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Abstract. Nowadays users have difficulty to query datasets with different vocabularies and data structures that are included in
the Linked Data environment. For this reason it is interesting to develop systems that can produce on demand rewritings of
queries. Moreover, a semantics preserving rewriting cannot often be guaranteed by those systems due to heterogeneity of the
vocabularies. It is at this point where the quality estimation of the produced rewriting becomes crucial. Notice that, in a real
scenario, there is not a reference query.

In this paper we present a novel framework that, given a query written in the vocabulary the user is more familiar with, the
system rewrites the query in terms of the vocabulary of a target dataset. Moreover, it also informs about the quality of the rewritten
query with two scores: firstly, a similarity factor which is based on the rewriting process itself, and so can be considered of
intensional nature; and secondly, a quality estimation that can be considered of extensional nature offered by a predictive model.
This model is constructed by a machine learning algorithm that learns from a set of queries and their intended (gold standard)
rewritings.

The feasibility of the framework has been validated in a real scenario.
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1. Introduction

The increasing adoption of the Linked Open Data
(LOD) paradigm has generated a distributed space of
globally interlinked data, usually known as the Web of
Data. This new space opens up the possibility of ex-
ecuting exploratory and selective queries over a huge
set of updated data. However, many users find difficul-
ties when formulating queries over it, due to the fact
that they are not familiar with the data, links and vo-
cabularies of many heterogeneous datasets that consti-
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tute the Web of Data. In this scenario it becomes nec-
essary to provide the users with tools and mechanisms
that help them to exploit the vast amount of available
data.

We can find in the specialized literature different
proposals that have considered the goal of provid-
ing distributed query processing mechanisms, where
queries are evaluated against the distributed datasets
of the Web of Data. Among them, two main groups
can be distinguished: those that follow the federated
query processing approach (e.g. [10]) in which a query
against a federation of datasets is split into queries that
can be answered in the individual nodes where datasets
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are stored. And those that follow the exploratory query
processing approach (e.g. [11]), where a query is first
evaluated on an initial dataset and then the Web of Data
is explored by traversing interesting links pointing to
other datasets stored in different nodes which may con-
tain more data entities satisfying the query. The work
presented in this paper follows this second approach.

Although the majority of exploratory query pro-
cessing approaches consider semantic-preserving nav-
igation among datasets such as [18], our proposal
deals with a scenario where the preservation of the
semantics is not a strong requirement and therefore
it considers semantics-preserving and non-semantics-
preserving navigations in order to increase the op-
portunities of getting results. When a non-semantics-
preserving scenario is considered, the definition of a
quality estimation of the rewritten query becomes cru-
cial because the user needs to be aware of the con-
fidence that can be deposited on the results obtained
from the new dataset.

As a motivating example, let us imagine a user that
is only familiar with the LinkedMDB SPARQL end-
point (a dataset about movies and their related people).
This user asks for the names of art directors working
on the films directed by Woody Allen. The SPARQL
query constructed by the user could be the following
one:

SELECT DISTINCT ?name
WHERE {

?woody movie : d i r e c t o r _ n a m e "Woody A l l e n " .
? movie movie : d i r e c t o r ?woody ;
movie : f i l m _ a r t _ d i r e c t o r ? a r t .
? a r t movie : f i l m _ a r t _ d i r e c t o r _ n a m e ?name . }

and the obtained results are listed on table 1:

?name
“Tom Warren"

Table 1
Query results from LinkedMDB.

Moreover the user would find useful to execute the
same query in other datasets, perhaps more recognized
ones or more active ones, trying to obtain more results.
One good example of those datasets can be DBpedia.
Using our proposal the user could obtain the following
reformulation of the query, according to the DBpedia
vocabulary:

SELECT DISTINCT ?name
WHERE {

?woody f o a f : name "Woody A l l e n "@en .
? movie dbo : d i r e c t o r ?woody ;
dbo : c i n e m a t o g r a p h y ? a r t .
? a r t f o a f : name ?name . }

This reformulation has been based on some declared
mappings between both datasets: movie:director
was declared an equivalent term to dbo:director,
and properties movie:director_name and mo
vie:film_art_director_name were declared
as subproperties of foaf:name. Although no de-
clared mapping for movie:film_art_director
existed, the system proposed the term dbo:cinema
tography as an approximation to the original one.
The obtained results are listed on table 2:

?name
“Sven Nykvist"
“Zhao Fei"
“Harris Savides"
“David M. Walsh"
“Remi Adefarasin"
“Carlo Di Palma"
“Javier Aguirresarobe"
“Gordon Willis"
“Vilmos Zsigmond ASC"
“Darius Khondji"
“Ghislain Cloquet"

Table 2
Query results from DBpedia.

Notice that new results appeared when querying the
DBpedia dataset which may be of interest to the user.
Nevertheless, which further enriches the answer is the
provision of a quality score of the reformulated query.
It is at this point where a main contribution of this pa-
per plays a relevant role.

In general, quality estimation can be defined in
terms of a query similarity measure between the source
and target queries (source query, formulated over the
initial dataset, and target query, formulated over an-
other dataset of the Web of Data indicated as target).
However, when comparing two queries, different sim-
ilarity dimensions can be considered [5]: (1) the query
structure, expressed as a string or a graph structure;
(2) the query content, its triple patterns and ontologi-
cal terms and literal values; (3) the language features,
such as query operators and modifiers; and (4) the re-
sults set retrieved by the query. Queries may be as-
sessed with respect to one or several of that considered
dimensions. And it is widely accepted that the applica-
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tion context heavily determines the choice for a simi-
larity measure. In the scenario considered in this paper
we think that the content and the result set are the ap-
propriate dimensions because structure, or language of
the target query are irrelevant to the user that formu-
lates the query over the source dataset. Notwithstand-
ing that the result set is what matters to the user. It is
crucial to notice that the intention of issuing the query
to a target dataset is to look for more or different re-
sults than those obtained by the source query. There-
fore, the intended result set of the target query cannot
be compared with that of the source query in terms of
exact matching and the query similarity measure must
take into account this distinctive feature.

The main contribution of this paper is twofold: (1)
Proposal of a general framework for the deployment
and management of a query rewriting system concern-
ing the scenario previously explained. And (2) the vali-
dation of the framework in a real context, including the
machine learning and optimization techniques used to
estimate the quality of the rewriting outcome.

Proposal of a general Framework We propose a new
framework which considers two kind of users:

– End users, who select or formulate a query over
a source dataset. And the system issues a new
query, which mimics the original one, over a tar-
get dataset (of the Web of Data) with the goal
of enriching the results obtained from the source
dataset. The new issued query is annotated with
a quality estimation composed by a prediction of
the widely known information retrieval metric F1
score, and a similarity factor between queries.

– Expert/technical users, who in addition to ben-
efiting from the functionalities provided for end
users, can also include in the framework: rewrit-
ing rules, an algorithm to process them, and sim-
ilarity measures to qualify the query rewriting.
The framework also provides them with facili-
ties to tune the introduced similarity measures by
means of optimization techniques. The rewriting
rules, similarity measures and training queries in-
troduced are stored in the log of the framework
with the idea of serving as experimental and com-
parison benchmark.

Validation of the Framework The framework has
been tested in a real context. For that, we have filled
the framework with the following elements:

– Query rewriting rules. Apart from some rules
dealing with the rewriting of terms by their

specified equivalents, via synonym mappings or
EDOAL (Expressive and Declarative Ontology
Alignment Language) [8] alignment rules, the
framework also deals with some other heuristic
based rules which conform a carefully controlled
set of cases.

– Similarity measures. The computation of the
quality estimation takes into account different
similarity measures depending on the motif of the
rule being applied. Those motifs range from rela-
tional to ontological structure, and from language
based to context based similarity.

– Datasets. Three domain areas were considered for
the datasets: media-domain, bibliographic, and
life science. From the media-domain six datasets
were selected, five datasets from the bibliographic
domain, and five more from the life science do-
main, respectively.

– Queries. 100 queries were formulated over the
previously selected datasets. When selecting the
queries, our aim was to get a set that would con-
tain a broad spectrum of SPARQL query types
[1]. Concerning provenance we selected queries
that appeared in well known benchmarks such
as QALD4 or FedBench, and we also considered
queries that belonged to LOD SPARQL endpoints
logs from the selected datasets.

The rest of the paper is organized as follows. Sec-
tion 2 presents some related works in the scope of re-
source matching and query rewriting. Section 3 intro-
duces an abstract framework for our proposal. Sec-
tion 4 shows a framework embodiment. Section 5 de-
scribes the framework validation results. Finally, some
conclusions are presented.

2. Related works

The impressive growth of the Web of Data has
pushed the research on Data Linking [21]: “the task
of determining whether two object descriptions can
be linked one to the other to represent the fact that
they refer to the same real-world object in a given
domain or the fact that some kind of relation holds
between them". Those object descriptions can be ex-
pressed with diverse structural relationships, depend-
ing on different contexts, using classes and proper-
ties from different ontologies. Research on object sim-
ilarity and class matching has issued a considerable
amount of techniques and systems on the field of On-
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tology Matching [7], although less work has been de-
vised to property alignment [17,2]. A recent work [16]
presents an unsupervised learning process for instance
matching between entities. Queries considered in this
paper involve terms for classes, properties and indi-
viduals. Therefore, techniques for discovering similar-
ity for any of them are relevant. However, the topic of
this paper regards query similarity, which can be rec-
ognized as a different problem. As has been noticed
in [5], the appropriate notion of query similarity de-
pends on the goal of the task. In our case, the task
is to estimate the similarity of the intended semantics
between a query designed for a source dataset and a
rewriting to a different vocabulary, to be evaluated in a
different target dataset.

Some works, for example [18,3], have approached
a restricted version of the task carried out in our case.
They restrict themselves to produce semantics pre-
serving translations (i.e. total similarity) and so they
assume that enough equivalent correspondences exist
among entities in datasets. Taking into account that
such an assumption is too strong in real scenarios
we consider situations where different types of corre-
spondences exist (not only of equivalence type) and
even more, situations where some correspondences are
missing. This consideration implies that query seman-
tics is sometimes not preserved in the rewriting pro-
cess and therefore the estimation of similarity of the
produced rewriting becomes crucial.

The aim of our considered rewriting is to look for
more answers in a target dataset than those obtained
from the source dataset. Some other works have the
goal of obtaining more answers (including approxi-
mate ones) for an original query; however, all of them
restrict their scope to a single source dataset. All those
works can be situated under the topic of query relax-
ation. In [15] they propose a logical relaxation of con-
ditions in conjunctive queries based on RDFS seman-
tics. Those conditions are successively turned more
general and a ranking in the successively obtained an-
swers is generated. [13,14] use the same kind of relax-
ations as [15], but propose different ranking models.
In [13], similarity of relaxed queries is measured with
a model based on the distance between nodes in the
ontology hierarchy. In [14], they use an information
content based model to measure similarity of relaxed
queries. The work in [6] addresses the query relaxation
problem by broadening or reformulating triple patterns
of the queries. Their framework admits replacement of
terms by other terms or by variables and also removal
of entire triple patterns. In that work, generation and

ranking of relaxed queries is guided by statistical tech-
niques: a distance between the language models asso-
ciated to entity documents is defined.

With different use cases in mind, the papers [12,
4,20] present different possibilities for approaching
the querying of Linked Data. In [12] a framework
for relaxation of star-shaped SPARQL queries is pro-
posed. They present different matchers (functions that
map pairs of values to a relaxation score) for differ-
ent kinds of attributes (numeric, lexical or categori-
cal). The framework may involve multiple matchers.
The matchers generate a tuple of numeric distances be-
tween a query and an entity (answer for the query). No-
tice that the distance is defined between an entity and
a query, not between two queries as in our approach.
[4] proposes a measure to evaluate the similarity be-
tween a graph representing a query and a graph rep-
resenting the dataset. With a suitable relaxation of the
notion of alignment between query graph paths and
dataset graph paths they generate approximate answers
to queries. In [20] a method for query approximation,
query relaxation, and their combination is proposed
for providing flexible querying capabilities that assist
users in formulating queries. Query answers are ranked
in order of increasing distance from the user’s original
query.

In summary, cited works that transform the query or
reformulate the notion of answer in order to provide
users with more answers from the source dataset, do
not try to reformulate the query in a different dataset
with a priori unknown vocabulary; and this is a distin-
guishing feature of our use case.

3. Abstract framework

An abstract representation of the proposed frame-
work for rewriting a query and estimating the quality
of the rewritten query, can be expressed as an structure
(R, A,M, V , SF , P) where

– R is a set of SPARQL query rewriting rules,
– A is the algorithm for applying the rules,
– M is a set of similarity measures between frag-

ments of query expressions,
– V : R → M is an application that associates a

similarity measure to every rule,
– SF : R∗ → [0, 1] which associates each se-

quence of applied rewriting rules with a similarity
factor from the [0, 1] real interval, and

– P is a predictive model which estimates a quality
score for the target query.
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The rule language to express rules in R is similar
to CONSTRUCT expressions of the SPARQL 1.1 lan-
guage. The query patterns in the WHERE clause de-
scribe the conditions that must be matched to apply a
rule and the CONSTRUCT clause describe the pattern
which will replace the rewritten fragment of the cur-
rent query. Algorithm A manages the rewriting pro-
cess, the order in which rules are applied and so on.

Every application of a rule r is considered as a step
in the progress to the target query, and such step is val-
uated with a factor computed by the associated similar-
ity measure V(r) fromM. The rewriting system of the
proposed framework takes a given query Qs (named
source query), expressed with a vocabulary adequate
for the source dataset, and transforms it into another
query Qt (named target query), expressed with a vo-
cabulary adequate for the selected target dataset. The
rewriting process produces Qt as a semantically equiv-
alent query to Qs as long as enough equivalence map-
pings between the vocabulary of the source dataset
and the vocabulary of the target dataset are found. But
the distinguishing point is that the process produces a
mimetic query Qt even in the case when no equiva-
lent translation for Qs is found. That is to say, semantic
preservation cannot be guaranteed due to vocabular-
ies heterogeneity and/or missing links with terms ap-
pearing in the source query. It is at this point where
the definition of a quality estimation of the rewriting
outcome becomes crucial to our approach, because the
user needs to be aware of the quality of the produced
target query.

The function SF calculates a similarity factor for
a target query in terms of the sequence of rules r̄ that
were applied to construct it and combining properly
the measures V(r) (for each r ∈ r̄). Similarity mea-
sures inM can be defined by simple functions or very
complex ones. Usually they can be defined by combin-
ing similarity measures taken from a state-of-the-art
repository [7]. Moreover, optimization methods algo-
rithms can be used to tune parameter values for the lin-
ear combination of measures, taking advantage of the
experimental scenario.

As previously said in the introduction section, the
intention of issuing a query to the target dataset is to
look for more or different results than those obtained
in the source dataset. Therefore, although the target
query should try to maintain the spirit of the source
query, the intended result set of the target query cannot
be compared with the source query retrieved ones but
with that of an ideal expression of such source query
in terms of the vocabulary acceptable by the target

dataset. Notice that, due to the previously mentioned
heterogeneity reasons, such ideal expression cannot
be trivially constructed. In fact, we consider that the
finding of such ideal expression, in the considered
scenario, should be realized by a human expert who
knows vocabularies of source and target datasets. And,
therefore, the reference query against which the target
query should be compared is a human designed one,
that tries to express the most similar intention to the
source query but in the context of the target dataset. We
consider such a query our gold standard query against
which the target query should be compared.

In the presence of a gold standard query, its re-
sults can be compared with those obtained by the tar-
get query. Statistical measures such as precision, recall
and F1 score can be used to measure the quality of a
target query. Of course, gold standards can only exist
in an experimental scenario but not in the real setting,
and that’s the reason to incorporate machine learning
techniques in the framework. The predictive model P
is generated by a supervised machine learning method
applied to a suitable experimental scenario: selected
benchmark of source queries with their respective gold
standard queries for the target datasets, correspond-
ing target queries generated by the rewriting system
with their respective SF value and with their respec-
tive score that will be the goal for prediction.

4. Framework embodiment

This section presents a brief explanation of a spe-
cific embodiment of the abstract framework (R,A,M,
V , SF , P) that has been partially presented in [23] and
which serves as a proof of concept for our proposal.

A SPARQL query can be represented by a graph pat-
tern consisting on a set of triple patterns. A triple pat-
tern is a triple (s, p, o) where s is the subject, p is the
predicate, and o is the object. The three of them repre-
sent resources and any of them can be a variable (de-
noted by prefixing it with a question mark, for instance
?x).

The set of rules R was devised from a pragmatic
point of view. The rules set up a common sense heuris-
tics to obtain acceptable rewritings even when no se-
mantically equivalent translations are at hand. Precon-
ditions for the application of the rules take into account
a carefully restricted context of the terms occurring
in the graph pattern. Although restricted, the rule set
has shown to be quite effective achieving acceptable
rewritings (see section 5).
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Five kinds of rules have been considered (see ta-
ble 3), each kind based on a different motif: Equiva-
lence (E), Hierarchy (H), Answer-based (A), Profile-
based (P), and Feature-based (F). A pragmatic scenario
has been considered in which a bridge dataset can be
taken into account in the process of rewriting a query
adequate for a source dataset into another query ade-
quate for a target dataset. In order to favour the possi-
bilities of finding alignments between resources, map-
pings between both the source (Ds) and target (Dt)
datasets and a bridge (Db) dataset are considered. That
scenario is quite frequent, since in almost any domain
there is a popular dataset that may play such a refer-
ence role.

In table 3, the first column (Rule) shows the kind of
the rule and a rule number. The second column (To be
replaced) shows a generic triple pattern that should be
matched to a triple pattern in the current query, such
pattern will be replaced by the graph pattern in the
fourth column (Replacement) if patterns in the third
column (Knowledge Base) are present in the knowl-
edge base graph of the datasets in question. Prefixes s:,
t:, and b: refers to source, target, and bridge datasets
respectively. Finally, the fifth column (V(r)) presents
a similarity measure definition for the corresponding
rule. The measure is meant to reflect a similarity value
between the replaced part and the replacement after
application of the rule. Rules are applied to a triple
pattern of the query being rewritten that presents a re-
source identifier (i.e. URI) u that does not belong to the
target dataset vocabulary. Therefore, each application
of a rule can be associated to the unknown resource u
that was replaced; and that is why the similarity mea-
sure in the V(r) column is represented by a function in
terms of u, whose value φ(u) is a real number in the
interval [0, 1].

The algorithm A for applying the rules is quite
straightforward in this case. It consists in applying the
rules in the same sequence order that they are num-
bered in table 3. The idea behind this order is to ap-
ply first those rules that seems to maintain as much
as possible the semantics of the original query. A rule
is applied as long as its preconditions (described by
columns To be replaced and Knowledge Base) are sat-
isfied. When a rule is no longer applicable, the algo-
rithm drives to the following rule. Something specific
takes place when application of rule F15 has finished.
If any non adequate URI remains in the query, rules
E and H are tried again and after that, any triple pat-
tern presenting a non adequate URI is deleted from the
query.

The similarity measure associated to equivalence
rules (E) is simply the constant function φ(u) = 1. In
contrast, the similarity function associated to hierarchy
rules (H) is quite more complex. It is an adaptation of
a distance proposed in [25] and elsewhere for a dis-
tance between two terms in a hierarchy. Each term U
in the hierarchy is associated with a milestone value
m(U) depending on its depth in the hierarchy. Then, the
distance between two terms U and V in the hierarchy
is d(U, ccp(U,V)) + d(V, ccp(U,V)) where ccp(U,V)
is the closest common parent of U and V in the hi-
erarchy and d(X, ccp(X,Y)) = m(ccp(X,Y))− m(X).
However, in the context considered in this paper, where
U and V belong to different vocabularies and, there-
fore, different hierarchies, the notion of ccp(U,V) is not
directly applicable. Then, we have adapted such dis-
tance in the following manner. The intuition is that the
deepest term (i.e. that with the least milestone) carries
more information than the higher term. The value of
parameter k is the decrease factor for the milestone in
every next level of the hierarchy. It is k = 2 in our case.

m(U) = m(V) ∧ U v V →

distance(U,V) = m(U)× (1− 1

k
)

m(U) < m(V) ∧ U v V →

distance(U,V) = m(V)− m(U)

m(U) < m(V) ∧ V v U →

distance(U,V) = m(U)× (1− 1

k
)

Once the distance is defined, the similarity function S o

between U and V is

S o(U,V) = 1− distance(U,V)

Depending on the particular instantiation of the ap-
plied rewriting rule, the number of terms involved in
the replacement of the term u and its triple pattern
can be more than one (see table 3); in fact, ANDi=1,...,k

(t : u1i, u2, u3) or UNIONi=1,...,k (t : u1i, u2, u3). In such
a case, the similarity measure is the average of the k
pairwise similarity values:

φ(u) =

∑k
i=1 S o(u, ui)

k

With respect to answer-based (A), profile-based (P),
and feature-based (F) rules, the similarity measure is
defined as a linear combination of some other three
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Rule To be replaced Knowledge Base Replacement V(r)

E1 ELHS EDOAL : ELHS → t : ERHS t : ERHS
φ(ui) = 1E2 (u1, u2, u3) (u1, eq, t : u1i) (i = 1, . . . , k)

Analogously for u2 and u3

UNIONi=1,...,k

(t : u1i, u2, u3)
E3 (u1, u2, u3) (u1, eq, b : u1i)(b : u1i, eq, t : u1i)

(i = 1, . . . , k)
Analogously for u2 and u3

UNIONi=1,...,k

(t : u1i, u2, u3)

H4 (u1, u2, u3) (u1, sub, v) (v, sub, t : u1i)
(i = 1, . . . , k)

Analogously for u2 and u3

ANDi=1,...,k

(t : u1i, u2, u3)
φ(u1) =∑k

i=1 S o(u1 ,t : ui)

k
H5 (u1, u2, u3) (t : v1i, sub, v) (v, sub, u1)

(i = 1, . . . , k)
Analogously for u2 and u3

UNIONi=1,...,k

(t : v1i, u2, u3)

A6 (?x, t : p, u) Answers(?x, t : p, u)=
(x1, . . . , xn)

(xk , eq, t : xk) (k = 1, . . . , n)
(t : xk , t : p, t : ok j)

( j = 1, . . . ,mk)

UNIONk=1,...,n(
AND j=1,...,mk

(?x, t : p, t : ok j) )

φ(u) =

αn · S n(u, t : b)

+αd · S d(u, t : b)

+αo · S o(u, t : b)

A7 (u, t : p, ?x) Analogous to 6, subject instead of object
A8 (?x, p, t : o) Anwers(?x, p, t : o)=

(x1, . . . , xn )
(xi, eq, t : xi) (i = 1, . . . , n)

∀ j ∈ {1 . . . k}
(t : xi, t : p j, t : o)

UNION j=1,...,k

(?x, t : pk , t : o)

A9 (t : s, p, ?x) Analogous to 8, subject instead of object
A10 (?x, ?p, o) Answers(?x, ?p, o)=

(x1, . . . , xn)
(xk , eq, t : xk) (k = 1, . . . , n)

(t : xk , t : pki, t : oki)
(i = 1, . . . ,m)

t : oz = mostFrequent(t : oki :

k = 1, . . . , n.i = 1, . . . ,m)

(?x, ?p, t : oz)

A11 (s, ?p, ?x) Analogous to 10, subject instead of object

P12 (u, p, o) (u, s : pi, ai) (ai, eq, t : ai)
(t : ai, t : pi, t : oi)

(i = 1, . . . ,m)
(b j, s : q j, u) (b j, eq, t : b j)

(t : b j, t : q j, t : o j)
( j = m + 1, . . . , n)

t : oz=
maxSim (u, t : o1, . . . , t : on)

(t : oz, p, o) φ(u) =

αn · S n(u, t : b)

+αd · S d(u, t : b)

+αo · S o(u, t : b)

P13 (s, p, u) Analogous to 12, object instead of subject
P14 (s, p, o) Analogous to 12, predicate instead of subject

F15 (u1, u2, u3) (u1, s : pk , s : ok) (k = 1, . . . , n)
Analogously for u2 and u3

(?v, u2, u3)
ANDk=1,...,n

(u1, s : pk , s : ok)
?v a new variable

φ(u) =

αn · S n(u, t : b)

+αd · S d(u, t : b)

+αo · S o(u, t : b)
Table 3

SPARQL query rewriting rules and similarity measures.
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similarity measures, which are selected to cover var-
ious facets of comparison between terms. Assuming
that the term u is replaced by the term t : b, the simi-
larity measure is

φ(u) = αn·S n(u, t : b)+αd ·S d(u, t : b)+αo·S o(u, t : b)

αn + αd + αo ≥ 0 ∧ αn + αd + αo = 1

S n and S d are string based methods, and S o is the
similarity measure previously defined. S n is a sim-
ilarity measure computed as the average of Leven-
shtein and Jaccard distances, corresponding to the
rdfs:label property value of the two compared
terms. And S d is a token based similarity measure
which takes into account the definition contexts of
the terms. For each compared term, u and t : b, a
bag of words is constructed containing words from
their rdfs:comment and rdfs:label string val-
ued properties. S d is defined as a cosine similarity of
two vectors V(u) and V(t : b) constructed by the fre-
quency of word appearance (i.e. Vector Space Model
technique):

S d(u, t : b) =
V(u) · V(t : b)

‖V(u)‖ ‖V(t : b)‖

As has been previously noted, when the number of
terms involved in the replacement of the term u is
more than one (let us say (t : b1, . . . , t : bk)), every sin-
gle measure is replaced by the corresponding average
(S x(u, t : b1) + . . .+ S x(u, t : bk))/k.

The parameter values αn, αd, and αo can be deter-
mined by an expert taking into account the desired
pondering of the three facets. But it could be prefer-
able to obtain those parameter values as the output of
an specifically designed optimization algorithm. In our
case, we leveraged on a genetic algorithm called Har-
mony Search (HS) for the determination of such pa-
rameter values. The explanation of the configuration of
the algorithm will be presented in section 5.

The similariry measure SF associated to a target
query is an aggregation of the similarity values as-
sociated to each rule applied to reach such a target
query. Among different possibilities, a measure based
on the Euclidean distance on a n-dimensional space
was selected. Given a sequence of rule applications
(ri)

N
i=1 for the rewriting of a source query into a tar-

get query, involving the corresponding non adequate
terms (ui)

N
i=1, the values (φ(ui))

N
i=1 can be considered

the coordinates of a point in a N-dimensional space,
where the point (1, . . . , 1) represents the best and the
point (0, . . . , 0) the worst. Then, the Euclidean dis-
tance between the points (φ(ui))

N
i=1 and (1, . . . , 1) pro-

vides a foundation for a similarity measure. In order
to normalize the similarity value within the real inter-
val [0, 1], with the value 1 representing the best simi-
larity, the Euclidean distance between (φ(ui))

N
i=1 and

(1, . . . , 1) is divided by
√

N, and substracted from the
best similarity 1.

SF((ui)
N
i=1) = 1− 1√

N

√√√√ N∑
i=1

(1− φ(ui))2

Finally, the score selected to inform about the qual-
ity of the obtained target query was the F1 score calcu-
lated by comparing the answers retrieved by the target
query with those retrieved by the corresponding Gold
standard query. We call Relevant answers (Rel) to the
set of answers obtained by running the Gold standard
query, and Retrieved answers (Ret) to the set of an-
swers obtained by running the target query. Then, the
values Precision (P), Recall (R), and F1 score (F1) are
calculated with the following formulae.

P =
|Rel ∩ Ret|
|Ret|

R =
|Rel ∩ Ret|
|Rel|

F1 = 2×
P× R
P + R

The supervised learning model P devised to predict
the F1 score of a target query was generated from the
application of a Random Forest algorithm. Some other
regression algorithms were considered and after an ex-
perimentation process, discussed in section 5, the Ran-
dom Forest was selected because it offered the best re-
sults.

5. Framework validation

This section presents the main results of the pro-
cess carried out to validate the proposed framework.
The following resources are presented: (a) the LOD
datasets selected for querying data, (b) the collection
of training queries, (c) the optimization algorithm used
to determine the proper parameter values for comput-
ing similarity measures and a discussion of its results,
(d) the collection of features gathered from data to con-
struct the datasets used by the machine learning algo-
rithms and the results obtained by them.
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5.1. Queries and datasets

The set of experimental queries were selected after
analyzing heterogeneous benchmarks such as QALD1,
FedBench [22], and real SPARQL endpoint logs
(BNE, DBpedia). The idea underlying the selection
process was to select queries that could be repre-
sentative of the different SPARQL query types and
that could cover heterogeneous domains in the Linked
Open Data framework.

We trusted on well known datasets, with available
SPARQL endpoints and accessible for people. Three
domain areas were considered for the datasets: media-
domain, bibliographic, and life science. For each one,
a set of recognized datasets were selected. With re-
spect to media-domain, the selection was: DBpe-
dia, MusicBrainz, LinkedMDB, Jamendo, New York
Times and BBC. With respect to bibliographic do-
main, we considered BNE (Biblioteca Nacional de Es-
paña), BNF (BibliothÃĺque National du France), BNB
(British National Bibliography), LIBRIS, and Cam-
bridge. And finally for the life science area: Drugbank,
SIDER, CHEBI, DISEASOME, and KEGG were the
selected ones. Moreover, to achieve greater plurality in
the tests, we used the SP2Bench, which is based on a
synthetic dataset.

A set containing 100 queries was created for experi-
menting with the framework and providing data for the
learning process. Those queries along with their corre-
sponding gold standards and the names of source and
target datasets are listed in the appendix hosted in the
following URL 2.

Regarding the syntactic structure of the queries,
a variety of the SPARQL operators (UNION, OP-
TIONAL, FILTER) and different schemas for joins of
variables appear in the queries. The number of triple
patterns of each query ranges from 1 to 7.

5.2. Suitability of the similarity factor

The similarity factor SF in the framework is in-
tended to inform the user about the expected quality
of a target query obtained by the rewriting system. As-
suming that the ideal for the target query would be
to perform the most similar to the corresponding gold
standard query, it is natural to design SF in such a way
that the similarity factor associated to a target query be

1http://greententacle.techfak.uni-bielefeld.de/ cunger/qald/
2https://github.com/anaistobas/

SPARQLQuerySet

correlated with the F1 score of that target query. There-
fore, tuning of the similarity measures used to compute
SF is desirable.

The similarity measure, presented in section 4, de-
fined as a linear combination of three similarity mea-
sures, involves three parameters αn, αd, and αo. In-
stead of trying to determine their appropriate values
by chance it seems preferable to devise a method to
optimize their values towards the goal of moving SF
closer to F1 score.

We selected a method based on a genetic algorithm,
specifically the Harmony Search (HS) algorithm [9].
Harmonies represent sets of variables to optimize,
whereas the quality of the harmony is given by the fit-
ness function of the optimization problem at hand.

In our case the variables to optimize are the parame-
ters (αn, αd, αo) appearing in the definition of our simi-
larity measure, and the established fitness function was
the maximization of the proportion of queries whose
absolute difference between the value of the similar-
ity factor SF((ui)

N
i=1) and the F1 score for the corre-

sponding target query is less than a given threshold β.
The fitness function is as follows:

maximize
n∑

i=1

1

n
H(qi))

subject to 0 ≤ αn, αd, αo, β ≤ 1

H(qi) =

{
1 if |F1(qi)− SF(qi, αn, αd, αo)| < β
0 otherwise

In order to carry out the optimization process we
considered the previously presented query set (see
5.1), and divided it into training and test datasets, with
a ratio of 80% and 20%, respectively. The first step
was to execute the HS algorithm on the set of train-
ing queries, in order to obtain the parameter values that
achieve optimal fitness. For this, the algorithm was pa-
rameterized with the number of iterations and initial
values for the parameters. The HS optimization pro-
cess may obtain different solutions depending on the
initial random values chosen for the parameters and
the number of iterations allowed. With 100 iterations
and an initialization defined by the HS algorithm itself,
we obtained the values shown in table 4 for parameters
according to different values of β (0.4, 0.2, 0.1).

Convergence of the HS optimization process for the
training dataset and β = 0.2 is shown in figure 1, where

https://github.com/anaistobas/SPARQLQuerySet
https://github.com/anaistobas/SPARQLQuerySet
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β = 0.1 β = 0.2 β = 0.4

αn 0.11902 0.13049 0.13405
αd 0.50183 0.51760 0.53741
αo 0.37915 0.35191 0.32854

Table 4
Similarity parameter values for training dataset.

abscissas axis represents the number of algorithm iter-
ations and the ordinate axis represents the fitness value.
It can be observed how the fitness increases with the
number of iterations.

To assess the validity of the parameter values ob-
tained by the algorithm, the similarity factor was com-
puted over the set of 20% test queries (in this case us-
ing the alphas obtained in the different scenarios with
β = 0.4, 0.2, 0.1, respectively) and then, the absolute
difference between these similarity factors and the F1
scores for the corresponding target queries were cal-
culated. Training and Test Fitness in table 5 display
the values for training dataset fitness and test dataset
fitness respectively. The relation between the training
dataset fitness value and the one obtained with the test
dataset measures the suitability of the optimization.

It can be observed that the absolute difference be-
tween the fitness obtained with the training and test
datasets never exceeds 0.14, which indicates that the
optimization process is valid (values less than 0.3 are
considered valid).

5.3. Discussion

Following we present the comparison of the simi-
larity factor SF and F1 score values obtained by our
embodied framework using the optimized parameter
values calculated by the HS aforementioned method
over the set of 100 experimental queries. Figure 2
shows a scatterplot of the 100 points with coordinates
(F1 score, SF). Table 6 shows numbers for the same
points.

An analysis of the results revealed the following
considerations: In 59 out of 100 source queries the
target queries provided the same set of results as the
corresponding gold standard queries. From this set, in
50 of them their F1 score was 1, and in 9 of them
(Q11, Q17, Q25, Q26, Q39, Q41, Q52, Q76, and Q91)
the F1 score could not be calculated because the sets
of relevant and retrieved results (see section 4) were
both empty (notice that eventual dataset updates could
change those results). See table 7 for a graphical dis-
play of the results.

The cases in which the F1 score equals 1 (50%) can
be divided into two groups depending on the similarity
factor: (1) Similarity factor equal to F1 score, repre-
sent a 23%. (2) Similarity factor is less than F1 score,
represents a 27%.

In the other case, there are 41 queries in which the
target queries did not provide the same set of results
as the corresponding gold standard queries. Therefore
these queries have an F1 score lower than 1. From this
set, in 24 of them the similarity factor is higher than
the F1 score, for example queries Q2 (0.002, 0.405),
Q24 (0.05, 0.44), or Q55 (0.018, 1). In those cases the
similarity factor is too optimistic because the actual
results provided by the target query are very different
from those provided by the gold standard query, these
are the cases where the F1-measure value is very low.
In 15 of them the similarity factor is lower than the
F1 score. And finally, there are 2 queries where the re-
trieved results are empty (Q28, Q40).

We want to notice that in cases where SF < F1
score, the rewriting system is performing better than
the offered similarity factor, since the higher F1 score
shows that the target query performs more similarly
to the gold standard. It can be argued that while SF
reflects an intensional measure (semantic similarity of
the replacement), the F1 score has an extensional char-
acter.

We think that the results of table 6 allow us to say
that the similarity factor defined in section 4 is quite
informative about the quality of the target query from
an intensional point of view. Nevertheless, one goal of
the presented framework is to serve as a tool for es-
tablishing benchmarks which promote improvement of
query rewriting systems.

5.4. Predictive model for the F1 score

As we have already mentioned, in a real scenario
gold standard queries are not available, that is the rea-
son why a predictive model P is considered in the
framework. In the scenario of this paper, P is in charge
of predicting the F1 score.

The construction of that model is based on datasets
that contain features that represent underlying struc-
ture and characteristics of the data subject of the pre-
diction. In our scenario, features related to the structure
of the source query such as number of triple patterns
or number of operators, along with features related to
rules that take part during the rewriting process, and
finally features concerning the involved LOD datasets,
were considered to build the feature datasets.
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Fig. 1. Convergence of fitness with the training dataset and β = 0.2.

Training Fitness Test Fitness
β = 0, 4 0.84 0.77
β = 0, 2 0.81 0.72
β = 0, 1 0.67 0.53

Table 5
Fitness values for different thresholds.

Fig. 2. Scatterplot for F1 score and Similarity factor (using similarity parameter values calculated for training dataset and β = 0.2).

Following we present the 21 considered features:

1. Similarity and rules features, numbered from 1
to 11: (1) Number of times the equivalence rules
are applied, (2) Similarity measure value asso-
ciated to the equivalence rules application, (3)
Number of times the hierarchy rules are applied,
(4) Similarity measure value associated to the hi-
erarchy rules application, (5) Number of times
the answer-based rules are applied, (6) Simi-
larity measure value associated to the answer-
based rules application, (7) Number of times

the profile-based rules are applied, (8) Simi-
larity measure value associated to the profile-
based rules application, (9) Number of times the
feature-based rules are applied, (10) Similarity
measure value associated to the feature-based
rules application, and (11) the similarity factor
calculated for the target query.

2. Query structure features, numbered from 12 to
18: (12) Number of triple patterns of the source
query, (13) number of terms of the source query,
(14) number of terms not belonging to the vocab-
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
F1 1 0.002 1 1 0.83 1 0.46 1 0.5 1

SF 0.956 0.405 0.987 0.979 0.71 0.905 0.52 0.984 0.56 0.78

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
F1 0 1 1 1 1 1 0 1 1 1

SF 0 0.912 1 1 1 1 0 0.901 1 1

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
F1 1 0.66 0.16 0.05 0 0 0.01 0 0.8 1

SF 1 0.61 0.47 0.44 0 0 0.405 0 0.775 0.701

Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40
F1 1 1 1 0.57 0.88 1 0.18 1 0 0

SF 1 0.79 0.87 0.72 0.72 0.93 0.43 1 0 0

Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50
F1 0 1 1 0.31 0.37 0.25 1 1 1 0.45

SF 0 0.88 0.41 0.48 0,405 0.52 1 1 0.761 0.711

Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60
F1 1 0 0.666 1 0.018 0.198 0.666 1 1 1

SF 0.96 0 0.57 0.94 1 0.405 0.665 0.919 0.982 0,89

Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70
F1 1 0.371 0.306 0.656 0.666 0.714 1 1 1 1

SF 1 0.422 0.405 0.63 0.62 0.7 1 0.88 1 1

Q71 Q72 Q73 Q74 Q75 Q76 Q77 Q78 Q79 Q80
F1 1 0.666 0.571 0.26 1 0 0.85 1 0.46 1

SF 1 0.57 1 0.99 1 0 1 1 1 1

Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90
F1 1 1 1 0.026 0.644 0.412 0.181 1 1 0.6

SF 1 0.98 0.91 0.4 0.57 0.41 0.405 1 0.96 0.57

Q91 Q92 Q93 Q94 Q95 Q96 Q97 Q98 Q99 Q100
F1 0 1 1 0.524 0.093 0.333 1 1 1 0.16

SF 0 0.92 1 0.49 0.405 0.44 1 0.98 0.91 0.42
Table 6

SF (using similarity parameter values calculated for training dataset and β = 0.2) and F1 score for the experimental query set.

Query set
100 queries

Retrieved answers = Relevant answers
59 queries

Ret6= Rel
41 queries

F1 = 1
50 queries

F1 cannot
be calculated

(without answers)
9 queries

SF > F1
24

SF < F1
15

|Ret|=0
2SF = F1

23 queries
SF < F1
27 queries

Table 7
Summary of the comparison between SF value and F1 score.
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F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8

1 Equivalence rule application times X X
2 Equivalence rule similarity measure value X X X
3 Hierarchy rule application times X X
4 Hierarchy rule similarity measure value X X X
5 Answer rule application times X X
6 Answer rule similarity measure value X X X
7 Profile rule application times X X
8 Profile rule similarity measure value X X X
9 Feature rule application times X X
10 Feature rule similarity measure value X X X
11 Overall similarity measure X X X X X X X X
12 Number of source triple patterns X X
13 Number of terms in source query X X X X X X X
14 Number of non-adequate terms X X X X X X X
15 Number of union operators X
16 Number of projected variables X
17 Number of optional operators X
18 Number of filter operators X
19 Source Dataset X X X X
20 Target Dataset X X X X
21 Number of mappings between source and target X X X

Table 8
Selected features for the different datasets.

Datasets LR SVM SVM +PCA RF RF+ PCA
Features1 0.6751 -1.5072 -1.941 0.8219 -1,0013

Features2 0.5902 -1.0313 -3.8922 0.7132 0.2461

Features3 0.6045 -0.0437 -1.5331 0.7152 0.3479

Features4 0.4572 -0.0689 0.0215 0.7026 0.6045

Features5 0.7146 0.7731 0.0329 0.6835 0.6218

Features6 0.7529 0.6815 0.1844 0.7797 0.6414

Features7 0.7511 0.7611 0.1521 0.7221 0.6511

Features8 0.7523 0.7146 0.1711 0.7923 0.687
Table 9

R2 metric of the predictive models.

ulary of the target dataset, (15) number of union
operators, (16) number of projected variables,
(17) number of optional operators, and (18) num-
ber of filter operators.

3. LOD Datasets features, numbered from 19 to
21: (19) categorical data associated to the source
dataset depending on its size, (20) categorical
data associated to the target dataset depending on
its size, and (21) number of mappings between
source and target datasets.

In order to select a best fit model, we experimented
with the following off-the-shelf algorithms [19,24]:
Linear regression (LR), Support Vector Machines

(SVM) with and without PCA (Principal Component
Analysis), and Random Forest with and without PCA;
and with 8 different datasets (F.1 to F.8) corresponding
to distinct feature selection (see table 8).

The values used in the experiment were obtained
from the rewriting of the 100 aforementioned queries.
This set of queries were divided in three fragments:
80% for the training process, 15% for the validation
process, and 5% for the test process, respectively. The
score of each of those models is measured based on a
20-fold cross-validated average mean squared error-R2
metric. The results are presented in the table 9, where
each cell of the table represents the coefficient of deter-



14 A.Torre-Bastida et al. / Estimating query rewriting quality over the LOD

mination for each model (in combination or not with
PCA) trained with the feature dataset indicated by the
row.

As can be seen, the model that best fit is that ob-
tained using the Random Forest-RF with F.1 dataset,
with a R2 equals 0.8219. Moreover, notice that the fea-
tures datasets F.6, F.7, and F.8 are the ones that, in
general, show a better behaviour with all the models.
Therefore, the similarity factor (11), number of terms
(13), and number of non-adequate terms (14) features
can be considered the most significant ones.

6. Conclusions

The current state of the Web of Data with so many
different datasets of heterogeneous nature makes diffi-
cult to the users to query them in order to exploit the
vast amount of data contained. Different proposals are
appearing to overcome that limitation. In this paper we
have detailed the features of a framework that allows
end users to obtain results from different datasets ex-
pressing the query using only the vocabulary which the
users are more familiar with, and informs them about
the quality of the answer. Moreover, this framework
serves technical users as a tool for establishing query
rewriting benchmarks.

The framework has been embodied with a selected
set of rules, similarity measures, and quality estima-
tion model composed of similarity factor function and
F1 score predictive model. Moreover, the framework
has been validated in a real scenario and the results
obtained are promising, and they could be improved
considering smarter rewriting rules and better shaped
similarity measures.
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