula of other classes 
but does not allow them to provide an assertion of 
two classes being equivalent. In the wild we see the 
first case used extensively and the second only rarely 
and when it is it is often problematic (see Table 5 
Ontology Hijacking) or recommended to be avoided 
by ontology engineering best practice (this case is 
listed as pitfall number P02 in the OOPs catalogue of 
common pitfalls4). Hence we term this as partial sup-
port by Dacura for owl:equivalentClass in Table 1. 

Dacura does not currently support 
owl:disjointWith assertions but this only limits the 
range of validation errors that can be detected rather 
than introducing false positives so it does not give 
reason to doubt the errors detected. It is also the case 
that these assertions are much more important when 
validating instance data than when validating sche-
mata. Typically we wish to ensure that instance data 
respects disjointness, not schemata – which is the 
focus of the work presented here.  

It should be noted, however, that in both cases, our 
dependency analysis tool does correctly recognize 
that both predicates introduce dependencies between 
ontologies – however the analysis of the validity of 
the specified relationships is limited to one-
directional equivalence.  

We also require that there are no cycles in the de-
clared subsumption of classes or predicates. This 
again does not give us the full power of OWL DL, 
however it was very rare that we found any actual 
intended use of cycles in practice.  

DQS provides an interface to a triple store via 
HTTP using a simple JSON format for updates (both 
inserts and deletes) of triples, and of both instance 
and ontology data. The service responds to updates 
either with a success message stating that the inser-
tion is consistent, or a message describing the precise 
reason for failure of consistency according to the 
reasoner. The reasoner ensures that it builds up a 
witness of failure which demonstrates the counter-
example to consistency satisfaction which can then 
be used by the client to come up with a suitable strat-
egy for dealing with the failure. The results of our 
evaluation of linked data schemata (see Sections 5 
and 6) were compiled by loading ontologies in the 
Dacura Schema Manager, and then testing them 

                                                             
4	http://oops.linkeddata.es/catalogue.jsp	



 

 

against the Dacura Quality Service, and then looking 
at the error reports provided. Next we examine the 
specific solutions implemented in the Dacura Schema 
Manager and Dacura Quality Service to address the 
challenges of linked data schemata validation. 

4.1. Overcoming Challenge 1 (Heterogeneity) 

As discussed in the background section, the free 
mixing of RDF, RDFS and OWL triples gives rise to 
different interpretations. Our approach is to deliber-
ately misinterpret as OWL the RDF/RDFS classes 
and properties that are normally outside the scope of 
OWL-DL when there is no immediate conflict in 
doing so, e.g. a rdfs:class is treated as equivalent to 
an owl:class. This doesn't present an insurmountable 
difficulty for reasoning. Similarly rdf:Property is 
treated at an equivalent level to 
owl:DatatypeProperty and owl:ObjectProperty and 

no overlap is allowed between them. All domains and 
ranges that are asserted are checked to ensure they 
support subsumption. Misuse of language features 
and low level RDF syntax with reserved meaning in 
OWL such as rdf:List is detected as an error. 

This approach is applicable in situations where the 
data is going to be published only for the combined 
ontology, or used only internally to a system which 
interprets the instance data as OWL. This is in line 
with common practice for linked data but presents 
potential problems for interoperability of the pro-
duced linked data since OWL reasoners might deem 
it inconsistent due to the fact that we still allow a mix 
RDFS and OWL and hence are not a proper subset of 
OWL DL. However, as our experimental results will 
show, this is necessary for dealing with the common-
ly used vocabularies on the Web of Data today.  

 
Table 1 OWL 2 vocabulary features supported by DQS Reasoner 

 

 
 
 
 
 

 

Language Elements Supported Language Elements (cont.) Supported Axioms and Assertions (cont.) Supported
Classes, Datatype and Restriction owl:hasValue Y Property Expression Axioms 
owl:Class Y owl:SelfRestriction N rdfs:subPropertyOf Y
owl:intersectionOf Y Special classes owl:inverseOf Y
owl:unionOf Y owl:Thing Y owl:equivalentProperty N
owl:complementOf Y owl:Nothing Y owl:property DisjointWith Y
owl:oneOf Y Properties Y rdfs:domain Y
rdfs:Datatype Y owl:DatatypeProperty Y rdfs:range Y
owl:datatypeComplementOf N owl:ObjectProperty Y owl:propertyChain Y
owl:oneOf Y Special properties owl:FunctionalProperty Y
owl:onDatatype Y owl:TopDataProperty Y owl:InverseFunctionalProperty N
owl:withRestrictions Y owl:BottomDataProperty Y owl:ReflexiveProperty P
owl:Restriction Y owl:TopObjectProperty Y owl:IrreflexiveProperty N
owl:onProperty Y owl:BottomObjectProperty Y owl:SymmetricProperty P
owl:onClass Y Individuals owl:AsymmetricProperty P
owl:onDataRange Y owl:NamedIndividual N owl:TransitiveProperty Y
owl:onProperties Y Axioms and Assertions owl:hasKey Y
owl:cardinality Y Class Expression Axioms Assertions 
owl:maxCardinality Y rdfs:subClassOf Y owl:NegativePropertyAssertion N
owl:minCardinality Y owl:equivalentClass P owl:sourceIndividual N
owl:minQualifiedCardinality Y owl:disjointWith N owl:assertionProperty N
owl:minQualifiedCardinality Y owl:disjointUnionOf Y owl:targetValue N
owl:qualifiedCardinality Y Individual Axioms owl:targetIndividual N
owl:allValuesFrom Y owl:differentFrom N owl:AllDifferent N
owl:someValuesFrom Y owl:sameAs N owl:AllDisjointClasses N

owl:AllDisjointProperties N
Y= Yes, P = Partial, N = No owl:members N



 

 

Table 2 – OWL/RDF/RDFS terms that create structural dependencies between ontologies 

 

4.2. Overcoming Challenge 2 (Imports) 

Since there are a range of ways that linked data 
schemata reference or import each other, it was nec-
essary to define a mechanism to construct the com-
posite ontology defined by a linked data schemata to 
enable validation under a closed world assumption. 
For this reason, we have treated all dependencies to 
external namespaces as implicit owl:imports. 

Dependencies between ontologies were defined as 
either property dependence or structural dependence:  

Property dependence: if an ontology A uses a 
property from another ontology B, then A is consid-
ered to have a dependence on B.  

Structural dependence: if an ontology A contains a 
statement which defines its classes or properties in 
terms of entities in ontology B, then A is considered 
to have a structural dependence on B.  Table 2 shows 
the specific OWL terms which we consider create 
structural links between ontologies.  

Other references to external URIs in a schema 
were ignored. 

Having defined what we considered to amount to 
the class of dependencies between ontologies, the 
Dacura Schema Manager tool implements these rules 
to analyse any given ontology and recursively create 
its dependency tree, fetch the constituent ontologies 
or vocabularies and create a union between them for 
checking by the DQS.   

4.3. Overcoming Challenge 3 (Distributed 
Authoring) 

The Dacura Schema Manager detects all depend-
encies between ontologies as described in the last 
section. This forms the basis for detecting references 
to missing or unavailable ontologies. Similarly it can 
detect namespace violations such as ontology hijack-
ing when they occur in input ontologies. The logical 
consequences of building unified models from many 

ontologies are detected by the DQS, especially when 
local work-arounds have been made that render the 
unified model inconsistent. 

4.4. Overcoming Challenge 4 (OWL Permissivity) 

By applying the closed world assumption to the 
full graph imported from the Web of Data that speci-
fies a linked data schema it is possible to detect or-
phan classes. These are rejected as incompletely 
specified (similar to the use of declarations in OWL 2 
but without the need to augment existing ontologies 
with these new declarations). In addition, the detec-
tion of subsumption failures and cycles in class or 
property declarations allows us to detect potential 
misuse of OWL features. 

5. Evaluation Methodology 

In order to evaluate the interoperability of the var-
ious ontologies and vocabularies which are common-
ly used by linked data documents, it is first necessary 
to establish which ontologies or vocabularies are the 
most common, and by what measure(s) in the Web of 
Data today. In order to do this we rely on the exten-
sive literature that catalogs the development and 
makeup of the Web of Data and the live reports from 
the Linked Open Vocabularies (LOV) site5 [33]. At 
the time of writing LOV reported hosting 542 vocab-
ularies. 

Despite the undoubted utility of LOV it is clear 
that it services a specific community of users and so 
we looked for a wider base of evidence. The ranking 
in terms of vocabulary reuse is also arguable, com-
pared to the proliferation of a vocabulary’s terms in 
data. 

Schmachtenberg et al. in 2014 [34] provided a 
survey of the results of an extensive crawl of the 
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Namespace Term 
rdf type 
rdfs range, domain, subPropertyOf, subClassOf, member 
owl inverseOf, unionOf, complementOf, datatypeComplementOf, intersectionOf, oneOf, data-

Range, disjointWith, imports, allValuesFrom, someValuesFrom, equivalentClass, equiva-
lentProperty, disjointUnionOf, propertyDisjointWith, members, disjointWith, propertyDis-
jointWith, onProperty, onClass, propertyChainAxiom 



 

 

Web of Data (over 8 million resources were visited) 
based on the vocabularies registered with datahub.io. 
This study, as a follow-up to a 2011 baseline, showed 
an increased reliance by linked data publishers on a 
small set of core vocabularies compared to 2011. In 
table 5 of that paper they provide the list of the most 
often encountered vocabularies in terms of the 18 
vocabularies that are used by more than 5% of all 
datasets. Their list is shown in our Table 4. 

In addition, they report that of the nearly 1000 da-
tasets visited that only 23% used local vocabularies 
that are not used in any other dataset while nearly all 
datasets use vocabularies common to multiple datsets. 
This shows the consolidation of the Web of Data 
towards fewer vocabularies as in 2011 64.11% of 
datasets were found to use local vocabularies not 
used elsewhere. 

Finally in 2011 Hogan et al. surveyed the state of 
the Web of Data with a crawl of approximately 4 
million RDF/XML documents and 1 billion quads [2]. 
Their Table 2, provided here in abbreviated form as 
Table 5, shows the top 25 most popular vocabularies, 
based on the number of instances of each namespace 
within their analysis dataset. 

In summary the most common vocabularies that 
appear in all three surveys are: foaf, dc, sioc and 
skos; in addition dc, bibo, qb, doap, geo, void and gn, 
rdf, rdfs and owl appear twice. Hence we must have 
coverage of all of these core vocabularies to evaluate 
the foundations of linked data. 

From these studies of vocabulary usage, we identi-
fied the top 50 most commonly used vocabularies 
and ontologies in use. However, in order to validate 
these ontologies, we also need to include all of their 
dependencies.  

 
Table 3: Top 20 Vocabulary Popularity as Reported by LOV, 

March 2016 

Vocabulary # Vocabularies  # Datasets 
dc 439 327 
dc11 361 178 
foaf 325 249 
vann 201 19 
skos 200 152 
cc 87 21 
vs 81 11 
schema 48 12 
prov 38 39 
gr 38 20 
geo 37 49 
event 36 9 
time 30 47 

bibo 27 43 
void 25 77 
org 23 7 
adms 23 3 
dctype 22 13 
sioc 21 18 
qb 19 9 
frbr 19 12 
doap 18 23 
voaf 15 2 
gn 15 14 
ssn 14 0 

 

Table 4: Most Popular Vocabularies in Linked Data in April 2014 
(Schmachtenberg et al.) 

Vocabulary % Vocabulary % 
rdf 98.22 void 13.51 
rdfs 72.58 bio 12.32 
foaf 69.13 qb 11.24 
dc 56.01 rss 9.76 
owl 36.49 odc 8.48 
geo 25.05 w3con 7.6 
sioc 17.65 doap 6.41 
admin 15.48 bibo 6.11 
skos 14.11 dcat 5.82 

 
Table 5: Most Frequently Occurring Vocabularies in Linked Data 

2011 (Hogan et al.) 

Vocab Instances Vocab Instances 
foaf 615,110,022 dc11 6,400,202 
rdfs 219,205,911 b2rns 5,839,771 
rdf 213,652,227 sioc 5,411,725 
b2r 43,182,736 vote 4,057,450 
lldpub
med 

27,944,794 gn 3,985,276 

lldegen
e 

22,228,436 skipin-
ions 

3,466,560 

skos 19,870,999 dbo 3,299,442 
fb 17,500,405 uniprot 2,964,084 
owl 13,140,895 eatoc 2,630,198 
opium-
field 

11,594,699 lldlifeski
m 

2,603,123 

mo 11,322,417 ptime 2,519,543 
dc 9,238,140 dbpedia 2,371,396 
estoc 9,175,574   
Note that both entry 25 (dbp) and 20 (dbo) are 
DBpedia vocabularies. 

 



 

 

5.1. Identifying Dependencies 

We applied the Dacura Schema Manager depend-
encies tool to all of the top 50 ontologies identified.  
The output of this tool (fig 1) was used to identify the 
set of ontologies and vocabularies that each ontology 
depends on directly, then we included these ontolo-
gies, identifying the set of ontologies needed by these 
included ontologies, including them and continuing 
until all of the dependencies were included or were 
deemed to be impossible to include. This produced a 
breadth-first dependency tree for each ontology. This 
increased the number of ontologies in our analysis set 
to 91 – shown in Table 6.  We then analyzed all these 
ontologies with the DQS tool to identify to what ex-
tent they exhibited problems in terms of creating a 
unified knowledge model that incorporated them.  It 
should be noted that the ontologies that were includ-
ed through this dependency analysis are almost all 
due to the inclusion of the most two most common 
vocabularies (dc and foaf) and thus most of the de-
pendency tree shown here is common to virtually all 
linked data vocabularies. 

Figure 2 gives an example of the dependency tree 
for one ontology: Open Annotation [35]. This de-
pendency tree covers 22 of the top 25 vocabularies 
rated as most popular by LOV in terms of vocabulary 
reuse (incoming links) as seen in Table 3. This ontol-
ogy was selected as an example for both practical and 
theoretical reasons. Practically, we wished to imple-
ment a system for the Seshat: Global Hostory Data-
bank in which users could annotate content at a varie-
ty of scopes and we wanted to be able to validate 
instance data which was expressed according to the 
ontology. Theoretically, it represented a good exam-
ple of a linked data schema in the wild, as is shown 
by the analysis above, – it has been constructed by a 
W3C community group according to the linked data 
principles, using well known third party vocabularies 
and ontologies and it is in use in practice. It is ranked 
by LOV as the 32rd most popular linked data vocabu-
lary overall (from 542 vocabularies) and its depend-
ency tree, as discovered by Dacura, includes 25 of 
the 31 vocabularies rated as more popular than it by 
LOV. 

Our dependency analysis terminated whenever we 
came to an ontology that we could not retrieve, either 
because we discovered that the ontology no longer 
existed (e.g. WordNet), or because we proved unable 
to locate a machine-readable version of the ontology 
on the internet, after approximately 8 hours of effort 
in searching.  In one case our dependency tree 

brought us to an ontology that was simply too big for 
our tools to handle – OpenCyc (rdf/xml file: 246 
MB) due to insufficient memory on our test computer. 
There was only two structural links to this ontology 
from the rest, so the omission can be considered to be 
relatively minor. In two cases dependent ontologies 
were written in DAML, a predecessor of OWL and 
these ontologies were not automatically analyzed as 
our tools were not capable of interpreting them. 
Manual analysis of both revealed that they had no 
further dependencies.  

 

5.2. Schema Validation 

Once the dependency tree of ontologies for each 
ontology had been established, the composite schema 
so defined (consisting of the union of all of the im-
ported ontologies) was analyzed by the DQS reasoner 
and the OOPS! tool for validation errors for each 
ontology in table 6. See the next section for the re-
sults. 

6. Validation Results 

Our analysis of the 91 ontologies revealed that 30 
ontologies (33%) contained ontology hijacking viola-
tions (making assertions about entities defined in 
other ontologies with global scope). 11 ontologies 
contained dependencies on a total of 14 missing on-
tologies (12%). 3 ontologies contained basic errors 
that were categorized as typos (3.3%). 15 ontologies 
(16.5%) contained statements that are illegal in OWL 
DL due to them being impredicative – predicating 
over classes or properties which is illegal in first or-
der logic entirely - and basic misuses of language 
constructs (e.g subclassing owl:differentFrom and 
expecting its semantics to be retained). One ontology 
(1%) contained both property and class cycles – and 
in both cases manual analysis revealed that they were, 
as anticipated, highly likely to be the result of speci-
fication errors rather than obtuse ways of defining a 
single class or property. The detailed validation re-
sults are presented in the tables below. 



 

 

 
Table 6. Ontologies analyzed as part of this work.  

shorthand URL Description 
adms http://www.w3.org/ns/adms# Asset Description Metadata Schema (ADMS) 
ao http://purl.org/ontology/ao/core# The Association Ontology 
atom http://bblfish.net/work/atom-owl/2006-06-

06/# 
Atom syndication format 

basic http://def.seegrid.csiro.au/isotc211/iso19103/
2005/basic# 

OWL representation of ISO 19103 (Basic types 
package) 

bbc http://www.bbc.co.uk/ontologies/bbc/ BBC Ontology 
bbccor http://www.bbc.co.uk/ontologies/coreconcept

s 
BBC Core Concepts 

bbcpro http://www.bbc.co.uk/ontologies/provenance BBC Provenance Ontology 
bibo http://purl.org/ontology/bibo/ The Bibliographic Ontology 
bio http://purl.org/vocab/bio/0.1/ BIO: A vocabulary for biographical information 
cc http://creativecommons.org/ns# Creative Commons 
cms http://www.bbc.co.uk/ontologies/cms/ CMS Ontology 
contact http://www.w3.org/2000/10/swap/pim/contac

t# 
Contact: Utility concepts for everyday life 

cpa http://www.ontologydesignpatterns.org/sche
mas/cpannotationschema.owl# 

Content Pattern Annotations 

crm http://purl.org/NET/cidoc-crm/core# CIDOC Conceptual Reference Model 
cwork http://www.bbc.co.uk/ontologies/creativewor

k 
Creative Work Ontology 

dbox http://dublincore.org/documents/dcmi-box/ (Empty) DCMI-Box encoding scheme 
dbpedia http://dbpedia.org/ontology/ The DBpedia Ontology 
dc  http://purl.org/dc/terms/ DCMI Metadata Terms – other 
dc11  http://purl.org/dc/elements/1.1/ Dublin Core Metadata Element Set, Version 1.1 
dcam http://purl.org/dc/dcam/ Metadata terms related to the DCMI Abstract Mod-

el 
dcat http://www.w3.org/ns/dcat# The data catalog vocabulary 
dctype http://purl.org/dc/dcmitype/ DCMI Type Vocabulary 
doap http://usefulinc.com/ns/doap# Description of a Project (DOAP) vocabulary 
doc http://www.w3.org/2000/10/swap/pim/doc# Document vocabulary 
dtest http://www.w3.org/2006/03/test-description# Test Description Vocabulary 
dtype http://www.linkedmodel.org/schema/dtype# Specification of simple data types 
dul http://www.loa-cnr.it/ontologies/DUL.owl# DOLCE+DnS Ultralite 
event http://purl.org/NET/c4dm/event.owl# The Event ontology 
foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF) vocabulary 
frbr http://purl.org/vocab/frbr/core# Expression of Core FRBR Concepts in RDF 
geo http://www.w3.org/2003/01/geo/wgs84_pos# WGS84 Geo Positioning 
geometry http://data.ordnancesurvey.co.uk/ontology/ge

ometry/ 
A ontology to describe abstract geometries. 

gn http://www.geonames.org/ontology# The Geonames ontology 
gr http://purl.org/goodrelations/v1 Good Relations Ontology 



 

 

grddl http://www.w3.org/2003/g/data-view# GRDDL Gleaning Resource Descriptions 
gsp http://www.opengis.net/ont/geosparql OGC GeoSPARQL 
hcard http://purl.org/uF/hCard/terms/ HCard Vocabulary 
http http://www.w3.org/2006/http# A namespace for describing HTTP messages 
iana http://www.iana.org/assignments/relation/ Link Relations 
ical http://www.w3.org/2002/12/cal/ical# RDF Calendar 
icalspec http://www.w3.org/2002/12/cal/icalSpec# ICAL specifications 
infreal http://www.ontologydesignpatterns.org/cp/ow

l/informationrealization.owl# 
Information Realization ontology 

irw 
 

http://www.ontologydesignpatterns.org/ont/w
eb/irw.owl# 

The Identity of Resources on the Web ontology 

keys http://purl.org/NET/c4dm/keys.owl# Musical keys 
label http://purl.org/net/vocab/2004/03/label# Term definitions for singular and plural label prop-

erties 
leo http://linkedevents.org/ontology/ Linking Open Descriptions of Events 
log http://www.w3.org/2000/10/swap/log# Logic Ontology 
mo http://purl.org/ontology/mo/ The Music Ontology 
neogeo http://geovocab.org/spatial# A vocabulary for describing topological relations 

between features 
nrl http://www.semanticdesktop.org/ontologies/2

007/08/15/nrl# 
NEPOMUK Representational Language 

oa http://www.w3.org/ns/oa# Open Annotation Data Model 
obo http://purl.obolibrary.org/obo/obi.owl Ontology for Biomedical Investigations 
ont http://www.w3.org/2006/gen/ont# An Ontology for Relating Generic and Specific 

Information Resources 
opmv http://purl.org/net/opmv/ns# The Core OPMV Vocabulary 
org http://www.w3.org/ns/org# Core Organization Ontology 
ov http://open.vocab.org/terms/ Open Vocabulary 
prv http://purl.og/net/provenance/ns# Provenance Vocabulary Core Ontology 
prov http://www.w3.org/ns/prov# W3C PROVenance Interchange Ontology  
qb http://purl.org/linked-data/cube# The data cube vocabulary 
qudt http://qudt.org/schema/qudt Quantities, Units, Dimensions and Types 
rdaa http://rdaregistry.info/Elements/a/ RDA Agent properties 
rdac http://rdaregistry.info/Elements/c/ RDA Classes 
rdae http://rdaregistry.info/Elements/e/ RDA Expression Properties 
rdai http://rdaregistry.info/Elements/i/ RDA Item Properties 
rdam http://rdaregistry.info/Elements/m/ RDA Manifestation Properties 
rdau http://rdaregistry.info/Elements/u/ RDA Unconstrained Properties 
rdaw http://rdaregistry.info/Elements/w/ RDA Work Properties 
rdfa http://www.w3.org/ns/rdfa# RDFA specification 
rdfg http://www.w3.org/2004/03/trix/rdfg-1/ RDF Graph 
rel http://purl.org/vocab/relationship/ A vocabulary for describing relationships between 

people 



 

 

rev http://purl.org/stuff/rev# RDF Review Vocabulary 
schema http://schema.org/ Schema.org (converted to OWL by TopQuadrant) 
scovo http://purl.org/NET/scovo# The Statistical Core Vocabulary (SCOVO) 
sim http://purl.org/ontology/similarity/ The Similarity Ontology 
sioc http://rdfs.org/sioc/ns# Semantically Interlinked Online Communities  
sioctypes http://rdfs.org/sioc/types# SIOC Types Ontology 
skos http://www.w3.org/2004/02/skos/core# SKOS Vocabulary 
ssn http://www.w3.org/2005/Incubator/ssn/ssnx/s

sn 
Semantic Sensor Network Ontology 

time http://www.w3.org/2006/time# An OWL Ontology of Time (OWL-Time) 
timezone http://www.w3.org/2006/timezone# A time zone ontology 
ubench http://swat.cse.lehigh.edu/onto/univ-

bench.owl# 
An university ontology for benchmark tests 

vaem http://www.linkedmodel.org/schema/vaem# Vocabulary for Attaching Essential Metadata 
vann http://purl.org/vocab/vann/ Vocabulary for annotating vocabulary descriptions 
vcard http://www.w3.org/2006/vcard/ns# Vcard vocabulary 
voaf http://purl.org/vocommons/voaf# Vocabulary of a Friend 
void http://rdfs.org/ns/void# Vocabulary of Interlinked Datasets (VoID) 
vs http://www.w3.org/2003/06/sw-vocab-

status/ns# 
SemWeb Vocab Status ontology 

wdrs http://www.w3.org/2007/05/powder-s# POWDER-S Vocabulary 
xhv http://www.w3.org/1999/xhtml/vocab# XHTML specification 

 

 
Figure 2 Open Annotation dependency tree of linked data vocabularies and ontologies 



 

 

Table 7: References to missing or unavailable dependencies detected 

Ontology Missing (or unavailable) Dependencies 

atom 

property: http://eulersharp.sourceforge.net/2004/04test/rogier#productProperty (1 use) 
atom:scheme rdfs:range http://sw.nokia.com/WebArch-1/InformationResource rdfs:subPropertyOf 
http://sw.nokia.com/WebArch-1/representation 
atom:src rdfs:range http://sw.nokia.com/WebArch-1/InformationResource  
_:atom31 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#update  
_:atom37 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#rel  

doap doap:Project rdfs:subClassOf  http://xmlns.com/wordnet/1.6/Project   

frbr frbr:Work rdfs:subClassOf http://xmlns.com/wordnet/1.6/Work~2 
frbr:Event rdfs:subClassOf http://www.isi.edu/~pan/damltime/time-entry.owl#Event 

gn gn:Feature owl:equivalentClass 
http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#GeographicFeature  

grddl Properties: http://www.rddl.org/purposes#normative-reference (3 uses) & 
http://webns.net/mvcb/generatorAgent (1 use) 

neogeo http://geovocab.org/spatial owl:imports http://geovocab.org/mappings/spatial 

qudt 
VOAG ontology only retrievable as invalid turtle file  
qudt: http://voag.linkedmodel.org/schema/voag#withAttributionTo qudt:NASA-ARC-Attribution 
qudt: http://voag.linkedmodel.org/schema/voag#hasLicenseType voag:CC-SHAREALIKE_3PT0-US   

rda* All RDA ontologies use terms from missing ontologies http://metadataregistry.org/uri/profile/regap/ 
and http://metadataregistry.org/uri/profile/rdakit/ 

timezone timezone owl:imports http://www.daml.org/2001/09/countries/iso-3166-ont 
timezone owl:imports http://www.daml.ri.cmu.edu/ont/USRegionState.daml 

dbox Ontology is empty – contains no classes 

cwork 

http://www.bbc.co.uk/ontologies/tagging/ ontology does not exist 
cwork:tag rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept 
cwork:about rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept 
cwork:mentions rdfs:range  http://www.bbc.co.uk/ontologies/tagging/TagConcept 

 

 

 

6.1. References to Missing Ontologies 

As is to be expected in the evolving Web of Data a 
number of the referenced ontologies were no longer 
available (at least they are not currently available at 
the advertised URL and we were unable to find them 
elsewhere) - Table 7. The linked data community 
should be aware of the implication of this for linked 
data quality – if schema specifications are going to be 
rendered incomplete due to changes in the availabil-
ity of imported ontologies or terms then it places a 
limit on the degree of validation that can be per-
formed – terms from such vocabularies become sim-
ple untyped variable names with zero semantics as-
sociated with them.  

6.2. Ontology hijacking 

A widespread pattern observed in the ontologies 
under analysis was the presence of assertions de-
signed to support interoperability of ontologies. For 
example, a very common pattern was to specify that 
certain properties from imported ontologies were 

defined to be of type owl:AnnotationProperty – to 
allow them to be processed by standard OWL tools 
which do not know how to deal with properties de-
fined as rdf:Property. The basic problem with this 
pattern is that this amounts to non-coordinated in-
teroperability on a library scope – each ontology at-
tempts to handle interoperability for its own scope, 
but when these ontologies are combined together, 
each piecemeal attempt at interoperability is com-
bined into a common model and the union of these 
piecemeal attempts at library level interoperability 
without any facilities for modularity leads to incon-
sistency.  

The second major category of ontology hijacking 
observed in the data are illegal assertions that serve 
to silently kill error reporting in tools.  For example 
the assertion: rdfs:Class a owl:Class is used in two 
separate ontologies – it declares that an RDFS class 
is an instance of an OWL class – an interpretation 
that is not true under OWL DL or Full but it manages 
to successfully silence error checking in a number of 
tools.  These type of assertions are particularly un-
wise because they make the knowledge model incon-



 

 

sistent. They also break the robustness principle by 
deliberately producing malformed specifications ra-
ther than compensating for real-world variation and 
noise at input.  

Finally, in a certain number of cases, ontologies 
knowingly and explicitly change other ontologies for 
convenience in utilizing external class definitions.  
This type of usage is most pointedly described in the 
bibo ontology:  

dc:Agent	a	owl:Class	;	
owl:equivalentClass	foaf:Agent	; 

 
An editorial note in the ontology states: “BIBO as-

sert that a dcterms:Agent is an equivalent class to 
foaf:Agent. This means that all the individuals be-
longing to the foaf:Agent class also belongs to the 
dcterms:Agent class. This way, dcterms:contributor 
can be used on foaf:Person, foaf:Organization, 
foaf:Agent and foaf:Group. Even if this link is not 
done in neither the FOAF nor the DCTERMS ontolo-
gies this is a wide spread fact that is asserted by 
BIBO.” In such cases it would be more appropriate to 
use local sub-classing to achieve the equivalent effect 
without over-writing the definitions in external 
namespaces.

 

Table 8: Ontology hijacking violations detected 

Ontology Count Third party ontologies altered (number of entities altered) 
atom 5 iana 
bibo 50 rdf (3), rdfs (1), owl (2), dc (19), skos (6), vs (1), event (7), foaf (11) 
crm 10 vann (2), dc (3), cc (1), label (1), skos (3) 
event 8 dc11 (3), foaf (3), geo (1), vs (1) 
foaf 10 owl (1), rdfs (1), dc11 (3), vs (1), geo (1), skos (1), wot (2 – only use)  
frbr 32 rdf (1), foaf (3), dc (5), dc11 (7), vann (3), skos (1), cc (11), geo (1) 
geometry 3 rdfs (2), dc11 (1) 
gn 3 foaf (1), skos (2) 
gr 19 owl (1), schema (10), dc11 (5), dc (1), foaf (2) 
grddl 1 owl 
http 2 rdfs (1), xsd (1) 
icalspec 2 xsd 
infreal 10 owl (1), rdfs (3), cpa (6) 
irw 3 owl (1), infreal (2) 
leo 4 crm (3), event (1) 
lode 15 leo (11), crm (3), event (1) 
mo 1 vs  
opmv 6 owl (1), time (5) 
prov 6 owl (2), rdfs (4) 
prv 33 dc (7), prov(10), infreal (1), foaf (7), wot (4), xhv (2), irw (2) 
qudt 8 skos (2), dc11 (6) 
rel 1 foaf 
rev 9 rdfs (2), dc11 (3), foaf (2), vs (2) 
sim 5 owl (1), dc (2), vs (1), foaf (1) 
sioc 10 dc (5), foaf (5) 
sioctypes 2 skos (1), sioc (1) 
ssn 39 rdfs (4), dc11 (6), dc (2), cc (1), dul (26) 
time 1 timezone 
vaem 12 owl (1), dc (11) 
   

 



 

 

Table 9: Typos detected 

Ontology Typos (underlined) 
contact contact:assistant rdfs:ramge foaf:Agent   

contact:participant rdfs:ramge foaf:Agent 
dcat dcat:landingPage rdfs:subPropertyOf foaf:Page 
nrl nrl:subGraphOf rdfs:subPropertyOf http://www.w3.org/2004/03/trix/rdfg-1#subGraphOf 

nrl:Graph    rdfs:subClassOf http://www.w3.org/2004/03/trix/rdfg-1#Graph 
nrl:equivalentGraph  rdfs:subPropertyOf   http://www.w3.org/2004/03/trix/rdfg-1#equivalentGraph 

 

Table 10: Instances of impredicativity/misuse of reserved language constructs detected 

Vocab Triple(s) Error Description 
dc dc:type rdfs:range rdfs:Class ; Predicating over class 
dc  dc:AgentClass rdfs:subClassOf rdfs:Class Overriding basic language construct 
skos skos:memberList rdfs:range rdf:List ; rdf:List is an internal structural element of OWL – it 

can’t be used directly 
grddl grddl:TransformationProperty rdfs:subClassOf 

owl:FunctionalProperty ; 
Higher order use of the rdfs:subClassOf relation  

wdrs wdrs:Document rdfs:subClassOf owl:Ontology . Higher order use of the rdfs:subClassOf relation  
rel rel:friendOf rdfs:subPropertyOf owl:differentFrom (32 

times) 
Higher order use of the rdfs:subClassOf relation  

atom atom:RelationType rdfs:subClassOf 
owl:ObjectProperty . 

Higher order use of the rdfs:subClassOf relation  

atom atom:Link rdfs:subClassOf  rdf:Statement  Creating subclasses of a higher order feature 
atom atom:rel rdfs:subPropertyOf rdf:predicate Creating subclasses of a higher order feature 
atom atom:subject rdfs:subPropertyOf rdf:subject Creating subclasses of a higher order feature 
atom atom:to rdfs:subPropertyOf rdf:object Creating subclasses of a higher order feature 
bio bio:differentFrom rdfs:subPropertyOf 

owl:differentFrom (15 times) 
Higher order use of the rdfs:subClassOf relation 

gn gn:featureClass rdfs:subPropertyOf dc:type ; Using impredicative property from dc 
log log:definitiveDocument rdfs:domain rdf:Property Predicating over class of properties 
log log:definitiveService rdfs:domain rdf:Property ; Predicating over class of properties 
void void:linkPredicate rdfs:range rdf:Property Predicating over class of properties 
void void:property rdfs:range rdf:Property Predicating over class of properties 
voaf voaf:occurrences a owl:objectProperty,                             

rdfs:range xsd:integer 
Mismatch between objectProperty and literal range 
type 

qb qb:parentChildProperty rdfs:range rdf:Property Predicating over class of properties 
qb qb:ComponentProperty rdfs:subClassOf rdf:Property Higher order use of the rdfs:subClassOf relation  
bbcpro bbcpro:transitions rdfs:range rdf:Property Predicating over class of properties 
nrl nrl:cardinality rdfs:domain rdf:Property 

nrl:maxCardinality rdfs:domain rdf:Property 
nrl:minCardinality rdfs:domain rdf:Property 
nrl:inverseProperty rdfs:domain rdf:Property 
nrl:inverseProperty rdfs:range rdf:Property 

Predicating over class of properties 

nrl nrl:NonDefiningProperty rdfs:subClassOf rdfs:Property Higher order use of the rdfs:subClassOf relation  
qudt qudt:QuantityKindCategory rdfs:subClassOf owl:Class Higher order use of the rdfs:subClassOf relation  
 
 

  

6.3. Typos 

Three ontology were found to contain basic errors 
which were interpreted as typos – the predicate 
rdfs:ramge appears twice in contact (rather than 
rdfs:range). In dcat, the property name foaf:Page is 
used, whereas foaf:page (without capitalization) is 
the correct property name, while in nrl, 3 incorrect 

URLs are used to refer to classes and properties in 
rdfg (the correct URLs use ‘/’ rather than ‘#’ as an 
element prefix). The presence of such errors in long 
established and public ontologies highlights the lack 
of tool support for ontology validation – they are 
simple and obvious errors but they will not be identi-
fied by standard OWL reasoners.  



 

 

6.4. Impredicativity / misuse of language constructs 

Since OWL DL is a first order theory, it is not 
possible to quantify over classes and predicates. Yet 
no such restriction exists in RDF. This leads to a 
number of problems when using OWL ontologies 
which reference RDF ontologies which make use of 
higher-order and impredicative features. In the very 
widely used dc ontology, the rdf:type relation is giv-
en a range of rdfs:Class. This is immediately prob-
lematic as rdfs:Class is the class of all classes and 
such impredicative statements cannot be made in 
OWL DL but are dangerous regardless, due to the 
very real threat of paradox. Similarly the 
rdf:subClassOf relation is used to derive a subclass of 
the class of classes. This again is higher order reason-
ing, without any guarantee of predicativity.  

In skos we see the use rdf:List as a range, but 
rdf:List is an internal syntactic element of OWL. Free 
mixing of rdf:first and rdf:next would leave reasoners 
unable to distinguish what is intended as a property 
and what is intended to be syntax of the language 
itself.  While this problem has been described thor-
oughly [3], it also has not been stamped out in the 
wild, and skos is a very widely used ontology pur-
porting to be OWL. 

In gn, log, void, qb, wdrs, atom, voaf we see the 
very common use of higher order logic, with sub-
classing of class, properties, and assignation of rang-
es over properties and classes. In most of these cases 
the statements were probably unnecessary. However 
higher order reasoning may sometimes be useful and 
we will discuss later how such things can be achieved 
without stepping into undecidability. 

In atom there is an even more unusual metalogical 
statement, making a statement about statements 
themselves! Without some sort of stratification such 
logic is dubious at best. Atom additionally makes use 
of inference facilities that are not themselves part of 
OWL. Utilizing ontologies of this form requires a 
tool chain which is capable of making these infer-
ences, which is something which is not widely avail-
able. 

6.5. Property / Class Cycles 

Table 11 presents the class or property cycles de-
tected in the crm ontology. The first example, asserts 
that a legal body is equivalent to a group, which 
seems highly questionable, though it would require 
the crm authors to confirm. The second looks more 
likely, but still questionable, where they establishing 

an equivalence between “bearing a feature” and “be-
ing composed of”. 

We have also noticed that many statements of 
equivalence were between classes in different ontol-
ogies, establishing a link between an element in one 
place, and that in another. However, these equiva-
lences were often coupled with additional qualifica-
tions. Such behavior completely negates the capacity 
to use linked data in an interoperable fashion, as the 
original publisher of the ontologies data may very 
well have instance data which is deemed invalid 
when read, by the second publisher, and vice versa. 
This “ontology hijacking” [5] should be highly dis-
couraged.  

6.6. Comparison to OOPS!  

The 50 most commonly used vocabularies were al-
so analysed with OOPS! (OntOlogy Pitfall Scanner) 
[26] for comparison (although four failed to load).A 
this tool analyzes ontologies in isolation without 
loading any dependencies, the dependent ontologies  
analyzed by Dacura were not included. There is very 
little intersection between the classes of violations / 
pitfalls identified between the two systems because 
OOPS! is primarily a syntax scanner and it does not 
attempt to incorporate dependent ontologies and 
combine them into a unified model, nor does it apply 
any significant reasoning.  However, OOPS! does 
check for several additional types of best-practice 
violations that are not considered to be violations 
from Dacura’s point of view. For example, the P08 
missing annotations code produced by OOPS! reports 
cases where classes or properties are missing labels – 
while this is a useful check, there is nothing illegal 
about such missing elements and they thus do not 
cause Dacura to reject the ontology. The only areas 
where Dacura and OOPS! overlap is in the identifica-
tion of absent domain / range assertions for proper-
ties and secondly in the identification of untyped 
classes and properties. Dacura also checks for such 
violations, however, in Dacura they are considered to 
be strictly informational messages as in many cases, 
such missing assertions are consistent with best prac-
tice, e.g. when the domain or range is specified in a 
super-property.  In such cases, OOPS! violations will 
in fact be incorrect because it does not attempt to 
load super-properties and respecifying the domain or 
range in a sub-property duplicates information which 
complicates schema change management. Table 12 
shows the results of testing the covered ontologies 
and vocabularies with OOPS! 



 

 

 

Table 11: Property/Class cycles detected in crm ontology 

Triple(s) Problem 
crm:E40_Legal_Body rdfs:subClassOf crm:E74_Group  
crm:E74_Group rdfs:subClassOf ns1:E40_Legal_body 

Cycle in class hierarchy 

crm:P46_is_composed_of rdfs:subPropertyOf crm:P56_bears_feature; 
crm:P56_bears_feature rdfs:subPropertyOf crm:P46_is_composed_of 

Cycle in property hierarchy 

 

 

Table 12: Results returned by OOPS! Pitfall Scanner – numbers indicate pitfall count per OOPS! code 

	 OOPS!	Pitfall	Codes	–	for	code	meanings	see	http://oops.linkeddata.es/catalogue.jsp	

Ontology	 2	 4	 7	 8	 10	 11	 12	 13	 19	 20	 21	 22	 23	 24	 25	 26	 30	 31	 32	 34	 35	 36	 38	 39	 40	 41	
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opmv	
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7. Recommendations for Correcting Problems in 
Linked Data Schemata 

Given our experiences in constructing the DQS 
and the experimental analysis performed of real 
world linked data schemata we offer the following 
recommendations for improving best practice in 
linked data vocabulary design. 

7.1. Metareasoning with rdf:List 

Ontologies in OWL cannot use the underlying syn-
tactic elements of rdf:List within the logic of the on-
tology, as is done in SKOS. The appropriate way to 
deal with this problem is to have a drop in replace-
ment for RDF collections written in OWL such that 
there is no syntactic/logical mixing. There have been 
some list ontologies constructed such as the Ordered 

List Ontology6, CO-ODE List Ontology7, however 
what is needed is a drop in replacement for RDF col-
lections in general. Bags are trivial to construct in 
OWL, and both ordered lists and indexed sequences 
have also been demonstrated, so creating such an 
ontology is more a collation task than an ontology 
engineering one. Migrating current OWL ontologies 
to use such a drop in replacement would be a rela-
tively minor task and would allow them to be com-
pliant OWL DL. 

7.2. Impredication and Higher order features 

The impredicative and higher order features of 
RDF are used by 15 of the top 50 ontologies (includ-
ing their dependencies) and hence it can be consid-

                                                             
6	https://smiy.wordpress.com/2010/07/15/the-
ordered-list-ontology/	
7	http://owl.cs.manchester.ac.uk/wp-
content/uploads/2015/07/list.owl_.txt	



 

 

ered a common problem. Supporting such behavior 
does not require abandoning soundness or allowing 
paradox. Type theory, going back to Russell, devel-
oped techniques to avoid impredicative paradoxes 
through the use of some form of stratification, which 
could be used to extend OWL DL. The complexity or 
indeed decidability of such an extension remains to 
be explored. 

A lot of the uses of predication over types (eg in 
dc) are useful and have known solutions, e.g. [13], 
[36] so it is strange to reject it as outside OWL DL. 
This is the reason naïve set theory is inconsistent. 
Punning provides some useful ways of providing 
information about classes and properties. However, 
this does not enable the same logical power, which is 
available through stratified predication where reason-
ing can be extended to the metalogical level. 

7.3. Equivalence and Hijacking 

From the ontologies surveyed, it appears that 
equivalence within a given ontology is rarely needed. 
If a class is the same as another class, it seems un-
likely to be the case that the ontology designer does 
not know it. If two classes are indeed the same, it is 
best to combine the definitions of the classes into a 
single class, which improves referential transparency 
and simplifies ontology management. If two names 
are needed, simply assigning more than one 
rdfs:label is recommended as a better solution. 

However, there is the further use of identification 
of one class with that of another ontology. Such iden-
tification of classes with other ontologies leads to the 
question of why one would simply not use the class 
name from the alternative ontology unless one wants 
to actually hijack the class for extension? And if it is 
the later, then it seems unfair that the contract be en-
tirely one sided, as any published linked data which 
comes from the ontology will no longer have the 
same meaning as that given in the original ontology.  

One potential answer to this problem is that ontol-
ogies which intend to coordinate, and actually mean 
to be equivalent, utilise subclassing in either direc-
tion. So for instance, instead of saying:  

ex:Tome	owl:EquivalentClass	library:Book	
One could say, in the ex and library ontologies re-

spectively:  
ex:Tome	rdfs:subClassOf	library:Book	
library:Book	rdfs:subClassOf	ex:Tome	
In this scenario, collaboration between ontology 

designers would be required, such that hijacking was 
less of a concern. 

Where it is necessary to make ontologies back-
ward compatible with existing tools, a custom ontol-
ogy should be constructed and all interoperability 
assertions should be placed within it and then im-
ported. Beyond such cases, Ontology hijacking 
should be avoided in all cases – just like when using 
external libraries in software engineering, importing 
ontologies should not have side effects on other on-
tologies. We propose a general design principle that 
importing ontologies should have no side effects.  

8. Conclusions and Future Work 

We have shown that is effective to pursue a rea-
soner-based approach to detect logical or syntactic 
errors in linked data schemata based on unified logi-
cal models. We have made a first study of the preva-
lence of errors in schema errors in the Web of Data 
by analyzing 91 common vocabulary or ontology 
specifications. Our validation detected a total of 6 
typos, 14 missing or unavailable ontologies, 73 lan-
guage level errors, 310 instances of ontology 
namespace violations and 2 class cycles, which we 
believe to be errors. Although our analysis is not 
complete – there are undoubtedly further errors, 
which we have not detected –all of these errors repre-
sent genuine problems with the analyzed ontologies 
and there are no other tools available which can iden-
tify more than a small fraction of them.  

Our analysis began with the practical concern of 
using Open Annotation (OA) as infrastructure for our 
own ontology development. After producing a soft-
ware tool-chain which included ontology manage-
ment and reasoning, we were able to proceed to test-
ing of our ontology over OA and all of the ontologies 
which it made reference to and from there to extend 
our survey to all of the most commonly used 50 on-
tologies and all of their dependencies. The results of 
our survey give valuable information about the state 
of ontology development, the relative lack of in-
teroperability including the free mixing of ontologi-
cal frameworks which are logically incompatible, and 
the fact that tool-chain development is at a very low 
level since many problems which we found would 
otherwise have been spotted already. 

We make a number of recommendations regarding 
how to deal with the realities of ontologies as they 
currently exist, and how to use them in conjunction 
with reasoning tool-chains.  

We also note the fairly widespread use of higher 
order features used for meta-modelling, and suggest a 



 

 

way to include such features in a sound fashion free 
of paradoxes. We hope to explore the consequences 
of adding stratification to OWL DL and the decida-
bility and complexity consequences thereof in the 
future. 

The utilization of rdf:List in OWL ontologies real-
ly has to be eliminated as it leads to incoherence and 
the incapacity to reason. In the future, we hope to 
develop a drop in replacement ontology for rdf col-
lections defined in OWL DL exclusively.  

We will be extending our reasoner to include a 
larger fragment of OWL DL. Our system has already 
proved useful in finding errors and contains the ma-
jority of OWL descriptions which we found in the 
ontologies explored. A larger fragment should im-
prove the usefulness as it extends the reasoning facil-
ity to a greater class of ontologies. Further, we will 
be testing our reasoner against ontologies which have 
extant instance data, and this is likely to reveal more 
problems than the ones detailed here which are ex-
clusively at the schema level.  
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