
1

PaaSport Semantic Model: An Ontology for a

Platform-as-a-Service Semantically

Interoperable Marketplace

Nick Bassiliadesa,b,*, Moisis Symeonidisa, Panagiotis Gouvasc, Efstratios Kontopoulosa,d, Georgios

Meditskosa,d, and Ioannis Vlahavasa,b
aSchool of Science & Technology, International Hellenic University, 14th km Thessaloniki - N. Moudania, GR

57001 Thermi, Thessaloniki, Greece
bDept. of Informatics, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
cUbitech Ltd., Thessalias 8 & Etolias 10, GR 15231 Chalandri, Athens, Greece
dInformation Technologies Institute, Centre of Research & Technology Hellas, 6th km Charilaou-Thermi Rd, P.O.

Box 60361, GR 57001 Thermi, Thessaloniki, Greece

Abstract. PaaS is a Cloud computing service that provides a computing platform to develop, run, and manage applications

without the complexity of infrastructure maintenance. SMEs are reluctant to enter the growing PaaS market due to the possibility

of being locked in to a certain platform, mostly provided by the market’s giants. The PaaSport Marketplace aims to avoid the

provider lock-in problem by allowing Platform provider SMEs to roll out semantically interoperable PaaS offerings and Software

SMEs to deploy or migrate their applications on the best-matching offering, through a thin, non-intrusive Cloud broker. In this

paper we present the PaaSport semantic model, namely an OWL ontology, extension of the DUL ontology design pattern. The

ontology is used for semantically annotating a) PaaS offering capabilities and b) requirements of applications to be deployed.

The ontology has been designed to optimally support a semantic matchmaking and ranking algorithm that recommends the best-

matching PaaS offering to the application developer. The DUL design pattern offers seamless extensibility, since both PaaS

Characteristics and parameters are defined as classes; therefore, extending the ontology with new characteristics and parameters

requires the addition of new specialized subclasses of the already existing classes, which is less complicated than adding ontology

properties.

Keywords: Cloud computing, Platform-as-a-Service, Semantic Interoperability, Ontology, Cloud Marketplace

1 Introduction

Platform-as-a-Service (PaaS) is a Cloud computing

service model, where a provider company provides a

computing platform allowing customers to develop,

run, and manage web applications created using pro-

gramming languages, libraries, services, and tools,

typically supported by the PaaS provider [40]. The

consumer of the PaaS does not manage or control the

underlying cloud infrastructure including network,

servers, operating systems, or storage, but has control

over the deployed applications and possibly configu-

ration settings for the application-hosting environment.

* Corresponding author. E-mail: nbassili@csd.auth.gr.

Compared to the Infrastructure-as-a-Service (IaaS)

model, where the consumer has control over operating

systems, storage, and might have limited control of se-

lect networking components, in the PaaS model the

provider takes care of the complexity of building, con-

figuring and maintaining the infrastructure layer,

whereas the developer worries only about developing,

testing and deploying an application on the provided

platform. Finally, compared to the Software-as-a-Ser-

vice (SaaS) model, where the provider’s application is

running on a cloud infrastructure and the consumer

can just run them over the web, possibly with limited

2

user-specific application configuration settings capa-

bility, in the PaaS model the provider has full control

over the application’s lifecycle.

There are many market reports, such as [8], [13],

[61], that indicate that PaaS has a very positive eco-

nomic outlook for the Cloud market, with an expected

growth rate higher than the whole Cloud market, as

well as the IaaS and SaaS markets. PaaS, due to its

service model, allows for low capital investment. It

enables the deployment of applications without the

need for provisioning hosting capabilities. It, thus,

helps save on the cost incurred for buying and manag-

ing the underlying hardware and software. The PaaS

model minimizes the incremental cost required for

scaling the system with growth in the service usage,

while allowing for resource sharing, reuse, life-cycle

management, and automated deployment. For these

benefits, PaaS is preferred over other solutions for ap-

plication and service development.

Although giant vendors occupy this emerging space

as de-facto standards, including Microsoft, Amazon,

Google, and Salesforce.com, many small-medium

companies try to enter the PaaS market, not without

important inhibiting factors. The battle for dominance

in the market between the big vendors makes them re-

luctant to agree on widely accepted standards promot-

ing their own, mutually incompatible Cloud standards

and formats [23]. This dominance increases the lock-

in of customers in a single Cloud platform, preventing

the portability of data or software created by them.

However, even if in theory application and/or data

portability is supported, the high complexity and in

most cases the additional switching costs discourage

users from doing so [2]. The high effort required for

exporting application and data from a Cloud platform

discourages start-ups and SMEs from entering and be-

stirring in the flourishing Cloud market [54]. Of

course, vendor lock-in is ubiquitous in the computer

market, but since the Cloud technology and market are

still shaping, there is still a chance to avoid it.

Cloud specialists argue that in the years to come the

leading enterprise software vendors, as well as the

large Cloud providers will introduce new PaaS offer-

ings, while both large and small Cloud PaaS providers

will grow through partnerships [28]. The formation of

partnerships and federations between heterogeneous

Cloud PaaS Providers involves interoperability. The

Cloud community and the European Commission [19]

have realized the significance of interoperability and

have initiated several approaches to tackle this chal-

lenging issue. The first efforts to explore interopera-

bility in PaaS are also well on track, e.g. CAMP

(Cloud Application Management for Platforms) [10].

Several studies indicate that Cloud community should:

 promote common standards and interoperability

of public Cloud systems, to maximize economies

of scale across the globe and create the precondi-

tions for portability between Cloud vendors;

 create the pre-conditions so that the principle of

data access and portability between Cloud ven-

dors is widely accepted and the risk of lock-in of

users in proprietary systems is prevented.

In order to lower the barriers that prevent the small-

medium Cloud PaaS vendors and software companies

from entering the PaaS market, the latter should be

able to choose between different Cloud PaaS offerings,

offered by the former, and should also be able to de-

ploy their applications easily and transparently be-

tween Cloud providers whenever needed. For example,

application developers can select either the most reli-

able platform, or the most well reputed one, or the

most cost-efficient one, or simply the one that best

meets the technical requirements of their services and

applications [6]. Furthermore, application users could

decide to switch between platforms, when an SLA

(Service Level Agreement) is breached or when the

cost is too high, without setting data and applications

at risk, e.g. loss of data or inability to run the applica-

tion on a different platform.

An open market of interoperable Cloud platforms

will facilitate small-medium Cloud providers to enter

the market and strengthen their position [22]. Further-

more, when interoperability problems have been re-

solved small-medium Cloud vendors could cooperate

through new business models (e.g. in the form of coa-

litions) in order to cope with demand fluctuations. For

example, an unexpected increase in processing power

capacity could force Cloud providers to cooperate in

order to overcome the problem of limited resources.

Otherwise, SMEs would seem unreliable to provide

the negotiated QoS (Quality of Service), leading con-

sumers to rely on big players for hosting their services

and data [28]. Notice, however, that this is only a vi-

sionary aspect of our work and it is outside the scope

of this paper.

1.1 Scope of the paper

With the above problem formulation in mind, the

PaaSport project [49] aims to resolve application and

data portability issues that exist in the Cloud PaaS

market through a flexible and efficient deployment

and migration approach. These include, but are not

limited to image conversion to be suitable for target

3

hypervisor, compression to aid, speed of transfer, im-

age encryption, secure protocols, QoS guarantees,

trust issues and cost sharing models. To this end,

PaaSport combines Cloud PaaS technologies with

lightweight semantics, in order to:

 specify and deliver a thin, non-intrusive Cloud

broker (in the form of a Cloud PaaS Marketplace),

 implement the enabling tools and technologies,

and

 deploy fully operational prototypes and large-

scale demonstrators.

As already discussed, PaaSport’s scope is to enable:

 Cloud vendors (in particular SMEs) to roll out se-

mantically interoperable PaaS offerings, improv-

ing their outreach to potential customers, partic-

ularly the software industry.

 Software SMEs to seamlessly deploy business

applications on the best-matching Cloud PaaS

and/or migrate these applications on demand.

PaaSport contributes to aligning and interconnect-

ing heterogeneous PaaS offerings, overcoming the

vendor lock-in problem and lowering switching costs.

Note that even if “giant vendors” are not our primary

target group, since it would be unlikely for them to co-

operate with a cloud broker that could potentially

cause them to loose clients and, thus, register their of-

ferings in our marketplace, we actually do support “gi-

ant vendors”, such as Amazon, at the technical level,

in order to ease deployment / migration of our market-

place client applications between clouds of “giant”

vendors and smaller vendors. In this case, our market-

place clients have to make a separate agreement with

e.g. Amazon, provide us with their keys for the plat-

form, and then our system would just use the clouds

public API to provide our brokering services.

In order the above to be realized, the PaaSport pro-

ject has, among others, a) developed an open, generic,

thin Cloud broker architecture for an interoperable

PaaS offerings marketplace, b) defined a unified se-

mantic model for PaaS offerings and business applica-

tions, c) developed a unified PaaS API (Application

Programming Interface) that allows the deployment

and migration of business applications transparently to

the developer and independent of the specificities of a

PaaS offering, d) implemented a marketplace infra-

structure for semantically–interconnected PaaS offer-

ings, e) defined a unified service-level agreement

model addressing the complex characteristics and dy-

namic environment of the Cloud PaaS marketplace,

f) defined a Cloud PaaS offerings discovery, short-

listing and recommendation algorithm for providing

the user with the best-matching PaaS offering, and

g) delivered a set of PaaS marketplace utilities and

user-centric front-ends. In this paper, we briefly pre-

sent the broker architecture (a) and we report on the

unified semantic model (b) in detail. Furthermore, we

also present how the semantic model has been inte-

grated into the persistence layer of the PaaSport mar-

ketplace infrastructure (d).

Specifically, in order to support the PaaSport mar-

ketplace, a unified semantic model has been defined,

in the form of an OWL ontology, for representing the

necessary characteristics and attributes for the defini-

tion of the capabilities of PaaS offerings, the require-

ments of the business applications to be deployed

through the proposed Cloud Marketplace, and the

SLAs to be established between offering providers and

application owners. The PaaSport ontology has been

defined as an extension of the DOLCE+DnS Ultralite

(DUL) ontology design pattern [26]. This offers exten-

sibility, since both PaaS Characteristics and parame-

ters are defined as classes, so extending the ontology

with new characteristics and parameters requires just

to add new classes as subclasses of the already existing

ones, which is less complicated than adding new on-

tology properties. This extensibility advantage reflects

also on the persistence layer of the PaaSport market-

place, which is built using a relational database. The

relational database of PaaSport can be easily extended,

as the semantic model evolves, without the need to

change existing tables; only new ones need to be

added.

Finally, the fact that PaaS Characteristics and pa-

rameters are represented as first-class objects allows

the semantic matchmaking and ranking algorithm, de-

veloped for providing the application developer with

the best-matching Cloud PaaS offering, to be extensi-

ble because it is agnostic to specific PaaS Characteris-

tics and parameters. Notice that the recommendation

algorithm is only briefly presented in this paper (Sec-

tion 5) and is detailed in [5].

In the rest of this paper, we review related work in

Section 2 on existing ontologies for Cloud computing.

We then briefly present the PaaSport marketplace in

Section 3, including its architecture, the requirements,

use cases, and functionality relevant to the PaaSport

semantic models. In Section 4 we present in detail the

semantic models. Section 5 describes how the

PaaSport Semantic Model interacts with the Recom-

mendation and the Persistence layer of the PaaSport

marketplace, briefly focusing on the recommendation

algorithm. Section 6 evaluates the PaaSport Semantic

Model by presenting the verification of the ontology

and the evaluation of SPARQL query performance

comparing to alternative semantic models. Finally,

4

Section 7 concludes the paper with a discussion on fu-

ture work.

2 Related Work

Up until now, there is relevant research on seman-

tically annotated Cloud services, which focused on

partial aspects of Cloud computing relevant to

PaaSport. However, no major breakthroughs have yet

been reported in the field of discovering Cloud ser-

vices and performing the matchmaking with the devel-

opers’ functional requirements. This matchmaking

process would further need to establish a defined min-

imum SLA among the offering provider and the SMEs.

In the following, we briefly examine and present the

most relevant work on semantic models relevant to the

work performed within PaaSport.

Androcec et al. (2012) [1] surveyed Cloud Compu-

ting ontologies, according to type and applications and

focused on four (4) categories of Cloud computing on-

tologies according to specific scopes:

 Cloud resources and services description: Ontol-

ogies in this category describe Cloud resources

and services, classify the current services and

pricing models or define new types of Cloud ser-

vices. Representative examples belonging to this

category can be found in [66], [65], [20] and [17].

 Cloud security, namely, models that describe

and/or improve security in Cloud environments,

such as [58], [39].

 Cloud interoperability that deals with how to use

ontologies for achieving interoperability among

different Cloud providers and their services. Rep-

resentative examples include [42] and [31].

 Cloud services discovery and selection: This cat-

egory includes the use of ontologies for discover-

ing and selecting the best Cloud service alterna-

tive. The most characteristic of the numerous re-

lated approaches are [38], [9], [16], [30], and [64],

while one of the most innovative ones is pre-

sented in [55]. The system architecture of the lat-

ter involves (a) a semantic annotation module

that encapsulates domain ontologies, (b) a se-

mantic indexing module utilized for discovery

purposes, and, (c) a semantic search engine that

is exposed to end-users. Using keyword-based

search queries, matching and retrieval of identi-

fied Cloud services is performed.

Another related work paradigm, OpenCrowd’s

Cloud Taxonomy [44], focuses on the latter of the four

categories above. More specifically, the Cloud Taxon-

omy is an online, freely navigable taxonomy that cat-

egorizes Cloud Services according to both their ser-

vice model (IaaS, PaaS or SaaS) and application con-

text. It enables users to discover and access Cloud ser-

vices so that they can further navigate to respective

home pages. Moving beyond just a static model, the

Cloud Taxonomy is interactive, where users can con-

tribute comments and recommend additional products

to include, aiming at encouraging the dialog between

Cloud computing services vendors and developers.

In [18], a unified taxonomy for IaaS and an IaaS ar-

chitectural framework are presented The taxonomy is

structured around seven layers: core service, support,

value-added services, control, management, security

and resource abstraction. The authors also introduce

an IaaS architectural framework that relies on the uni-

fied taxonomy, describing the layers in detail and de-

fining dependencies between the layers and compo-

nents. The resource characteristics of the PaaSport

model bare some resemblances with the resource ab-

straction layer of [18]. However, since PaaSport’s se-

mantic model focus is on PaaS, there are a lot of dif-

ferences.

Kourtesis et al. [36] focus on semantic-based QoS

management and monitoring for cloud-based systems

and proposes a new framework that combines seman-

tic technologies and distributed datastream processing

techniques. Among the discussion of challenges and

future directions, they mention that a proper semantic-

based architecture for cloud computing should con-

tains adequate definitions of functional and non-func-

tional properties, as well as different cloud perspec-

tives (technical vs. business). The PaaSport Semantic

Model properly addresses the above on the PaaS Pa-

rameter and Characteristics level (see section 4.3.4).

Dastjerdi et al. [16] described a framework that fa-

cilitates the discovery of Cloud services (IaaS). End-

users can register their requirements through a web

portal including software, hardware & interfaces de-

scription. Using Open Virtualization Format (OVF),

the corresponding disk images are generated. The de-

scription of users’ requirements is expressed in a se-

mantically annotated format (WSML, Web Service

Modeling Language), in order to discover the most ap-

propriate IaaS provided through a matchmaking pro-

cess. Finally, an SLA is established and a 3rd-party

SLA manager component is responsible to monitor

and verify respective compliance. The matching mod-

ule consists of the ontologies and a matchmaking al-

gorithm. Two main ontologies are utilized through the

process, namely the requirements ontology and the

virtual unit ontology. The former ontology captures

5

the requestor’s virtual unit requirements, which are

defined as functional properties (e.g., number of CPUs,

memory size) and non-functional properties (e.g.,

budget, location) that represent QoS requirements.

Virtual unit ontology provides an abstract model for

describing virtual units and their capabilities to let

IaaS providers advertise their services.

Tsai et al. [62] emphasize on migrating cloud appli-

cations between cloud platforms. A Service Oriented

Cloud Computing Architecture (SOCCA) is proposed

where cloud computing resources are componentized,

standardized and combined in order to build a “cross-

platform virtual computer”. An ontology mapping

layer is configured over these services as a means of

masking the differences between cloud providers.

Cloud brokers interact with the ontology mapping

layer for deploying applications in one cloud or an-

other depending on a series of parameters, such as the

budget, SLAs and QoS requirements that are negoti-

ated with each provider. SOCCA applications can be

developed using the standard interfaces provided by

the architecture or the platform unique APIs of a cloud

provider. Compared to PaaSport, SOCCA uses the on-

tology as an abstraction level for different could APIs

rather than service discovery and selection.

SMICloud [29] is a framework trying to meet simi-

lar requirements to PaaSport, not taking into account

though semantic similarities between different cloud

providers and concepts. It is based on the Service

Measurement Index (SMI) identified by the Cloud

Service Measurement Index Consortium (CSMIC)

[11] and proposes SMICloud, a framework that can

compare different Cloud providers based on user re-

quirements. A vital step is the Analytical Hierarchical

Process (AHP), based on which the ranking mecha-

nism is required to solve the problem of assigning

weights to features considering the interdependence

between them, thus providing a quantitative basis for

ranking Cloud services. The SMI framework provides

a holistic view for selecting a Cloud service provider

based on accountability, agility, assurance of service,

cost, performance, security, privacy and usability. The

SMICloud framework provides features such as ser-

vice selection based on QoS requirements and ranking

of services based on previous user experiences and

performance of services. Overall, Cloud computing

services are evaluated based on qualitative and quan-

titative Key Performance Indicators (KPIs), i.e. ser-

vice response time, interoperability, etc. Finally, the

ranking system computes the relative ranking values

of various Cloud services. The ranking system takes

into account two parameters before deciding where to

lease Cloud resources from: (a) the service quality

ranking based on AHP, and, (b) the final ranking based

on the cost and quality ranking.

Various European research projects deal with issues

related to using semantics for PaaS portability and in-

teroperability. The Cloud4SOA [12] project focuses on

resolving interoperability and portability issues exist-

ing in current Cloud infrastructures and on introducing

a user-centric approach for applications which are

built upon and deployed using Cloud resources.

Cloud4SOA semantically interconnects heterogene-

ous PaaS offerings across different Cloud providers

that share the same technology. The design of the

Cloud4SOA consists of a set of interlinked collaborat-

ing software components and models to provide de-

velopers and platform providers with a number of core

capabilities: matchmaking, management, monitoring

and migration of applications. Cloud4SOA focuses on

resolving the semantic incompatibilities raised both

within the same as well as across different Cloud PaaS

systems and enable Cloud-based application develop-

ment, deployment and migration across heterogeneous

PaaS offerings. Cloud4SOA combines three comple-

mentary computing paradigms: Cloud computing,

Service Oriented Architectures (SOA) and lightweight

semantics. The Cloud4SOA Semantic Model consists

of five tiers, covering the entire spectrum of funda-

mental Cloud entities and their relations: infrastruc-

ture (IaaS), platform (PaaS), application (SaaS), user

and enterprise.

In this work, we have used the Cloud4SOA ontol-

ogy [34] as the basic knowledge source for capturing

the necessary concepts, entities and relationships for

Cloud computing, focusing mainly on the PaaS layer

and secondarily on the IaaS and SaaS layers (see sec-

tion 4.1). As already discussed in the introductory sec-

tion, the main focus of PaaSport is to build a PaaS of-

ferings marketplace where app developers would be

able to select the platform offering that best matches

the application requirements; thus the focus of the

PaaSport semantic models also lies in this direction,

i.e. how to best serve semantic matchmaking and rank-

ing of offerings. The Cloud4SOA ontology has made

fixed assumptions about the characteristics and pa-

rameters needed for matching an application to an of-

fering, and furthermore, had not represented at all how

the values of parameters are compared between a re-

quest and an offering. For example, when a require-

ment states that the offering’s network latency should

be 5ms, it means 5 or less, whereas memory capacity

2GB means at least 2. The Cloud4SOA ontology rep-

resents and tests all these requirements as exact

matches, whereas in PaaSport ontology we are able to

6

represent various range matches, including the ability

to describe various units.

In order to do so, we have combined concepts of the

Cloud4SOA ontology with the upper ontology DUL

design pattern [26] in order to provide a seamlessly

extensible semantic model able to describe any current

and future parameter for PaaS without the need to re-

construct the core modeling structures of the ontology

and the matchmaking algorithms (see next subsection).

The mOSAIC project [41] aimed at creating, pro-

moting and exploiting an open-source Cloud applica-

tion programming interface and a platform targeted for

developing multi-Cloud oriented applications. An ad-

ditional key goal was to ensure transparent and simple

access to heterogeneous Cloud computing resources

and to avoid proprietary solutions. Furthermore, it

aimed to improve interoperability among existing

Cloud solutions, platforms and services, both from the

application-developer and the application-user per-

spectives. Within mOSAIC, semantic techniques are

used for describing application requirements. The Se-

mantic Engine component of mOSAIC infers the in-

frastructural requirements from the application de-

scription and produces a vendor agnostic SLA tem-

plate [50]. The Semantic Engine helps users in select-

ing APIs components and functionalities needed for

building new Cloud applications as well as in identi-

fying the proper Cloud resources to be consumed. It

introduces a new level of abstraction over the Cloud

APIs, by providing semantic based representation of

functionalities and resources, related by properties and

constraints. Using the Semantic Engine, the developer

of Cloud applications can semantically describe and

annotate the developed components, specify applica-

tion domain related concepts and application patterns.

The mOSAIC’s Cloud ontology [21] (developed in

OWL) describes services and their wrapped interfaces

and consists of 15 different base classes. It is built

upon existing standards and proposals analysis

through annotation of documents and it is used in the

mOSAIC’s semantic processing. It has been populated

with instances of Cloud provider APIs and services

specific terms. The underlying platform provides util-

ities in order to facilitate interoperability among dif-

ferent Cloud services, portability of the developed ser-

vices on different platforms, intelligent discovery of

services, service composition and management of

SLAs.

REMICS [53] and ARTIST [4] are two projects fo-

cusing on the migration of legacy systems (e.g. bank-

ing applications written in Cobol) to the Cloud.

REMICS focusses on the technical migration of such

applications. It applies model-driven techniques to re-

cover the legacy system into UML models, and then

transforms these UML models into SOA models that

can be deployed in a Cloud setting, and continuously

evolved later on. ARTIST reuses some of the

REMICS results and additionally focusses on the busi-

ness aspect of the migration, i.e. how to also modern-

ize the business models of SME and companies mi-

grating to the Cloud. The main use of semantics in

these two projects is to identify semantic differences

between behavioral semantic model specifications in

order to manage software evolution [37]. REMICS fo-

cuses on model-driven interoperability to facilitate the

replacement of a migrated service with another service

in case of service failure and recovery. However, in

REMICS, the decision related to the replacement of a

service by another one is fully left to the designer

while PaaSport uses the Recommendation layer to rec-

ommend replacement. However, notice that there is

another big difference between REMICS and

PaaSport; REMICS deals with behavioral semantics

of all services / components of an application, whereas

PaaSport deals with the semantics of the computing

platform on which the application will run and cares

only on capacity features of the offered services, such

as resources (quality, quantity), performance, and

functionality (e.g. database systems, programming

language version compatibilities, etc).

3 The PaaSport Marketplace

The PaaSport project focuses on resolving cloud

platform interoperability and cloud application porta-

bility issues that exist in the Cloud PaaS market

through a flexible and efficient deployment and migra-

tion approach. To this end, PaaSport combines Cloud

PaaS technologies with lightweight semantics in order

to specify and deliver a thin, non-intrusive Cloud bro-

ker (in the form of a Cloud PaaS Marketplace), to im-

plement the enabling tools and technologies, and to

deploy fully operational prototypes.

PaaSport aims to enable Cloud vendors to roll out

semantically interoperable PaaS offerings leveraging

their competitive advantage and the quality of service

delivered to their customers, making their offerings

more appealing and improving their outreach to poten-

tial customers. PaaSport also aims to facilitate Soft-

ware SMEs to deploy business applications on the

best-matching Cloud PaaS and to seamlessly migrate

these applications on demand. Therefore, PaaSport

aims to aligning and interconnecting heterogeneous

7

PaaS offerings, overcoming the vendor lock-in prob-

lem and lowering switching costs.

In the following subsections, we first discuss the

stakeholders and requirements and, then, some use

cases that are most relevant to the scope of this paper,

namely the use of semantics in the PaaSport Market-

place. Next, we present the architecture of the

PaaSport Marketplace infrastructure and, finally, we

detail on the functionality of the semantic models in

PaaSport.

3.1 Semantic Model Requirements

This subsection describes the stakeholders and re-

quirements that drove the development of the

PaaSport semantic models. These stakeholders had

been identified in PaaSport project deliverable D1.1

[45]. The stakeholders involved in semantic modelling

are as follows:

 DevOps Engineer: A solution architect seeking

an optimal PaaS platform to develop, deploy at,

or migrate to, a complex Cloud application. From

the viewpoint of the semantic models, the most

important optimization criteria for the search and

decision-making process are the technical re-

quirements for (or the capabilities of) the plat-

form, regarding both services and resources of-

fered, as well as the SLAs, i.e. the Quality-of-Ser-

vice (QoS) characteristics of the platform and its

services.

 PaaS Provider: An enterprise whose business

model includes the delivery and operation of one

or more PaaS solutions. A PaaS provider defines

the technical aspects, the pricing models, refer-

ence values for quality of service parameters, and

terms and conditions that apply to their offerings.

 PaaSport Broker Administrator: An individual

assigned to the operation, maintenance, and man-

agement of the PaaSport Cloud broker and mar-

ketplace system.

 Service (or PaaS) consumer: An individual or

an enterprise who uses the application (deployed

by the DevOps Engineer) on the platform offer-

ing. Service consumers are usually concerned

only with SLAs, i.e. how the application is deliv-

ered through the platform.

PaaS providers supply the Cloud-based application

developers with the available PaaS offerings. The

DevOps Engineers build applications that will be de-

ployed and executed on PaaS offerings (platform ser-

vices). The DevOps Engineers search for PaaS offer-

ings that satisfy their applications’ requirements. After

a successful negotiation with a PaaS provider, the

DevOps Engineer deploys the applications on the

PaaS offering, whereas the service (or PaaS) consumer

uses the application on the PaaS offering. An applica-

tion can vary from a simple service, such as a rela-

tional database management system or a lightweight

Web application, to a heavy software system, e.g. an

ERP or a CRM.

Table 1. PaaSport functional requirements relevant to the Semantic Models.

Stakeholder Functional Requirements Description Semantic Models

DevOps Engineer Enable transparent migration of data/applications (portability).
Application

Offering

DevOps Engineer Be able to manage instances across multiple Cloud providers. All

DevOps Engineer Enable use of metadata in the declaration of PaaS providers and during matchmaking. All

DevOps Engineer Support PaaS offerings with elasticity features. All

DevOps Engineer Be able to search for PaaS services that are held.
Offering

Application

DevOps Engineer
Be able to support a marketplace (application selling business model, SLA adaptation and sup-

port, service billing policy).
All

DevOps Engineer Be able to support self-service provisioning and management. Application

DevOps Engineer
Be able to get recommendations in selecting a Cloud provider based on a hybrid recommender

system approach.
All

DevOps Engineer Be able to manage the geographic region in which an application is deployed. All

PaaS Provider
Be able to publish service offerings in a service catalogue (service characteristics, policies, ap-

plication platform availability and performance)

Offering

SLA

PaaS Provider Manage the SLA contracts SLA

8

Table 2. PaaSport non-functional requirements relevant to the Semantic Models.

Non-functional Requirements Description

Supporting abstraction (hide many details of system and application infrastructure from developers and their applications).

Uniform service description (SLA offering), using standard formats.

SLAs with clear policies and guidelines for maintenance and version management of the platform and policies for version compatibility for

APIs between the platform and the application.

Table 3. Requirements that involve the PaaSport Semantic Models.

Ontological Requirements Description
Requirement

Type
Fulfilment

The ontology should be semantically interoperable

or interoperable-ready with similar ontologies
Interoperability

By using an upper ontology (DOLCE+DnS Ultralite) we facili-

tate semantic interoperability at the conceptual level.

The ontology should be interoperable with industry

standard models of Cloud platforms and applica-

tions.

Interoperability

In PaaSport project deliverable D1.3 [47] we describe how the

ontology is aligned with the CAMP metamodel [10]. Further-

more, the TOSCA notion of software dependencies between

application requirements and service capabilities has been used

for the PaaSport offering and application semantic models.

Characteristics and properties of the ontology should

be general enough to cover any platform offering

and Cloud application.

Usability (Ex-

tensibility)

We have studied several Cloud platform offerings for identify-

ing common features (Section 4.1). We have used the

Cloud4SOA ontology [34] as inspiration. The PaaSport seman-

tic model is the union of all offerings models.

The semantic models should be easily extensible

and modular. It should be easy to add new character-

istics and properties, without requiring the adapta-

tion of existing ones.

Usability (Ex-

tensibility)

The DUL upper-ontology that was used to build the PaaSport

ontologies ensures extensibility and modularity since it repre-

sents offering parameters detached from the characteristics

they characterize (Section 4.2).

The ontology should support efficient and scalable

reasoning and processing with regard to the recom-

mendation algorithm of offerings.

Efficiency -

Scalability

In [5] we describe that the recommendation algorithm has lin-

ear complexity to the number of instances and parameters.

The ontology should interoperate easily with other

system components, especially with the Persistence

Storage of the PaaSPort platform.

Usability (Oper-

ability)

The Persistence layer of PaaSport uses a relational database

which is mapped to the RDF data model using the D2RQ plat-

form (Section 5). In this way data is kept at a single place (no

need for DB synchronization).

The ontology should support the representation of

concepts relevant to the PaaSport domain, e.g. se-

mantic annotation of offerings and applications for

the purposes of recommendation.

Usability (Un-

derstandability)

We use a core ontological model for characteristics and param-

eters that affect all the semantic models (offerings, application,

SLA models). In this way matchmaking and selection can be

easily performed both syntactically and semantically

Table 1 shows the most important functional re-

quirements of the PaaSport Marketplace that affect

also the Semantic Models. Specifically, we show the

specific sub-model each requirement involves, namely

Offering, Application or SLA. Furthermore, Table 2

presents the most important non-functional require-

ments of the PaaSport Marketplace relevant to the Se-

mantic Models that have to do mostly with the issue

of interoperability. Finally, Table 3 presents require-

ments related to the Semantic Models / Ontologies

themselves, as well as the recommendation algorithm.

These requirements have been identified by analyzing

the functionality of the Semantic Models in the

PaaSport project.

3.2 PaaSport Uses Cases relevant to the use of

the Semantic Models

The PaaSport use cases [46] most relevant to the use

of semantics are the following:

 Manage semantic profile of application

 Search PaaS offering

 Manage PaaS offering

For the sake of space, here we will only present a

fusion of the first two use cases. Let a DevOps engi-

neer initiate a search for appropriate PaaS offerings

that meet the functional and non-functional require-

ments that his/her company’s application imposes on

the platform, in order to select one of the offerings to

deploy the application. The course of actions by the

system and the user (DevOps engineer) are the follow-

ing:

1. The DevOps Engineer initiates the search for

PaaS offerings.

2. The PaaSport marketplace displays two options

to the user, a semantic search based on an appli-

cation semantic profile and a search based on a

syntactic matching of manually entered search

criteria.

9

3. The DevOps Engineer chooses the semantic

search option.

4. The system presents the user a list of all applica-

tion sematic profiles that have been created by the

user.

4.1. The user cannot find an appropriate seman-

tic application profile, so he/she decides to

create a new one.

4.1.1. The system creates an empty semantic

profile and presents a form to the user

that allows him to edit the semantic

description of his application.

4.1.2. The user fills the form with the seman-

tic description of his application re-

quirements (functional and non-func-

tional) and finally stores it.

4.1.3. The system successfully validates the

entries of the user and stores the appli-

cation semantic profile. After storing,

it presents an option to the user that al-

lows him to initiate a search for a suit-

able PaaS offering based on the cre-

ated profile.

4.1.4. The system continues with step 4.

5. The user selects the application semantic profile

to be used as search criteria.

6. The system identifies the PaaS offerings that

match the search criteria (functional application

requirements).

7. For each PaaS offering that matches the search

criteria, the system instantiates and presents SLA

offers.

8. The system presents a list of all matching PaaS

offerings together with the corresponding SLA

offer to the user. The list is ordered according to

the user’s preferences (non-functional applica-

tion requirements).

9. The user selects the PaaS offering from the list

that optimally meets his/her requirements.

9.1. The DevOps Engineer selects a PaaS offer-

ing from the list and initiates the process of

viewing the detailed description of the PaaS

provider to inform himself about the pro-

vider’s information such as pricing and of-

fering ratings.

9.2. The system loads and presents the detailed

description of the selected PaaS provider. It

embeds pricing and rating information about

the provider and the PaaS offering.

9.3. The DevOps Engineer is unconvinced of the

PaaS offering due to i.e. bad ratings or pro-

vider statistics.

9.4. The user repeats step 9 until he finds a suit-

able PaaS offering.

10. The user initiates the application deploy-

ment process on the selected platform at step 9.

3.3 Architecture of the PaaSport Marketplace

Infrastructure

The PaaSport Architecture (Figure 1) constitutes a

thin, non-intrusive broker and marketplace that medi-

ates between competing or even collaborating PaaS

offerings [46]. It relies on open standards and intro-

duces a scalable, reusable, modular, extendable and

transferable approach for facilitating the deployment

and execution of resource intensive business services

on top of semantically enhanced Cloud PaaS offerings.

It comprises of the following five artefacts:

 The Adaptive Front-ends that support seamless

interaction between the users and the PaaSport

functionalities, through a set of configurable util-

ities that are adapted to the user’s context;

 The PaaSport Semantic Models that serve as the

conceptual and modelling pillars of the market-

place infrastructure, for the annotation of the reg-

istered PaaS offerings and the deployed applica-

tions profiles;

 The PaaS Offering Recommendation Layer that

implements the core functionalities offered by

the PaaSport Marketplace Infrastructure, such as

PaaS offering discovery, recommendation and

rating;

 The Monitoring and SLA Enforcement Layer

that realizes the monitoring of the deployed busi-

ness applications and the corresponding Service

Level agreement;

 The Persistence, Execution and Coordination

Layer that puts in place the technical infrastruc-

ture, e.g. repositories, on top of which the

PaaSport marketplace is built, including also the

PaaSport Unified PaaS API that is a common API

exploited in order to uniformly interact with the

heterogeneous PaaS offerings and, in addition, it

realize the lifecycle management of the deployed

applications.

Our focus in this paper is to present thoroughly the

use of semantics in the PaaSport marketplace, as dis-

cussed in the next subsection. Besides the PaaSport

Semantics models, the architectural layers that mainly

deal with semantics are the Offering Recommendation

and the Persistence layers.

10

3.4 The Functionality of Semantic Models in the

PaaSport Marketplace

The PaaSport Semantic Models constitute the con-

ceptual and modelling backbone of the marketplace

infrastructure and they are used in order to provide a

semantic annotation means for the registered PaaS of-

ferings and the deployed applications profiles. Specif-

ically, the functionalities of the PaaSport Semantic

Models in the various modules of the PaaSport plat-

form are the following:

a) They provide a common vocabulary for the

various modules of the system and for align-

ing the models of different PaaS offerings,

thus resolving semantic interoperability con-

flicts among heterogeneous Cloud PaaS offer-

ings that exploit diverse platform and applica-

tion models, offered service descriptions, of-

fered resources, Quality of Service, SLA for-

mats, billing policies and other important is-

sues (such as location of service or service

certifications); and,

b) Concerning the PaaSport Offering Recom-

mendation layer, the Semantic Models bridge

the gap between business application require-

ments and PaaS offerings capabilities, thus,

facilitating the matchmaking and the identifi-

cation of the specific PaaS that fulfills the

business and technical requirements of a par-

ticular application.

c) Concerning the Persistence layer, the database

schema follows exactly the conceptual model

of the ontologies, in order to avoid syntac-

tic/semantic mismatch between tables/con-

cepts and attributes/properties when the Of-

fering Recommendation layer retrieves PaaS

offerings from the database, based on the Se-

mantic Models.

d) Concerning the Adaptive Front-ends layer,

the UIs for managing application and PaaS of-

fering semantic profiles use concepts and

properties from the semantic models.

e) Concerning the Monitoring and SLA Enforce-

ment layer, the SLA model has been consid-

ered for defining the PaaSport SLA policy

model used by the SLA Enforcement compo-

nent, while the monitoring system has been

designed so as to support the metrics defined

in the semantic SLA model.

Τhe first functionality is achieved by: a) consider-

ing and fusing together existing approaches to Cloud

computing semantic models, b) studying existing

Cloud Marketplace
Catalogue

DevOps Engineer
personalised space

PaaS provider
personalised space

PaaS model

SLA model

Application
model

PaaS offering
selection

PaaS offering
shortlist

PaaS offering
search

PaaS offering
rating

Semantic Query handling

Semantic PaaS
offering discovery

Application to PaaS
offering matchmaking

Semantic
models

Adaptive Front-ends

PaaS Offering Recommendation Layer

User profiles
PaaS offering

profiles
Application

profiles

Search and Discovery
Interfaces

Tunnelling and
Virtual Execution

PaaSport Unified
PaaS API

Persistence, Execution and Coordination Layer

Monitoring and
SLA

Enforcement
Layer

Orchestration

Deployed
application
monitoring

PaaSport
Adapter

PaaSport
Adapter

SLA
Matchmaking

SLA
Enforcement

Interoperability
Libraries

Figure 1. High-level view of the PaaSport Cloud broker Architecture [46].

11

Cloud computing platforms, c) taking into considera-

tion the functional and non-functional user require-

ments, as identified in the next sub-section, and finally,

d) considering well known ontology frameworks so

that interoperability with other similar efforts outside

the project boundaries can be achieved. All of these

are elaborated in Section 4. The second functionality

is achieved by using a common conceptual framework

for describing both the platform capabilities and the

application requirements, so that application profiles

can be matched conceptually, structurally and quanti-

tatively to platform offerings, as explained briefly in

Section 5 and elaborate in [5]. The third functionality

is achieved by mapping the PaaS Offering profiles

stored in the database onto the Semantic Model layer

(RDF graph) using a relational-to-ontology mapping

tool, namely the D2RQ platform [15] (see section 5).

The fourth and fifth functionalities are beyond the

scope of this paper and their achievement can be found

in the deliverables of the PaaSport project [49].

4 PaaSport Semantic Models

In this section, we describe the development of the

PaaSport Semantic Models. Initially, we briefly pre-

sent how we have acquired the knowledge to be mod-

elled and then we analyze our modelling decisions and

justify how they adhere to the ontology requirements

set in Section 3.1. We finally present how the PaaSport

ontology has been implemented using the descriptions

and situations (DnS) ontology pattern of the DOLCE

Ultra Lite (DUL) upper level ontology.

4.1 PaaS Domain Models

Before starting Ontology development, we have in-

itially surveyed existing cloud computing platforms

and PaaS providers and the respective technical back-

ground. We have distinguished several key cloud

computing platform manufacturers and providers and

Table 4. Major Cloud Computing Platforms, supported programming languages and services.

Cloud Computing Plat-

forms
Programming Languages Services

OpenShift Origin Ruby, Java, Node.js, Python, PHP, Vert.x, Perl
Tomcat (JBoss EWS), Jenkins, Post-

greSQL, MySQL, MongoDB

Cloud Foundry Java, PHP, Python, Play, Node.js, Ruby, Go MySQL, PostgreSQL, MongoDB

ApacheStratos Java, PHP Tomcat, MySQL

HPE Helion Stack-

ato

Clojure, Go, Groovy, Java, Node, Perl, PHP, Python,

Ruby, Scala

Apache, JBoss, nginx, Tomcat,

MySQL, MongoDB, PostgreSQL

Table 5. Key PaaS Providers and provided services.

PaaS Provider Pricing Policy (plans) SLA
Re-

sources
Programming Languages Services

OpenShift Free/Bronze/Silver
Ruby, Java, Node.js, Python,

PHP, Vert.x, Perl

Tomcat (JBoss EWS), Jen-

kins, PostgreSQL, MySQL,

MongoDB

Heroku
Hobby/Standard/ Pre-

mium/Enterprise
Ruby, Java, Node.js, Scala,

Clojure, Python, PHP, Perl

MySQL, PostgreSQL, Redis,

MongoDB

Cloudbees Free/Enterprise
Java, Ruby, Node.js, Clojure,

PHP, Erlang, Scala

Tomcat, PostgreSQL, Mon-

goDB

AppHarbor
CANOE/CATAMARAN/

YACHT .NET
MySQL, SQL Server, Post-

greSQL, Mongo

CloudControl
Developer/Startup/ Busi-

ness/Business+
Java, PHP, Python, Ruby,

Node.js

PostgreSQL, MySQL, Mon-

goDB

Pivotal Cloud

Foundry

Aggregated memory used

by applications per month
Java, PHP, Python, Play,

Node.js, Ruby, Go

MySQL, PostgreSQL, Mon-

goDB

Amazon Elas-

tic Beanstalk

Free trial and proportional

price after that

Java, .NET, PHP, Node.js,

Python, Ruby, Go

Tomcat, for database can in-

stall the instance on amazon

cloud

IBM Bluemix Free for small resources

and proportional price after

that

Java, JavaScript, go, PHP,

python, ruby

Tomcat, MySQL, Post-

greSQL, MongoDB

12

we tried to record common software / services1, plat-

form QoS and pricing policy (plans) that a cloud com-

puting platform and/or a PaaS offering can provide.

Notice that there are two types of PaaS providers. The

first type, such as Heroku and Amazon, are based on

their own proprietary cloud computing platform in or-

der to deliver a single, public cloud. On the other hand,

there are PaaS providers, such as OpenShift and Cloud

Foundry, that they offer the cloud computing platform

as an open-source software, so that several, both pub-

lic and private clouds can be built on it. Moreover,

these providers also offer their own public cloud, built

around on their software, of course. Table 4 reviews

the most important cloud computing platforms and

their supported programming languages and services,

whereas Table 5 reviews several key PaaS providers,

either of the first or of the second type.

A PaaS typically resides on top of IaaS providing

the ability to access remote computing resources. With

IaaS there is the possibility of remotely controlling

machines or virtual machines that can be used as nec-

essary. Thus, it was decided to study the OpenShift or-

igins and Cloud Foundry, two of the most popular

PaaS platform systems. Cloud Foundry and OpenShift

are quite similar in their capabilities and their ap-

proach to PaaS. While the terminology they use and

the exact deployment methods differ, in essence they

are very similar: Each delivers a platform based on the

Linux OS with lightweight containers that can run ap-

plications against open source languages and frame-

works, using common services (software), such as da-

tabases. This gives the possibility to describe general

PaaS platform via our ontology.

Notice that in order to cover maximally all the plat-

form-offering models that we have reviewed, the

PaaSport semantic model is the union of the reviewed

offering models, so that no provider can feel left out.

This is important for reaching out the providers. In so

doing, the PaaSport ontology has many detailed PaaS

Characteristics and parameters, as presented in Sec-

tion 4.3. This means that the providers whose offering

model will not match the common “super”-model we

have created, will leave many of the offering descrip-

tion characteristics and parameters blank. However,

this will not affect the usefulness of the ontology dur-

ing matchmaking, since it is the DevOps Engineer’s

request that will guide the search for appropriate plat-

form offerings. Only the parameters filled-in by the

DevOps Engineer with application requirements will

be used for matching the offerings, regardless if the

1 Notice that in our terminology the concept “service” is a syno-

nym for “software”. The services offered by a platform are the pre-

offerings have all or less-than-all parameters filled-in

with values. For example, if the request looks for a

general characteristic, e.g. storage up to 100GB, but

not for a specific type of disk type (HDD or SSD), then

both offerings with specified disk type and the ones

with not such a specification, will be considered.

Furthermore, we have studied the semantic layer of

Cloud4SOA [34] and considered many relevant con-

cepts and entities from this project. More specifically,

Cload4SOA’s semantic layer describes some of the

entities for a PaaS platform, featuring five (5) distinct

layers, each of which describes one separate view of a

PaaS platform:

 The Infrastructure layer contains definitions

for classes used for capturing knowledge related

to the infrastructure (hardware and software) uti-

lized by the Platform and Application layers, as

well as metrics to measure the values of hard-

ware/software attributes.

 The Platform layer contains definitions for clas-

ses used for capturing knowledge related to a

Cloud-based platform (e.g. supported program-

ming language, offered software/hardware func-

tionalities). The platform is based on the Infra-

structure layer in order to operate.

 The Application layer contains definitions for

classes used for capturing knowledge related to a

Cloud-based Application. A Cloud-based Appli-

cation is developed/deployed/managed in a

Cloud Platform.

 The Enterprise layer contains definitions for

classes used for capturing knowledge related to

the enterprises involved in the Cloud (e.g. the

PaaS provider, the IaaS provider) and their role

in the Cloud.

 The User layer contains definitions for classes

used for capturing knowledge related to the users

of a Cloud4SOA platform. The latter are the

Cloud-based application developers and the

Cloud PaaS providers.

The Infrastructure layer is the basic layer of the On-

tology; it provides a common terminology used by the

Application and Platform layer enabling the matching

between their instances. The Enterprise layer is corre-

lated with the Platform and Infrastructure layer; it de-

fines the enterprises responsible for the offering of

Cloud Infrastructure and Cloud Platforms. Finally, the

User layer is the topmost layer of the ontology, it de-

fines the users of the Cloud4SOA platform that are the

Cloud-based application developers (correlated with

installed applications (e.g. databases, web servers, etc.) that come

along with the cloud platform.

13

Application layer) and the Cloud PaaS providers (cor-

related with Platform layer), it is also correlated with

the Enterprise layer since every involved enterprise

can have a Cloud4SOA user account. Notice that these

layers concern only the semantic representation of the

various entities involved in the Cloud and they have

nothing to do either with the architecture of the

PaaSport broker (presented in Section 3) or the stake-

holders of the PaaSport marketplace (described in Sec-

tion 3.1).

In the PaaSport semantic model, we have followed

an almost similar approach concerning the layers (Fig-

ure 2); however, we have mainly focused on concepts

and entities from the first three layers (Infrastructure,

Platform and Application), giving emphasis on the In-

frastructure layer, since the semantic model of

PaaSport is mainly concerned with semantic match-

making between Cloud platform offering capabilities

/ characteristics and application requirements from the

cloud platform [5].

More specifically, the PaaSport semantic models

comprises of the following layers:

 User layer: contains definitions of classes about

the agents (human or corporation) involved in the

PaaSport marketplace, namely PaaS providers,

DevOps engineers and service consumers.

 Application layer: contains definitions for clas-

ses related to an Application deployment at a

2 https://github.com/Cloud4SOA/Cloud4SOA/tree/master/se-

manticModel/C4S_model

Cloud Platform, including the set of application

requirements from the platform.

 Platform layer: contains definitions for classes

related to Cloud computing platforms and plat-

form offerings.

 Business layer: contains definitions for classes

related to the business aspects of the PaaSport

marketplace, namely the SLA between market-

place stakeholders and its definition (SLA tem-

plates).

 Characteristics layer: contains definitions for

classes related to the characteristics / capabilities

of the platform offerings, namely the infrastruc-

ture (hardware and software) utilized by the Plat-

form and Application layers, metrics to measure

the values of hardware/software attributes and

the platform’s QoS, business characteristics of

the platform, such as pricing policy and geo-

graphical location of services, user characteris-

tics, such as ratings, etc.

After this research, we combined the knowledge of

the real market PaaS providers and the existing

Cloud4SOA ontology2, in order to develop an ontol-

ogy describing all possible components of a PaaS. In

addition to the above, we have also used as guides for

the development of the PaaSport ontology, some of the

major standardization efforts for Cloud computing

from OASIS, such as CAMP (Cloud Application

Characteristics layerUser layer Application layer

Platform layer

Business layer

isDeployedAt

PaaS
Provider provides

DevOps

PaaS
Characteristic

PaaS
Parameter

Application

Offering

SLA

Application
Requirement

OfferingModel

SLATemplate

GroundOffering

DUL:satisfies
[allValuesFrom]

DUL:satisfies
[allValuesFrom]

DUL:satisfies
[allValuesFrom]

requires

offers

DUL:defines
[allValuesFrom]

PlatformQoS

in
cl

u
d

e
sA

p
p

lic
at

io
n

includesOffering

develops

D
U

L:
h

as
P

ar
am

e
te

r
[a

llV
al

u
es

Fr
o

m
]

rdfs:subClassOf

 property, property restriction

Service
Consumer

includes
Client

Figure 2. Overview of the PaaSport Semantic Model and its layers.

https://github.com/Cloud4SOA/Cloud4SOA/tree/master/semanticModel/C4S_model
https://github.com/Cloud4SOA/Cloud4SOA/tree/master/semanticModel/C4S_model

14

Management for Platforms) [10] and TOSCA (Topol-

ogy and Orchestration Specification for Cloud Appli-

cations) [59]. Actually, in [47] we have developed an

OWL version of the CAMP meta-model and we have

aligned it with the PaaSport ontology. However, this

is beyond the scope of this paper.

4.2 PaaSport Semantic Modelling Approach

In the PaaSport project, we have decided to develop

the PaaSport semantic models (Figure 2) as an exten-

sion of the DOLCE+DnS Ultralite (DUL) ontology,

which is a simplification and an improvement of some

parts of DOLCE Lite-Plus library and Descriptions

and Situations ontology (see subsection 4.2.1). The

main reasons we have followed this approach is the

fact that DUL is based on Ontology Design Patterns

(ODP) ensuring a high degree of reusability, modular-

ity and extensibility [24].

The use of DUL (i.e. an upper ontology) ensures

better semantic interoperability with other similar pro-

jects and research efforts. This is because upper ontol-

ogies are supposed to be domain-independent, encom-

passing very general concepts. Thus, when two ontol-

ogies belonging to similar domains are ranked as spe-

cializations of the same upper ontology, then most

classes of similar meanings belonging to the two dif-

ferent ontologies will be classified under the same

general concepts of the common upper ontology. In

this way, semantic interoperability is achieved, be-

cause even if the two classes are not commonly under-

stood, they could propagate their instances to the com-

mon general superclass, thus a minimum level of com-

mon understanding is guaranteed. Although not yet a

standard, DUL has been used in many projects and of-

fers a very flexible design pattern for defining domain-

dependent ontologies.

The DUL ontology is easy to extend by adding e.g.

new characteristics and parameters related to PaaSport

offerings and applications. Ontologies in RDFS and

OWL are generally easy to extend, since new classes

and properties can be easily added, without the need

to re-configure existing class definitions, since prop-

erties are first-class citizens/objects of the ontology.

However, the PaaSport semantic model must co-exist

and interoperate with the Persistence Storage of the

main system. In this case, usually tables correspond to

classes and attributes to properties. However, adding a

new property to a class roughly corresponds to adding

a new attribute to an existing table. This requires

3 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

schema re-definition. Therefore, extensibility must be

exercised very cautiously.

DUL follows a different approach. Properties (i.e.

parameters) are defined as new classes and not as

OWL properties. In this way, the introduction of new

properties/parameters does not require the disturbance

of the schema of existing tables but merely the intro-

duction of new tables. This greatly favors extensibility.

Furthermore, this representation of properties also

favors the generality and extensibility of the match-

making / ranking algorithm between application re-

quirements and platform offerings. Τhis type of exten-

sibility is briefly explained in section 5.2 and analyzed

more thoroughly in [5].

In Table 3 (Section 3.1) we briefly explain how the

identified ontological requirements have been fulfilled

by the above contributions. Notice that some of the re-

quirements are fulfilled by the recommendation algo-

rithm and the integration of the semantic models into

the persistence layer of the PaaSport Marketplace, that

are presented in sections 4 and 5.

4.2.1 DOLCE and DnS

The Descriptive Ontology for Linguistic and

Cognitive Engineering (DOLCE) aims at capturing

the ontological categories underlying natural language

and human common sense. DnS (Descriptions and

Situations), is a constructivist ontology that pushes

DOLCE’s descriptive stance even further [26]. DnS

does not put restrictions on the type of entities and re-

lations that one may want to postulate, either as a do-

main specification, or as an upper ontology, and it al-

lows for context-sensitive “redescriptions” of the

types and relations postulated by other given ontolo-

gies (or ‘ground’ vocabularies).

The current OWL encoding of DnS assumes

DOLCE as a ground top-level vocabulary. In fact, the

two ontologies combined have been deployed for var-

ious modelling purposes devoted to the treatment of

social entities, such as e.g. organizations, collectives,

plans, norms, and information objects. A lighter OWL

axiomatization of DOLCE and DnS is available as

DOLCE+DnS-Ultralite (DUL)3. This lighter version

(see Figure 3) simplifies the names of many classes

and properties, adds extensive inline comments, thor-

oughly aligns to the repository of Content patterns and

greatly speeds up consistency checking and classifica-

tion of OWL domain ontologies that are plugged to it.

The core model of the PaaSport ontology has been

developed as a specialized instantiation of the DnS de-

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

15

sign pattern. The DnS pattern provides a principled ap-

proach to context reification through a clear separation

of states-of-affairs, i.e. a set of assertions, and their in-

terpretation based on a non-physical context, called a

“description”. Intuitively, DnS axioms try to capture

the notion of situation as a unitarian entity out of a

state of affairs, with the unity criterion being provided

by a description. In that way, when a description is ap-

plied to a state of affairs, a situation emerges. The

core-modeling pattern of DnS allows the representa-

tion of the following conceptualisations, as illustrated

in Figure 3:

 Situations. A situation defines a set of domain

entities that are involved in a specific pattern in-

stantiation (“isSettingFor” property) and they are

interpreted on the basis of a “description”

(through the “satisfies” property). Each situation

is also correlated with one user/agent (“dul:in-

cludesAgent” property).

 Descriptions. An activity description serves as

the descriptive context of a situation, defining the

concepts (“defines” property) that classify the

domain entities of a specific pattern instantiation,

creating views on situations.

 Concepts. The DUL concepts classify domain

entities describing the way they should be inter-

preted in a particular situation. Each concept may

refer to one or more parameters, allowing the en-

richment of concepts with additional descriptive

context.

Figure 3. DUL overview.

Αs we describe in subsection 4.3, the PaaSport se-

mantic models have been defined as extensions to the

core DnS pattern (Figure 4). More specifically, the

situation concept is used as a container for defining the

higher-level conceptualizations of the PaaSport do-

main, such as PaaS offerings, application deployments

and SLAs. Offerings are considered as situations,

since they represent (possibly different) “views” of a

cloud platform, related to (possibly different) pro-

vider(s). The SLA is a relational situation between a

provider and a client, involving an application that is

deployed on a platform offering. Finally, applications

are situations as well, since in PaaSport semantic

model they actually denote application deployments

on a specific platform that may change in the future,

and not the application code itself, which might endure.

Figure 4. DnS pattern.

The specialized situations are further correlated

with specializations of the description concept, allow-

ing the correlation of the situations with additional de-

scriptive context (Figure 5). The descriptions in turn

define one or more concepts with appropriate domain

parameters, resulting in a rich, dynamic and flexible

modelling pattern able to address the domain model-

ling requirements identified so far.

4.3 The PaaSport Ontology

In the following, we describe the core modelling

patterns we have developed that serve as the concep-

tual bases for modelling PaaSport-related concepts.

More specifically, the proposed patterns implement

the DnS ontology pattern of DOLCE Ultra Lite (DUL)

ontology that provides a formal modelling basis and

has been used for a number of core ontologies (e.g. the

Semantic Sensor Network – SSN ontology [14]),

while the pattern-oriented approach of DUL provides

native support for modularization and extension by

domain specific ontologies. Actually, the “Offering

Pattern” is represented through the combination of the

OfferingModel and GroundOffering classes, the “Ap-

plication Pattern” is represented by the Application-

Requirement class, and finally, the SLA Pattern is rep-

resented by the SLATemplate class.

dul:Situation dul:Description
dul:satisfies

dul:Concept
dul:classifies

dul:isSettingFor

entities

dul:defines

dul:Parameter

dul:hasParameter

dul:parametrizes

rdfs:subClassOf

property assertion

rdfs:subPropertyOf

DnS Pattern

Core PaaSport
Pattern

Offering
Pattern

Application
Pattern

SLA Pattern

extension

extension

extension

extension

16

Figure 5 displays the associations between DUL

and the PaaSport semantic models. Applications, Of-

ferings and SLAa are PaaS situations (subclass of SUL

situation), which satisfy the corresponding PaaS de-

scriptions, namely Application Requirement, Ground

Offering and SLA Template. PaaS Characteristics spe-

cialize DUL concepts and are defined in PaaS descrip-

tions. The “defines” property is specialized as “re-

quires” for application requirements and as “offers”

for PaaS offerings. SLA templates define only plat-

form QoS parameters, aggregated as a PlatformQoS

characteristic.

The extensibility of the PaaSport semantic model

depends on the parameters’ definition. A situation (of-

fering, application, SLA agreement) can have a set of

characteristics (description). A characteristic (for ex-

ample PlatformQoS) can have one or more parameters.

Every parameter has a value (dul:hasParameter-

DataValue) and a “quality” (dul:parametrizes), which

is the “physical” or “logical” dimension of the param-

eter (e.g. storage, duration, etc.) and it is usually (not

always) accompanied by measurement units. For this

reason, if we know the quality of the value we can easy

compare two parameters and by extension two charac-

teristics. If we want to add a new parameter to a char-

acteristic, we have only to declare the quality value of

this parameter. Moreover, we could do the same for

characteristics, i.e. we can just add a new characteris-

tic to the corresponding description. Furthermore, if

we want new characteristic and parameter types, we

just add new classes in the corresponding hierarchies,

without the need to redefine any ontology properties,

since the “requires”, “offers” and “hasParameter”

properties cover all (sub)classes of PaaS Characteris-

tics and Parameters.

The application example in Figure 6 describes the

logic underlying our proposed model. Specifically, we

provide an application which is linked to two different

sets of requirements. This is allowed by the PaaSport

Semantic Model and its rationale lies on the fact that

there might be different sets of requirements e.g. for

minimum, moderate or optimal performance for the

same application. The first set of requirements is about

the programming language (Java ver. 1.6), the

database (MySQL with minimum 1GB size for

storage) and the platform’s QoS, with maximum

(network) latency 5ms and minimum uptime 99%. So,

according to the DUL pattern, an “Application”

(my_app1) “satisfies” an “Application Requirement”

(my_app1_req1) which consists of a set of PaaS

Characteristics that the “Application” “requires”, such

as “Programming Language” (Java_1.6.0), “Services”

(MySQL_1GB), “PlatformQoS” (qos_1_1), etc. Each

PaaS Characteristic consists of one or more PaaS

parameters, such as name or version of the

programming language, service type (SQLService),

DB capacity (Capacity1), etc. The “PlatformQoS”

characteristic has several “QoS Parameters”, such as

service uptime (Uptime99), network latency

(Latency5), etc. Each parameter is linked to

(“parametrizes”) a quality value (MaxMinGB,

Maxms) that contains the actual parameter value

PaaSSituation

DUL:satisfies

PaaSCharacteristic

muo:QualityValue

PaaS
Parameter

dul:hasParameter

rdfs:Literal

PaaSDescription

DUL:defines
DUL:Situation DUL:Description DUL:Concept DUL:Parameter

dul:hasParameter
DataValue

[allValuesFrom]

dul:Parametrizes
[allValuesFrom]

Application

Offering

SLA

Application
Requirement

OfferingModel

SLATemplate

GroundOffering

DUL:satisfies
[allValuesFrom]

DUL:defines
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

DUL:satisfies
[allValuesFrom]

DUL:satisfies
[allValuesFrom]

DUL:satisfies
[allValuesFrom]

requires

offers

rdfs:subClassOf

 property, property restriction

rdfs:subPropertyOf

DUL:defines
[allValuesFrom]

PlatformQoS

Figure 5. Overview of DUL and PaaSport associations.

17

(hasParameterDataValue) and optionally a

measurement unit (e.g. “measuredIn” millisecond,

GB, etc). The quality values belong to different types

(such as single, min, max, etc.) that define how the

application requirement value should be compared to

the correspondig offering value (exact match, greater

than, less than, etc.). More on this are discussed in

section 4.3.5. In Figure 6, for example, the platform’s

QoS parameter network latency is shown, which

belongs to the Max quality value type, meaning that

the application requires a maximum acceptable limit

5ms for the network latency. Notice that the PaaSport

semantic model also allows for QoS parameters of

individual software/services provided by the

infrastructure of the platform through the

paas:ResourceParameter class (see Section 4.3.4).

The Offering and Application models are not very

different. Only the top-level classes are different, since

Offerings and Applications stand conceptually for two

very different types of entities: cloud platforms and

cloud application deployments, respectively. However,

both use the same vocabulary for describing services

(PaaS Characteristics) and their parameters, since the

restrictions on the dul:defines property are inherited

by all subclasses of PaaSDescription, as shown in Fig-

ure 5. This allows the recommendation algorithm to

seamlessly match application requirements to PaaS of-

ferings both syntactically and semantically, which is

briefly described in section 5.2. For a full account of

the recommendation algorithm see [5].

Actually, PaaSport semantic models follow the

“Requirements and Capabilities” model of TOSCA

[59] or the “Requirements and Characteristics” model

of CAMP [10], which allow for expressing

requirements and capabilities of components of a

service or an application. In this way, PaaSport

semantic models can represent dependencies between

components, i.e. when a component depends on

(requires) a feature provided by another component, or

that a component has certain requirements against the

hosting environment such as for the allocation of

certain resources. More specifically, the offering

model describes the capabilities of the services offered

by a certain platform, whereas the application model

describes the service, resource or QoS requirements

that an application has on the platform, in order to be

deployed on it. The SLA model is concerned just with

the QoS characteristics of the platform.

In what follows, we first give a brief description of

the three PaaSport Semantic Models, i.e. Offering,

Application and SLA, and then we describe in detail

the PaaS Characteristics and parameters, which is the

Application Application
Requirement

PaaS
Characteristic

PaaSParameter QualityValue UnitOf
Measurement

my_app1_req1

MySQL_1GB

MySQL_5GB

requires

Capacity1

MySQL

requires

hasParameter

hasParameter

Capacity5

MySQL

hasParameter

hasParameter

Java_1.6.0

requires

JavahasParameter

JavaVer_1.6.0

hasParameter

hasParameterDataValue

SQLService

hasParameter

SQLServicehasParameter

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

hasParameterDataValue

 java

 1.6.0

1

 SQLDatabase

 SQLDatabase

 MySQL

5

 MySQL

parametrizes

MaxMinGB

parametrizes MaxMinGB

my_app1

my_app1_req2

satisfies

satisfies

qos_1_1

requires

Latency5

hasParameter Uptime99

hasParameter

hasParameterDataValue

hasParameterDataValue

5

99

parametrizes
MaxMinPerc

GBmeasuredIn

GBmeasuredIn

parametrizes

Maxms msmeasuredIn

requires

...

Figure 6. An Application example.

18

core part of the ontology that bridges all the semantic

models, though the use of common characteristics and

parameters for the platform offering capabilities and

the application profile requirements.

4.3.1 Offering Model

The Offering Model helps PaaS providers semanti-

cally describe their PaaS offerings. Specifically, it

contains all available capabilities of a PaaS offering

and its services. These capabilities are part of the PaaS

hierarchy of characteristics (see section 4.3.4) and can

be technical, performance-related, geographical etc.

Figure 7 shows the hierarchy for the Offering class.

PaaSSituation is an abstract superclass for all Situation

entities of PaaSport, namely Offering, Application and

SLA (also shown in Figure 5). The core entities of the

offering model are the PaaS Offering and its descrip-

tion. The Offering class represents (and is related to) a

grounded PaaS Offering. The set of the characteristics

/ capabilities offered by the platform (e.g. services, re-

sources, platform QoS, etc.), can be found by follow-

ing the “satisfies” property assertions (Figure 8). An

offering is linked to its provider as well as to its de-

ployed applications. Notice that although the word

“provides” usually cannot be associated with the word

“offering”, but rather with the word “service”, in

PaaSport semantic model, class “Offering” actually

refers to a “PaaS offering”; therefore, it represents a

service.

We define two classes of the offering description:

a) The OfferingModel represents the descrip-

tion of a cloud computing platform, i.e. a set

of software and tools that can be downloaded

and installed on a private or a public cloud, e.g.

“OpenShift Origin”. The offering model de-

scription describes general capabilities of a

platform, such as supported programming lan-

guages, databases, servers, etc. These capabil-

ities are common in every installation (instan-

tiation) of the PaaS offering model. It is linked

through the “offers” property to characteris-

tics describing the capabilities of the offering.

Actually, an offering model consists only of

the ProgrammingEnvironment and Service

characteristics. Characteristics like offered re-

sources and platform QoS are not part of an

offering model but of a GroundOffering. In

Figure 7. PaaS situations hierarchy.

GroundOffering
DUL:satisfies
[allValuesFrom]

OfferingModel

PaaSCharacteristic

offers
[allValuesFrom]

Application

hasDeployedApplication
[allValuesFrom]

PaaS
Provider

provides
[allValuesFrom]

Offering

providedBy
[allValuesFrom]

DUL:includesAgent

DUL:isAngentIncludedIn

DUL:hasConstituent

DUL:Defines
rdfs:subClassOf

property restriction

rdfs:subPropertyOf

Figure 8. Offering overview.

19

practice, when a user adds a new cloud com-

puting platform in the PaaSport marketplace

he/she will first create an instance of this class.

b) The GroundOffering represents the descrip-

tion of a grounded PaaS offering and consists

of all PaaS capabilities and/or characteristics,

such as programming environment, services,

resources, QoS, location, pricing etc. The re-

source, platform QoS, Pricing and location

characteristics are defined when an Offering

Model becomes a GroundOffering (necessary

and sufficient conditions). In practice, when a

user adds a new PaaS offering in the PaaSport

marketplace he/she will “ground” an existing

offering model by creating a new instance of

the GroundOffering class; all the characteris-

tics of the corresponding model (service and

programming environment) will be copied to

the new instance and the capabilities of the

grounded offering, such as resources, plat-

form QoS, etc., will be added as well. For ex-

ample, RedHat’s OpenShift4 is a GroundOff-

ering of the “OpenShift Origin” 5 Offering-

Model. There can be several such groundings,

especially for open source cloud computing

platforms, whereas for several commercial

PaaS, such as Heroku 6 , there is only one

grounding.

4.3.2 Application Model

The Application Model comprises definitions for

classes that capture knowledge related to Cloud-based

4 https://www.openshift.com/
5 https://www.openshift.org/

application requirements or software/resource de-

pendencies on the hosting Cloud platform. We de-

signed a simple, open and extendable vocabulary,

which allows the semantic annotation of developers’

application requirements. Based on the Application

Model and the ontology of PaaS Characteristics and

parameters (see section 4.3.4), the Cloud-based appli-

cation developer creates and manages the semantic

profile of his/her application deployments (Figure 9),

regarding software, resource or platform QoS depend-

encies. The developer can define functional (software

dependencies on programming language, servers, da-

tabase, etc.) and non-functional (resource capacities,

performance, price, etc.) requirements for his applica-

tion. Specifically, these requirements refer to the de-

ployment platform and allow developers to match the

PaaS Offerings whose capabilities are the most rele-

vant to their application requirements.

The main class is Application, which represents a

Cloud-based application deployed at a PaaS Offering.

The set of requirements for the Application from the

platform can be found by following the “satisfies”

property assertions. An application is linked to its de-

veloper. The ApplicationRequirement class is the de-

scription of an Application and consists of a set of ap-

plication requirements, which are PaaS-related Char-

acteristics that can be modeled using “requires” prop-

erty assertions. Notice that requirements are complex

entities, consisting of many parameters, e.g. a database

requirement could be MySQL v. 5.7 with minimum

storage capacity 5GB.

6 https://www.heroku.com/

Application
Application

Requirement

PaaSCharacteristic

requires
[allValuesFrom]

GroundedOffering

isDeployedAt
[allValuesFrom]

DevOps

develops
[allValuesFrom]

developedBy
[allValuesFrom]

rdfs:subClassOf

property restriction

rdfs:subPropertyOf

DUL:isAgentIncludedIn

DUL:includesAgent

DUL:hasLocation

DUL:satisfies
[allValuesFrom]

DUL:defines

Figure 9. Application overview.

https://www.openshift.com/
https://www.openshift.org/
https://www.heroku.com/

20

Notice that the application requirements are added

by the DevOps engineer to describe the requirements

that the application has from the cloud computing plat-

form to be deployed at. If the provided requirements

are not really compatible with (do not “satisfy”) the

actual requirements, then two things can happen:

a) If the requirements are less than actually re-

quired (or “buggy”), then the application will

run less than optimal (or not run at all). This

will result in the dissatisfaction of the client of

the application.

b) If the requirements are more than actually re-

quired, the platform offering will probably

cost more. This will result in the dissatisfac-

tion of the client of the application.

Therefore, it is in the best interest of the DevOps

engineer to report the application requirements truth-

fully.

4.3.3 SLA Model

SLA (Service Level Agreement) is an agreement

between two parties, the Service Consumer (the

PaaSport user who deployed an application) and a

PaaS Offering Provider. The level of service is for-

mally defined in terms of performance and reliability,

through the SLATemplate class, which is a rough

schema of the offers the responder is willing to accept,

and it also involves the application and the offering.

The SLA has a period of validity that is defined in

terms of the StartDate and EndDate properties. The

performance is described by platform QoS parameters

and the pricing by the pricing policy parameters (Fig-

ure 10), similarly to the platform QoS and pricing pa-

rameters of the PaaS Characteristic hierarchy (see sec-

tion 4.3.4).

4.3.4 PaaS Characteristics and Parameters

This subsection describes in detail the key notions

of core PaaSport ontology classes PaaSCharacteristic

and PaaSParameter, which are used by all PaaSport

semantic models and bridge the gap between them. In

PaaSport, a PaaSCharacteristic is a basic unit of a

PaaS offering capability or characteristic (or of a cloud

application requirement) and represents an abstract

concept of a cloud platform feature (e.g. programming

language, database, uptime, storage, etc.). For the ap-

plication developer it represents an application re-

quirement about the deployment platform and for the

PaaS provider it is a part of the description of the ca-

pabilities / characteristics offered by the platform. For

example, in the PaaS offering of Figure 21, sample

instances of PaaS Characteristics include, Java (v. 1.6),

instance of the ProgrammingLanguage class (subclass

of PaaSCharacteristic), MySQL, PostgreSQL and

MongoDB, instances of the Database class, and plat-

form QoS characteristics, such as latency and uptime.

Each PaaSCharacteristic is associated with one or

more PaaSParameters, through the DUL:hasParame-

ter property and can be considered as an aggregator

object for related parameters. For example, the

MySQL database PaaSCharacteristic might be com-

prised of parameters concerning the database service

name (MySQL), the database type (SQL), the version

of MySQL (5.7), the provided storage capacity of the

database (e.g. 10GB), etc. Characteristics can be back-

wards compatible with other characteristics (through

the isCompatibleWith property). This is mainly used

for characteristics such as versions of offered pro-

gramming languages or services/software.

SLA

SLATemplate
DUL:satisfies
[allValuesFrom]

property restriction

ServiceConsumer Provider

hasProvider
[allValuesFrom]

includesClient
[allValuesFrom]

PaaSPricingPolicyPlatformQoS
endDate

[allValuesFrom]

startDate
[allValuesFrom]

DUL:TimeInterval

PaaSGroundedOfferingApplication

includesApplication
[allValuesFrom]

includesOffering
[allValuesFrom]

DUL:defines
[allValuesFrom]

Figure 10. SLA overview.

21

PaaS characteristics are classified into two catego-

ries: a) characteristics that deal with the infrastructure

needed to deliver the PaaS offering, such as Program-

ming Environment, Service, Resource, and Certificate,

and b) characteristics that refer to qualities inhering in

a PaaS offering, such as platform QoS, Pricing Policy,

Location and Rating. Figure 11 shows the class hier-

archy for PaaS characteristics.

A (PaaS)parameter is a property of a (PaaS)charac-

teristic, enriching it with additional descriptive context.

For example, the value “0.09 seconds” refers to the

Latency of the provided service. The value of the pa-

rameter is defined using the hasParameter-

DataValue property. Through OWL restrictions we

associate parameters with specific PaaS characteristics.

A PaaSParameter can be either:

 a MatchmakingParameter, i.e. a parameter that

participates in matchmaking and ranking, or

 an InformationalParameter that is used only

for informational reasons and can be inspected

manually by the application developer for deci-

sion-making or any other purpose.

Figure 11. The PaaS Characteristic hierarchy

Figure 12. The PaaS Parameter hierarchy

22

Moreover, the matchmaking parameters are divided

into functional and non-functional parameters via the
FunctionalParameter class: when a parameter is a

subclass of FunctionalParameter, then it can only be

used as a functional requirement, otherwise it can be

used both as a functional and a non-functional require-

ment. Functional requirements are the requirements

that, when not met by an offering, then the offering

cannot be considered as a candidate for deploying an

application. Non-functional parameters usually meas-

ure the quality of a service and are used in order to

rank the selected services according to the order of

preference. Notice that a non-functional parameter can

also be used as a functional one if the user wishes to.

For example, if “latency less than 10ms” is absolutely

required, offerings that do not satisfy this criterion are

not considered at all. This can be declared by the user

through the user interface. Figure 12 illustrates the

major subclasses of PaaSParameter and Figure 13

gives an overview of the association between charac-

teristics and parameters. In the following, we elaborate

on some key PaaS Characteristics and parameters.

Service is a piece of software that is part of a plat-

form offering (pre-installed), such as a database server,

a web server, etc. Services are related to the location

where the servers that provide them are located (espe-

cially for cloud databases this is important due to leg-

islation issues), resources (e.g. up to which storage ca-

pacity the application can use, either for all its data or

just for a single service), and cost (either of the plat-

form as a whole or for a specific service). The service

parameters are categorized into four categories (see

Figure 14):

 ServiceParameter describes the basic properties

of a service, such as name, type, version etc.

 Cost refers to pricing policy of the specific ser-

vice.

 ResourceParameter describes the platform re-

source-related parameters of a service, such as

storage capacity, memory capacity, bandwidth

Service

property restriction

Service
Parameter

PaaSPricingPolicy

PaaSPricingPolicy
Parameter

Programming
Environment

Programming
Parameter

Platform
QoS

QoS
Parameter

Certificates

Certificates
Parameter

Resource
Parameter

Resource Location

Rating
Parameter

Rating

Location
Parameter

dul:hasParameter
[allValuesFrom]

Figure 13. Overview of characteristics and parameters.

PaaSCharacteristic

Service

Location

ResourceParameter

ServiceParameter

rdfs:subClassOf

property restriction

ServiceName

ServiceType ServiceVersion
Cost

dul:hasParameter
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

Figure 14. Parameters of a Service.

23

etc. Notice that some of these parameters may re-

flect the QoS for the individual service / software

provided by the platform, as opposed to the QoS

parameters of the whole Platform-as-a-Service.

 LocationParameter describes where the server

that provides the service is physically located; for

example, a service can be a database server lo-

cated in Europe.

In addition, the Service class has two subclasses DB

and Server (Figure 11). The DB (SQL, NoSQL) class

represents a database service provided by a platform

offering and the Server class represents a web server

or any other type of server that might be offered by the

platform. The subclasses of Service are directly re-

lated to instances of the ServiceType class through a

necessary and sufficient hasValue restriction. Notice

that when a user of the PaaSport platform needs to add

services that are not in the above two categories, then

he/she can create a new direct instance of class Service,

without any specific type. However, if this service be-

longs to a service type that is missing from the

PaaSPort taxonomy, then only the PaaSport adminis-

trator can evolve the ontology by adding a new sub-

class of the Service class and the corresponding in-

stances of the ServiceType class. This can only be

done offline (e.g. upon platform upgrades) and re-

quires some minor amendments to the ontology, the

DB of the persistence layer and the user interface.

An example of a Service (Apache Server 2.2) is pre-

sented below:

<paas:Server rdf:about="&paas;apache_2.2">

 <DUL:hasParameter>

 <paas:ServiceVersion

rdf:about="&paas;apacheVersion">

 <DUL:hasParameterDataValue

rdf:datatype="&xsd;string">

 2.2</DUL:hasParameterDataValue>

 </paas:ServiceVersion>

 </DUL:hasParameter>

 <DUL:hasParameter>

 <paas:ServiceName

rdf:about="&paas;apacheName">

 <DUL:hasParameterDataValue

rdf:datatype="&xsd;string">

 Apache</DUL:hasParameterDataValue>

 </paas:ServiceName>

 </DUL:hasParameter>

 <DUL:hasParameter rdf:resource="&paas;Serv-

erType"/>

</paas:Server>

Class Location describes the geographical location

of a platform or a service of a platform, since it is usual

that due to legislation issues, a DevOps engineer may

require the whole platform or a service of the platform

to be located somewhere specifically. Location is as-

sociated with LocationParameters. Currently in

PaaSport we support continents and countries. How-

ever, this could be refined to smaller granularity if

needed. Furthermore, we may link these entities to

proper geographical linked open datasets in the future.

Class Certificate describes certificates and stand-

ards (e.g. involving security) of a platform or certifi-

cates/standards required by an application. Certificate

is associated with CertificateParameters, which can

be one of CertificateName, CetificateType, and Cer-

tificateVersion.

The Resource class describes the hardware-related

resources offered by the platform or requested by an

application developer, e.g. storage capacity, memory

capacity, network bandwidth, etc. Its subclasses are

Storage, Network and Processing (see Figure 15).

Resource

rdfs:subClassOf

property restriction

dul:hasParameter
[allValuesFrom] ResourceParameter

NetworkParameter

ProcessingParameter

StorageParameter

Network

Processing

Storage dul:hasParameter
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

Figure 15. Resource and resource parameters.

24

The actual resources are specified as resource param-

eters. In a similar manner, the subclasses of the Re-

sourceParameter class are StorageParameter (e.g.

disk type, capacity), ProcessingParameter (e.g. CPU

architecture, number of cores, memory capacity) and

NetworkParameter (e.g. bandwidth, latency, concur-

rent connections) (see Figure 16).

Notice that usually, in Service Oriented Architec-

ture, services are described logically and inde-

pendently from their physical realization. In this vein,

the connection of a service to resources might seem

inappropriate. However, in the PaaSport ontology we

use the term “service” differently, as already ex-

plained, namely as a piece of software offered on a

Cloud platform by a PaaS provider to the service

(PaaS) consumer. Therefore, each platform offering

(according to our market research in section 4.1) has

different resource settings according to different plans

(pricing policies). For example, a free plan may offer

very limited memory/storage capacity, whereas a pre-

mium plan would allow larger capacities up to a limit,

etc. Therefore, the correlation of platform ser-

vices/software to resources, in PaaSport, is not con-

nected to the physical implementation of the services,

but rather to the allowed usage of resources from the

deployed application according to the selected pricing

policy of the offering.

Figure 16. Full Resource Parameters hierarchy.

25

Furthermore, concerning resources (such as stor-

age) provided as a service, at a first glance it might

seem risky to indicate (or dictate) details about how it

is provided (e.g. SSD or HDD disk type), since it

might limit the ability of the PaaS provider to effec-

tively manage their available resources. However, the

PaaSport ontology aims to aid PaaS providers to

properly describe / advertise their platform capabili-

ties and application developers to accurately express

their application requirements (either functional or

non-functional / performance-related) in order to ef-

fectively select the correct and rank / shortlist the best

platform offerings to deploy their application. In this

vein, the type of resources, which usually dictate both

the expected QoS as well as pricing, is definitely rele-

vant. This allows the developer to choose between

quality (but expensive) platform plans or inexpensive

(but more common) PaaS offers. One such example

can be found at the Heroku platform7, where some of

7 https://elements.heroku.com/addons/jawsdb

the cheaper plans do not include SSD disks for the

storage, whereas the more expensive plans do. This in-

dicates that such resource details are important for se-

lecting the appropriate platform offering.

An example of a storage resource (OpenShift free

gear Storage) is presented below:

<paas:Storage rdf:about="&paas;gearStorage">

 <DUL:hasParameter>

 <paas:StorageCapacity

rdf:about="&paas;gearStorageCapacity">

 <DUL:parametrizes

rdf:resource="&paas;StorageCapacityGB"/>

 <DUL:hasParameterDataValue

rdf:datatype="&xsd;integer">

 1

 </DUL:hasParameterDataValue>

 </paas:StorageCapacity>

 </DUL:hasParameter>

</paas:Storage>

PlatformQoS QoSParameters

CPULoad

Latency

MemoryLoad

ResponseTime

Uptime

dul:hasParameter
[allValuesFrom]

rdfs:subClassOf

property restriction

Figure 17. Platform QoS and parameters.

PaaSCharacteristic

ProgrammingEnvironment ProgrammingEnvironmentParameter

FrameworkName

FrameworkVersion

LanguageName

LanguageVersion

dul:hasParameter
[allValuesFrom]

PaaSParameter

ProgrammingFramework

ProgrammingLanguage

Matchmaking
Parameter

d
u

l:h
asP

aram
eter

[allV
alu

esFro
m

]

Figure 18. ProgrammingEnvironment and parameters.

https://elements.heroku.com/addons/jawsdb

26

Class ProgrammingEnvironment describes a pro-

gramming language (e.g. Java, PHP, Python) or a pro-

gramming language framework (e.g. PHP Zend, Py-

thon Django) used for developing Cloud-based appli-

cations. Every instance of ProgrammingEnvironment

has some parameters, such as language name, lan-

guage version, framework name, and framework ver-

sion. These parameters are subclasses of Program-

mingParameter (Figure 17).

An example of the Java programming language

(version 1.6.0) is given below:

<paas:ProgrammingLanguage

rdf:about="&paas;java_1.6.0">

 <DUL:hasParameter>

 <paas:LanguageVersion

rdf:about="&paas;javaVersion_1.6.0">

 <DUL:hasParameterDataValue

rdf:datatype="&xsd;string">

 1.6.0

 </DUL:hasParameterDataValue>

 </paas:LanguageVersion>

 </DUL:hasParameter>

 <DUL:hasParameter>

 <paas:LanguageName rdf:about="&paas;ja-

vaName">

 <DUL:hasParameterDataValue

rdf:datatype="&xsd;string">

 Java

 </DUL:hasParameterDataValue>

 </paas:LanguageName>

 </DUL:hasParameter>

</paas:ProgrammingLanguage>

Class PlatformQoS represents the platform’s Qual-

ity of Service metrics and its parameters are subclasses

of QoSParameter. These parameters are MaxCPU-

Load, MinCPULoad, Latency, MaxMemoryLoad,

MinMemoryLoad, ResponseTime and Uptime (Fig-

ure 18).
MaxCPULoad is the upper limit on the percentage

of CPU load after which the platform scales up, e.g.

“scale up if CPU load is higher than 90%”. Notice that

this limit can be interpreted by the application require-

ment in two ways:

 If the application profile is similar to a server-like

application, then the application requirement for

this limit is to be as low as possible, in order to

be able to handle as many new requests as possi-

ble. So the application requirement treats this as

a minimum acceptable limit; a “compatible” of-

fering may offer the same-as-requested or an

even lower CPU load.

 If the application profile is similar to a data-in-

tensive application, then the application require-

ment for this limit is to be as high as possible, in

order to utilize the CPU as much as possible. So

the application requirement treats this as a maxi-

mum acceptable limit; a “compatible” offering

may offer the same-as-requested or an even

higher CPU load.

In order to comply with both the above application

profiles, the DUL:parametrizes property is restricted

to RangeValue, i.e. the superclass of the Max and Min

classes. When the application requirement is defined,

the parameter will become an instance of one of the

two most specific classes Max and Min. Max is for

data-intensive apps, Min is for server-like apps. Ex-

actly the same behavior is met by MaxMemoryLoad

parameter, which is the upper limit on the percentage

of memory load after which the platform scales up.

MinCPULoad is the lowest limit on the percentage

of CPU load below which the platform scales down,

e.g. “scale down when CPU load is below 30%”. No-

tice that this limit is always interpreted in the same

way by the application requirement; it needs to be as

high as possible so that the platform will scale-down

early enough so that the CPU load is maintained rela-

tively high (e.g. at least 50%). In this ways cost is

saved (no need to pay for extra VMs when not really

needed). Therefore, it is treated as a Min Range Value.

Exactly the same behavior is met by MinMemor-

yLoad parameter, which is the lowest limit on the per-

centage of memory load below which the platform

scales down.

PricingPolicy PricingPolicyParameter

BaseCharge

FreeNumApplications

MaxNumApplications

dul:hasParameter
[allValuesFrom]

Cost

TrialPeriod

Figure 19. PricingPolicy and parameters.

27

Latency is the maximum latency of an offering (or

the maximum latency required by an application). It is

the delay incurred due to communications. Further-

more, ResponseTime is the time elapsed between

sending a request and the reception of the first re-

sponse, whereas Uptime is the percentage of time in a

specific period that the application is up and running,

or the offering is available.

PricingPolicy contains details about the pricing

policy of a PaaS offering (as a whole) or of the cost of

a specific service offered by a PaaS offering (e.g. da-

tabase cost) and can take parameters of the type Pric-

ingPolicyParameter. Some of the pricing policy pa-

rameters are base charge of the offering/service, trial

period, extra costs for additional services, the number

of free applications that a developer can deploy, and

the maximum number of instances that a developer

can deploy (Figure 19). Finally, class Rating repre-

sents the rating of a PaaS offering; this value is the

average of the users’ ratings.

4.3.5 Quality Values and Units

The Measurement Unit Ontology8 (MUO) has been

used for semantically representing the various meas-

urements and units in the PaaSport domain. The ontol-

ogy can be used for modelling physical properties or

qualities. Every unit is related to a particular kind of

property. For instance, the Hz unit is uniquely related

to the frequency property. Under the provided onto-

logical approach, units are abstract spaces used as a

reference metrics for quality spaces, such as physical

8 http://idi.fundacionctic.org/muo/

qualia, and they are counted by some number. For in-

stance, weight-units define some quality spaces for the

weight-quality where specific weights of objects, like

devices or persons, are located by means of compari-

sons with the proper weight-value of the selected

weight-unit.

In MUO, the class muo:QualityValue (a specializa-

tion of dul:Region) is used for representing the values

of qualities, for instance, the amount of available

memory. Instances of this class are related with: a) ex-

actly one unit, suitable for measuring the physical

quality (meters for length, grams for weight, etc), by

means of the property muo:measuredIn (a specializa-

tion of dul:isPrametrizedBy); b) a number, which ex-

presses the relationship between the value and the unit

by means of the rdf:value property; and c) a time,

which expresses the quality value along the line of

time. Quality values can be temporalized, but this is

not always necessary. In PaaSport, we use MUO to

represent the units as well as qualitative attributes,

whereas values are represented using the DUL vocab-

ulary (dul:hasParameterDataValue).

The reason why we have used the MUO ontology,

instead of defining our own units using the DUL class

dul:UnitOfMeasure is that MUO has a large set of

well-known predefined unit instances, derived from

“The Unified Code for Units of Measure (UCUM)”9.

Almost all physical, chemical and IT units are already

defined there. However, we had to extend the unit

knowledge base with some derived IT units, such as

GB or MB, but we have re-used the basic unit (byte).

9 http://unitsofmeasure.org/trac

Offering GroundOffering
dul:satisfies
[allValuesFrom]

PaaSConcept

offers
[allValuesFrom]

muo:QualityValue

Min

Max

Range SingleValue PaaS
Parameter

dul:parametrizes
[allValuesFrom]

dul:hasParameter
[allValuesFrom]

dul:hasParameterDataValue
[allValuesFrom]

rdfs:Literal

MaxMin

NominalValue NominalValue

dul:Region

muo:UnitofMeasurement muo:measureIn

dul:UnitofMeasure

dul:Parameter

muo:UnitOf-infotech

GB
rdfs:subClassOf

property restriction

rdfs:subPropertyOf

rdf:type

dul:isParametrizedBy

Figure 20. Hierarchy of quality values and units of measurement.

http://idi.fundacionctic.org/muo/
http://unitsofmeasure.org/trac

28

In PaaSport (Figure 20), there are a lot of quality

values that represent how a value of a PaaS offering

parameter can be compared and matched to the corre-

sponding application requirement parameter:

 Single Values, either symbolic or numeric, that

require an exact match.

 Nominal Values, which are enumerated data

types and require an exact match.

 Ordinal Values, namely ordered enumerated data

types, which also require exact match, but order

can be established for better or worse.

 Range Values, which are numeric values that re-

quires range match, e.g. “less than” or “equal”.

There are four subclasses of this class, according

to the matchmaking profile of each parameter.

 Max: Range Value with a Max upper limit.

Matches less than or equal.

 Min: Range Value with a Min upper limit.

Matches “greater than” or “equal”.

 MaxMin: Range Value with a limit that is Max

for the Offering and Min for the Application.

Matches “less than” or “equal”.

Figure 21. A complete offering example.

Table 6. Legend of colors of Figure 21.

Properties Classes

29

 MinMax: Range Value with a limit that is Min

for the Offering and Max for the Application.

Matches greater than or equal.

4.3.6 Instance Example

In Figure 21, we include a complete instantiation

example of a PaaS offering, namely OpenShift. Notice

that there are two major instances involved, the

OpenShift Origin PaaS model, and the grounded

OpenShift offering from RedHat. The grounded offer-

ing includes two different containers (Gears) with

small and medium main memory and storage capaci-

ties, the Java language (v. 1.6), MySQL, PostgreSQL

and MongoDB with unbounded storage capacity, and

platform QoS characteristics, such as latency 200 ms

and 99.5% uptime. The color legend for the properties

and the classes of Figure 21 are shown in Table 6.

4.3.7 Expressivity and Reasoning

The PaaSport Semantic Models reuse the concep-

tual model provided by the DOLCE+DnS Ultralight

(DUL) foundational ontology and therefore, they in-

herit all the modelling properties and expressivity

characteristics of the upper-level model. More specif-

ically, the expressivity falls under the SHOIN(D) de-

scription logic, allowing a) atomic negation, that is,

negation of concepts that do not appear on the left

hand side of axioms; b) concept intersection; c) uni-

versal restrictions; d) existential quantification;

e) complex concept negation; f) inverse properties;

and g) cardinality restrictions.

Regarding the computation complexity of reason-

ing, it strongly depends on the OWL 2 reasoning pro-

file that will be used to implement the matchmaking

algorithms. An OWL 2 RL-based implementation is

NP-COMPLETE, whereas by using an OWL 2 DL

reasoner (under direct semantics), the reasoning com-

plexity increases to N2EXPTIME-complete, support-

ing though higher expressivity. Similarly, the compu-

tational complexity of SPARQL (SPARQL Protocol

and RDF Query Language) that will be used to query

the data strongly depends on the language constructs

used for defining queries. The full SPARQL (e.g. us-

ing FILTER, UNION, OPTIONAL operators) is

PSPACE-complete, whereas all OPTIONAL-free

graph patterns are either NP-COMPLETE (whenever

operator AND co-occurs with UNION or SE-

LECT/CONSTRUCT) or in PTime.

5 Interaction with the Recommendation and

Persistence Layers

The PaaSport Semantic Model strongly interacts

mainly with the Recommendation and the Persistence

layers of the PaaSport Broker (Figure 22).

5.1 Persistence Layer

The Persistence (or Repository) Layer is used in or-

der to (a) persist the various PaaSPort data models that

are mapped to the semantic model, (b) persist other

entities that are needed for the proper function of

PaaSPort Marketplace, and (c) offer search and dis-

covery interfaces that allow the usage of persisted in-

formation from other components. The main compo-

nent of the persistence layer is a Relational database

that is used to store the data that are necessary for the

operation of the platform. The repository contains the

three main types of data objects that PaaSport Market-

place needs to store: a) the PaaS Offering Profiles con-

stituting the semantic profiles of the PaaS offerings

advertised in the PaaSport Marketplace; b) the De-

ployed Application Profiles constituting the semantic

profiles of the deployed business software applica-

tions; and c) the User Profiles constituting the seman-

tic representation of the profiles that Software SMEs

Engineers and PaaS Providers maintain on the

PaaSport Marketplace.

A crucial aspect of the repository layer is the ability

to expose a specific part of its data in RDF format in

order for the semantic matchmaking to take place

(Figure 22), in a process called as RDFization. Data

stored in relational systems can be extracted via que-

ries, stored procedures, or any other process that will

extract the data from the database. Table columns and

rows have to be mapped to concepts and attributes de-

fined in an ontological model.

In order to achieve the RDFization, we use the

D2RQ Platform [15], which is a system for accessing

relational databases as virtual, read-only RDF graphs.

It offers RDF-based access to the content of relational

databases without having to replicate it into an RDF

store and provides access to the content of the database

as Linked Data over the Web. The D2RQ Platform

comprises of a set of tools, which offer SPARQL ac-

cess, a Linked Data server, an RDF dump generator, a

simple HTML interface, and Jena API [3] access to

D2RQ-mapped databases (Figure 23). The D2RQ

Platform provides a declarative language, the D2RQ

Mapping Language, for mapping relational database

schemas to RDF vocabularies and OWL ontologies. A

30

D2RQ mapping is an RDF document written in Turtle

syntax. The D2RQ mapping defines a virtual RDF

graph that contains information from the database.

The virtual RDF graph can be accessed in various

ways. Furthermore, the D2RQ platform comprises of

the D2RQ Engine, a plug-in for the Jena Semantic

Web toolkit, which uses the mappings to rewrite Jena

API calls to SQL queries against the database and

passes query results up to the higher layers of the

frameworks. Finally, the D2RQ Server is a publishing

tool for the content of relational databases.

In PaaSport we use the D2RQ mapping language in

order to export the offering profiles from the relational

database of the persistence layer to an RDF format, so

that they can be used by the matchmaking and ranking

algorithm of the recommendation layer (Figure 27).

The D2RQ language is also used to create all essential

mapping rules that are stored in a file. Every time that

a PaaS provider inserts a new offering instance in the

database, a script is responsible to recreate the

PaaSport ontology file.

The D2RQ language can connect RDF triples to da-

tabase tuples and attributes. At the example below

(Figure 24), the mapping rule for the grounded offer-

ings is presented. First, there is a rule for connecting

to the database, so it defines the port of the database

endpoint, username and password. After that, a map-

ping rule is defined, with the name of the rule-triplet,

the defined data storage, the URI pattern of the triplets

and the name of the class. Thus, for every tuple in the

table groundedpaasoffering the mapping rule creates

a new triplet.

Figure 23. Architecture of the D2RQ Platform (taken from [15]).

Figure 22. Relational to RDF mapping

31

In Figure 25, a property-mapping example is pre-

sented. First, there is a rule that creates the property

domain class (GroundOffering class). Then, there is a

rule that creates the property range class (Execution-

Container class). Finally, there is a rule that makes the

property mapping, in our case, the property paas:of-

fers. The connection is based on a join between the ta-

bles of the two classes above on the id attribute. Thus,

every GroundOffering instance connects to a corre-

sponding ExecutionContainer instance through the

property offers, based on the id of the ground-

paasoffering tuple.

At this point, it is worth mentioning that, alterna-

tively, the platform offerings could have been stored

directly into a native RDF database (i.e. a triplestore),

so that all the above effort on converting relational

data to RDF data could have been avoided. Notice,

however, that the technology stack of the PaaSport

broker is based on the Spring Framework [57], Spring

Data [56], and Hibernate ORM [32], which conjunc-

tively offer fast development times [48]; therefore, it

is inevitable to use a relational database system to

store the data objects that are required in order for all

PaaSport layers to interoperate. Therefore, if we have

chosen to duplicate data about platform offerings into

an RDF database, we would have the additional com-

plication of synchronizing data between the two data-

base systems, which would be even worse than the

complication of extracting data in an RDF format.

5.2 Recommendation Layer

The Recommendation Layer of the PaaSport Refer-

ence Architecture (Section 3) involves the develop-

ment of algorithms and software for supporting the se-

lection of the most appropriate PaaS offering that best

paas:database a d2rq:Database;
d2rq:jdbcDriver "com.mysql.jdbc.Driver";
d2rq:jdbcDSN "jdbc:mysql://127.0.0.1/paasport";
d2rq:username "paasport";
d2rq:password "!paasport!";
jdbc:autoReconnect "true";
jdbc:zeroDateTimeBehavior "convertToNull";
.

paas:Offering a d2rq:ClassMap;
d2rq:dataStorage paas:database;
d2rq:uriPattern "http://paasport-project.eu/ontology/paasport
#offering_@@groundedpaasoffering.name@@_
@@groundedpaasoffering.id@@";
d2rq:class paas:Offering;
.

Figure 24. D2RQ example; connecting to the database and mapping a table

paas:GroundOffering a d2rq:ClassMap;
d2rq:dataStorage paas:database;
d2rq:uriPattern "http://paasport-project.eu/ontology/

paasport#description_@@groundedpaasoffering.name@@_@@groun
dedpaasoffering.id@@";

d2rq:class paas:GroundOffering;
.

paas:infrastructuralservice a d2rq:ClassMap;
d2rq:dataStorage paas:database;
d2rq:uriPattern "http://paasport-project.eu/ontology/

paasport#ExecutionContainer_@@executioncontainer.id@@";
 d2rq:class paas:ExecutionContainer;

.

paas:offersinfrastructure a d2rq:PropertyBridge;
 d2rq:belongsToClassMap paas:GroundOffering;
 d2rq:property paas:offers;
 d2rq:refersToClassMap paas:infrastructuralservice;
 d2rq:join "groundedpaasoffering.id =>
executioncontainer.groundedpaasofferingid";
 .

Figure 25. D2RQ example; mapping a property.

32

matches the requirements of the application a devel-

oper wants to deploy. Under this context, the PaaSport

recommendation algorithms and models are aimed at

providing the necessary semantic layer on top of the

offering and application model descriptions, solving

interoperability issues and improving the quality of the

recommendations. To this end, standard vocabularies

and ontology languages are used for capturing the

structural and semantic characteristics of the various

entities involved in the PaaSport domain, whereas the

underlying conceptual models facilitate the use of

lightweight reasoning during the matchmaking pro-

cess.

At the heart of the PaaS Offering Recommendation

Layer there is a recommendation algorithm that selects

and scores-ranks the most appropriate PaaS offerings

that best match the requirements of the application a

developer wants to deploy. The matchmaking and

ranking algorithm consists of two steps (Figure 26):

a) Selection of those offerings that satisfy the

functional parameters.

b) Scoring of the remaining (from step a) offer-

ings using an aggregation scoring function on

all the non-functional parameters.

Note that when talking about functional and non-

functional parameters, we refer to the parameters that

the DevOps Engineer has set as application require-

ments through the corresponding GUI. Also, note that

parameters are classified as either functional or non-

functional from the PaaS Semantic Model (Section 4).

Therefore, the user interface can be constrained by the

Model on which parameters can be used as functional

or non-functional. However, non-functional parame-

ters can be used both as non-functional and functional.

For example, one might require that the storage capac-

ity of the offering should be no less than 10GB and

that he/she is not willing to consider offerings in the

final ranked list with less storage, even with a lower

score than the others are. In this case, the parameter

will be included twice in the list of parameters re-

trieved by the GUI, once in the functional parameters

list and once in the non-functional parameters list.

However, the opposite is not allowed, i.e. a functional

parameter (set by the Semantic Model, e.g. the Pro-

gramming Language) can never be treated as non-

functional.

Figure 26. Overview of the PaaSport Matchmaking and Recommendation algorithm

33

Table 7. SPARQL template for checking a functional parameter with a MinMax range numerical value.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

ASK {

 <offering.ID> DUL:satisfies / paas:offers ?characteristic .

 ?characteristic rdf:type <characteristic.type> .

 { ?characteristic DUL:hasParameter ?par .

 } UNION

 { ?characteristic paas:hasCompatibilityWith+ / DUL:hasParameter ?par .

 }

 ?par rdf:type <par.type> .

 ?par DUL:hasParameterDataValue ?Value .

 { ?par DUL:parametrizes <par.qualityValue> .

 BIND (1 AS ?Factor1)

 BIND (1 AS ?Factor2)

 } UNION

 { ?par DUL:parametrizes / uomvocab:measuredIn ?Units .

 ?Units rdf:type <par.qualityValue.MeasureUnit.Type> .

 <par.qualityValue.MeasureUnit> rdf:type uomvocab:BaseUnit .

 ?Units rdf:type uomvocab:SimpleDerivedUnit .

 ?Units uomvocab:derivesFrom <par.qualityValue.MeasureUnit> .

 ?Units uomvocab:modifierPrefix / uomvocab:factor ?Factor2 .

 BIND (1 AS ?Factor1)

 } UNION

 { ?par DUL:parametrizes / uomvocab:measuredIn ?Units .

 ?Units rdf:type <par.qualityValue.MeasureUnit.Type> .

 <par.qualityValue.MeasureUnit> rdf:type uomvocab:SimpleDerivedUnit .

 ?Units rdf:type uomvocab:BaseUnit .

 <par.qualityValue.MeasureUnit> uomvocab:derivesFrom ?Units .

 <par.qualityValue.MeasureUnit> uomvocab:modifierPrefix / uomvocab:factor ?Factor1 .

 BIND (1 AS ?Factor2)

 } UNION

 { ?par DUL:parametrizes / uomvocab:measuredIn ?Units .

 ?Units rdf:type <par.qualityValue.MeasureUnit.Type> .

 <par.qualityValue.MeasureUnit> rdf:type uomvocab:SimpleDerivedUnit .

 ?Units rdf:type uomvocab:SimpleDerivedUnit .

 ?Units uomvocab:derivesFrom <par.qualityValue.MeasureUnit.BasicUnit> .

 <par.qualityValue.MeasureUnit> uomvocab:modifierPrefix / uomvocab:factor ?Factor1 .

 ?Units uomvocab:modifierPrefix / uomvocab:factor ?Factor2 .

 }

 FILTER(xsd:double(?Factor2)*?Value >= xsd:double(?Factor1)*<par.value>)

}

The algorithm implemented in the PaaS Offering

Recommendation Layer accesses the PaaS Offerings

profiles stored in the Persistence and Execution Layer.

The algorithm uses predefined SPARQL query tem-

plates, according to the parameter type. Table 7 shows

such a typical SPARQL template for checking if a

functional parameter of the application requirement is

less than or equal with the corresponding parameter of

an offering (quality value MinMax). The value of the

parameter is a numerical value that may be character-

ized by measurement units (e.g. 2GB of memory).

Similar such templates exist for any of the quality val-

ues presented in Section 4.3.5.

The SPARQL query navigates from the initial of-

fering (<offering.ID>) to its characteristics (?charac-

34

teristic) that share the same characteristic type (<char-

acteristic.type>) with the application profile (lines 2-

3). Then all the parameters (?par) of the characteristic

of the characteristic instance that share the same pa-

rameter type (<par.type>) with the application profile

(lines 4-8) are retrieved. Note the search is not re-

stricted only to parameters of the current characteristic

instances, but also to parameters of compatible char-

acteristics, through the paas:hasCompatibilityWith

transitive property (line 6). This could be used for

cases e.g. of different programming language versions

that are backwards compatible.

In line 9 the value of the parameter is retrieved and

lines 10-38 check if the value of the parameter of the

offering is equal to corresponding value of the appli-

cation requirement. The comparison for equality

should also consider equality of units or equivalence

of units, when units are convertible to each other. For

example, 1024MB is equivalent to 1GB, although nei-

ther the value nor the measurement unit are equal.

There are several alternative cases for equality; each

one of them is one of the 4 graph patterns that are con-

nected through the UNION operator.

The first case (lines 10-13) is where the quality

value of the offering parameter is identical to the one

of the application requirement (both values have iden-

tical units). Thus the values of the offering and the ap-

plication will be compared directly, without unit con-

versions; that is why both variables ?Factor1

and ?Factor2 are set to 1. In the second case (lines 14-

22), the measurement unit of the parameter of the ap-

plication profile is a basic unit (line 16), so it cannot

be converted (?Factor1 set to 1), whereas the meas-

urement unit of the parameter of the offering is a de-

rived unit (line 17) that can be converted to the basic

unit using a modifier ?Factor2 (e.g. Giga) (line 19).

For example, 20KB will be converted to

20*1024=20480 bytes. The third case (lines 22-30) is

the exact symmetrical one. Finally, the fourth case

(lines 30-37) is when both the offering and the appli-

cation profile have parameters of derived units (lines

32-33). Instead of converting the one unit to the other,

we convert both of them (lines 35-36) to the basic unit

they originate from (line 34), so that they become

comparable. Line 38 at the end is the filtering expres-

sion that compares the two converted (or not) values,

using the alternative ?Factori multipliers. Notice that

this case also covers the case where both values are

expressed in the same derived measurement unit.

The above SPARQL template is agnostic to the do-

main model; therefore, the algorithm will remain un-

changed even if the PaaS ontology evolves in the fu-

ture. More details on the recommendation algorithm

and the SPARQL templates can be found at [5]. Fur-

thermore, notice that the business model of the

PaaSport Marketplace and the technical solution for

interoperability / portability implemented by the

PaaSport Broker imposes to the recommendation al-

gorithm to search for a single platform offering of a

single cloud provider, among multiple cloud providers,

that offers all the compatible requested services. Usu-

ally PaaS providers charge for a platform as a whole

and not as single provided services. Therefore, when a

DevOps engineer wants to deploy / migrate an appli-

cation from one cloud provider to another, usually

searches for a better (more cost efficient) platform.

This offers a cleaner deployment and maintenance so-

lution. However, the recommendation algorithm can

be easily extended to multiple cloud providers at the

service level.

Figure 27. Workflow of Data for the Recommendation layer.

Matchmaking Algorithm

Mapping
File

Offering Repository

D2RQ script
Read

Ontology
Read Application

Object
Execute the
Algorithm

Application
Repository

Ontology of the
offerings

Scored
Offerings

35

The Recommendation layer interacts with the per-

sistence layer, through the matchmaking algorithm to:

a) Retrieve the PaaS offerings stored in the

PaaSport Marketplace database;

b) Get the application requirements that the

DevOps engineer has posted through the user

interface.

Figure 27 shows the workflow of data from the per-

sistence layer to the recommendation layer, concern-

ing the inputs needed for the matchmaking/recom-

mendation algorithm. The PaaS offerings are stored in

the relational database of the persistence layer and

they are mapped to RDF data, using the characteristics

and properties of the Semantic Models, using the

D2RQ platform presented above. Then the offerings

are fed into the matchmaking algorithm. After that, the

application requirements are queried from the persis-

tence layer and they are used to construct an applica-

tion object that is also used as input of the matchmak-

ing/recommendation algorithm, which then proceeds

as already described above.

6 Evaluation

In this section we evaluate the PaaSport semantic

model in two different directions. First, we report on

the metrics of the Ontology as well as how it was ver-

ified. Then, we evaluate the scalability of the ontology

regarding size and query performance and we compare

it with the ontology of Cloud4SOA [34].

6.1 Ontology Verification and Metrics

The PaaSport ontology10 was developed with the

TobBraid Composer Free Edition [60] from TopQuad-

rant. In this subsection we present the verification

methodology we have used for the ontology, as well

as some metrics associated with it, which have been

provided by a different ontology editor (Protégé [52]).

A literature review of ontology metrics reveals a vari-

ety of such metrics aiming to assess and qualify an on-

tology. A good overview of ontology evaluation meth-

ods is given in [25] and in [7]. An ontology evaluation

process may target different qualitative or quantitative

criteria. Such techniques help uncover errors in imple-

mentation and inefficiencies regarding the modelling,

complexity and size of the ontologies. Nevertheless,

none of the evaluation methods, neither alone nor in

combination, can guarantee a “good” ontology, but

10 The ontology can be found at: http://lpis.csd.auth.gr/ontolo-

gies/paasport/paasport.owl

can surely help identify problematic parts [63]. Any

given approach may address more or less specific is-

sues; therefore, evaluation methodologies partially

clarify the problems at stake [25]. For verifying the

PaaSport ontology, we have selected two evaluation

methods, details of which are given in the following:

(a) an automated ontology evaluation tool named

OOPS! and (b) Protégé metrics.

OOPS! (OntOlogy Pitfall Scanner) is a web appli-

cation [43] that helps detect some of the most common

pitfalls when developing ontologies [51]. For example,

OOPS! warns you when:

 The domain or range of a relationship is defined

as the intersection of two or more classes. This

warning could avoid reasoning problems in case

those classes could not share instances.

 No naming convention is used in the identifiers

of the ontology elements. In this case the main-

tainability, the accessibility and the clarity of the

ontology could be improve.

 A cycle between two classes in the hierarchy is

included in the ontology. Detecting this situation

could avoid modelling and reasoning problems.

The generated results suggest how the ontology

could be modified to improve its quality. Nevertheless,

these suggestions should be manually interpreted and

revised properly by the knowledge engineer. Three

levels of importance have been identified in the eval-

uation process via OOPS!:

 critical pitfalls, that affect the ontology’s con-

sistency and reasoning,

 important pitfalls, which are not critical, but are

important to fix, and

 minor pitfalls, which do not cause any practical

problem, but correcting them will make the on-

tology clearer and more compact.

We have evaluated the PaaSport ontology by sub-

mitting it to OOPS!. Most of the pitfalls detected con-

cern the imported ontologies, namely DUL and MUO,

and they will not be reported here. Table 8 includes

the PaaSport ontology’s pitfalls detected by OOPS!,

along with a brief description. For missing annotations,

the actions are trivial so we do not report them further.

For the cases of missing inverse relationships, two of

them involved the relationships “requires” and “offers”

that relate an application requirement and an offering

model to PaaS Characteristics. The inverse relation-

ships “isRequiredBy” and “isOfferedBy” have been

introduced as subproperties of the DUL property

http://lpis.csd.auth.gr/ontologies/paasport/paasport.owl
http://lpis.csd.auth.gr/ontologies/paasport/paasport.owl

36

“isDefinedIn”. The third case involved the isCompat-

ibleWith property between PaaS Characteristics,

which was turned into transitive and symmetric in-

stead. Finally, the recursive definition involved the

“PaaSCharacteristic” class and the isCompatibleWith

property. The recursion was due to the fact that despite

class PaaSCharacteristic was the domain and range of

the property, we have included also a redundant local

range property (allValuesFrom restriction) for this

property at class PaaSCharacteristic, restricting it

again to PaaSCharacteristic. This restriction was just

removed.

Table 8. PaaSport Ontology’s pitfalls detected by OOPS!

Pitfall

Num-

ber of

cases

P08: Missing annotations (Minor)

Ontology terms lack annotation properties, either

rdfs:label or rdfs:comment, that would improve the

ontology understanding and usability from a user

point of view.

113

P13: Missing inverse relationships (Minor)

There are relationships (except for symmetric ones)

that do not have an inverse relationship defined

within the ontology.

3

P24: Using recursive definition (Important)

An ontology element is used in its own definition.

1

Table 9. PaaSport Ontology metrics by Protégé

Metric Count Metric Count

Axioms 528 SubObjectProper-

tyOf axioms

20

Logical axioms 282 ObjectPropertyDo-

main axioms

19

Classes 112 ObjectProper-

tyRange axioms

17

Object proper-

ties

33 InverseObjectProp-

erties axioms

7

Data properties 1 DataPropertyAsser-

tion axioms

4

Individuals 4 AnnotationAsser-

tion axioms

112

SubClassOf axi-

oms

196 Function-

alObjectProperty

axioms

2

Equivalent-

Classes axioms

5 ClassAssertion axi-

oms

12

DL expressivity SHOIN(D)

Furthermore, we also present the ontology metrics

provided by Protégé [52] that are based on the general

structure of the ontology and are classified into the fol-

lowing general groups [27]:

 General metrics, such as counters for classes, ob-

ject/data properties and individuals.

 Class axioms, such as subclass axioms, equiva-

lent class axioms, disjoint class axioms, etc.

 Object property axioms, which include counters

for object properties axioms such as total values

of sub-object properties, equivalent, inverse, dis-

joint, functional, transitive, symmetric, antisym-

metric, reflexive and irreflexive object properties,

as well as counters for data properties domain and

range.

 Data property axioms, including datatype proper-

ties counters, meaning total values of sub-

datatype properties, equivalent, disjoint and func-

tional datatype properties, as well as counters for

data properties domain and range.

 Individual axioms, with counters for class asser-

tions and same or different individual axioms.

 Annotation axioms, which includes counters for

annotation assertions and for annotation property

domain and range.

Table 9 includes the respective metrics for the

PaaSport ontology, as provided by the ‘ontology met-

rics’ view in Protégé. Notice that only non-zero met-

rics are reported. As can be observed, the ontology is

quite rich in classes, which are made subclasses of the

DUL upper level ontology, but quite fewer new object

properties are introduced, as subproperties of DUL

properties, meaning that many DUL properties have

been re-used. There is only one new datatype property.

This is because parameters of the PaaS offerings are

not directly represented as datatype properties, but in-

stead they are made first class (reified) objects that ac-

tually need only one datatype property (hasParameter-

DataValue). This feature of the DnS ontology design

property is very useful for the extensibility of the on-

tology. Specifically, when new features are added, ei-

ther PaaS Characteristics or characteristic properties,

one has to add only new classes as subclasses of al-

ready existing classes. The individuals defined in the

ontology are instances of the MUO ontology, namely

the KB, MB, GB, TB instances for measuring memory

/ disk capacities. These are all derived units of meas-

urement, derived from ‘byte’. The last row of Table 9

refers to the DL (Description Logic) expressivity of

the PaaSport ontology; DL provides the logical for-

malism underlying OWL 2. The PaaSport ontology

has a DL expressivity level of SHOIN(D) (see section

4.3.7), therefore it is equivalent to OWL 2 DL.

37

6.2 Ontology Scalability

In order to evaluate the scalability of the ontology

regarding size and query performance and compare it

with “competing” ontologies, such as Cloud4SOA

[34], we have performed the following experiments

and comparisons:

a) Scalability of performance for queries over

platform characteristics that bear different

measurement units vs. queries that are not

concerned with units, using the PaaSport se-

mantic model. In this way, we will be able to

evaluate the performance burden of having

different measurement units.

b) Scalability of performance for queries (with

and without measurement units) over the

PaaSport semantic model vs. similar queries

over a Cloud4SOA-like semantic model. In

this way, we will be able to evaluate the per-

formance burden of having an extensible se-

mantic model on top of DUL.

In order to achieve these, we have generated three

types of PaaS offerings multiple times and we meas-

ured the size and the response time of corresponding

SPARQL queries that return all the offerings that ex-

ceed the minimum applications requirements set for a

single platform characteristic. In this case, the charac-

teristic is the storage capacity offered by the PaaS in

three different settings 1, 2 and 4 GBs. In order to

check just the scalability, we have also restricted the

description of the offerings knowledge bases to just a

single platform characteristic (storage capacity).

Figure 28 (left) shows two such offerings, using the

PaaSport semantic model, used in the experiments,

whereas Figure 28 (right) shows the corresponding

offerings using the Cloud4SOA-like semantic model.

For all the experiments, we have created five different

knowledge bases with 300 up to 3 million offerings.

The ratio of the storage capacities among these offer-

ings was 1/3 from each of the capacities. Furthermore,

we have used two different settings for the experiment

knowledge bases; in the first setting half of the offer-

ings have their storage capacities expressed in GB,

whereas the other half in MB, whereas in the second

setting all offerings have their storage capacities ex-

pressed in GB, which makes querying easier. This

makes in total 4 different types of knowledge bases

(PaaSport model with GB and MB, PaaSport model

with GB only, Cloud4SOA-like model with GB and

MB, Cloud4SOA-like model with GB only), each in 5

different sizes (300, 3K, 30K, 300K, 3M offerings).

All knowledge bases (20 in total) were uploaded at

corresponding repositories into Ontotext’s GraphDB

Figure 28. The offerings of the PaaSport semantic model (left) and the Cloud4SOA model (right).

38

Free11 triplestore. The sizes of the knowledge bases

are shown in Table 10 and Figure 29 (in KB) and they

clearly scale linearly. Furthermore, there is not any no-

table difference between the PaaSport and the

Cloud4SOA-like semantic models. Notice that only

sizes of mixed GB-MB knowledge bases are reported;

the corresponding knowledge bases with only GB

have similar sizes.

Table 10. Size of offerings knowledge bases (in KB)

 300 3K 30K 300K 3M

PaaSport

model

172 1,725 17,435 176,386 1,784,345

Cloud4SOA

model

240 2,403 24,253 244,859 2,472,007

The application request tested was for offerings

with storage capacity at least 2GB, so the expected re-

sult set is comprised of 2/3 of the total number of of-

ferings with 2GB and 4 GB storage capacity. The

SPARQL queries for the four different types of

knowledge bases are shown in Table 11, Table 12,

Table 13, and Table 14. The SPARQL queries for the

PaaSport model in Table 11 and Table 12 are simpli-

fied versions of the query template presented in Table

7, adapted to the MinMax quality value of the storage

capacity (see section 4.3.5). Actually, they represent

two of the multiple UNION queries; the one that takes

into account the measurement units (because some of

the storage capacities are in GB and some in MB,

whereas the application request is expressed in GB)

and the one that does not need to take into account the

measurement unit, because the query designer knows

11 http://graphdb.ontotext.com/

in advance that all offerings use exactly the same

measurement unit, in this case GB.

Table 11. SPARQL query for checking the storage capacity in the

PaaSport semantic model (GB and MB).

SELECT ?offering ?Value WHERE {

 ?offering rdf:type paasport:Offering .

 ?offering DUL:satisfies ?gd .

 ?gd paasport:offers ?characteristic .

 ?characteristic rdf:type paasport:Storage .

 ?characteristic DUL:hasParameter ?par .

 ?par rdf:type paasport:StorageCapacity .

 ?par DUL:hasParameterDataValue ?Value .

 ?par DUL:parametrizes ?qualityVal .

 ?qualityVal uomvocab:measuredIn ?Units .

 ?Units rdf:type ucum:UnitOf-infotech .

 ucum:GB rdf:type uomvocab:SimpleDerivedUnit .

 ?Units rdf:type uomvocab:SimpleDerivedUnit .

 ?Units uomvocab:derivesFrom ucum:byte .

 ucum:GB uomvocab:modifierPrefix ?prefix1 .

 ?prefix1 uomvocab:factor ?Factor1 .

 ?Units uomvocab:modifierPrefix ?prefix2 .

 ?prefix2 uomvocab:factor ?Factor2 .

 FILTER (?Factor2*?Value >= ?Factor1*2)

}

In the case of the Cloud4SOA-like semantic model,

the corresponding SPARQL queries (Table 13, Table

14) navigate the graph of Figure 28 (right). The first

of the two queries needs a UNION in order to retrieve

offerings both in GB and MB.

Figure 29. Scaling of offerings knowledge bases size.

100

1.000

10.000

100.000

1.000.000

10.000.000

100 1.000 10.000 100.000 1.000.000 10.000.000

K
n

o
w

le
d

ge
 B

as
e

 S
iz

e
 (

K
B

)

No. of Offerings

PaaSport
Cloud4SOA

http://graphdb.ontotext.com/

39

Table 12. SPARQL query response times (in sec).

 300 3K 30K 300K 3M

PaaSport

(GB-MB)

0.028 0.117 1.025 10.589 110.158

PaaSport

(GB only)

0.022 0.068 0.522 5.162 52.790

Cloud4SOA

(GB-MB)

0.026 0.063 0.454 4.471 44.855

Cloud4SOA

(GB only)

0.019 0.058 0.433 4.200 43.103

Table 12 includes the response times of all queries

executed over all repositories. Each query was exe-

cuted 30 times on a PC with i7 at 3.4 GHz CPU, 16

GB main memory and the average time is reported.

Figure 30 shows how the queries scale over the size

of the triplestore (log-log scale). Results show that the

query response time of the PaaSport semantic model

with both GB and MB is approximately double com-

pared to the other three types of models at most of the

knowledge base sizes, except the “small” one with 300

offerings. This was expected since the PaaSport se-

mantic model with alternative measurement units is

more complex than the rest of the settings, therefore a

more complex graph pattern is needed to retrieve the

correct information. This is evident by just looking at

the 4 different SPARQL queries. However, the burden

of having alternative measurement units is not very

big and the scaling of query performance of all model

types is almost similar. In case only the GB measure-

ment unit is involved, the comparison between the

query performance of the PaaSport model and the

Cloud4SOA-like model is even better (only ~22%

worse).

From the above results it is evident that the perfor-

mance of the PaaSport model is inferior to that of a

Cloud4SOA-like model, even if not significantly.

Therefore, we should justify what the PaaSport model

is better at. Notice that in all queries, the resources and

properties indicated in bold are specific to the storage

capacity request and need to be filled-in the query tem-

plate for each different application request submitted

by the user. These request-specific elements can be

easily derived from the application request in the case

of the PaaSport semantic model (Table 11, Table 12),

whereas the rest of the query remains intact. This is

due to the fact that we have developed the PaaSport

ontology as an extension of the DUL upper ontology,

as we elaborated in section 4.2. However, this is not

the case for the queries that use the Cloud4SOA-like

model. The parts of the queries in Table 13 and Table

14 that are highlighted need to be manually edited by

the user each time a different characteristic is used as

Table 13. SPARQL query for checking the storage capacity in

the PaaSport semantic model (only GB).

SELECT ?offering ?Value WHERE {

 ?offering rdf:type paasport:Offering .

 ?offering DUL:satisfies ?gd .

 ?gd paasport:offers ?characteristic .

 ?characteristic rdf:type paasport:Storage .

 ?characteristic DUL:hasParameter ?par .

 ?par rdf:type paasport:StorageCapacity .

 ?par DUL:hasParameterDataValue ?Value .

 ?par DUL:parametrizes paasport:Storage_ca-

pacity_GB .

 FILTER (?Value >= 2)

}

Table 14. SPARQL query for checking the storage capacity in

the Cloud4SOA-like semantic model (GB and MB).

SELECT ?offering ?Value WHERE {

 ?offering rdf:type c4s:Offering .

 ?offering c4s:offerStorage ?s.

 ?s c4s:hasStorageConfiguration ?sc .

 ?sc c4s:hasStorageCapacity ?par .

 ?par c4s:hasMaxStorageValue ?qualityValue .

 ?qualityValue c4s:hasValue ?Value .

 { ?qualityValue rdf:type c4s:GigaByte .

 FILTER(?Value >= 2)

 } UNION

 { ?qualityValue rdf:type c4s:MegaByte .

 FILTER (?Value >= 2048)

 }

}

Table 15. SPARQL query for checking the storage capacity in

the Cloud4SOA-like semantic model (only GB).

SELECT ?offering ?Value WHERE {

 ?offering rdf:type c4s:Offering .

 ?offering c4s:offerStorage ?s.

 ?s c4s:hasStorageConfiguration ?sc .

 ?sc c4s:hasStorageCapacity ?par .

 ?par c4s:hasMaxStorageValue ?qualityValue .

 ?par c4s:hasMaxStorageValue ?qualityValue .

 ?qualityValue paasport:hasValue ?Value .

 ?qualityValue rdf:type c4s:GigaByte .

 FILTER (?Value >= 2)

}

40

an application request. This is due to the fact that the

Cloud4SOA ontology does not follow a regular struc-

ture as the PaaSport ontology and the number, the

names and the semantics of classes and properties of

platform characteristics vary in an ad-hoc manner.

This discussion also includes measurement units. For

example, in Table 13 the transformation of the limit

of 2GB to 20148MB needs to be done manually by the

user, simply because there are no basic and derived

units in Cloud4SOA and there is no way to automate

the conversion between them. In case there are more

alternative measurement units in the knowledge base,

the query should re manually reformulated with more

UNIONs, so there is a need from the user to know the

contents of the knowledge base before submitting the

query. In contrast, the query for the PaaSport model in

Table 11 works in any case of measurement units and

for every measurable platform characteristic without

any need for manual intervention. Concluding,

PaaSport trades flexibility and generality for perfor-

mance. Since the number of PaaS offerings in a typical

installation of the PaaSport marketplace is not ex-

pected to exceed the order of few thousands, we be-

lieve that this trade-off pays off.

7 Conclusions and Future Work

The PaaSport project tries to avoid the Cloud pro-

vider lock-in problem that many software SMEs are

having, by (a) enabling platform provider SMEs to roll

out semantically interoperable PaaS offerings, and,

(b) facilitating software SMEs to seamlessly deploy

(or migrate) business applications on the best-match-

ing Cloud PaaS offering. To this end, PaaSport com-

bined Cloud PaaS technologies with lightweight se-

mantics in order to specify and deliver a thin, non-in-

trusive Cloud broker, in the form of a Cloud PaaS

Marketplace.

In this paper, we have presented the semantical as-

pects of the PaaSport Cloud broker / marketplace, fo-

cusing on an OWL ontology we have developed. The

PaaSport ontology represents the necessary Platform-

as-a-Service characteristics and attributes for semanti-

cally annotating: (a) capabilities of PaaS offerings,

(b) requirements of applications to be deployed on one

of the Cloud platform offerings, through a Cloud Bro-

ker, and (c) Service Level Agreements to be estab-

lished between offering providers and application

owners. The ontology has been designed in order to

efficiently support a semantic matchmaking and rank-

ing algorithm for recommending the best-matching

Cloud PaaS offering to the application developer,

which uses SPARQL queries for retrieving relevant

data from the semantic repository.

The PaaSport ontology has been defined as an ex-

tension of the DOLCE+DnS Ultralight (DUL) ontol-

ogy design pattern [26]. This offers extensibility, since

both PaaS characteristics and parameters are defined

as classes, so extending the ontology with new char-

acteristics requires just adding new classes as sub-

classes of existing ones, which is less complicated

than adding properties. This extensibility advantage

reflects also on the persistence layer of the PaaSport

marketplace that is based on a relational database sys-

tem and it can be easily extended, as the semantic

Figure 30. Scaling of query response times.

0,01

0,10

1,00

10,00

100,00

 100 1.000 10.000 100.000 1.000.000

R
e

sp
o

n
se

 t
im

e
 (

se
c)

No. of Offerings

PaaSport-GB-MB

PaaSport-GB

41

model evolves, without the need to change existing ta-

bles. Finally, this feature also proves to be advanta-

geous in terms querying the knowledge base to re-

trieve PaaS offerings compatible with application re-

quests. Specifically, general templates can be used to

pose queries on any PaaS characteristic requested, in-

cluding also arbitrary measurement units. This flexi-

bility comes at a small performance price.

Future development plans for the PaaS ontology in-

clude its extension with the representation of intricate

PaaS pricing models and plans. Furthermore, a trans-

formation methodology between these models is

needed, so that these models can be comparable and

useful in the decision-making about the Cloud plat-

form to deploy an application, in addition to the rec-

ommendation algorithm [5]. This transformation can

be based rules of inference, e.g. SWRL (Semantic

Web Rule Language) [33] or SPIN (SPARQL Infer-

encing Notation) [35]. Finally, an interesting research

direction would be to integrate the recommendation

algorithm within the ontology in the form of SPIN /

SPARQL [35] rules and constraints, since the algo-

rithm itself is mostly based on SPARQL query tem-

plates. In this way, the business logic of PaaSport rec-

ommendation would be integrated with the ontology

itself, making it transparent, modifiable, extensible

and portable.

Acknowledgments

This work is fully funded by the EU FP7-SME-

2013-2-605193 PaaSport project. The authors would

like also to thank our project partners Giannis Ledakis,

Andreas Papadopoulos, Demetris Trihinas, George

Pallis, Gerald Hübsch, Fatemeh Ahmadi Zeleti and

Lukasz Porwol for their valuable comments.

References

[1] Androcec, D., Vrcek, N., Seva, J. Cloud Computing Ontolo-

gies: A Systematic Review. Proc. 3rd Int. Conf. on Models and

Ontology-based Design of Protocols, Architectures and Ser-

vices (MOPAS 2012), pp. 9-14, 2012.

[2] Androcec, D.; Vrcek, N.; Kungas, P., "Service-Level Interop-

erability Issues of Platform as a Service," 2015 IEEE World

Congress on Services (SERVICES), pp.349-356, June 27 2015-

July 2 2015.

[3] Apache Jena, https://jena.apache.org/ (last checked on 06-Jan-

2016)

[4] ARTIST FP7 project: http://www.artist-project.eu (last

checked on 06-Jan-2016)

[5] Bassiliades N., Symeonidis M., Meditskos G., Kontopoulos E.,

Gouvas P., Vlahavas I., A Semantic Recommendation Algo-

rithm for the PaaSport Platform-as-a-Service Marketplace, Ex-

pert Systems with Applications, accepted for publication,

http://dx.doi.org/10.1016/j.eswa.2016.09.032.

[6] Borenstein, N.; Blake, J., "Cloud Computing Standards:

Where's the Beef?," in Internet Computing, IEEE , vol.15, no.3,

pp.74-78, May-June 2011

[7] Brank, J., Grobelnik, M. and Mladenic, D. (2005), A survey of

Ontology Evaluation Techniques, in Proceedings of the Con-

ference on Data Mining and Data Warehouses (SiKDD 2005),

Ljubljana, Slovenia.

[8] Carvalho L., Mahowald R. P., McGrath B., Fleming M., Hilwa

A. Worldwide Competitive Public Cloud Platform as a Service

Forecast, 2015–2019. Jul 2015. Doc # 257391. Market Forecast.

Available at: https://www.idc.com/getdoc.jsp?contain-

erId=257391 (last accessed: January 2016)

[9] Chen F., Bai X., and Liu B. Efficient Service Discovery for

Cloud Computing Environments. Advanced Research on Com-

puter Science and Information Engineering, G. Shen and X.

Huang (Eds.), Springer Berlin Heidelberg, 2011, pp. 443-448.

[10] Cloud Application Management for Platforms Version 1.1. Ed-

ited by Jacques Durand, Adrian Otto, Gilbert Pilz, and Tom

Rutt. 09 November 2014. OASIS Committee Specification.

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-

v1.1.html.

[11] Cloud Service Measurement Index Consortium:

http://csmic.org/ (last checked on 06-Jan-2016)

[12] Cloud4SOA FP7 project: http://www.cloud4soa.com (last

checked on 05-June-2016)

[13] Columbus L., 451 Research: Platform-as-a-Service (PaaS)

Fastest Growing Area of Cloud Computing, Available at:

http://www.forbes.com/sites/louiscolumbus/2013/08/20/451-

research-platform-as-a-service-paas-fastest-growing-area-of-

cloud-computing/

[14] Compton Michael, Barnaghi Payam, Bermudez Luis, García-

Castro Raúl, Corcho Oscar, Cox Simon, Graybeal John, Haus-

wirth Manfred, Henson Cory, Herzog Arthur, Huang Vincent,

Janowicz Krzysztof, Kelsey W. David, Le Phuoc Danh, Lefort

Laurent, Leggieri Myriam, Neuhaus Holger, Nikolov Andriy,

Page Kevin, Passant Alexandre, Sheth Amit, Taylor Kerry, The

SSN ontology of the W3C semantic sensor network incubator

group, Web Semantics: Science, Services and Agents on the

World Wide Web, Vol. 17, 2012, pp. 25-32.

[15] D2RQ Platform, http://d2rq.org/ (last checked on 06-Jan-2016)

[16] Dastjerdi A. V., Tabatabaei S. G. H., and Buyya R. An Effec-

tive Architecture for Automated Appliance Management Sys-

tem Applying Ontology-Based Cloud Discovery. Proc. 10th

IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Computing,

pp. 104-112, May 2010.

[17] Deng Y., Head M. R., Kochut A., Munson J., Sailer A., and

Shaikh H. Introducing Semantics to Cloud Services Catalogs.

Proc. 2011 IEEE Int. Conf. on Services Computing, pp. 24-31,

July 2011.

[18] Dukaric R., Juric M. B., Towards a unified taxonomy and ar-

chitecture of cloud frameworks, Future Generation Computer

Systems, 29(5), 2013, pp. 1196-1210.

[19] European Commission, Unleashing the Potential of Cloud

Computing in Europe, Communication From The Commission

To The European Parliament, The Council, The European Eco-

nomic And Social Committee And The Committee Of The Re-

gions, Brussels, COM(2012) 529, 27/9/2012. In: http://eur-

lex.europa.eu/LexUriServ/LexUriS-

erv.do?uri=COM:2012:0529:FIN:EN:PDF

https://jena.apache.org/
http://www.artist-project.eu/
http://dx.doi.org/10.1016/j.eswa.2016.09.032
https://www.idc.com/getdoc.jsp?containerId=257391
https://www.idc.com/getdoc.jsp?containerId=257391
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://csmic.org/
http://www.cloud4soa.com/
http://www.forbes.com/sites/louiscolumbus/2013/08/20/451-research-platform-as-a-service-paas-fastest-growing-area-of-cloud-computing/
http://www.forbes.com/sites/louiscolumbus/2013/08/20/451-research-platform-as-a-service-paas-fastest-growing-area-of-cloud-computing/
http://www.forbes.com/sites/louiscolumbus/2013/08/20/451-research-platform-as-a-service-paas-fastest-growing-area-of-cloud-computing/
http://d2rq.org/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0529:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0529:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0529:FIN:EN:PDF

42

[20] Flahive A., Taniar D., and Rahayu W. Ontology as a Service

(OaaS): A Case for Sub-ontology Merging on the Cloud. Jour-

nal of Supercomputing, pp. 1-32, October 2011.

[21] Fortis TF, Munteanu VI, Negru V (2012) Towards an ontology

for cloud services. In: 6th International Conference on Complex,

Intelligent, and Software Intensive Systems (CISIS 2012).

IEEE Computer Society Press, Washington, pp 787–792.

[22] Foster I, Zhao Y, Raicu I and Lu S 2008 Cloud Computing and

Grid Computing 360-Degree Compared. In: Proceedings of the

IEEE Grid Computing Environments Workshop, pp 1-10

[23] Gagliardi F and Muscella S 2010 Cloud computing: data confi-

dentiality and interoperability challenges. In: Antonopoulos N,

Gillam L, editors. Cloud Computing: Principles, Systems and

Applications (Computer Communications and Networks). Lon-

don: Springer; 2010:257-270.

[24] Gangemi A., Presutti V. Ontology Design Patterns, in Staab S.

et al. (eds.): Handbook of Ontologies (2nd edition), Springer,

2009.

[25] Gangemi, A., Catenacci, C., Ciaramita, M. and Lehmann, J.

(2005), A theoretical framework for ontology evaluation and

validation, Proceedings of the Semantic Web Applications and

Perspectives (SWAP) – 2nd Italian Semantic Web Workshop,

Trento, Italy.

[26] Gangemi, A., Mika, P. Understanding the semantic web

through descriptions and situations. In: Proceedings of the In-

ternational Conference on Ontologies, Databases and Applica-

tions of Semantics. pp. 689-706 (2003).

[27] García, J., García-Peñalvo, F. J., and Therón, R. (2010), A Sur-

vey on Ontology Metrics. Knowledge Management, Infor-

mation Systems, E-Learning, and Sustainability Research,

Communications in Computer and Information Science, Vol.

111, pp. 22-27.

[28] Gardner D. 2010 Cloud computing's ultimate value depends on

open PaaS models to avoid applications and data lock-in. In:

http://www.zdnet.com/blog/gardner/cloud-computings-ulti-

mate-value-depends-on-open-paas-models-to-avoidapplica-

tions-and-data-lock-in/3794

[29] Garg S. K., Versteeg S., Rajkumar B., A framework for ranking

of cloud computing services, Future Generation Computer Sys-

tems, Volume 29, Issue 4, June 2013, Pages 1012-1023, ISSN

0167-739X, http://dx.doi.org/10.1016/j.future.2012.06.006.

[30] Han T., Sim K. M. An Ontology-enhanced Cloud Service Dis-

covery System. Proc. Int. MultiConference of Engineers and

Computer Scientists 2010, Vol I, March 2010.

[31] He K.-Q., Wang J., and Liang P. Semantic Interoperability Ag-

gregation in Service Requirements Refinement. Journal of

Computer Science and Technology, vol. 25, pp. 1103-1117, No-

vember 2010.

[32] Hibernate ORM, http://hibernate.org/

[33] Horrocks Ian, Patel-Schneider Peter F., Boley Harold, Tabet

Said, Grosof Benjamin, Dean Mike, SWRL: A Semantic Web

Rule Language Combining OWL and RuleML, W3C Member

Submission 21 May 2004. Available at:

http://www.w3.org/Submission/SWRL/

[34] Kamateri, E., Loutas, N., Zeginis, N., Ahtes, J., D’Andria, F.,

Bocconi, S., Gouvas, P., Ledakis, G., Ravagli, F., Lobunets, O.

& Tarabanis, K. (2013) Cloud4SOA: A semantic-interoperabil-

ity PaaS solution for multi-Cloud platform management and

portability. In Service-Oriented and Cloud Computing, Lecture

Notes in Computer Science Volume 8135, 2013, pp 64-78.

[35] Knublauch H., Hendler J. A., Idehen K., SPIN - Overview and

Motivation, W3C Member Submission 22 February 2011.

Available at: https://www.w3.org/Submission/spin-overview/

[36] Kourtesis D., Alvarez-Rodríguez J. M., Paraskakis I., Seman-

tic-based QoS management in cloud systems: Current status

and future challenges, Future Generation Computer Systems,

Vol. 32, 2014, pp. 307-323.

[37] Langer P., Mayerhofer T., Kappel G., “Semantic Model Differ-

encing Utilizing Behavioral Semantics Specifications”, Pro-

ceedings 17th International Conference, MODELS 2014,

Model-Driven Engineering Languages and Systems, Volume

8767 of the series Lecture Notes in Computer Science, pp. 116-

132, Springer International Publishing, Valencia, Spain, 2014.

[38] Ma Y. B., Jang S. H., and Lee J. S. Ontology-Based Resource

Management for Cloud Computing. Intelligent Information and

Database Systems, N. Nguyen, C.-G. Kim, and A. Janiak (Eds.),

Springer Berlin Heidelberg, 2011, pp. 343-352.

[39] Martinez C. A., Echeverri G. I., and Sanz A. G. C. Malware

detection based on Cloud Computing integrating Intrusion On-

tology Representation. Proc. 2010 IEEE Latin-American Con-

ference on Communications (LATINCOM), pp. 1-6, Septem-

ber 2010.

[40] Mell Peter, Grance Timothy, “The NIST Definition of Cloud

Computing”, NIST Special Publication 800-145, September

2011. Available at: http://nvlpubs.nist.gov/nistpubs/Leg-

acy/SP/nistspecialpublication800-145.pdf

[41] mOSAIC FP7 project: http://www.mosaic-cloud.eu (last

checked on 06-Jan-2016)

[42] Moscato F., Aversa R., Di Martino B., Fortis T.-F., and Munte-

anu V. An Analysis of mOSAIC ontology for Cloud Resources

Annotation. Proc. Federated Conf. on Computer Science and

Information Systems, pp. 983-990, 2011.

[43] OntOlogy Pitfall Scanner!, http://oops.linkeddata.es/ (last

checked on 06-Jan-2016)

[44] OpenCrowd. Cloud Computing Vendors Taxonomy. Available

at: http://cloudtaxonomy.opencrowd.com/, last access: Decem-

ber 2015.

[45] PaaSport Consortium, Deliverable 1.1: PaaSport Requirements

Analysis Report, November 2014. Available at: http://paasport-

project.eu/deliverables.php

[46] PaaSport Consortium, Deliverable 1.2: PaaSport Reference Ar-

chitecture, October 2014. Available at: http://paasport-pro-

ject.eu/deliverables.php

[47] PaaSport Consortium, Deliverable 1.3: PaaSport Semantic

Models, November 2014. Available at: http://paasport-pro-

ject.eu/deliverables.php

[48] PaaSport Deliverable D4.2: “Persistence and Execution Layer

– First Release”, PaaSport project, FP7-605193. Available at:

http://paasport-project.eu/deliverables.php

[49] PaaSPort FP7 project: http://paasport-project.eu (last checked

on 06-Jan-2016)

[50] Petcu D., Di Martino B., Venticinque S., Rak M., Máhr T.,

Lopez G. E., Brito F., Cossu R., Stopar M., Šperka S. and

Stankovski V., Experiences in building a mOSAIC of clouds,

Journal of Cloud Computing: Advances, Systems and Applica-

tions, vol. 2 (1), p. 12, 2013.

[51] Poveda-Villalón, M., Gómez-Pérez, A., & Suárez-Figueroa, M.

C. (2014). OOPS! (OntOlogy Pitfall Scanner!): An On-line

Tool for Ontology Evaluation. International Journal on Seman-

tic Web and Information Systems (IJSWIS), 10(2), 7-34.

doi:10.4018/ijswis.2014040102

[52] Protégé, http://protege.stanford.edu/ (last checked on 06-Jan-

2016)

[53] REMICS FP7 project: http://www.remics.eu (last checked on

06-Jan-2016)

[54] Rimal B P, Jukan A, Katsaros D and Goeleven Y. 2011. Archi-

tectural Requirements for Cloud Computing Systems: An En-

terprise Cloud Approach. Journal of Grid Computing. 9. 3-26

[55] Rodríguez-García M. A., Valencia-García R., García-Sánchez

F., Samper-Zapater J. J., Creating a semantically-enhanced

cloud services environment through ontology evolution, Future

http://www.zdnet.com/blog/gardner/cloud-computings-ultimate-value-depends-on-open-paas-models-to-avoidapplications-and-data-lock-in/3794
http://www.zdnet.com/blog/gardner/cloud-computings-ultimate-value-depends-on-open-paas-models-to-avoidapplications-and-data-lock-in/3794
http://www.zdnet.com/blog/gardner/cloud-computings-ultimate-value-depends-on-open-paas-models-to-avoidapplications-and-data-lock-in/3794
http://hibernate.org/
http://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/spin-overview/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.mosaic-cloud.eu/
http://oops.linkeddata.es/
http://cloudtaxonomy.opencrowd.com/
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/deliverables.php
http://paasport-project.eu/
http://protege.stanford.edu/
http://www.remics.eu/

43

Generation Computer Systems, Vol. 32, 2014, pp. 295-306,

2014.

[56] Spring Data, http://projects.spring.io/spring-data/

[57] Spring Framework, https://projects.spring.io/spring-frame-

work/

[58] Takahashi T., Kadobayashi Y., and Fujiwara H. Ontological

Approach toward Cyber-security in Cloud Computing. Proc.

3rd Int. Conf. on Security of Information and Networks, pp.

100-109, September 2010.

[59] Topology and Orchestration Specification for Cloud Applica-

tions, Version 1.0. 25 November 2013. OASIS Standard.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-

v1.0-os.html.

[60] TopQuadrant, TopBraid Platform Overview, in:

http://www.topquadrant.com/technology/topbraid-platform-

overview/

[61] Transparency Market Research, Platform as a Service (PaaS)

(Public, Private and Hybrid Cloud) Market - Global Industry

Analysis, Size, Share, Growth, Trends and Forecast 2014 –

2020. Dec 2014. Available at: http://www.transparencymarket-

research.com/platform-as-a-service.html

[62] Tsai, W.-T., Sun, X., Balasooriya, J., 2010. Service-oriented

cloud computing architecture. In: 2010 Seventh International

Conference on Information Technology New Generations, pp.

684–689.

[63] Vrandečić, D. (2009), Ontology Evaluation, Handbook on On-

tologies, International Handbooks on Information Systems, pp.

293-313.

[64] Wang J., Zhang J., Hung P. C. K., Li Z., Liu J., He K. Leverag-

ing Fragmental Semantic Data to Enhance Services Discovery.

Proc. 2011 IEEE Int. Conf. on High Performance Computing

and Communications, pp. 687-694, September 2011.

[65] Weinhardt C., Anandasivam A., Blau B., and Stosser J. Busi-

ness Models in the Service World, IT Professional, vol. 11, pp.

28-33, March-April 2009.

[66] Youseff L., Butrico M., and Da Silva D. Toward a Unified On-

tology of Cloud Computing. Proc. Grid Computing Environ-

ments Workshop (GCE '08), pp. 1-10, November 2008.

http://projects.spring.io/spring-data/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.topquadrant.com/technology/topbraid-platform-overview/
http://www.topquadrant.com/technology/topbraid-platform-overview/
http://www.transparencymarketresearch.com/platform-as-a-service.html
http://www.transparencymarketresearch.com/platform-as-a-service.html

