
Semantic Web 1 (2016) 1–5 1
IOS Press

Question Answering on RDF KBs using
Controlled Natural Language and Semantic
Autocompletion
Editor(s): Stamatia Dasiopoulou, Pompeu Fabra University, Spain; Georgios Meditskos, Centre for Research and Technology Hellas, Greece;
Leo Wanner, ICREA and Pompeu Fabra University, Spain; Stefanos Vrochidis, Centre for Research and Technology Hellas, Greece; Philipp
Cimiano, Bielefeld University, Germany

Giuseppe M. Mazzeo and Carlo Zaniolo
University of California, Los Angeles,
United States
E-mail: {mazzeo|zaniolo}@cs.ucla.edu

Abstract. The fast growth in number, size and availability of RDF knowledge bases (KBs) is creating a pressing need for research
advances that will let people consult them without having to learn structured query languages, such as SPARQL, and the internal
organization of the KBs. In this paper, we present our Question Answering (QA) system, that accepts questions posed in a
Controlled Natural Language. The questions entered by the user are annotated on the fly, and a KB-driven autocompletion system
displays suggestions computed in real time from the partially completed sentence the person is typing. By following these
patterns, users can enter only semantically correct questions which are unambiguously interpreted by the system. This approach
assures high levels of usability and generality. Experiments conducted on well-known QA benchmarks, including questions on
the encyclopedic DBpedia and specialized domains, such as music and medicine, show a better accuracy and precision than
previous systems.

Keywords: Natural language interfaces, question answering, RDF, semantic autocompletion

1. Introduction

The last few years have seen major efforts toward
building RDF knowledge bases (KBs) for both general
and specialized knowledge. In the first group we find
DBpedia [1,33], that encodes the Wikipedia encyclo-
pedic knowledge, and in the second group we have the
thousands of projects that cover more specialized do-
mains [2]. While these KBs can be effectively queried
through their SPARQL [3] endpoints, the great major-
ity of web users are neither familiar with SPARQL nor
with the internals of the KBs. Thus, the design of user-
friendly interfaces that will grant access to the riches
of RDF KBs to a broad spectrum of web users has
emerged as a challenging research objective of great
significance and interest.

The importance of this topic has inspired a signifi-
cant body of previous research work and the launching
of annual competitions on Question Answering over
Linked Data (QALD). In this paper, we describe our
CANaLI system that has recently won the the 2016
competition (QALD-6). This success is even more re-
markable, since it was obtained by using only the NL
functionality of our system,without the query comple-
tion function that assists users formulating their ques-
tions. The important problem of QA has seen much
previous work, which we briefly describe next, and in
more details in Section 5.

Exploratory browsing Among the many approaches
that can be classified under this label, we find the one
in [28] where users specify a graphical query “skele-

1570-0844/16/$35.00 c© 2016 – IOS Press and the authors. All rights reserved

2 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

ton" and annotate it with phrases and entity names,
narrowing the search space and generating SPARQL

queries through heuristics based on statistical associ-
ations and semantic similarities to classes and prop-
erties of the KB. This approach is a compromise be-
tween SPARQL and natural language interfaces which
avoids the problem of relation extraction from NL sen-
tences. However, complex queries, e.g., involving ad-
vanced joins and aggregates, are not discussed in [28].

Faceted Search This approach relies on a multi-step
formulation of queries on DBpedia [26,27]. For in-
stance, a user searching for “cities in California" will
start by supplying an item-type (e.g., “City"). This re-
duces the search space to cities, whereby the user can
specify a number of other type-depending filters, such
as population, latitude, and so on.

The Query by Example Approach The SWiPE sys-
tem proposes a WYSIWYG approach [15], where by-
example structured queries are entered by (i) letting
the user select an example page and activate its In-
foBox, on which (ii) she can now click and insert con-
ditions into the relevant fields, that (iii) are translated
into a SPARQL query that is executed on the DBpedia
KB.

NL Interfafces While system such as [15] allow users
to enter complex queries on web browsers, Natural
Language (NL) still provides the simplest form of
communication for casual users, via voice-recognition
systems or other interfaces that do not require the use
of web browsers.

Thus, it is hardly surprising that the NL QA prob-
lem has been the focus of much research. As surveyed
in [24,25,36], this important and challenging problem
combines several non-trivial sub-problems, including
parsing the syntactic structure of the question, map-
ping the phrases of the question KB resources, and re-
solving the ambiguities that are always lurking in NL
communications. Resolving ambiguities is indeed the
hardest problem, since, e.g., NL systems are limited in
their ability to perform anaphora resolution that often
depends on context, perceived query intention, and do-
main knowledge that is available to the interlocutors
but not to the system.

Therefore, the paramount objective in the design
of our NL system was to avoid ambiguities, and we
achieved this objective by the two-pronged approach
of using:

(i) controlled natural language (CNL) interface, and

(ii) Question Autocompletion integrated with the
CNL.

At the best of our knowledge, our CANaLI1system
is the very first among NL and CNL systems to support
item (ii) above with its significant benefits. But even
without (ii), CANaLI is a CNL system of great effec-
tiveness: tested on various QA testbeds [4], CANaLI
delivered superior precision and recall, and came first
in the 2016 QALD competition QALD-6 [4]. In-
deed CANaLI demonstrates that a reasonable middle
ground exists in the design quandary faced by all CNL
systems, which need to restrict the grammar allowed
for questions to make the language ‘formal’ enough to
be accurately interpreted by machines, but still ‘natu-
ral’ enough to be readily acquired by people as an id-
iomatic version of their NL. All these systems, includ-
ing CANaLI, are based on the idea that it is worth giv-
ing up some of the great flexibility and eloquence of
the NL in order to make the questions unambiguous to
the machines, that will thus produce answers of better
accuracy and completeness [32].
CANaLI and its CNL were designed to (i) avoid

ambiguities, (ii) achieve enough power and generality
to express the example questions from the various NL
testbeds, and (iii) support in real time the very desir-
able function of question autocompletion, which rep-
resents novelty for NL QA systems, although it is very
popular in Web browsers2. The autocompletion func-
tion guides users by allowing them to only enter ques-
tions that are semantically correct w.r.t. the underly-
ing KB. Moreover, as soon as the user makes a mistake
or hesitates when typing, the system suggests possible
correct completions. This allows people to self-learn
CANaLI easily and quickly. Autocompletions are pro-
duced in real time whereby users are never slowed
down and an on-line interaction with the system is
achieved. The design and implementation techniques
that makes this very fast completion possible are de-
scribed in the paper.

This paper is organized as follows. Section 2 pro-
vides an overview of CANaLI, describing its opera-
tion, by means of some examples. Section 3 describes
how CANaLI suggests semantically valid tokens. An
experimental analysis of accuracy and usability is pre-

1CANaLI is an acronym for Context-Aware controlled Natural
Language Interface.

2The autocompletion of web browsers is built from previous pop-
ular searches. The CANaLI autocompletion is instead derived auto-
matically from the underlying KB.

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 3

sented in Section 4 and related work is presented in
Section 5. Finally, we present the conclusions and pos-
sible future extensions of CANaLI in Section 6.

2. Short Overview of CANaLI

The inspiring idea of CANaLI consists in viewing
questions as navigations through the entities, classes,
and properties of the underlying RDF network, and
then recasting such navigations into roughly equivalent
navigations through the states of a carefully designed
finite automaton. By identifying typical connectives
used to link semantics concepts in NL, we were thus
able to identify with simple tokens that CANaLI can
use to transition quasi-deterministically between states
as the interpretation of the controlled NL sentences
progresses. The simplicity and efficiency of the rec-
ognizer so constructed entails a real-time response,
whereby the system can assist the user by suggest-
ing alternative question completions derived on-the-fly
from the underlying KB. This provides great help to
users who are typing their questions. and allows them
to enter non-trivial questions with complete confidence
that, even when more than one interpretation is possi-
ble for the question, the system will answer according
to the interpretation intended by the user.
CANaLI enables users to enter questions in a con-

trolled and guided way, as sequence of tokens repre-
senting:

– KB resources: entities, properties, and classes,
– operators (e.g., equal to, greater than, etc.),
– literals: numbers, strings, and dates,
– auxiliary NL phrases, such as “having”, that play

a syntactic sugaring role.

Every token used in CANaLI is represented at user-
level as an NL phrase, consisting of one or more words
from the application domain. No operator, variable,
URI or other SPARQL syntax are required for entering
questions in CANaLI. The recognizer operates on to-
kens in the style of a finite state machine having 12
states, including the initial state and a final state. De-
spite its simplicity, CANaLI is very general, since it
can be used with arbitrary RDF KBs, and basically sup-
ports nearly all the typical questions asked by users,
including those proposed in published papers and test-
beds, as discussed in details in Section 4.

S2

S0

S1

Question
start

Class/Entity

SF

Property

?/.

S3

having/
with

S4
Property

S5

Operator

Class/Entity/Literal

Property

having / with

Fig. 1. The main states and transitions of the automaton used
by CANaLI

2.1. Answering Simple Questions

The operation of CANaLI can be explained with the
help of the transition diagram in Figure 1, and a simple
example3. Say that the user wants to enter the ques-
tion: “What is the capital of United States?”. When the
user starts typing a new question, CANaLI’s automa-
ton is in the initial state (S 0), and it is ready to ac-
cept the question-start tokens, such as “What is the”,
that moves our recognizer to state S 1. At S 1, the sys-
tem can accept a token representing an entity, a prop-
erty, or a class. In our example, the user enters “capi-
tal”, that represents a property recognized by CANaLI.
Thus, the system loops back to state S 1, ready to ac-
cept as next token another property, entity, or class. In
our simple example the user enters “United States”,
that denotes an entity, and the system moves to S 2, af-
ter recognizing “United States” as an entity with “cap-
ital” as its valid property. Thus, in order to be con-
sistent with the semantics of the knowledge base, our
user must enter entities that have the property “capi-
tal”, and the system will stop her from progressing any
further if that is not the case. Of course, to reach this
‘no progress’ point the user must have ignored the sug-
gestions that the system had previously generated as
valid completions of the typed input. CANaLI shows
these completions in a drop-down menu appearing un-
der the input window (see Fig. 2). The user has the
option of clicking on any such completion, whereby
its text is added to the input window. In S 2 a range
of new input tokens can be accepted—including the
question mark “?" used in our example. Obviously this
ends the question, whereby CANaLImoves to the final

3Here, the system response is based on the context provided by
the question typed so far and the underlying KB, rather than just the
current state and last token as a finite state automaton would.

4 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

Fig. 2. The autocompleter of CANaLI suggesting properties
that (i) can be related to capitals/countries and (ii) contain in
their label the last word typed by the user, i.e., “population”

state S F and launches the actual SPARQL query execu-
tion. Alternatively, the user can enter more conditions,
e.g., using tokens such as “having”, that will be dis-
cussed later. Let us now consider an example involving
a chain of properties such as: “What is the population
of the capital of United States?”. In this case, at S 1, the
user would input the property “population”, whereby
the system loops back to S 1, where it accepts the sec-
ond property: “capital”. Now, CANaLI accepts “capi-
tal” because the capitals have a population, and loops
back to S 1, where “of United States” takes us to state
S 2 where the question mark completes the processing
of the input and launches the query.

Remarkably, the four basic states S 0, S 1, S 2, and
S F support a large set of very simple questions asked
by everyday users4. More complicated but nevertheless
common questions are those adding constraints, i.e.,
query conditions. For instance, assume that the user
wants to ask: “What is the capital of countries having
population greater than 100 million?”. After the input
“What is the capital” has moved us to S 1, CANaLI
accepts “countries”, as a class having “capital” as a
valid property, and moves to S 2. In S 2, CANaLI ac-
cepts “having” (an uninterpreted connective used as
syntactic sugar) to move to S 3, where it can only ac-
cept a valid property. In this case, “population” can be
accepted since countries have this property. However,
this example illustrates the ambiguity that beset all NL
interfaces, no matter how sophisticated their parser is.
In fact, a constraint “population greater than" is also
applicable to “capital”, since capitals have population
too. Clearly every NL system would suffer from the
same problem, and only a person who knows that cur-
rently no city has more than 100 million people, might

4Indeed, the most frequent web questions are definition questions
(e.g., What is Ebola?), that are even simpler.

be able to suggest that the condition is probably about
countries, rather than capitals. However, CANaLI fi-
nesses this inherently ambiguous situation by display-
ing all alternative interpretations whereby the user can
make an explicit choice (see Fig. 2). Once the prop-
erty “population” is accepted, and its context clarified,
the automaton moves to the state S 4, where an opera-
tor is expected. Thus, the user can input “greater than”
and the automaton moves to state S 5, that accepts the
right-hand side of the comparison operator. In general,
the right-hand side of a constraint can be an element of
the KB or a literal. In our example, only a number can
be accepted5, since the right-hand side must be of the
same type as the left-hand side, “population”, which is
numerical. Thus, the user enters “100 million" and the
automaton moves to S 2, where she can specify more
constraints or enter a question mark, ending the ques-
tion6.

Examples of constraints using resources of the KB as
right-hand side are the following: “Give me the coun-
try having capital equal to Washington D.C.”7, “Give
me the movies having director equal to a politician.”,
“Give me the cities having population greater than the
population of Los Angeles.”. In all these cases, the to-
ken accepted in S 5 must be consistent with the prop-
erty previously accepted in S 3. Observe that, while ac-
cepting an entity or a class moves the automaton to
S 2 state, accepting a property (e.g., population) yields
a transition to S 1, where the element possessing the
property must be specified (e.g., Los Angeles).

Finally, a question using the edge connecting S 4 to
S 3 is “What are the countries having capital with pop-
ulation greater than 10 million?”, that uses a chain of
properties on the left hand side of a constraint. Like
in the case explained above, “capital” can be accepted
here since countries have a capital. Then, after ac-
cepting the connective “with”, “population” can be ac-
cepted since capitals have this property.

2.2. More Complex Questions

For the sake of presentation, we have shown in
Fig. 1 only the states that are most commonly used in

5Or another property with numerical range, as discussed in the
following.

6Questions can also start with “Give me”. In this case, questions
are ended using a period.

7Indeed, the complete automaton of CANaLI has also a transition
from S 4 to S 2 that allows to implicitly assume the equality operator.
This allows to accept questions such as “Give me the country having
capital Washington D.C.”

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 5

S2

S1

S4

Operator
+

“that of”

Class/Entity

S6

Property

Property

Fig. 3. Fragment of the automaton for accepting chunks of
questions like “population greater than that of Los Angeles”

S2S5 Possessive
determiner

S7Operator Property

Fig. 4. Fragment of the automaton for accepting chunks of
questions like “equal to their death place”

S2S6 Possessive
determiner

S8

Operator
+

“that of”
Property

Fig. 5. Fragment of the automaton for accepting chunks of
questions like “greater than that of their spouse”

queries. In reality CANaLI has five more states which
are used to support the additional patterns that are il-
lustrated by the following examples:

– “Give me the cities having population greater than
that of Los Angeles.” The use of the pronoun that in
place of the already used property population, makes
the question more natural than repeating “popula-
tion". However, the new state S 6, as shown in Fig. 3,
is needed for handling this kind of questions. After
accepting the first part of the question “Give me the
cities having population”, the automaton is in state
S 4. From this state, it accepts the token “greater than
that of”, thus moving to S 6. From this state, it is
possible to accept an entity (e.g., Los Angeles) or a
class (e.g., country), thus moving to S 2, or a prop-
erty (e.g., capital of), moving to S 1, where the el-
ement possessing the property will be subsequently
accepted.

– “Give me the actors having birth place equal to their
death place.” The possessive determiner implies that
the properties birth place and death place are related
to the same variable. A new state S 7 is needed, as
shown in Fig. 4. In this case, after accepting “Give
me the actors having birth place equal to”, the au-
tomaton from state S 5 accepts the possessive deter-
miner “their”, and moves to S 7. From S 7 it accepts
the property “death place”, thus moving to S 2.

S2S3 Ranking S9having/with Property

Fig. 6. Fragment of the automaton for accepting chunks of
questions like “with one of the 20 greatest population” or
“having the 2nd largest population”

S10S2 without / with some

Property

Fig. 7. Fragment of the automaton for accepting chunks of
questions like “without side effects”

– “Give me the actors with birth date greater than that
of their spouse.”. This question combines the two
situations described above, and requires to introduce
the state S 8, as shown in Fig. 5. After accepting
“Give me the actors having birth date greater than
that of” the automaton is in state S 6, from which it
accepts the possessive determiner “their”, thus mov-
ing to S 8. From S 8 the property “spouse” is ac-
cepted, and the automaton moves to S 2.

– “Give me the countries having one of the 20 great-
est population” and “Give me the country having the
2nd largest population”. Questions like these require
(i) to sort the results by the value of the property rec-
ognized in a specific state, and (ii) to set the offset
and number of returned results according to the to-
ken accepted in a different state, i.e., a token such
as the nth greatest or one of the nth greatest. To this
end, we introduced state S 9, as shown in Fig. 6. Af-
ter accepting “Give me the country having”, from S 3

the automaton can accept a ranking token, whereby
it moves to S 9, where the property “population” is
recognize, thus producing the transition to S 2.

– “Give me the drugs without side effects”. This ques-
tion requires negation. We remark that a token such
as without or with some can not be handled as the
tokens like having, which defines a comparison be-
tween two operands. Therefore, a new state S 10 was
introduced. After accepting “Give me the drugs”, it
is possible to accept “without” from state S 2, thus
moving to state S 10. In S 10 the property side effect
is accepted, moving the automaton to S 2.

3. Token Selection

A key to effectiveness and usability CANaLI is its
ability to traverse the underlying KB to select in real

6 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

time the correct transition in the recognizer automa-
ton and generate the correct completions for the par-
tial user input. CANaLI uses Apache Lucene [5], to in-
dex our tokens, which are associated with one or more
NL phrases. Thus, when the user enters a string S , a
query is performed on the index to select among the
tokens matching the phrase S those which satisfy the
following criteria: (i) they are of acceptable type, ac-
cording to the current automaton state, and (ii) they
are semantically correct with respect to the underlying
KB. Now, criterion (ii) requires satisfaction of several
conditions for which we index each element of the KB
by its label and kind (i.e., entity, property, class, etc.),
and the values of the two additional fields: domain_of,
and range_of. The first field is needed for cases such as
“What is the population of” that prescribes that the fol-
lowing token can only be accepted if it belongs to do-
main of “population” (e.g., “capital”, “cities”, “Wash-
ington D.C.”, etc.). The second field is used in cases
such as “. . . having capital equal to”: that prescribes
that the token that follows must belong to the range
of “capital” (e.g., “birth place”, “city”, “Washington
D.C.”, etc.). A similar domain requirement is enforced
when dealing with input such as “What is the capital of
countries having”, where we have a property having as
domain the property “capital” or the class “country”.

The domain and range of a property are defined as
follows:

Definition The domain of a property p is the set of
elements (entities, classes, or properties) {t} such that

– if t is an entity, there exists a triple 〈t, p, v〉;
– if t is a class, there exists a triple 〈e, p, v〉, where

e belongs to class t or to a descendant class of t;
– if t is a property, there exists a triple 〈e, t, v〉 and a

triple 〈v, p,w〉.

Figure 8 depicts a small portion of DBpedia repre-
sented as a graph. Entities, classes, and literals are
the nodes of the graph, represented in the figure as
green ellipses, orange rectangles, and white rounded
rectangles, respectively. A triple is represented as
a directed edge connecting the subject node to the
value node. The label of the edge is the property of
the triple, represented as a blue rectangle. The edges
with labels rdf:type and rdfs:subClassOf
represent the class of entities and the class hierar-
chy, respectively. According to our definition, the do-
main of dbo:populationTotal includes the en-
tity dbr:Washington_D.C., the classes
dbo:City, dbo:Populated_Place, and

dbr:United_States

dbr:Washington,_D.C.

dbr:Katherine_Heigl

dbo:Place dbo:PopulatedPlace

rdf:type

rdfs:subClassOf

658893 (xsd:integer)

dbo:capital

dbo:birthPlace dbo:populationTotal

rdf:type

dbo:Artist

rdf:type

dbr:The_Big_Wedding

dbo:starring

dbo:Film

rdf:type

dbo:Country rdfs:subClassOf

dbo:City

rdfs:subClassOf

dbr:Josh_Kelley

rdf:type

dbo:spouse

dbo:distributor 665 (xsd:integer)

dbr:Lions_Gate_Entertainment dbo:numberOfEmployees

Fig. 8. Fragment of the DBpedia graph. Orange rectan-
gles represent classes, green ellipses are entities, rounded
rectangles are literal values, blue rectangles are properties,
rdf:type and rdfs:subClassOf are special proper-
ties used to define the class of entities and the class hierarchy,
respectively.

dbo:Place, and the property dbo:birthPlace.
We include the ancestor classes of dbo:City in the
domain of dbo:populationTotal to improve the
flexibility of the questions that can entered by the user.
In fact, even if only the populated places will have this
property, by adding also dbo:Place to the domain
of dbo:populationTotal we allow the user to
ask for the population total of “places” without being
specific about the exact class (i.e., populated places).
Clearly, only the populated places are returned as an-
swer, but a user has the flexibility to ask for ‘specific’
properties of ‘generic’ classes.

Now we define the range of properties. While the
domain of an attribute can not contain literals (the sub-
ject of the triples can not be a literal), the range can. As
said before, in CANaLI the types of literals are num-
bers, strings, and dates. We call these types basic types.

Definition The range of a property p is the set of
elements (entities, classes, properties, or basic types)
{t} such that

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 7

– if t is an entity, there exists a triple 〈s, p, t〉;
– if t is a class, there exists a triple 〈s, p, e〉, where

e belongs to class t or to a descendant class of t;
– if t is a property, there exists a triple 〈e, t, v〉 and a

triple 〈 f , p, v〉;
– if t is a basic type, there exists a triple 〈s, p, l〉,

where l is a literal with basic type t.

According to this definition, the range of the prop-
erty dbo:populationTotal includes the numeri-
cal basic type, while the property dbo:birthPlace
includes the entity dbr:Washington_D.C., the
classes dbo:City, dbo:Populated_Place, and
dbo:Place, and the property dbo:capital.

We can now define the rules that allow CANaLI to
accept a token and transition from the current state to
the next state. Given a sequence of previously accepted
tokens,

the last accepted property denotes the rightmost ac-
cepted token that is a property, and

the open variables are the tokens that are either a class
or a property. These tokens are pushed onto a
stack as they are accepted.

S1: In this state, a new input token x is accepted if
x ∈ domain(p), where p denote last accepted prop-
erty8. For instance, if dbo:populationTotal
is the last accepted property, then only elements
that are in its domain can be accepted. Thus, pre-
sented with the input “What is the population total
of Washington D.C.?”, CANaLI accepts the entity
dbr:Washington_D.C.. Also, the class dbo:City
is accepted when the input is “What is the popu-
lation total of the cities . . . ?”. Now, the property
dbo:birthPlace is also in the
dbo:populationTotal domain, and thus it is ac-
cepted as next token in “What is the population total of
the birth place of . . . ?”. Observe that this rule prevents
some apparently simple questions to be entered. For in-
stance, consider the question “Who is the president of
United States”. After typing “Who is the president of”,
the user will not be able to complete the question, since
in DBpedia the entity dbr:United_States has
no property dbo:president. In fact, the leaders of
countries (not just the presidents) are represented in
DBpedia by pairs of properties representing the leader
name and title9. In general, when CANaLI recognizes

8When the question starts, p does not exist, thus any element of
the KB can be accepted

9See http://dbpedia.org/page/United_States

that the user is searching for a missing property of an
existing entity, it displays a message stating that the
information is missing, and tells the users to look at
the list of properties available for the searched entity.

S3, S9, and S10: being O the stack of open variables,
a property p can be accepted if O ∩ domain(p) 6= ∅.
For instance, if the user has already typed What is the
birth place of artists having, from S 3 the next accept-
able properties are those having dbo:birthPlace
or dbo:Artist in their domain, whereby both
dbo:spouse and dbo:populationTotal are
acceptable here. Here, when the property p has more
than one elements of O in its domain, CANaLI will
propose more possibilities for accepting p, and the
user can select that corresponding to her intention (see
Fig. 2). The same holds for states S 9 and S 10. For in-
stance, if the user already typed Give me the city hav-
ing the 2nd greatest, she can complete the question
with “population total” since the class city is in the do-
main of the property population. Similarly, if she al-
ready typed Give me the artists without, she can com-
plete the question with “spouse” since the class artist
is in the domain of the property spouse. We remark that
our recognizer accepts properly nested constraints, in
the style of Visibly Pushdown Languages [14]. How-
ever, as we have seen, in sentences like What is the
birth place of artists having our recognizer can accept
a property related to any of the two variables in the
stack, not necessarily to that on topof the stack (i.e.,
“artist” in our case). However, when the user types a
property which is related to a variable v which is not
on top of the stack (e.g., What is the birth place of
artists having population total), the variables on top
of v a removed from the stack, and can not be longer
used to define constraints. This avoid the possibility to
input non-natural and ‘confusing’ questions, such as
What is the birth place of artists having population to-
tal greater than 1, 000, 000 and starring in Star Wars.

S5: with p the last accepted property, an ele-
ment x can be accepted if x ∈ range(p). The el-
ement accepted is the right-hand side of the con-
straint, according to property p. Assuming that p
is dbo:populationTotal, CANaLI can accept
a number (. . . having population total greater than
50 000. . .) or another property that has a numeric
range. For instance, the use of property
dbo:numberOfEmployees could be used to in-
put a fragment such as . . . having population total less
than the number of employees of. . . , which is se-
mantically correct. If p is dbo:capital, then the
entity dbr:Washington_D.C. (. . . having capital

8 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

equal to Washington D.C.. . .), or the class dbo:City
(. . . having capital equal to city. . .), or the property
dbo:birthPlace (. . . having capital equal to birth
place of. . .) can all be accepted.

S6: with p the last accepted property, an element x
can be accepted if x ∈ domain(p). Thus, if the user has
already typed Give me the cities having population to-
tal greater than that of, an element can follow only if it
belongs to the domain of dbo:populationTotal.

S7: if p is the last accepted property and e is the el-
ement p is related to, a property q can be accepted if
q ∈ domain(e) and q ∈ range(p). For instance, if the
user has typed “Who are the artists having birth place
equal to their”, she can complete the question with
“death place” since the class dbo:Artist and the
property dbo:birthPlace are, respectively, in the
domain and range of property dbo:deathPlace.

S8: if p is the last accepted property and e is its
related element, then property q can be accepted if
e ∈ domain(q) and q ∈ domain(p). For instance, if the
user has typed: “Who are the artists with birth place
equal to that of their,” she can complete the question
with “spouse” since the property dbo:spouse has
the class dbo:Artist in its domain and the prop-
erty dbo:birthPlace has property dbo:spouse
in its domain.

To support the processing of the input just described,
we index every element x of the KB using the fields

– domainOf : using the computed domains of the
properties, we assign a value p to this field if
x ∈ domain(p);

– rangeOf : using the computed ranges of the prop-
erties, we assign a value p to this field if x ∈
range(p).

Moreover, we index every property x by using also the
field

– domain, since we assign to this field the values
corresponding to all the classes and properties be-
longing to
domain(x).

According to the rules listed above, in particular those
regarding state S 3, the entities belonging to domain(x)
do not need to be considered, since an entity is not an
open variable to which constraints can be applied. This
allows us to reduce significantly the size of the index.

In addition to the properties listed in the KB,
CANaLI constructs, for each property having non-
literal range, the corresponding inverse property. For
instance, the property dbo:team associates people

with sport teams, and thus users can ask “What is the
team of Kobe Bryant?”, inasmuch as dbr:Kobe_Bryant
belongs to the domain of dbo:team. However the
question “Who are the players of Los Angeles Lak-
ers?” requires the use of the inverse of property
dbo:team. Inverse properties are denoted by adding
the suffix ‘[inverted]’ to the label of the original prop-
erty10,

We created the Lucene index using the elements of
the 2015 DBpedia release. The inverse properties were
indexed as well. The time needed to create such an in-
dex, that requires to process the∼130 million triples of
the English DBpedia (∼160 million, considering also
those using inverted properties), is ∼55 minutes using
a machine with 64GB of RAM. The obtained index is
∼1.4 GB large and can be easily stored in the main
memory of a server, thus assuring a nearly instanta-
neous response to our search queries.

4. Experimental evaluation

A popular set of benchmarks has been used to mea-
sure the performance of QA systems, i.e., the ques-
tions of the sets of the latest three editions of the
QALD (Question Answering over Linked Data) an-
nual contest [4]. The benchmarks consist of sets of
NL questions, each associated with a gold standard
query in SPARQL, representing the translation of the
question. The accuracy of the systems participating in
the contest is measured by comparing the results ob-
tained by the gold standard queries with the results ob-
tained by the systems. We assessed the performances
of CANaLI on both the questions over the general
DBpedia KB [1], used in the challenges held since
2013, and the questions over the specialized KBs Mu-
sicBrainz [6] and 3 biomedical KBs: DrugBank [7],
Diseasome [8], and SIDER [9]. The results obtained
on each question the benchmarks are reported in [10].
We report here the results obtained on DBpedia ques-
tions of QALD-6, biomedical questions of QALD-4,
and MusicBrainz questions of QALD-3. In Fig. 9, the
column ‘Proc.’ shows the total number of questions for
which the systems provided an answer; ‘Rec.’, ‘Prec.’.
and ‘F-1’ show the average recall, precision, and F-
1 score, respectively, ignoring the questions that the

10While CANaLI already support assigning multiple labels to all
the elements of the KB, the use of more descriptive words and syn-
onyms obtained from existing paraphrase dictionaries ([21,35]) is a
task left for future work

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 9

Proc. Rec. Prec. F-1 F-1 global

CANaLI 99 0.89 0.89 0.89 0.88
UTQA 100 0.69 0.82 0.75 0.75
KWGAnswer 100 0.59 0.85 0.70 0.70
NbFramework 63 0.85 0.87 0.86 0.54
SemGraphQA 100 0.25 0.70 0.37 0.37
UIQA 44 0.63 0.54 0.58 0.25

(a)

Proc. Rec. Prec. F-1 F-1 global

GFMed 25 0.99 1.0 0.99 0.99
CANaLI 23 1.0 1.0 1.0 0.92
POMELO 25 0.87 0.82 0.85 0.85
RO_FII 25 0.16 0.16 0.16 0.16

(b)

Proc. Rec. Prec. F-1 F-1 global

CANaLI 45 1.0 1.0 1.0 0.9
SWIP 33 0.77 0.77 0.77 0.51

(c)

Fig. 9. Results on QALD-6 DBpedia (a), QALD-4 biomedical data (b), and QALD-3 MusicBrainz (c) test sets, containing 100,
25, and 50 questions, respectively.

system is unable to understand and process. The final
column (‘F-1 global’) reports the global F-score, com-
puted assuming that the recall, precision, and F-score
are 0 on questions the system is unable to process.
Performances of CANaLI. A total of 167 out of the
175 total questions of these three benchmarks (i.e.,
∼95%) can be expressed in CANaLI. As we will dis-
cuss in more details later, the remaining 8 questions
could not be expressed because CANaLI still lacks the
following two features (i) sorting by an aggregate func-
tion (e.g., Which musician wrote the most books?), (ii)
filtering by an aggregate function (e.g., Which coun-
tries have more than ten volcanoes?).

While CANaLI is clearly superior to the other sys-
tems in terms of precision and recall, we see that it
was not able to return all the results produced by the
gold-standard SPARQL query when this used union
or disjunction to deal with equivalent properties in
the KB. For instance, the gold standard query for
the question Which writers studied in Istanbul? uses
the disjunction of properties (dbo:almaMater and
dbo:education) for associating the writer with the
institution were s/he studied11.

Answering questions on biomedical KBs, CANaLI
came a close second to the GFMed system [34], which
is a CNL system that is able able to process almost per-
fectly all the 25 questions, as shown in Fig. 9(b). How-
ever, GFMed is a QA system tailored for biomedical
data, whreas CANaLI, that is a general-purpose sys-
tem, that, as experiments have shown (Fig. 9 (a, c)),

11One could also argue that the contest rules here penalized
CANaLI unfairly, since its users can achieve complete recall by us-
ing two queries instead of one.

can be successfully used to query RDF KBs of broad
and varied nature.

Given that CANaLI proved so effective, it is only
natural that one should wonder about the extent in
which restrictions imposed by the CNL makes it less
user friendly than a full natural language interface. To
answer this question. we will next contrast the original
formulation of the questions in the gold standard with
that used in CANaLI.

4.1. Working with a CNL Interface

So far we have focused on comparing CANaLI with
other NL systems, but there has also been recent work
that compares NL systems system that operated in
different user-friendly modalities such visual WYSI-
WYG. For instance, SWiPE extends the QBE (query-
by-example) approach to Wikedia pages, by activating
its InfoBoxes so that users can easily enter conditions
that define powerful queries to search DBpedia [15].
The SWIPE system is of interest here because in [16]
the authors claim that it is at least if not more effec-
tive than other visual query interfaces to DBpedia pro-
posed so far, and use the QALD-4 testbed to compare
the effectiveness of SWiPE [15], against Xser [38], and
the Wikipedia keyword search tool [11]. The results of
that comparison Figure 10, along with the results ob-
tained using CANaLI. Thus, CANaLI’s CNL interface
appears to be nearly as effective as the very powerful
WYSIWYG interface of SWiPE. The study presented
in [16] also addresses the more general question, on
which additional benefits these DBpedia query inter-
faces provide to users over the basic ability of brows-
ing the InfoBoxes of Wikipedia pages and searching
for them using the current keyword search tool of

10 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

Wikipedia. Questions that can be easily answered by
browsing and performing keyword search were called
“trivial” in [16], and we will keep that nomenclature
(although, unlike SWiPE, CANaLI can play a critical
role in those “trivial” questions as well, since it does
not require a web broswer). Thus, following [16], we
divide the questions into 8 trivial (I–VIII) and 12 non-
trivial questions (1–12). For each question, we show
the original formulation and how it had to be rephrased
in order to be accepted by CANaLI.

I. How often did Jane Fonda marry? Since CANaLI
allows counting the number of values of a specified
property, the supported question becomes: “What is
the count of spouse of Jane Fonda?”. (The plural form
for “spouse” should be used but the plural form is cur-
rently only supported for class names.)

II. What is the official website of Tom Cruise?
CANaLI does not accept this question. Indeed, while
the property “official website” exists in DBpedia, the
entity dbr:Tom_Cruise does not have it. However,
users can obtain the correct result using the (arguably
more natural) question: “What is the website of Tom
Cruise?”.

III. Who created Wikipedia? This must be rephrased
as:“Who is the author of Wikipedia?”. In fact, CANaLI
requires questions to start with “What/Who is the,” fol-
lowed by a noun representing the property/class the
user is looking for.

IV. What is the founding year of the brewery that
produces Pilsner Urquell? In CANaLI the question
becomes “What is the founding year of brewery of Pil-
sner Urquell?”. In fact, brewery is a property for beers.

V. Which river does the Brooklyn Bridge cross? In
CANaLI the user must type “What is the river crossed
by Brooklyn Bridge?”. In fact, some bridges have the
property dbo:crosses, with label crosses. In this
case the inverse property is used, for which we defined
the label crossed by.

VI. How tall is Claudia Schiffer? Here too, as in
III, the user must specify a property using a noun, i.e.,
“What is the height of Claudia Schiffer?”.

VII. In which U.S. state is Mount McKinley located?
The question in CANaLI becomes “What is the US
state equal to the location of Mount McKinley?”. The
user could also ask “What is the location of Mount
McKinley”, but that will also return the park and the
country of Mount McKinley.

VIII. When was the Statue of Liberty built? In DB-
pedia, the desired information is stored under the prop-
erty beginning date. Thus the user must type “What is
the beginning date of Statue of Liberty?”, which is not

very natural.

Let us now consider the 12 more complex questions.
1. Which books by Kerouac were published by

Viking Press? In CANaLI the questions becomes
“What are the books with author Jack Kerouac pub-
lished by Viking Press?”. In passing, observe by can-
not be used as synonym for author since it is also used
for many other properties–e.g., producer, and director.

2. Which U.S. state has the highest population den-
sity? In CANaLI the user has to type “What is the u.s.
state having the greatest population density?”.

3. How many films did Hal Roach produce? This is
entered as: “What is the count of films produced by
Hal Roach?”.

4. Give me all federal chancellors of Germany. DB-
pedia contains the entity Chancellor_of_Germany
which is the value of the property dbo:office for
specific people. In CANaLI, it is thus possible to type
“Give me the people with office Chancellor of Ger-
many.”.

5. Which states of Germany are governed by the
Social Democratic Party? In CANaLI the question
has to be input as “What are the German states gov-
erned by party Social Democratic Party of Germany?”.
However, this question does not achieve perfect re-
call, because some DBpedia entries use the abbrevia-
tion“SPD” for that party.

6. Which television shows were created by Walt Dis-
ney? The question has to be rephrased as “What are the
television shows created by Walt Disney?”.

7. Give me the websites of companies with more than
500000 employees. The question in CANaLI becomes
“Give me the website of companies with number of
employees greater than 500000?”.

8. Give me all cities in New Jersey with more than
100000 inhabitants. The state of a city is represented in
DBpedia through the property dbo:isPartOf. We
assigned in as additional label to this property, which
makes the question look quite natural: “Give me the
cities in New Jersey with population total greater than
100000.”.

9. Which actors were born in Germany? CANaLI
uses an additional label, born in, to the property
dbo:birthPlace, thus letting the user type “Who
are the actors born in Germany?”. Without the addi-
tional label, a less natural form for this question would
have been “Who are the actors having birth place Ger-
many?”.

10. Give me all people that were born in Vienna and
died in Berlin. This question can be written as ‘Give

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 11

Proc. Right R. P. F F-g

CANaLI 19 16 0.92 1.0 0.95 0.90
SWiPE 18 17 0.97 1.0 0.98 0.88
Xser 16 14 0.9 0.89 0.9 0.72
Wikipedia 11 2 0.24 0.55 0.33 0.18

Fig. 10. Results on 20 questions extracted from the QALD-4
DBpedia training sets

me the people born in Vienna who died in Berlin.”,
which uses the additional phrase “who died in” as la-
bel for the property dbo:deathPlace.

11. In which country does the Nile start? Writing
this question requires to find the property representing
the countries in which rivers start. The user will proba-
bly try to type start country, which is not the correct la-
bel, according to DBpedia. However, the autocomple-
tion system will suggest the correct label, i.e., source
country. Thus, the question can be input as “What is
the source country of the Nile?”.

12. Which countries have more than two official
languages? This question can not be expressed in
CANaLI, since constraints using aggregate functions
are not supported yet.

Therefore, the questions here discussed illustrate
that most free-text questions require some reformu-
lation in order to be accepted by CANaLI. However
our experience suggests that users quickly gain that
skill with the help of the completions suggested by the
system–and even more so when they focus of a specific
domain of interest rather than random topics. Also we
expect significant improvements once we add the im-
provements discussed in Section 6.

5. Related Work

In this section we briefly review other systems for
QA over RDF data, focusing our attention on systems
that attended the QALD challenges 12.

Xser [38] works in two steps. In the first step,
phrases are extracted from the question using a struc-
tured perceptron that can identify variables, entities,
classes and relation phrases. By means of a semantic
parser, the predicate-argument structure of phrases is
derived, thus obtaining the structure of the query in-

12At the time of writing, we were not able to find papers about the
new systems that attended QALD-6 three months ago; therefore, we
will focus our attention on systems attending the previous editions
of the challenge.

tention. In the second step, the semantic phrases are
mapped against the elements of the KB (specifically,
DBpedia) by using WikipediaMiner [12] for tentities,
and an ad-hoc lexicon that maps classes and relation
phrases to elements of DBpedia.

gAnswer [39] uses a data-driven approach that com-
bines the query evaluation with disambiguation. By
means of the Stanford parser [18] the question is pro-
cessed, and from the dependencies so obtained, se-
mantic relations are extracted by exploiting a para-
phrase dictionary and by using some linguistic rules.
The triples 〈sub ject, predicate, value〉 are obtained
from a phrase of the question, and are initially mapped
to several elements of the KB. The set of extracted se-
mantic relations represents a semantic graph QS . Then,
with G the RDF graph representing the KB, a sub-graph
of G that matches QS is extracted, and disambiguation
of the phrases is performed during this phase. This ap-
proach improves both the accuracy and the processing
time.

CASIA [30] is a QA system that performs the joint
resolution of mappings of phrases against the elements
of the KB by means on an approach based on MLN
(Markov Logic Networks). First, the question is pro-
cessed by using the Stanford parser [18], thus obtain-
ing a dependency tree and a POS (part of speech) an-
notation for every token. Then, phrases are created as
sub-sequences of tokens, with maximum length equal
to 3, and each phrase is mapped to a set of can-
didates, using anchors, redirections and disambigua-
tions information from Wikipedia for entities. Then
word2vec [13] is used as the similarity tool for classes,
and PATTY and ReVerb are used for properties. Fi-
nally, ambiguities are jointly resolved by means of an
MLN created on the basis of the dependencies between
the phrases of the parse tree. This joint resolution of
ambiguities yields the triples that are used to create the
final SPARQL query.

Aqqu [29] also performs a joint resolution of ambi-
guities, such as those due to the same NL term repre-
senting several concept in the KB (polysemy). There-
fore, Aqqu first identifies the entity candidates, then
performs a matching of the NL question agaings some
simple templates. This approach works well in the
studied context, which involves “structurally simple”
queries, i.e., 2 or 3 entities linked via a single rela-
tion. The relation is determined by the words used in
the questions and by a supervised model built using a
training set. The final query is chosen among the can-
didates by using a sophisticated ranking model.

12 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

Intui3 [20] works by first splitting the question into
chunks, then assigning to each chunk a set of possi-
ble candidate elements of the KB, and finally resolv-
ing the ambiguities while constructing the query. The
natural questions are parsed by means of SENNA [19]
and Stanford [18] parsers; i.e., using the POS tags,
chunking, and NER obtained from the former and the
lemmas obtained from the latter. The tokens obtained
from SENNA are merged into chunks, and each chunk
is mapped against the KB. Specifically, the DBpedia
Lookup service is used to find mappings for entities,
and WordNet is used to map the properties using the
Hirst and St-Onge similarity measure [31]. Each chunk
is thus assigned to a set of candidates. The correct can-
didate is chosen while creating the query. Then, the
most probable candidate pair is chosen for each pair
of adjacent chunks using an approach that scans the
chunks from right to left. At the end of the scanning, all
the chunks are assigned to exactly one candidate and
the relationships among them are defined, and used to
create the final SPARQL query.

RTV [23], uses an HMM (Hidden Markov Model)
to find the best mapping of the extracted syntacti-
cal elements against the elements of the KB. This is
achieved by first processing the question using the
Chaos parser [17], whereby a chunk-based depen-
dency graph is constructed (Chaos was enriched with a
set of proper nouns extracted from DBpedia). Apache
Lucene is then used to retrieve ranked elements of the
KB from the chunks of the question. The most likely
overall matching is found using an HMM, where the
observation set is defined by the chunks of the ques-
tion, and the state set is defined by the elements of the
KB to which the chunks can be mapped. Then the emis-
sion and transition matrices are respectively computed
on the fly according to (i) the similarity between the set
on chunks and elements of the KB, and (ii) the seman-
tic relationships in DBpedia. The sequence of observa-
tions is defined by the dependency graph, starting from
its root. The best mapping is thus obtained by means
of the Viterbi algorithm.

Squall2sparql [22], is a CNL system that translates
queries written in SQUALL into SPARQL. The transla-
tion is based on about 100 rules of a Montague gram-
mar. The chunks of the SQUALL sentence must be an-
notated by the user, and written in a form that enables
the direct mapping to elements of the KB. SQUALL en-
ables users to both query and update the KB, and uses
all the SPARQL features. Therefore, its Squall2sparql
interface to RDF KBs seems to push the CNL idea to
its extreme, inasmuch as it achieves the greatest ex-

pressive power, but the need to manually annotate the
chunks of the sentences severely limits the usability of
SQUALL— a fact recognized by the author who pro-
poses the use of a meta-level interface to guide the user
in writing the annotate questions.

GFMed [34] is a CNL system specialized for the
biomedical domain. It is based on the Grammatical
Framework [37], which enables to define grammars by
means of an abstract syntax and one or more concrete
syntaxes. The abstract syntax defines the concepts that
can be expressed as non-terminal symbols and the
rules for their composition. The concrete grammar de-
fines how the trees specified through the abstract syn-
tax are linearized into sentences of a specific language
(e.g., English, SPARQL, etc.). The possibility of defin-
ing more concrete syntaxes allows GF to serve as a
powerful tool for translating sentences from one lan-
guage to another. The GFMed system consists of a GF
program that defines a grammar allowing to pose ques-
tions over the KBs DrugBank, Diseasome and SIDER.
The GF program is completed with a post-processing
procedure for handling literals, that can not be defined
using the concrete syntax. GFMed proved to be very
accurate on the biomedical questions of QALD-4. The
main limitation of this approach is the need to write the
grammar rules for all the concepts of the underlying
KBs, which can be a very hard task for large KBs such
as DBpedia.

6. Conclusions and future work

This paper presented CANaLI, a natural language
QA system that combines effectiveness with simplic-
ity. In fact, while achieving levels of expressive power
and accuracy that advance the current state-of-the-art,
exemplified by the systems discussed in Section 5,
CANaLI achieves greater simplicity both at the logi-
cal and the system levels. A first reason for this sim-
plicity is the use of a CNL and a second one is the
compactness of the FSA-based recognizer we designed
for CANaLI. It is important to remark that CANaLI’s
CNL interface does not limit its expressive power;
this is demonstrated by its performance on the QALD
benchmarks [4], where all the queries in the bench-
mark were expressed (except for one requiring condi-
tions on aggregates, a feature that is now being added
to CANaLI). The generality of the approach taken
was also confirmed by the fact that, besides DBpedia,
CANaLI worked very well on other KBs, including

G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion 13

MusicBrainz [6] and DrugBank [7], Diseasome [8] and
SIDER [9].

While CANaLI does not suffer from expressive
power and generality issues because of its reliance on
CNL, its restricted CNL syntax can produce an inter-
face that is less user-friendly, particularly for begin-
ners, compared to an unrestricted NL interface. How-
ever, the results we obtained with CANaLI are encour-
aging, as illustrated by the long list of testbed ques-
tions we have presented. Out of those many questions,
the only one that required a truly stilted formulation
was question VIII expressed as follows: “What is the
beginning date of Statue of Liberty?". The source of
this problem is the fact that, in English and many other
languages, people refer to the “beginning date" of a
building ot monument with words such as “inaugura-
tion date," “built date," or "dedication date," which de-
note concepts that are similar but not identical. This
has so far discouraged us from applying the simple so-
lution of allowing the use of synonyms in lieu of the
internal names used in DBpedia. In fact, the current
version of CANaLI only uses synonyms in a very con-
servative way, trying to avoid any risk of ambiguity.
While, so far we only applied the synomym solution
in very simple cases, in the future, we plan to explore
a more aggressive usage of synonyms. We expect that
this will improve usability (particularly, in application
domains that employ special jargons) but still avoid
ambiguities, and we can therefore remain in full com-
pliance with CANaLI’s design principles.

In summary, besides bringing QA NL interfaces to
new levels of performance in terms of precision, re-
call, expressive power and generality, CANaLI has in-
troduced the concept of autocompletion for QA on
KBs and demonstrated its important in applications. In
fact, CANaLI’s autocompletion function reveals ambi-
guities in the NL sentence—see e.g. the “population”
question in Figure 2. When presented with this ques-
tion, CANaLI will show all alternative interpretations
that are semantically and syntactically correct and then
let the user select the intended one. A even more com-
mon and important situation is when, as the user types
the question, the autocompletion system halts and tells
the user that no mapping is possible between sentence
entered so far and the underlying KB. As a result, the
user will have to review and revise the names of prop-
erties and entities, and the CNL connectives used in the
question to revise the question into one that is unam-
biguously interpreted by CANaLI. The effectiveness
of the guidance and assistance so provided are greatly
enhanced by the fact that the autocompletion system is

extremely fast and thus provides real-time on-line as-
sistance to users. This remarkable speed of CANaLI
follows from the simplicity of the FSA-based recog-
nizer it uses, and the compactness of the index and
code it employees.

References

[1] http://wiki.dbpedia.org/.
[2] http://linkeddatacatalog.dws.informatik.

uni-mannheim.de/.
[3] http://www.w3.org/TR/sparql11-overview/.
[4] http://www.sc.cit-ec.uni-bielefeld.de/

qald.
[5] http://lucene.apache.org/.
[6] http://musicbrainz.org/.
[7] http://www.drugbank.ca/.
[8] http://wifo5-03.informatik.uni-mannheim.

de/diseasome/.
[9] http://sideeffects.embl.de/.

[10] http://canali.link.
[11] https://en.wikipedia.org/wiki/Special:

Search.
[12] http://wikipedia-miner.cms.waikato.ac.nz/.
[13] https://code.google.com/p/word2vec/.
[14] R. Alur and P. Madhusudan. Visibly pushdown languages. In

Proceedings of the Thirty-sixth Annual ACM Symposium on
Theory of Computing, STOC ’04, pages 202–211, 2004.

[15] M. Atzori and C. Zaniolo. Swipe: searching wikipedia by ex-
ample. In Proceedings of the 21st World Wide Web Conference,
2012.

[16] M. Atzori and C. Zaniolo. Expressivity and accuracy of by-
example structured queries on wikipedia. In 24th IEEE Inter-
national Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE Workshops 2015, Lar-
naca, Cyprus, June 15-17, 2015, pages 239–244, 2015.

[17] R. Basili and F. M. Zanzotto. Parsing engineering and empiri-
cal robustness. Nat. Lang. Eng., 8(3):97–120, June 2002.

[18] D. Chen and C. D. Manning. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, pages
740–750, 2014.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language processing
(almost) from scratch. J. Mach. Learn. Res., 12:2493–2537,
Nov. 2011.

[20] C. Dima. Answering natural language questions with intui3.
In Working Notes for CLEF 2014 Conference, Sheffield, UK,
September 15-18, 2014., pages 1201–1211, 2014.

[21] A. Fader, S. Soderland, and O. Etzioni. Identifying relations
for open information extraction. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing,
EMNLP ’11, pages 1535–1545, 2011.

[22] S. Ferré. SQUALL: the expressiveness of SPARQL 1.1 made
available as a controlled natural language. Data Knowledge
Engineering, 94:163–188, 2014.

[23] C. Giannone, V. Bellomaria, and R. Basili. A hmm-based ap-
proach to question answering against linked data. In Working

14 G. M. Mazzeo and C. Zaniolo / Question Answering on RDF KBs using Controlled Natural Language and Semantic Autocompletion

Notes for CLEF 2013 Conference , Valencia, Spain, September
23-26, 2013., 2013.

[24] B. F. Green, Jr., A. K. Wolf, C. Chomsky, and K. Laughery.
Baseball: An automatic question-answerer. In Papers Pre-
sented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM
Computer Conference, 1961.

[25] P. Gupta and V. Gupta. A survey of text question answering
techniques. International Journal of Computer Applications,
53(4):1–8, 2012.

[26] J. Guyonvarch and S. Ferré. Scalewelis: a scalable query-
based faceted search system on top of SPARQL endpoints. In
Working Notes for CLEF 2013 Conference , Valencia, Spain,
September 23-26, 2013., 2013.

[27] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson,
M. Bürgle, H. Düwiger, and U. Scheel. Faceted wikipedia
search. In Business Information Systems, 13th International
Conference, 2010.

[28] L. Han, T. Finin, and A. Joshi. Schema-free structured query-
ing of dbpedia data. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Manage-
ment, 2012.

[29] B. Hannah and H. Elmar. More accurate question answering
on freebase. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management,
CIKM ’15, pages 1431–1440, New York, NY, USA, 2015.
ACM.

[30] S. He, Y. Zhang, K. Liu, and J. Zhao. Casia@v2: A mln-based
question answering system over linked data. In Working Notes
for CLEF 2014 Conference, Sheffield, UK, September 15-18,
2014., pages 1249–1259, 2014.

[31] G. Hirst and D. St-Onge. Lexical chains as representations
of context for the detection and correction of malapropisms.

1998.
[32] T. Kuhn. A survey and classification of controlled natural lan-

guages. CoRR, abs/1507.01701, 2015.
[33] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,

P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,
and C. Bizer. DBpedia - a large-scale, multilingual knowl-
edge base extracted from wikipedia. Semantic Web Journal,
6(2):167–195, 2015.

[34] A. Marginean. Gfmed: Question answering over biomedical
linked data with grammatical framework. In Working Notes for
CLEF 2014 Conference, pages 1224–1235, 2014.

[35] N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: A
taxonomy of relational patterns with semantic types. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012,
Jeju Island, Korea, pages 1135–1145, 2012.

[36] S. R. Petrick. On natural language based computer systems.
IBM J. Res. Dev., 20(4):314–325, July 1976.

[37] A. Ranta. Grammatical framework. J. Funct. Program.,
14(2):145–189, 2004.

[38] K. Xu, Y. Feng, and D. Zhao. Answering natural language
questions via phrasal semantic parsing. In Working Notes for
CLEF 2014 Conference, 2014.

[39] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao.
Natural language question answering over RDF: a graph data
driven approach. In International Conference on Manage-
ment of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 313–324, 2014.

