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Abstract.

Data-oriented systems and applications are at the centre of current developments of the World Wide Web. In these scenarios,
assessing what policies propagate from the licenses of data sources to the output of a given data-intensive system is an important
problem. Both policies and data flows can be described with Semantic Web languages. Although it is possible to define Policy
Propagation Rules (PPR) by associating policies to data flow steps, this activity results in a huge number of rules to be stored
and managed. In a recent paper, we introduced strategies for reducing the size of a PPR knowledge base by using an ontology
of the possible relations between data objects, the Datanode ontology, and applying the (A)AAAA methodology, a knowledge
engineering approach that exploits Formal Concept Analysis (FCA). In this article, we investigate whether this reasoning is
feasible and how it can be performed. For this purpose, we study the impact of compressing a rule base associated with an
inference mechanism on the performance of the reasoning process. Moreover, we report on an extension of the (A)AAAA
methodology that includes a coherency check algorithm, that makes this reasoning possible. We show how this compression,
in addition to being beneficial to the management of the knowledge base, also has a positive impact on the performance and
resource requirements of the reasoning process for policy propagation.
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1. Introduction

Data-oriented systems and applications are at the
centre of current developments of the World Wide Web
(WWW). Emerging enterprises focus their business
model on providing value from data collection, inte-
gration, processing, and redistribution. These kind of
systems are not new, as the Web has enabled for a long
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time tools such as news aggregators, which collect arti-
cles from various providers, and republish them as col-
lections of short readings, often focusing on specific
topics (politics, sport, etc.)1. Nowadays, the extraction,
publication, and reuse of data on the Web is an estab-
lished practice, and a large number of APIs provide ac-
cess to JSON documents, data tables, or Linked Data

1Wikipedia: https://en.wikipedia.org/wiki/News_
aggregator.
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for a variety of use cases, spanning from content and
media linkage [22] to science and education [20].

The key aspect on which we are focusing here is
the publication of Licenses and Terms and Condition
documents associated with those APIs and data arti-
facts, that declare the associated rights and policies
that should guide their use. Data Hubs collect a large
variety of data sources and process them in order to
implement the workflow that connects data in their
original sources to applications that might want to ex-
ploit these data [12]. These systems create new chal-
lenges in terms of the volume of data to be stored
and require novel processing techniques (for example
stream-based analysis [26]), but more importantly they
demand for more sophisticated approaches to data gov-
ernance [10]. In the Web of (open) data, developers can
access a large variety of information, and often pub-
lish the results of their processing. Hence, they need
to be aware of any usage constraints attached to data
sources they want to exploit, and they need support in
publishing the appropriate policies alongside the data
they distribute.

In this complex scenario, assessing what policies
propagate from the licenses associated with the data
sources to the output of a given data-intensive process
is an important problem. Both policies and data flows
can be described within the Semantic Web, relying on
standards like the W3C PROV model2 to describe pro-
cess executions in a provenance chain and the Open
Digital Rights Language3, which actual purpose is to
formalize and validate policies. Particularly, it is pos-
sible to specify Policy Propagation Rules (PPR) [7] by
associating policies with data flow steps, although this
activity results in a large number of rules to be stored
and managed. In [7], we studied how a PPR knowledge
base can be compressed by using an ontology of the
possible relations between data objects, the Datanode
ontology4, and by applying the (A)AAAA methodol-
ogy, a knowledge engineering approach that exploits
Formal Concept Analysis (FCA).

In this article we illustrate how reasoning on pol-
icy propagation can be practically performed. Building
upon [7], we report on an extension of the (A)AAAA
methodology that includes a coherency check between

2W3C PROV, https://www.w3.org/TR/
prov-overview/.

3ODRL W3C Community Group, https://www.w3.org/
community/odrl/.

4Datanode, http://purl.org/datanode/ns/ and
http://purl.org/datanode/docs.

the hierarchy of the FCA lattice and the Datanode on-
tology. This extension was necessary in order to ex-
ploit the compressed rule base during reasoning and
avoid incorrect results. While the compression of the
rule base reduces the number of rules to be managed,
it requires the reasoner to compute more inferences.
Therefore, we study the impact of rule base compres-
sion on the performance of the reasoning process. In
other words, this article focuses on two contributions
that relate to the aspect of reasoning with (compressed)
PPRs, which was missing in [7]: 1- the extension of the
(A)AAAA methodology by adding an additional co-
herency check step to the Assessment phase, and 2- the
evaluation of the effect of compression on reasoning
performance.

The article is structured as follows. Section 2 re-
views the relevant literature. Section 3 presents an
exemplary use case, and introduces the elements
for reasoning on policy propagation, going through
the description of the data flow, the representation
of policies, and the concept of Policy Propagation
Rule (PPR). Section 4 provides a summary of the
(A)AAAA methodology, integrated with a novel As-
sessment phase that includes a coherency check al-
gorithm that allows effective reasoning with a com-
pressed rule base. We also evaluate the impact of this
evolved methodology on the compression factor of the
knowledge base of PPRs. In Section 5, we report on
experimental results about the impact of a compressed
rule base on reasoning. For this purpose, we compare
the performance of reasoning with an uncompressed
rule base against reasoning with a compressed one. We
perform this comparison using two different reason-
ers, the first computing the inferences at query time,
the second materializing them at load time. Finally, we
discuss our observations before closing the article with
some conclusions and perspectives on future work.

2. Related Work

In recent years, data repositories and registries have
been growing, spanning from data cataloguing services
(Datahub5), data collections (Wikidata6, Europeana7),
to platforms that manage the collection and redistribu-
tion of data (Socrata8). An emerging category of such

5Datahub. https://datahub.io/
6Wikidata. https://www.wikidata.org
7Europeana. http://labs.europeana.eu/
8Socrata. https://www.socrata.com/
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systems are City Data Hubs, which need to support
developers not only in obtaining data, but also in as-
sessing the policies associated with data resulting from
complex pipelines [12,3,2]. It is therefore for these
systems to implement technologies that allow policies
associated to derived datasets to be computed. In this
article we concentrate on the problem of reasoning
with propagating policies.

Policies can be represented on the Web in a machine-
readable format. The W3C ODRL Community Group9

works on the development of a set of specifications to
enable interoperability and transparent communication
of policies associated with software, services, and data.
The Open Digital Rights Language (ODRL)10 is an
emerging language to support the definition, exchange
and validation of policies [18]. Although ODRL is also
available as an ontology, it only defines the semantics
of policies in terms of natural language descriptions.
An extension of the ODRL semantics has been pro-
posed in [31] by considering dependencies between
actions, and discussing the impact of explicit and im-
plicit dependencies on the evaluation of policy expres-
sions. The idea of establishing dependencies between
ODRL actions in order to enhance the evaluation of
ODRL expressions is related to our work, where we
abstract relations in data flows. The Datanode ontol-
ogy [6] which we use here is however designed to ex-
press a wider range of relations between data artifacts,
and not only the ones derivable from actions. For in-
stance, partitive relations influence the attached poli-
cies but are not derived from any action on the data.
Nevertheless, a PPR reasoner can surely benefit from a
well-defined semantics of ODRL actions. Recently, the
W3C Permissions & Obligations Expression Working
Group11 followed up on ODRL to develop an official
W3C standard for defining permissions and obliga-
tions.

The RDF Licenses Dataset [28] is an attempt to es-
tablish a knowledge base of license descriptions based
on RDF and the ontology provided by ODRL. It also
uses other vocabularies aimed to extend the list of pos-
sible actions, for instance the Linked Data Rights12 vo-
cabulary.

9W3C ODRL Community Group https://www.w3.org/
community/odrl/

10ODRL Vocabulary & Expression, https://www.w3.org/
TR/2016/WD-vocab-odrl-20160721/.

11W3c Permissions & Obligations Working Group, https://
www.w3.org/2016/poe/wiki/Main_Page.

12Linked Data Rights (LDR): http://purl.oclc.org/
NET/ldr/ns#.

Process executions can be described in the Semantic
Web using the Provenance Ontology (PROV-O) [24].
PROV-O describes workflow executions in terms of
agents, actions and assets involved. The Datanode on-
tology has been designed to describe Semantic Web
applications by means of the relations between the data
involved in their processes [6]. The ontology is a tax-
onomy of possible relations that may occur between
data objects, which might be part of a process execu-
tion, such as the ones described with PROV-O. It can
therefore be used to further qualify the implications
of the actions performed in such a process. Datanode
can describe process implications in a data-oriented
way, namely as network of data objects. While poli-
cies and process executions can be represented, in the
present paper we aim at studying the process of rea-
soning upon the propagation of policies across a data
flow.

Rule-based representation and reasoning over poli-
cies is required in order to enable secure data ac-
cess and usage in distributed environments, particu-
larly in the Semantic Web [25,13,4]. Defeasible logic
is used to reason with deontic statements, for exam-
ple to check compatibility of licenses or to validate
constraints attached to components on multi-agent sys-
tems [29]. The problem of licenses’ compatibility has
been extensively studied in the literature [16,15] and
tools that can perform such assessment do exist [23].
Our previous work introduces a form of policy reason-
ing, namely policy propagation [7]. A Policy Propa-
gation Rule (PPR) is a Horn clause defined by associ-
ating a Datanode relation with an ODRL policy. Rea-
soning with Horn rules is an effective way of deal-
ing with policies, particularly because Horn rules al-
low tractable defeasible reasoning [1]. While in this ar-
ticle we only focus on policy propagation, PPRs can
in principle be integrated with rule-based reasoners for
policy validation.

Formal Concept Analysis (FCA) [33] has the capa-
bility of classifying collections of objects depending
on their features. We apply FCA in conjunction with
the Datanode ontology to detect a common behaviour
of relations in terms of policy propagation, with the
purpose of compressing a PPR knowledge base. We re-
fer the reader to [9] for a description of the Contento
tool, that implements FCA as well as other function-
alities for evolving concept lattices in Semantic Web
ontologies, also part of the approach we present here.

The approach described in this paper clearly re-
lates to principles and methods of knowledge engineer-
ing [32]. In [27], knowledge acquisition is considered
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as an iterative process of model refinement. More re-
cently, problem solving methods have been studied in
relation to the task of understanding process execu-
tions [14]. These contributions form the background
of the approach we are following in the present work.
The problem of compressing propositional knowledge
bases has been extensively studied in the past, focusing
on the optimization of a Horn minimization process to
improve the performance of rule execution [17,5]. Dif-
ferently, we deal with compression as a mean to reduce
the number of minimal rules to be managed (each PPR
being already an atomic rule), by means of an addi-
tional knowledge base (the Datanode ontology).

It is worth noting that our problem is not one of pol-
icy enforcement, but of providing the right informa-
tion about policies that might affect the terms of use
of a given asset produced by a complex data flow. This
problem is also different from the one of minimizing
access control policies (example, the abstraction by
subsumption proposed in [19]), as the abstraction re-
quired is on the propagation of the policy, not the pol-
icy itself. Reasoning on policy propagation does not
require the policies to be validated per se. On the con-
trary, we claim that validating the policies of a data ar-
tifact, which is the result of some manipulation, should
consider the policies inherited from the input data, ac-
cording to the particular actions performed.

To our knowledge, the problem of propagation of
usage policies in data flows has not been tackled be-
fore the contribution in [7]. In [10] we proposed an ap-
proach for integrating policy propagation in the data
governance activity of Data Hubs, where policies and
data flows are managed by Data Hub managers. How-
ever, in [7] as well as in the present work, we do not
focus on the quality of the data flow representations,
and assume a machine-readable description of the poli-
cies of the input asset, as well as the existence of an
accurate data flow.

3. Reasoning on policy propagation

In this section, we describe our approach for reason-
ing on policy propagation, and we present a use case
as an example.

3.1. Approach

We define the problem of policy propagation as
identifying the set of policies associated with the out-
put of a process, implied by the policies associated

with the input data source. In order to perform reason-
ing on policy propagation, we need:

a) descriptions of policies attached to data sources;
b) a description of the data flow (the actions per-

formed on the data), and
c) policy propagation rules (which actions do prop-

agate a given policy).

Description of policies. We assume the policies of
data sources are described as licenses or "terms and
conditions" documents, and that they are expressed in
RDF according to the ODRL ontology13. An ODRL
odrl:Policy is an entity to capture the statements
of the policy, specifying a set of odrl:Rules, each
including a deontic aspect (odrl:permission
or odrl:prohibition), which are defined for
a set of odrl:Actions and a odrl:target
odrl:Asset. Permissions, in turn, can comprise a
odrl:duty (or more). For example, the RDF Li-
censes Dataset [28] is a source of such descriptions. In
our work, we also developed ad-hoc RDF documents
to satisfy this requirement, when necessary.

Fig. 1. Top hierarchy of the Datanode ontology.

Description of the data flow. Data flows are rep-
resented with the Datanode ontology [6]. The
terms are defined under the http://purl.org/
datanode/ns/ namespace (we use the prefix
dn: for readability). The ontology defines a unique
type - dn:Datanode - and 115 relations, start-
ing from a single top property: dn:relatedWith,
having dn:Datanode as rdfs:domain and
rdfs:range. An instance of dn:Datanode is any
data object that can be the input or output of a process.

13ODRL 2.1: https://www.w3.org/ns/odrl/2/
ODRL21.
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The ontology groups the relations under five main di-
mensions14, summarized in Figure 1:

Adjacency. dn:adjacentTo represents prox-
imity between two datanodes in a data
container. For example, proximity may re-
sult from being parts of the same dataset -
dn:disjointPartWith, or being an annota-
tion of the dataset - dn:hasAnnotation, or
an attachment - dn:attachedTo.

Derivation. This branch specializes
dn:hasDerivation in a number of
different forms. Examples cover activities
like mining - dn:hasExtraction, se-
lection - dn:isSelectionOf, reason-
ing - dn:hasInference, remodelling
- dn:remodelledFrom, or the activity
of making snapshots of data or caches -
dn:hasSnapshot, dn:hasCache, to
mention a few.

Metalevels. This dimension covers the relations be-
tween a data object and its metadata. The prop-
erty dn:metadata is used to designate a rela-
tion with information that applies to the datan-
ode as a whole. This relation specializes as
dn:describes, dn:hasAnnotation and
dn:hasStatistics.

Interpretation. This is designed to capture the pos-
sibility that a datanode might contribute to in-
ferences that can be made in another one. Two
datanodes might be "understood" together, i.e.
their content can be compared, or the interpre-
tation (inferences) of one may affect the in-
terpretation (inferences) of another. The more
intuitive examples are dn:consistentWith
and dn:inconsistentWith. However, this
is also the area of the ontology that cov-
ers partitive relations: dn:isPartOf and the
two specializations dn:isPortionOf and
dn:isSectionOf. In Datanode, portion refers
to a part of the population of a dataset (such as
the rows of a spreadsheet), while section refers to
a set of values for a certain dimension in a dataset
(for example, a column of a spreadsheet).

14In this section we only summarize the basic features of the
ontology, and we omit to specify inverse relations (for example
dn:isDerivationOf), for clarity. The interested reader is re-
ferred to [6] and to the online documentation: http://purl.
org/datanode/docs

Capabilities. Capability is intended as the power
or ability to generate an outcome15. Capability
is covered with two separate branches starting
from dn:overlappingCapabilityWith
and dn:differentCapabilityFrom,
respectively. Two datanodes may have sim-
ilar (or different) potential. For example,
dn:overlappingVocabularyWith and
dn:overlappingPopulationWith ex-
press the similarity between two data objects
in terms of vocabulary or population of a
dataset. Under this scope, we also positioned
dn:optimizedInto (also a kind of deriva-
tion), to state the empowerment of an existing
capability.

It is worth noting that Datanode rela-
tions often have multiple ancestors. For ex-
ample, dn:hasStatistics is both a
dn:hasComputation and a dn:describedBy
kind of relation, which in turn are subsumed by
dn:hasDerivation and dn:metadata re-
spectively. Similarly, dn:hasAnnotation re-
lates a datanode to some attached metadata, there-
fore it is subsumed by dn:attachedTo and
dn:metadata. We refer to [6] for a discussion on
the development of Datanode.

In this work, we use the representations of data flows
extracted from the descriptions of several Semantic
Web applications prepared in [6].

Policy Propagation Rules. A Policy Propagation
Rule (PPR) establishes a binding between a Datanode
relation r and a policy p. A PPR is a Horn clause of
the following form:

has(X, p) ∧ propagates(p, r) ∧ relation(r,X, Y )
→ has(Y, p)

where X and Y are data objects, p is a policy and r
a Datanode relation between X and Y . When the pol-
icy p holds for a data object X , related to another data
object Y by the relation r, then the policy p will also
hold for the data object Y . For example a PPR could
be used to represent the fact that downloading a file F
distributed with an attribution requirement will result
in a local copy D, which also needs to be used accord-
ing to the attribution requirement. Therefore, the above
abstract rule could be instantiated as follows:

15Definition from http://en.wiktionary.org/wiki/
capability.
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has(F, attribution)∧
propagates(attribution, isCopyOf)∧

relation(isCopyOf, F,D) → has(D, attribution)

In fact, we can reduce a PPR to a more compact form,
i.e. a binary association between a policy p and a rela-
tion r:

propagates(p, r)

as the other components of the rule can be automati-
cally derived for any possible X and Y .

With these elements established, we can trace the
policies propagated within the data flow connecting in-
put and output.

3.2. Example use case

We described the components required to reason
upon policy propagation in data flows. We now intro-
duce a motivating scenario. The following are those
name spaces that will be referred to in this example:

r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
o d r l : < h t t p : / / www. w3 . org / ns / o d r l / 2 / >
cc : < h t t p : / / c r ea t ivecommons . o rg / ns #>
dn : < h t t p : / / p u r l . com / d a t a n o d e / ns / >
ppr : < h t t p : / / p u r l . com / d a t a n o d e / ppr / ns / >
ex : < h t t p : / / p u r l . o rg / d a t a n o d e / ex / >

We selected EventMedia [21] as an exemplary data-
oriented system. EventMedia exploits real-time con-
nections to enrich content describing events and asso-
ciates it with media objects16. The application reuses
data exposed by third parties, aggregating data about
events and exposing them alongside multimedia ob-
jects retrieved on the Web. Aggregated data are inter-
nally represented using the LODE ontology [30]. In
order to associate the right policies to these data, a de-
scription of the policies of the input data, a description
of the data flow, and a knowledge base of PPRs are
needed.

Table 1 lists the licenses or terms of use documents
associated with the input data objects17. Listing 1 lists

16See http://eventmedia.eurecom.fr/.
17The Upcoming service is not available at the time of writing,

however a snapshot of the documentation can be consulted from
the Web Archive, reporting a non-commercial use clause: https:
//web.archive.org/web/20130131064223/http:
//upcoming.yahoo.com/services/api/. The application
was firstly produced in 2014, when the EventMedia dataset descrip-
tion article was firstly submitted to the Semantic Web Journal. The
description produced refers to the submitted version, which could
be changed in the published version.

the set of policies associated to the content of the Flickr
API, stated in the Flickr APIs Terms of Use18.

Listing 1: Policies representation extracted from the
Flickr APIs Terms of Use.

ex : F l i c k r T e r m s a o d r l : O f f e r ;
r d f s : l a b e l " F l i c k r APIs Terms of Use " ;
r d f s : s e e A l s o
< h t t p s : / / www. f l i c k r . com / s e r v i c e s / a p i / t o s / > ;

o d r l : a s s i g n e r < h t t p s : / / www. f l i c k r . com> ;
o d r l : p r o h i b i t i o n [

o d r l : t a r g e t ex : F l i c k r ;
o d r l : a c t i o n o d r l : s e l l , o d r l : g ran tUse ,

cc : CommercialUse ] ;
o d r l : p e r m i s s i o n [

a o d r l : P e r m i s s i o n ;
o d r l : t a r g e t ex : F l i c k r ;
o d r l : a c t i o n o d r l : use ;
o d r l : du ty o d r l : a t t r i b u t e ]

.

Figure 2 illustrates the EventMedia data flow
and Listing 2 the equivalent RDF description. Data
are processed from event directories and enriched
with additional information and media from sources
like DBpedia19, Flickr20 or Foursquare21. In the
figure, circles are data objects and arcs are Datanode
relations. We will follow the path that connects the
ex:output data object to two of the input data
objects, namely ex:Flickr - that represents the
Flickr API22 (this path is highlighted in the figure),
and Eventful23 - a portal to search for upcoming events
and related tickets. Apart from using the LODE ontol-
ogy, ex:output is remodelled from an aggregation
of various sources, named as ex:collection.
The population (entities) of ex:collection
includes ex:events, a dn:combinationFrom
ex:Eventful with other sources (central path in
the figure). Moreover, ex:collection includes
descriptions of media from ex:Flickr, expressed
by the path dn:hasPortion / dn:isCopyOf
/ dn:isSelectionOf. The data selected from
ex:Flickr also refer to (some of) the entities
aggregated in ex:events. This is expressed

18Flickr API Terms of Use: https://www.flickr.com/
services/api/tos/.

19DBpedia: http://dbpedia.org.
20Flickr: http://www.flickr.com.
21This description has been initially elaborated in [6].
22Flickr API: https://www.flickr.com/services/

api/.
23Eventful: http://eventful.com/
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Fig. 2. The data flow of EventMedia. Input sources are the top nodes. The node at the bottom depicts the output data, which is a remodelling of
the data collected from various sources according to a specific schema.
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by the path ex:descriptionsFromFlickr
dn:samePopulation / dn:isPortionOf
ex:events. Therefore, the data flow is a backtrace
of the abstract process of the EventMedia system,
from the ex:output data object towards the input
data sources.

Listing 2: The EventMedia data flow in RDF.

ex : e v e n t s
dn : combina t ionFrom ex : E v e n t f u l ,

ex : LastFM , ex : Upcoming .

ex : c o l l e c t i o n dn : h a s P o r t i o n
[ dn : isCopyOf ex : d e s c r i p t i o n s F r o m F l i c k r ] ,
[ dn : isCopyOf ex : d e s c r i p t i o n s F r o m D b p e d i a ] ,
[ dn : isCopyOf ex : d e s c r i p t i o n s F r o m M u s i c b r a i n ] ,
[ dn : isCopyOf ex : d e s c r i p t i o n s F r o m F o u r s q u a r e ] ,
ex : e v e n t s .

ex : d e s c r i p t i o n s F r o m D b p e d i a
dn : i s S e l e c t i o n O f ex : Dbpedia ;
dn : s a m e P o p u l a t i o n

[ dn : i s P o r t i o n O f ex : e v e n t s ] .

ex : d e s c r i p t i o n s F r o m F l i c k r
dn : i s S e l e c t i o n O f ex : F l i c k r ;
dn : s a m e P o p u l a t i o n

[ dn : i s P o r t i o n O f ex : e v e n t s ] .

ex : d e s c r i p t i o n s F r o m F o u r s q u a r e
dn : i s S e l e c t i o n O f ex : F o u r s q u a r e ;
dn : s a m e P o p u l a t i o n

[ dn : i s P o r t i o n O f ex : e v e n t s ] .

ex : d e s c r i p t i o n s F r o m M u s i c b r a i n
dn : i s S e l e c t i o n O f ex : M u s i c b r a i n ;
dn : s a m e P o p u l a t i o n

[ dn : i s P o r t i o n O f ex : e v e n t s ] .

: o u t p u t
dn : i sRemodel ledFrom ex : c o l l e c t i o n ;
dn : usesSchema ex : TheLODEOntology .

Table 1
Sources of Terms and conditions associated with the data sources of
EventMedia.

Source T&C

Flickr Flickr APIs Terms of Use24

Dbpedia Creative Commons CC-BY-SA 3.0

Eventful Eventful API Terms of Use25

LastFM LastFM Terms of Service26

Upcoming Non Commercial Use Requirement

Musicbrain Creative Commons CC0

Foursquare Foursquare Developers Policies27

The data flow described so far can be leveraged by a
reasoner in conjunction with the ODRL policies of the
inputs, and the PPRs, to infer the policies associated
with ex:output. Listing 3 shows the policies prop-
agated from the inputs to the output of the EventMedia
data flow, some of the deriving from the restrictions
applied to Flickr data, shown previously in Listing 1

Listing 3: Example of policy associated with the output
of EventMedia.

ex : o u t p u t P s e t a o d r l : S e t ;
o d r l : p r o h i b i t i o n [

o d r l : t a r g e t ex : o u t p u t ;
o d r l : a c t i o n o d r l : modify ,

cc : commercialUse , o d r l : s e l l ] ;
o d r l : p e r m i s s i o n [

o d r l : t a r g e t ex : o u t p u t ;
o d r l : a c t i o n o d r l : use ;
o d r l : du ty o d r l : a t t r i b u t e ]

.

In [7] we considered the set of relations defined by
Datanode and the policies defined in the RDF Licenses
Dataset to generate a knowledge base of 3865 propaga-
tion rules. With the goal of improving the management
of the rules, we studied to what extent it is possible to
reduce the number of rules to be stored. This reduction
requires to be complemented by inferences produced
by a reasoner, relying on the axioms of the Datanode
ontology. In the present work, we study whether this
reasoning is practically feasible, and make the hypoth-
esis that compressing the size of the rule base will
not negatively impact the efficiency of the reasoner in
computing the propagated policies.

4. (A)AAAA Methodology: overview and
coherency check

Firstly introduced in [7], the (A)AAAA methodol-
ogy covers all the phases necessary to set up a compact
knowledge base of PPRs28. The methodology is based

24Flickr APIs Terms of Use. https://www.flickr.com/
services/api/tos/

25Eventful API Terms of Use. http://api.eventful.
com/terms

26LastFM Terms of Service. http://www.last.fm/api/
tos

27Foursquare Developers Policies. https://developer.
foursquare.com/overview/community

28In our work, it has been applied with the support of
the command line tool PPR-A-FIVE: https://github.com/
enridaga/ppr-a-five.
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on two assumptions: 1) Policy Propagation Rules are
associations between policies and data flow steps, and
2) an ontology is available to organize data flow steps
in a semantic hierarchy, e.g., for expressing the fact
that the relation is a copy of is a sub-relation of is
a derivation of 29. The inferences that can be derived
from the ontology allow us to remove rules from the
knowledge base. The methodology permits to mea-
sure the impact of the application of the ontology and
supports its evolution with the purpose of maximizing
the compression of the knowledge base of PPRs [7].
With respect to the methodology already presented, the
novel contribution of this article is the introduction of
a coherency check method in the Assessment phase.
In what follows we summarize the methodology, fo-
cusing on the coherency check element, and refer the
reader to [7] for a general overview.

The methodology is composed of the following
phases:

A1 - Acquisition.

The initial task is to set up a knowledge base of
PPRs. We used the Datanode ontology to extract a list
of 115 possible relations between data objects, and
combined them with 113 policies derived from the
ones defined in the RDF License Dataset. The com-
bination of relations and policies lead to a matrix of
12995 cells. This phase required a manual supervision
of all associations between policies and relations in
order to establish the initial set of propagation rules.
This was performed with the support of the Contento
tool [9].

A2 - Analysis.

The objective of the second phase is to detect com-
mon behaviors of relations with respect to policy prop-
agation. We achieve this by applying FCA, providing
as input the binary matrix representation of the knowl-
edge base R consisting of PPRs. The output of the
FCA algorithm is an ordered set of concepts C. In FCA
terms, each concept groups a set of objects (the con-
cept’s extent) and maps it to a set of attributes (the con-
cept’s intent). In our case, each concept represents a set
of relations propagating the same set of policies. These
concepts are organized hierarchically in a lattice, or-
dered from the top concept T , which includes all the

29In our work we rely on Datanode as reference ontology, even if
this is not required by the methodology itself.

objects and potentially no attribute, to the bottom con-
cept B, including all the attributes with potentially an
empty extent (set of objects). All other concepts are
ordered from the top to the bottom. For example, usu-
ally a first layer of concepts right below T would in-
clude large groups of objects all having few attributes
in common. Layers below would have more attributes
and less objects, until the bottom B is reached. In our
case, the top concept T would include all relations
and no policy, while the bottom concept B includes
all the policies but no relation. The concepts identified
by FCA group relations that have a common behav-
ior, as they propagate the same policies. The output of
the process is an ordered lattice of concepts: clusters
of policies that are propagated by the same set of rela-
tions.

A3 - Abstraction.

In this phase, we apply a method for subtract-
ing rules in order to reduce the size of the knowl-
edge base. The abstraction process is based on
applying an ontology that organizes the relations
in a hierarchy (the Datanode ontology). For in-
stance, the relation dn:hasCopy is a sub-relation of
dn:hasDerivation. Intuitively, a number of poli-
cies propagated by dn:hasDerivation should be
also propagated by dn:hasCopy and by all the other
sub-relations in that branch of the hierarchy. By group-
ing all the relations below dn:hasDerivation in
a transitive closure, we obtain a group of relations
similar to the ones in the FCA concepts, that we call
the dn:hasDerivation branch. We compute the
branch of each one of the relations in the ontology hier-
archy. Since we expect branches of the ontology to be
reflected in the clusters of relations obtained by FCA,
we therefore search for matches between the branches
and the concepts of the lattice. When a match occurs,
we subtract the rules that can be inferred from the PPR
knowledge base.

A general estimation of the effectiveness of the ap-
proach is given by the compression factor (CF ). We
calculate the CF as the number of abstracted rules di-
vided by the total number of rules:

CF =
|A|
|R|

with R the set of rules, and A the set of rules that can
be subtracted. Concrete examples of the application of
this phase can be found in [7].
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A4 - Assessment.

The objective of this phase is to assess to what ex-
tent the ontology and the FCA lattice are coherent. In
particular, we want to:

1. detect mismatches (coherency check) to be re-
solved before using the compressed rule base with
a reasoner, and

2. identify quasi matches that could become a full
match by performing changes in the rule base or
the ontology

Coherency check. The abstraction process is based
on the assumption that it is possible to replace asserted
rules with inferences implied by subsumed relations
in the ontology. This requires that all policies propa-
gated by a given relation must be propagated by all
the sub-relations in the original (uncompressed) rule
base. A coherency check process is necessary to iden-
tify whether this assumption does hold for all the rela-
tions in each one of the concepts of the lattice.

In case it does not, we want to collect and report all
the mismatches in order to be able to fix them at a later
stage in the methodology. Listing 4 shows the algo-
rithm used to detect such problems on a given concept
in the lattice.

Listing 4: Coherency check algorithm.

c = // a concept
M = []
S=SuperConcepts(c)
ForEach s in S

E=Extent(c)
E1=Extent(s)
ForEach(e1 in E1)

if not(Contains(E,e1))
ForEach e in E

if Contains(Branch(e),e1)
M = [e,e1]|P // Mismatch detected

return M

We know from the definition of a FCA lattice that
super-concepts will include a larger set of relations
propagating a smaller number of policies. Given a con-
cept c, the algorithm extracts the relations (extent) of
each of any super-concept (S denotes the set of all
super-concepts s of c). In case these relations are not
present in (the extent of) c, it is mandatory for them
not to be sub-relations of any relation in the extent of
c. In case they are, this means that a sub-relation is not
inheriting all the policies of the parent one, thus inval-
idating our assumption. Mismatches M are identified
and reported. Listing 5 shows the results obtained by
applying the algorithm to Concept 71. In this example,

a number of sub-relations of dn:isVocabularyOf
do not propagate some of the policies of Concept 71.

Listing 5: Coherency check result for Concept 71: mis-
matches.

Concept Branch R e l a t i o n
71 dn : i s V o c a b u l a r y O f dn : a t t r i b u t e s O f
71 dn : i s V o c a b u l a r y O f dn : d a t a t y p e s O f
71 dn : i s V o c a b u l a r y O f dn : d e s c r i p t o r s O f
71 dn : h a s V o c a b u l a r y dn : h a s D a t a t y p e s
71 dn : h a s V o c a b u l a r y dn : h a s D e s c r i p t o r s
71 dn : h a s V o c a b u l a r y dn : h a s R e l a t i o n s
71 dn : i sChangeOf dn : i s A d d i t i o n O f
71 dn : i sChangeOf dn : i s D e l e t i o n O f
71 dn : i s V o c a b u l a r y O f dn : r e l a t i o n s O f
71 dn : i s V o c a b u l a r y O f dn : t y p e s O f

Quasi matches. The result of the Abstraction phase
includes a set of measures between concepts and por-
tions of the ontology. Table 2 shows an example of
the measures obtained. The measures defined in the

Table 2
Excerpt from the table of measures computed during the abstraction
phase.
c=Concept ID, ES=Extent Size, IS=Intersection Size, BS=Branch size, Pre=Precision,

Rec=Recall, F1=F-Measure.

c ES IS BS Pre Rec F1 Branch
79 52 52 115 0.45 1 0.62 relatedWith
77 46 19 21 0.9 0.41 0.56 hasDerivation
75 44 8 11 0.73 0.18 0.29 samePopulationAs
67 35 7 7 1 0.2 0.33 hasPart
67 35 6 7 0.86 0.17 0.28 isPartOf
36 16 3 3 1 0.19 0.32 hasCopy
36 16 3 3 1 0.19 0.32 isCopyOf
24 12 6 6 1 0.5 0.67 hasVocabulary
9 8 1 1 1 0.12 0.21 hasReification
0 4 4 115 0.03 1 0.06 relatedWith

Abstraction phase are now considered to quantify and
qualify the way the ontology aligns with the propa-
gation rules: precision (Pre) and recall (Rec) indi-
cate how close a relation is to being a suitable ab-
straction for policy propagation. For example, Concept
67 matches with two branches of the ontology hierar-
chy: hasPart and isPartOf. The Pre is 1 for the
hasPart branch, meaning that all the relations sub-
sumed by hasPart ( hasSection, hasPortion,
etc.) also propagate the policies in Concept 67. Con-
versely, the Pre with respect to isPartOf is 0.86,
meaning that some of the relations in this branch
apparently do not propagate the policies in Concept
67. Concept 36 covers the branches hasCopy and
isCopyOf, meaning that the related policies are
transferred between copies of a given data artifact, re-
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gardless of the direction of the relation (that speci-
fies which one of the two object was the original).
Some general considerations can be made by inspect-
ing these measures. When Rec = 1, the whole ex-
tent of the concept is in the branch. The branch might
also include other relations, which do not propagate
the policies included in the concept. When Pre = 1,
we can perform the subtraction of rules. The perfect
match between a concept and a branch of the ontol-
ogy would be F1 = 1. A low recall indicates that a
high number of exceptions still need to be kept in the
rule set. It also reflects a high ES, from which we
can deduce a low number of policies in the concept.
As a consequence of that, inspecting a partial match
with high precision and low recall highlights a prob-
lem that might be easy to fix, as the number of rela-
tions and policies to compare will be low. For exam-
ple, row 2 of Table 2 refers to a comparison between
Concept 77 and the hasDerivation branch of the
ontology hierarchy. Concept 77 includes 46 relations
(extent size ES). The hasDerivation branch has 21 re-
lations (branch size BS), 19 of which are included in
Concept 77 (intersection size IS). Therefore, all ex-
cept 2 relations in the hasDerivation branch propa-
gate the policies of Concept 77 (BS − IS = 2). We
only need to check whether those 2 relations in the
hasDerivation branch might also propagate the
policies in Concept 77 and then change the knowledge
base to obtain a full match - when all the relations in
a branch are a subset of the extent of a given Concept,
all propagating the related policies. The methods to
perform this change are the subject of the next section.

At this stage we can make the following considera-
tions:

– The presence of mismatches between the lattice
and the ontology will cause the reasoner to re-
turn wrong results. They must, therefore, be elim-
inated.

– The size of the matrix that was manually pre-
pared in the Acquisition phase is large (13k cells),
and even with the support of the Contento tool
it is still possible that errors or misjudgments are
made at that stage of the process.

– The Datanode ontology was not designed for the
purpose of representing a common behavior of
relations in terms of propagation of policies. It
should be possible to refine the ontology in order
to make it cover the current use case in a better
way (and to further reduce the number of rules).

A5 - Adjustment

In this phase we perform operations that change the
ontology (or the PPR knowledge base) in order to re-
pair mismatches, correct inaccuracies, refine the hier-
archy of relations, and improve the compression fac-
tor as a consequence. Six operations can be performed:
Fill, Wedge, Merge, Group, Remove, Add. The Fill op-
eration modifies the PPR knowledge base by adding
all the rules necessary to make an ontology branch be-
ing fully covered by a concept, therefore evolving a
quasi match into a full match. All the other actions are
targeted to add, remove or reposition relations in the
ontology hierarchy (further details about each opera-
tion can be found in [7]). The Assessment phase of the
methodology reported possible mismatches between
the FCA output and the ontology hierarchy. These er-
rors must be repaired if we want the compressed rule
base to be used by a reasoner. For example, Listing 5
shows the set of mismatches detected for concept 71.
In this list, the dn:isVocabularyOf branch con-
tains a number of relations that do not propagate the
related policies, breaking the assumption that all the
policies of dn:isVocabularyOf are also propa-
gated by all the other relations in his branch. With the
Fill operation, we can add all the necessary rules to
remove this mismatch.

After each operation, we run our process again from
the Analysis phase to the Assessment, in order to eval-
uate whether the change fixed the mismatch and/or
how much the change affected the compression factor.
The process is repeated until all mismatches have been
fixed, and there are no other quasi matches that can
be adjusted to become full matches. Moreover, when
new policies are defined in the dataset of licenses, the
process has to be repeated in order to insert the new
propagation rules. However, this is only required af-
ter changes in the licenses, as changes in the associ-
ations between policies and data objects do not affect
the PPRs, e.g., changing the license of a data source or
adding new data flows.

As reported in Table 3 we performed the process
27 times with the objective to improve the compres-
sion and remove errors from the PPR knowledge base,
identified by the coherency check algorithm. Figure 4
shows how the compression factor CF increases with
the number of adjustments performed, while Figure
5 illustrates the progressive reduction of mismatches.
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Fig. 3. (A)AAAA Methodology.

Details about the changes performed are provided in
Table 3 (identified by the symbol +), which also in-
cludes statistics about number of mismatches ( 6=), the
impact on number of rules (R), number of concepts
generated by FCA (C), number of rules abstracted (A),
remaining rules (R+), and compression factor (CF ).
Moreover, Table 3 highlights the improvements ob-
tained before (published in [7]) and the further com-
pression obtained after the introduction of the co-
herency check method in the Assessment phase (after
change 15).

Table 3
List of changes performed.

+ C 6= R A R+ CF

0 80 15 3363 1925 1438 0.572
1 80 16 3370 1953 1417 0.58
2 80 16 3370 1953 1417 0.58
3 80 16 3480 2283 1197 0.656
4 80 18 3482 2299 1183 0.66
5 78 12 3500 2376 1124 0.679
6 78 14 3608 2484 1124 0.688
7 78 16 3716 2592 1124 0.698
8 96 16 3822 2698 1124 0.706
9 93 15 3824 2706 1118 0.708
10 93 15 3824 2706 1118 0.708
11 93 15 3824 2706 1118 0.708
12 93 15 3824 2706 1118 0.708
13 76 15 3837 2765 1072 0.721
14 76 15 3844 2778 1066 0.723
15 78 15 3865 2817 1048 0.729

16 78 13 3866 2818 1048 0.729
17 78 13 3874 2826 1048 0.729
18 63 11 3878 2830 1048 0.73
19 63 11 3882 2834 1048 0.73
20 63 9 3892 2844 1048 0.731
21 55 9 3897 2849 1048 0.731
22 60 8 3898 2850 1048 0.731
23 60 3 3908 2860 1048 0.732
24 54 0 3914 2870 1044 0.733
26 34 0 4225 3451 774 0.817

The first column identifies the change performed (starting from the initial state).
C = Number of concepts in the FCA lattice
6= = Number of mismatches between the FCA lattice and the ontology
R = Number of rules before the process
A = Number of rules abstracted (subtracted)
R+ = Size of the compressed rule base (without the abstracted rules)
CF = Compression Factor
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Thanks to this methodology we have been able to fix
many errors in the initial data, to refine Datanode by
clarifying the semantics of many properties and adding
new useful ones. The inclusion of a coherency check
phase is required for a safe use of the compressed rule
base with a reasoner. However, the introduction of this
approach allowed us to reduce the size even more. As
final result we obtained: 4225 rules in total, 34 con-
cepts, 3451 rules abstracted and 774 rules remaining,
boosting the CF up to 0.817.

The version of the ontology prior to performing
such changes can be found at http://purl.org/
datanode/0.3/ns/ and the modified version of
the ontology can be found at http://purl.org/
datanode/0.5/ns/. As previously mentioned, the
Acquisition phase has been performed with the Con-
tento tool [9,8]. The tools used in the other phases of
the methodology, from the Abstraction to the Adjust-
ment phases, can be found at https://github.
com/enridaga/ppr-a-five.
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Table 4
Data flows used in the experiments.

Data flow has policy has relation relations data objects policies sources output policies

AEMOO-1 6 18 13 10 6 1 6

DBREC-1 6 2 2 2 6 1 3

DBREC-2 6 8 7 5 6 1 6

DBREC-3 6 12 7 8 6 1 6

DBREC-4 6 14 8 9 6 1 3

DBREC-5 6 14 10 10 6 1 6

DBREC-6 6 10 10 6 6 1 3

DBREC-7 6 9 6 10 6 1 6

DBREC-8 6 5 4 5 6 1 6

DISCOU-1 7 22 10 14 7 1 5

DISCOU-11 5 13 9 12 5 1 0

EventMedia-1 37 25 8 24 25 6 4

REXPLORE-1 16 14 8 14 8 3 3

REXPLORE-2 32 23 4 18 14 6 6

REXPLORE-4 32 18 8 14 15 6 3

Highlighted are the maximum and minimum values for each of the data flow inputs. In one case (DISCOU-11), none
of the policies attached to the source are propagated to the output.

5. Experiments

The methodology described in the previous section
allows to reduce the number of rules that need to
be stored and managed. The results of applying this
methodology on the PPR knowledge base derived from
the RDF Licenses Dataset, show how the compression
factor can be dramatically increased after several itera-
tions. Our assumption in this work is that it might pos-
itively affect the performance of reasoning on policy
propagation. Here, we therefore assess through realis-
tic cases the performance of reasoners when dealing
with a compressed knowledge base of PPRs, as com-
pared to when dealing with the uncompressed set.

We took 15 data flow descriptions from previous
work [6], referring to 5 applications that rely on data
obtained from the Web. Each data flow represents a
data manipulation process, consuming a data source
(sometimes multiple sources), and returning an output
data object. Given a set of policies Pi associated with
the input data, the objective of a reasoner is to find the
policies Po associated with the output of the data flow.

The experiments have the objective to compare the
performance of a reasoner when using an uncom-
pressed or a compressed rule base respectively. There-
fore, each reasoning task is performed twice: at first
time, to provide the full knowledge base of PPRs; the
second time, to provide the compressed knowledge
base in conjunction with the hierarchy of relations of

the Datanode ontology (required to produce the infer-
ences).

Reasoners infer logical consequences from a set of
asserted facts and inference rules (knowledge base).
A reasoner can compute the possible inferences from
the rules and the facts any time it is queried, thus ex-
ploring the inferences required to provide the com-
plete answer. Alternatively, a reasoner can compute all
possible inferences at the time the knowledge base is
loaded, and only explore the materialized facts at query
time. In order to appropriately address both of those
reasoning strategies, we run the experiments with two
different reasoners. The first reasoner performs the in-
ference at query time using a backward chaining ap-
proach; is implemented as Prolog program and we will
refer to it as the Prolog reasoner. The second reasoner
computes all the inferences at loading time (material-
ization); is implemented as an RDFS reasoner in con-
junction with SPIN rules, and we will refer to it as
the SPIN reasoner. Both reasoners are implemented in
Java within the PPR Reasoner project30. Both reason-
ers have the capability of executing PPRs and expand
the results according to the ontology hierarchy.

30PPR Reasoner: https://github.com/enridaga/
pprreasoner. The experiments were performed within the
ppr-evaluation module, that includes instructions about how to
reproduce them.



14 E. Daga et al. / Reasoning with Data Flows and Policy Propagation Rules

The Prolog implementation is a program relying on
JLog, a Prolog interpreter written in Java31. The pro-
gram incorporates a meta rule that traverses the set of
PPRs, encoded as facts. At the same time, it supports
the subsumption between relations. Listing 6 shows an
excerpt of the program.

Listing 6: Excerpt of the Prolog reasoner program.

i _ r d f s _ s u b _ p r o p e r t y _ o f (X,X) .
i _ r d f s _ s u b _ p r o p e r t y _ o f (X,Y) :−

r d f s _ s u b _ p r o p e r t y _ o f (X, Z ) ,
i _ r d f s _ s u b _ p r o p e r t y _ o f ( Z ,Y) .

i _ p r o p a g a t e s (X,Y) :− p r o p a g a t e s (X,Y) .
i _ p r o p a g a t e s (X,Y) :−

i _ r d f s _ s u b _ p r o p e r t y _ o f (X, Z ) ,
p r o p a g a t e s ( Z ,Y) .

i _ h a s _ p o l i c y ( T , P , _ ) :− h a s _ p o l i c y ( T , P ) .
i _ h a s _ p o l i c y ( T , P , L ) :−

i _ h a s _ r e l a t i o n ( S , T , R) ,
n o t ( v i s i t e d ( S , L ) ) ,
i _ p r o p a g a t e s (R , P ) ,
i _ h a s _ p o l i c y ( S , P , [ S | L ] ) .

i _ h a s _ p o l i c y ( T , P ) :− i _ h a s _ p o l i c y ( T , P , [ ] ) .

The SPIN reasoner is built upon the RDFS reasoner
of Apache Jena32 in combination with SPIN33, a rule
engine that allows to define rules using SPARQL. The
core part of the reasoner executes PPRs as a SPARQL
meta query (Listing 7).

Listing 7: Construct meta-query of the SPIN reasoner.

CONSTRUCT {
? t h i s ppr : p o l i c y ? p o l i c y

} WHERE {
? i n t ? r e l a t e d W i t h ? t h i s .
? i n t ppr : p o l i c y ? p o l i c y .
? r e l a t e d W i t h ppr : p r o p a g a t e s ? p o l i c y

}

We performed the experiments with the data flows
listed in Table 4. Each data flow describes a process
executed within one of the 5 systems selected as exem-
plary data-oriented applications. These data flows were
formalized before the present work (in [6]), and were
reused for the experiments without changes. However,
information about the policies of the input was added.
Table 4 illustrates the properties of these data flows,
and compares them along several dimensions. The has

31http://jlogic.sourceforge.net/
32http://jena.apache.org/
33http://spinrdf.org/

policy column reports the number of statements about
policies, from a minimum of 5 to 37 policies. The size
of the data flow is reported in the has relation column
of the table, as it is measured in number of Datanode
relations used, spanning from 2 to the maximum of
25. The relations column reports the number of dis-
tinct relations, the same applying to data objects, poli-
cies, sources and the propagated output policies. High-
lighted are the maximum and minimum values for each
of the dimensions. In one case (DISCOU-11), none of
the policies attached to the source are propagated to
the output.

Each experiment takes the following arguments:

– Input: a data flow description
– Compression: True/False

– Output: the output resource to be queried for poli-
cies

In case compression is False, we provide the com-
plete knowledge base of PPRs as input of the reasoning
process without including information on subsumption
between the relations described in the dataflow. Con-
versely, when compression is set to True, the com-
pressed PPR knowledge base is used in conjunction
with the Datanode ontology. It is worth noting that the
(A)AAAA methodology is also an ontology evolution
method, as most of the operations targeted to improve
the compression of the rule base are performed on the
ontology by adding, removing and replacing relations
in the hierarchy. In these experiments, we are consider-
ing the evolved rule base (and ontology), that has been
harmonized by fixing mismatches between the rule set
and the ontology.

The experiments were executed on a MacBook Pro
with an Intel Core i7/3 GHz Dual Core processor and
16 GB of RAM. In case a process was not completed
within five minutes, it was interrupted. Each process
was monitored and information about CPU usage and
RAM (RSS memory) was registered at intervals of half
a second. When terminating, the experiment output
would include: total time (t), resources load time (l),
setup time (s), and query time (q). The size of the in-
put for each experiment is reported in the diagrams in
Figure 6.

We consider performance on two main dimensions:
time and space.

Time performance is measured under the following
dimensions:

L Resources load time.
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S Setup time. It includes L, in addition to any other
operation performed before being ready to re-
ceive queries (e.g., materialization).

Q Query time.
T Total duration: T = S +Q.

Space is measured as follows:

Pa Average CPU usage.
M Maximum memory required by the process

Each experiment was executed 20 times. We compared
the results of the experiments with and without com-
pression, and verified they included the same policies.
In the present report, we show the average of the mea-
sures obtained in the different executions. In order to
evaluate the accuracy of the computed average mea-
sure from the twenty executions of the same experi-
ment, we calculated the related Coefficient of Variation
(CV )34. CV is a measure of spread that indicates the
amount of variability relative to the mean. A high CV
indicates a large difference in the observed measures,
thus reducing the significance of the computed mean.
Diagrams 7a and 7b display the CV of all the measures
for the Prolog and SPIN reasoner, respectively. In al-
most all the cases the CV for the Prolog reasoner was
below 0.1, with the exception of memory usage M ,
that in many cases showed a fluctuation between 0.2
and 0.4. Experiments with the SPIN reasoner reported
a much more stable behaviour in terms of consumed
resources, the CV being assessed below 0.1 in almost
all the cases, except the Query time of some experi-
ments (the peak is on DBREC-4). However, Q with
the SPIN reasoner were fluctuating around an average
of 10ms, making the observed variation irrelevant. Fi-
nally, we consider the computed mean of the observed
measures in these experiments to be significant.

Before discussing the results, it is worth reminding
the reader that this evaluation is not targeted to com-
pare the two implementations of a PPR reasoner, but
to observe the impact of our compression strategy on
the approaches of the Prolog and SPIN implementa-
tions, assuming that any other implementation is likely
to make use of a combination of the two reasoning
strategies they respectively implement.

Figures 8 and 9 illustrate the results of the exper-
iments performed with the Prolog and the SPIN rea-
soner, respectively. For each data flow, the bar on the

34Coefficient of Variation, also known as Relative Standard
Deviation (RSD). https://en.wikipedia.org/wiki/
Coefficient_of_variation

left displays the time with an uncompressed input, and
the one on the right the time with a compressed input.
We will follow this convention in the other diagrams
as well. Figure 8c displays a comparison of the total
time between an uncompressed and compressed input
with the Prolog reasoner. In all cases, there has been
a significant increase in performance with the com-
pressed rule base: in three cases (DBREC-5, DISCOU-
1, REXPLORE-4) the uncompressed version of the ex-
periment could not complete within the five minutes,
while the compressed version returned results in less
then a minute. The total time of the experiments with
the SPIN reasoner (Figure 9c) is much smaller (frac-
tions of a second), having the maximum total time of
approximately 2 seconds (EventMedia-1). However, in
this case too, we report an increase in every case in per-
formance for all the data flows, with some cases per-
forming much better than others (DBREC-3, DBREC-
4). The total time T of the experiment can be broken
up into setup time S (including load time L) and query
time Q. This observation is depicted in Figures 8a and
9a, and in both cases the impact of the rule reduction
process is evident. An interesting difference between
the two implementations can be seen by comparing
Figures 8b and 9b. The cost of the query time in the
Prolog reasoner is very large compared to the related
setup time S. The SPIN reasoner, conversely, showed
a larger setup time S with a very low cost on query
time Q. The reason is that the second materializes all
the inferences at setup time, before query execution.
This accounts for the lack of difference in query time
between the uncompressed and compressed version of
the experiments with the SPIN reasoner.

We did not observe changes in Pa for the Prolog
reasoner (Figure 8d), while the differences in memory
consumption M is significant (Figure 8e), demonstrat-
ing a performance improvement caused by the com-
pressed input. A decrease in space consumption was
also observed using the SPIN reasoner (Figures 9d
and 9e), even if smaller, and negative in only 2 cases
with regard to memory consumption M (DBREC-1
and DBREC-6).

A summary of the impact of the compression on the
different measures is depicted in Figures 10 and 11.
The first bar on the left of both diagrams illustrates the
reduction of the size of the Input, while the others how
much each measure is reduced. A serious improve-
ment has been achieved in the case of the Prolog rea-
soner, implementing a backward chaining algorithm
executed at query time. A PPR reasoner could also be
implemented to perform inferencing at loading time
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(b) SPIN reasoner: input size computed as number of RDF triples with the original (dark purple) and compressed (light green) input for each
data flow.

Fig. 6. Input size for the Prolog (6a) and SPIN (6b) reasoners. It can be deduced that the size of the data flow has a small impact on the general
size of the input.

(materialization). The experiments with the SPIN im-
plementation is therefore used to show that the effect
on reasoning performance exists in both cases, even
if in different ways depending on the approach to in-
ferencing. The main conclusion from our experiments
is therefore that the methodology presented in [7] and
extended with coherency check leads to a compressed
PPR knowledge base that is not only more manage-
able for the knowledge engineers maintaining them,
but also improves our ability to apply reasoning for
the purpose of policy propagation. In addition, it ap-
pears clearly that, when dealing with a compressed
PPR knowledge base, an approach based on material-
ization of inferences at load time is preferable to one
based on computing the inferences at query time.

6. Conclusions

In this article, we presented an approach for reason-
ing on the propagation of policies in a data flow. This
method is grounded on a rule base of Policy Propa-
gation Rules (PPRs). Rules can easily grow in num-
ber, depending on the size of the possible policies and

the one of the possible operations performed in a data
flow. The (A)AAAA methodology can be used to re-
duce this size significantly, as demonstrated in [7], by
relying on the inference properties of the Datanode on-
tology, applied to describe the possible relations be-
tween data objects. We presented an evolved version
of the methodology, which was required to be sure
the inferred policies were correct when using the com-
pressed rule base. However, while this activity reduces
the size of the input of the reasoner, it requires more in-
ferences to be computed. Therefore, we performed ex-
periments to assess the impact of the compression on
reasoning performance. The present article provides
two major contributions:

– the (A)AAAA methodology has been extended
by including a coherency check algorithm, and

– experimental results demonstrating that a com-
pressed knowledge base makes the reasoning on
policy propagation more efficient.

This is a preliminary step on studying compression in
knowledge management and its impact on reasoning
in a more general point of view. Reasoning on policy
propagation requires a formalisation of the data flow,
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Fig. 7. Coefficient of Variation (CV ) of the observed measures. Each experiment was run 20 times. In the diagram we see the CV of measures
observed. For each data flow, the diagram shows twelve bars. The first six bars refer to the uncompressed rule base, the second six to the
compressed rule base. Each group shows the CV for, in order: T , L, S, Q, Pa and M .

and producing such representation can be time con-
suming. Recent work by the authors investigate how
it is possible to support users in the formalisation of
data flows derived from scientific workflows [11]. It
would be of interest to explore methods for support-
ing and automating the generation of such data flows
from other pre-existing artefacts (e.g., code bases and
their documentation). Future work includes defining
new measures to describe the complexity of a data flow
and how it affects reasoning on policy propagation, as
well as studying the validation of data flows with re-
spect to policies, particularly when multiple sources
are used. Finally, we are currently setting up an experi-
mental evaluation (including a user study) to assess the
quality of the knowledge base of PPRs produced with
this approach, the correctness of the reasoning results
with respect to users’ expectations, and the effective-
ness of the associated methodology in the environment
of the MK:Smart Data Hub [12].
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rule base with respect to a given measure. The bars on the left (in dark orange) refer to the uncompressed rule base, while the bars on the right
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